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OUTLINE

(1) Basic definitions and tferminology
(2) Overview and background

(3) Deterministic top-down tree transducers with rational
ookahead

(4) MSO transductions

(5) Main result: comparison of deterministic fransducers and
MSO transductions
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TERMS

e ranked alphabet F (symbols with arity)
e |f| denofesrank of f € F
¢ |Flmax = max{|f| | f € F}

Terms (possibly infinite) represented as finite edge-labeled frees over the
adlphabet ¥ = FU{1,...,|F|max}:

Example if
N
f(g(c),h(d)) representedas h
1 1
c d
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FOLDED TERMS

e roofted graph G (edge labels from X £)
e unfolding of G from the root denoted by unfold(G)
e (G is afolded term if unfold(G) is A term

Example:

"
PN
fl g h

1 1

/ X " unfolds to h f
gl%i 1 1/\2

f W. W
AT

LIAFA, 23/01/2004 Deterministic Transducers over Infinite Terms — p.4



MSO LOGIC — RATIONAL SETS OF TERMS

MSO logic over folded termes:

e Signature (F,).cx . DinAry symbols inferpreted as the edge relations
for each symbol in X £.

e Quantification over individual verfices.
e Quantification over sets of verfices.
o(x)= VX[re X AVy,2(ye XNE(y,z) — z € X)
— 32/ 2 e X(F.(7,2"))]
A set of terms is rational
e if it is definable in MSO logic or equivalently

e If It is the set of ferms accepted by a Rabin or parity free automaton
or equivalently

e if it is definable in the modal u-calculus.
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BACKGROUND

e (infinite) terms describe (infinite) objects, e.g., graphs or formal
languages
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EXAMPLE — TERMS REPRESENTING GRAPHS

Representation of vertex-colored graphs

F=1{8,mi,pimj,1,.... k L}
D disjoint union
i add edges between
i-vertices and j-vertices
pi—; Make i-vertices to j-vertices
i single i-vertex
1 empty graph
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BACKGROUND

e (infinite) terms describe (infinite) objects, e.g., graphs or formal
languages

e another way of describing objects is via equational systems
e equational systems can be represented by folded terms

G =p12(n20l®G)) N
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BACKGROUND

e (infinite) terms describe (infinite) objects, e.g., graphs or formal
languages

e another way of describing objects is via equational systems
e equational systems can be represented by folded terms

G =p12(n20l®G)) N

fold .
terms <——— folded terms equational systems

object (e.g. graph)

e develop tools o deal with equational systems
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OVERVIEW

Objective: apply transformations o the represented objects
Approach: transform the representation

for more details see thesis of Thomas Colcombet
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OVERVIEW

Objective: apply transformations o the represented objects
Approach: transform the representation

for more details see thesis of Thomas Colcombet

IN this talk:
fransducer: tferms tferms
A
comparison Tunfold Tunfold
v
MSO transduction: folded terms —— folded terms
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TOP-DOWN TREE TRANSDUCERS WITH RATIONAL LOOKAHEAD

T=(Q,F,F, qo,A) with:
o F,F' ranked alphabets (input and output alphabet)
e () afinite set of states
e ¢p € Q the initial state

e A afinite set of rules of one of the following forms:

(production rule): ¢(z) — g(qi(z), ..., q4())
g€ F', x avariable,and qi,...,qy € Q

(consumption rule): q(f(z1,...,x¢)) — q'(z;)
feF.q,¢d €Q.andxy,...,z variables
(lookahead rule): g(x € L) — ¢'(x)

L a rational set of F-terms (called lookahead set), ¢, ¢’ € ), and z A
variable
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TOP-DOWN TREE TRANSDUCERS WITH RATIONAL LOOKAHEAD

T=(Q,F,F, qo,A) with:
o F,F' ranked alphabets (input and output alphabet)
e () afinite set of states
e ¢p € Q the initial state

e A afinite set of rules of one of the following forms:
(production rule): ¢(z) — g(qi(z), ..., q4())
g€ F', x avariable,and qi,...,qy € Q
(consumption rule): q(f(z1,...,x¢)) — q'(z;)
feF.q,¢d €Q.andxy,...,z variables

(lookahead rule): g(x € L) — ¢'(x)
L a rational set of F-terms (called lookahead set), ¢, ¢’ € ), and z A
variable
Semantics: Start with ¢¢(t) and "apply rewriting rules to infinity’
Determinism: for any ¢, t no two rules apply to ¢(t)
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EXAMPLE
F=F ={® 0 pimj L.,k L}

Goal: Remove isolated vertices from val(t)

For a set of colors C' let fo be the mapping that removes all vertices from
G that are isolated and not of color C. We are interested in fy.
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EXAMPLE

F = f/ — {@ani,japi—ﬁalv « . 7E7J—}
Goal: Remove isolated vertices from val(t)

For a set of colors C' let fo be the mapping that removes all vertices from
G that are isolated and not of color C. We are interested in fy.

Invariants:
fo(l) = L. fe(i) =iifie ¢ and fo(i) = L, otherwise.
fe(GaG') = fc(G) @ fo(G)
fe(mi;(G)) = for (G) with €7 = { g L;Tﬁeiiv:zg contains i- and j-verfices
Cu{itifjecC
C\{i}ifj¢C

Implementatfion: Transducer keeps frack of the set C' using the invariants.

fo(pi—;(G)) = for (G) with C" = {
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EXAMPLE

Lookahead sets:

Li = {i L, = {1}

Lo = {t|t=0(t1,t2)} Lp_, = {t[t=pi;t1);

L, , = A{t|t=mn;;(t1)andwal(t;) containsi- and j-vertices}

Ly, = A{t|t=mn;;(t1)andwal(t;) does not contain i- and j-vertices}

Some of the rewrifing rules:

1 ifreC
C, Qoo L;) — Ca i / O’ i Li) = ) '
o (C,quook) (z € L;) — (C,qs) () (Cra:) (x € Ly) { 1 otherwise

o (C,qiook) (z € Ly, ;) = (C, geons) ()

¢ (C,quok) (x € Ly, ;) = (CU{i, 5}, qn, ;) (2)

* (C,qook) (7 € Lg) — (C,qq) (z), (C,q0)(x) = ®(C,qp,1) (2),(C,qa,2) (7))
CU{i}ifjeC

* O oo (@ € Loy = (MU Gimy) (@) WINCT = { C\{i}ifj ¢ C

LIAFA, 23/01/2004 Deterministic Transducers over Infinite Terms — p. 14
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SAMPLE APPLICATION
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PROPERTIES OF DETERMINISTIC TRANSDUCERS

e The inverse image of a rational set of terms by a deterministic
fransducer is rational.

e The image of a rational set of tferms by a determinisfic transducer
needs not fo be rafional.

e The image of a regular term (unfolding of a finite folded ferm) by a
deterministic transducer is a regular ferm.

e Detferministic transducers are closed under compaosition.
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MSO TRANSDUCTIONS

/nEN

M= (XF,XF, (¢a,i,j (,9)), (p@)v n)

a€Xgr,i,j€4{1,...,n} ie{l,...,n}

MSO-formulas ¢, j(z,y) and p;(x,y) over the signature (E,)a.cx »

For a folded tferm G = (V, Eg) with roof ro, M defines a folded term
M(G) — (VM(G)7 EM(G)) with root TM(G):

[ VM(G) =V X [1,71]

o ((v,i),a,(u,5)) € Epe) it G 1= aij(v,u)
* "y = (u,4) forthe unique v and i with G = p;(rg, ).

K semantic conditions

LIAFA, 23/01/2004 Deterministic Transducers over Infinite Terms - p.18



EXAMPLE

F=F =1{f,g,c} with f, g binary and ¢ constant.
Swap subterms of f if the right subbterm contains ¢
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EXAMPLE

F=F =1{f,g,c} with f, g binary and ¢ constant.
Swap subterms of f if the right subbterm contains ¢

UB ) /f U1

1
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EXAMPLE

F=F =1{f,g,c} with f, g binary and ¢ constant.
Swap subterms of f if the right subbterm contains ¢

Root: 0, 1
p1(z,y) = (z =y) b /f

v
Edges: 1 22
¢a,1,1(x7y) — Ea(xay) v
fora € {g,c,1,2} 3

f 1

P1,2,1(2,y) = Eo(z,y) V4

P2.21(x,y) = Ei(z,y) 1/ x

Us Ve
braa () = o <g¢
Ef<xay)/\_'¢f,1,2($ay) V7 Vs

Pri2(z,y) = Ef(x,y) AIz[Ea(y, 2)A

VX(ze X ANV, 22 e X NE(Z,2") — 2 e X)
— J2' 2" e X(FE.(2,7")))]
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EXAMPLE

F=F =1{f,g,c} with f, g binary and ¢ constant.
Swap subterms of f if the right subbterm contains ¢

Root: 0, U1 (vo,1) 5 (v1,1)~—
pr(z,y) = (v =y) b /f M
Edges: 1 “2 (w2, 1) ) (v2,2)
]iba,l,l(x\,{y) :1E2a}(x,3/) ,032 : ¢21)
Oracq9,c, 1, U3, ;

f 1 \

P1,2,1(2,y) = Eo(z,y)

P2,2,1(2,y) = El(x:y) 1/ x W

V6
Pra1(T,y) = c 5 <g l/c 2 gi
Ef<xay)/\_'¢f,1,2($ay) 1>L7 Q;LS (U'?a 1) (’08, 1)—/
Graz(r,y) = Ep(r,y) A3z[Eax(y, 2)A
VX(ze X ANV, 22 e X NE(Z,2") — 2" e X)
— 32" 2" e X(E.(2',2")))]
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OUTLINE

(1) Basic definitions and ferminology
terms, folded terms, MSO logic, rational sets of terms

(2) Overview and background
fransformation of objects by transformation of representation

fransducer: ferms ferms
A
comparison : Tunfold Tunfold
Y
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BISIMILARITY PRESERVING TRANSDUCTIONS

An MSO Transduction M is bisimilarity preserving if for any two rooted
folded tferms G, G':

unfold(G) = unfold(G") = unfold(M (G)) = unfold(M (G"))
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MAIN RESULT

Bisimilarity preserving MSO Transductions and deterministic fransducers
have the same expressive power.
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MAIN RESULT

Bisimilarity preserving MSO Transductions and deterministic fransducers
have the same expressive power.

More precisely:

(i) For each deterministic fransducer T' there exists a bisimilarity
preserving MSO transduction M such that for all folded terms G

unfold(Mr(G)) = T (unfold(G))

(i) For each bisimilarity preserving MSO transduction M there exists a
deterministic fransducer T, such that for all folded terms G:

unfold(M (G)) = T (unfold(G))
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TRANSDUCER — MSO TRANSDUCTION

e If T"has N states, then M uses 2 - N copies of GG,

e State ¢ identified uniquely with a number n,,.

e [0 dedal with consumption and lookahead rules a new symbol ¢ of arity
1 is infroduced. This can be removed by a second MSO transduction.
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TRANSDUCER — MSO TRANSDUCTION

e If T"has N states, then M uses 2 - N copies of GG,

e State ¢ identified uniquely with a number n,,.

e [0 dedal with consumption and lookahead rules a new symbol ¢ of arity
1 is infroduced. This can be removed by a second MSO transduction.

Production rule ¢(x) — g(q1(x), ..., qq4/ (7))

: Pi,N-+ngn,,
(% (%
: \/ : (bg,nq,N—l—nq

Deterministic Transducers over Infinite Terms — p.23
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TRANSDUCER — MSO TRANSDUCTION

e If T"has N states, then M uses 2 - N copies of GG,

e State ¢ identified uniquely with a number n,,.

e [0 dedal with consumption and lookahead rules a new symbol ¢ of arity
1 is infroduced. This can be removed by a second MSO transduction.

Consumption rule g(f(x1,...,z7)) — ¢'(z:)

Ny Ny N +n,

¢1,N—l—nq,nq/

¢8,nq,N+nq

if exists u with , .o, % /inG
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TRANSDUCER — MSO TRANSDUCTION

e If T"has N states, then M uses 2 - N copies of GG,

e State ¢ identified uniquely with a number n,,.

e [0 dedal with consumption and lookahead rules a new symbol ¢ of arity
1 is infroduced. This can be removed by a second MSO transduction.

Lookahead rule q(xz € L) — ¢'(x)

Ng Ny N +n,

le,N—l—nq,nq/

(% (% U

1
: \_/ : ¢€’nQ>N+nq

3

If unfold(G,v) isin L
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MSO TRANSDUCTION — TRANSDUCER

For each bisimilarity preserving MSO fransduction M there exists a
deterministic fransducer T, such that for all folded terms G

unfold(M (G)) = Ty (unfold(G))
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MSO TRANSDUCTION — TRANSDUCER

For each bisimilarity preserving MSO fransduction M there exists a
deterministic fransducer T, such that for all folded terms G

unfold(M (G)) = Ty (unfold(G))

1T suffices to consider M on terms:

M bisimilarity preserving = unfold(M (G)) = unfold(M (unfold(G)))
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MSO TRANSDUCTION — TRANSDUCER

For each bisimilarity preserving MSO fransduction M there exists a
deterministic fransducer T, such that for all terms ¢:

unfold (M (t)) = T (t)
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MSO TRANSDUCTION — TRANSDUCER

For each bisimilarity preserving MSO fransduction M there exists a
deterministic fransducer T, such that for all terms ¢:

unfold (M (t)) = T (t)

Main difficulty:

e Transducers work top-down. , W )

e If M defines new edges 'going upward’, y/ \
these edges cannot be constructed by a g h
finite state tfransducer. , ,

= In a first sfep normalize M such that defined , ;
edges are ‘going downward’.
1 1/ \2
b 5(x,y) W W‘

f
/N
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TOP-DOWN NORMALIZATION
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TOP-DOWN NORMALIZATION

e
fy £y
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TOP-DOWN NORMALIZATION

£y £y fy fy
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TOP-DOWN NORMALIZATION

>

¢//w/ i
£ £ £y fy

Consider M on t (with root inherited from t) and assume a new edge
goes upward.
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TOP-DOWN NORMALIZATION

>

¢//w/ i
£ f £y fy

Consider M on t (with root inherited from t) and assume a new edge
goes upward.

Then the same formula defines another edge with the same origin.
Hence M(t) is not a folded term.
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TOP-DOWN NORMALIZATION

>

S Ve U
A A
£ £ £y fy

e In ¢ the edges defined by M are going downward.

e The formulas ¢, ; ; on £ can be transformed into formulas ¢, ; ; on t (¢
can be obtained from t by the Muchnik/Walukiewicz consfruction).

e The new MSO transduction M using the formulas g%aﬂ-,j has the
following properties:
— unfold(M (t)) = unfold(M (t))
— The edges defined by M are going downward.
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NORMALIZED TRANSDUCTION — TRANSDUCER
Rough sketch:

e Normalized Transduction M = (X7, X7/, (Pa,i,i(x,9)), (pj(x,y)),n)

e Transform formulas ¢, ; ;(x,y) iInto (Rabin) free automata accepting
‘'marked terms”:

t: {g}vo
1 V ; Ag.iir ., ACCeEpPTs tif for some ¢ and v
¥ N
cy VI t | ¢ge(vo,v)
1/ \\2 t = P14 (v,01)
Ul{l} {2}’02 t = qbl,g,h (U,’Ug)
Fy V9

e [ransducer T, keeps track of the states of the automata A, ; j, ... j.
while going through the term.

e [he lookahead is used to check for which automaton there exists a

marking that is accepted. This information is used to consfruct the
next edge.
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CONCLUSION

e For every deterministic fransducer there is an equivalent MSO
fransduction.
~» decidability of the MSO theory of terms is preserved

e For every bisimilarity preserving MSO transduction there is an
equivalent deterministic fransducer.
~» deterministic transducers are expressively complete for MSO logic

e Transducers are more handy than MSO transductions concerning their
construction and the proofs of correctness (cf. thesis of T. Colcombet)

Open:

e We assume that M is bisimilarity preserving for finite and infinite folded
terms. Can one fransfer the result if M has this property only for finite
folded terms?

e Transfer (and analyze) other models of transducers that have been
defined for finite terms to the infinite world.
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