Deterministic Transducers over Infinite Terms

Christof Löding LIAFA (formerly RWTH Aachen) loeding@liafa.jussieu.fr

joint work with Thomas Colcombet, Warsaw University (formerly IRISA, Rennes) thomas.colcombet@laposte.net

OUTLINE

- (1) Basic definitions and terminology
- (2) Overview and background
- (3) Deterministic top-down tree transducers with rational lookahead
- (4) MSO transductions
- (5) Main result: comparison of deterministic transducers and MSO transductions

TERMS

- ranked alphabet \mathcal{F} (symbols with arity)
- |f| denotes rank of $f \in \mathcal{F}$
- $|\mathcal{F}|_{\max} = \max\{|f| \mid f \in \mathcal{F}\}$

Terms (possibly infinite) represented as finite edge-labeled trees over the alphabet $\Sigma_{\mathcal{F}} = \mathcal{F} \cup \{1, \dots, |\mathcal{F}|_{\max}\}$:

FOLDED TERMS

- rooted graph G (edge labels from $\Sigma_{\mathcal{F}}$)
- unfolding of G from the root denoted by unfold(G)
- G is a folded term if unfold(G) is a term

Example:

MSO LOGIC – RATIONAL SETS OF TERMS

MSO logic over folded terms:

- Signature $(E_a)_{a \in \Sigma_F}$, binary symbols interpreted as the edge relations for each symbol in Σ_F .
- Quantification over individual vertices.
- Quantification over sets of vertices.

$$\phi(x) = \quad \forall X [x \in X \land \forall y, z(y \in X \land E(y, z) \to z \in X)] \\ \rightarrow \exists z', z'' \in X(E_c(z', z''))]$$

A set of terms is rational

- if it is definable in MSO logic or equivalently
- if it is the set of terms accepted by a Rabin or parity tree automaton or equivalently
- if it is definable in the modal μ -calculus.

OUTLINE

- (1) Basic definitions and terminology terms, folded terms, MSO logic, rational sets of terms
- (2) Overview and background
- (3) Deterministic top-down tree transducers with rational lookahead
- (4) MSO transductions
- (5) Main result: comparison of deterministic transducers and MSO transductions

• (infinite) terms describe (infinite) objects, e.g., graphs or formal languages

Representation of vertex-colored graphs

$$\mathcal{F} = \{ \oplus, \eta_{i,j}, \rho_{i \to j}, \underline{1}, \dots, \underline{k}, \bot \}$$

 \oplus disjoint union

- $\eta_{i,j}$ add edges between *i*-vertices and *j*-vertices
- $\rho_{i \rightarrow j}$ make *i*-vertices to *j*-vertices
- \underline{i} single *i*-vertex
- \perp empty graph

Representation of vertex-colored graphs

$$\begin{aligned} \mathcal{F} &= \{ \oplus, \eta_{i,j}, \rho_{i \to j}, \underline{1}, \dots, \underline{k}, \bot \} \\ \oplus & \text{disjoint union} \\ \eta_{i,j} & \text{add edges between} \\ & i \text{-vertices and } j \text{-vertices} \\ \rho_{i \to j} & \text{make } i \text{-vertices to } j \text{-vertices} \\ \underline{i} & \text{single } i \text{-vertex} \end{aligned}$$

 \perp empty graph

Representation of vertex-colored graphs

$$\begin{aligned} \mathcal{F} &= \{ \oplus, \eta_{i,j}, \rho_{i \to j}, \underline{1}, \dots, \underline{k}, \bot \} \\ \oplus & \text{disjoint union} \\ \eta_{i,j} & \text{add edges between} \\ & i \text{-vertices and } j \text{-vertices} \\ \rho_{i \to j} & \text{make } i \text{-vertices to } j \text{-vertices} \\ \underline{i} & \text{single } i \text{-vertex} \\ \bot & \text{empty graph} \end{aligned}$$

val(t):

Representation of vertex-colored graphs

$$\begin{aligned} \mathcal{F} &= \{ \oplus, \eta_{i,j}, \rho_{i \to j}, \underline{1}, \dots, \underline{k}, \bot \} \\ \oplus & \text{disjoint union} \\ \eta_{i,j} & \text{add edges between} \\ & i \text{-vertices and } j \text{-vertices} \\ \rho_{i \to j} & \text{make } i \text{-vertices to } j \text{-vertices} \\ \underline{i} & \text{single } i \text{-vertex} \\ \bot & \text{empty graph} \end{aligned}$$

val(t):

<u>3</u>

 $\frac{2}{2}$

Representation of vertex-colored graphs

$$\begin{aligned} \mathcal{F} &= \{ \oplus, \eta_{i,j}, \rho_{i \to j}, \underline{1}, \dots, \underline{k}, \bot \} \\ \oplus & \text{disjoint union} \\ \eta_{i,j} & \text{add edges between} \\ i \text{-vertices and } j \text{-vertices} \\ \rho_{i \to j} & \text{make } i \text{-vertices to } j \text{-vertices} \\ \underline{i} & \text{single } i \text{-vertex} \\ \bot & \text{empty graph} \end{aligned}$$

val(t):

Representation of vertex-colored graphs

$$\begin{aligned} \mathcal{F} &= \{ \oplus, \eta_{i,j}, \rho_{i \to j}, \underline{1}, \dots, \underline{k}, \bot \} \\ \oplus & \text{disjoint union} \\ \eta_{i,j} & \text{add edges between} \\ & i \text{-vertices and } j \text{-vertices} \\ \rho_{i \to j} & \text{make } i \text{-vertices to } j \text{-vertices} \\ \underline{i} & \text{single } i \text{-vertex} \\ \bot & \text{empty graph} \end{aligned}$$

val(t):

- (infinite) terms describe (infinite) objects, e.g., graphs or formal languages
- another way of describing objects is via equational systems
- equational systems can be represented by folded terms

- (infinite) terms describe (infinite) objects, e.g., graphs or formal languages
- another way of describing objects is via equational systems
- equational systems can be represented by folded terms

- (infinite) terms describe (infinite) objects, e.g., graphs or formal languages
- another way of describing objects is via equational systems
- equational systems can be represented by folded terms

• develop tools to deal with equational systems

OVERVIEW

Objective: apply transformations to the represented objects

Approach: transform the representation

for more details see thesis of Thomas Colcombet

OVERVIEW

Objective: apply transformations to the represented objects

Approach: transform the representation

for more details see thesis of Thomas Colcombet

In this talk:

OUTLINE

- (1) Basic definitions and terminology terms, folded terms, MSO logic, rational sets of terms
- (2) Overview and background

transformation of objects by transformation of representation

(3) Deterministic top-down tree transducers with rational lookahead

- (4) MSO transductions
- (5) Main result: comparison of deterministic transducers and MSO transductions

 $T = (Q, \mathcal{F}, \mathcal{F}', q_0, \Delta)$ with:

- \mathcal{F} , \mathcal{F}' ranked alphabets (input and output alphabet)
- Q a finite set of states
- $q_0 \in Q$ the initial state
- Δ a finite set of rules of one of the following forms:

(production rule): $q(x) \rightarrow g(q_1(x), ..., q_{|g|}(x))$ $g \in \mathcal{F}'$, x a variable, and $q_1, ..., q_{|g|} \in Q$

(consumption rule): $q(f(x_1, ..., x_{|f|})) \rightarrow q'(x_i)$

 $f \in \mathcal{F}$, $q, q' \in Q$, and $x_1, \ldots, x_{|f|}$ variables

(lookahead rule): $q(x \in L) \rightarrow q'(x)$

L a rational set of $\mathcal F$ -terms (called lookahead set), $q,q'\in Q$, and x a variable

 $T = (Q, \mathcal{F}, \mathcal{F}', q_0, \Delta)$ with:

- \mathcal{F} , \mathcal{F}' ranked alphabets (input and output alphabet)
- Q a finite set of states
- $q_0 \in Q$ the initial state
- Δ a finite set of rules of one of the following forms:

(production rule): $q(x) \rightarrow g(q_1(x), ..., q_{|g|}(x))$

 $g \in \mathcal{F}'$, x a variable, and $q_1, \ldots, q_{|g|} \in Q$

(consumption rule): $q(f(x_1, ..., x_{|f|})) \rightarrow q'(x_i)$

 $f \in \mathcal{F}$, $q, q' \in Q$, and $x_1, \ldots, x_{|f|}$ variables

(lookahead rule): $q(x \in L) \rightarrow q'(x)$

L a rational set of $\mathcal F$ -terms (called lookahead set), $q,q'\in Q$, and x a variable

Semantics: Start with $q_0(t)$ and `apply rewriting rules to infinity' Determinism: for any q, t no two rules apply to q(t)

 $\mathcal{F} = \mathcal{F}' = \{ \oplus, \eta_{i,j}, \rho_{i \to j}, \underline{1}, \dots, \underline{k}, \bot \}$

Goal: Remove isolated vertices from val(t)

For a set of colors C let f_C be the mapping that removes all vertices from G that are isolated and not of color C. We are interested in f_{\emptyset} .

 $\mathcal{F} = \mathcal{F}' = \{ \oplus, \eta_{i,j}, \rho_{i \to j}, \underline{1}, \dots, \underline{k}, \bot \}$

Goal: Remove isolated vertices from val(t)

For a set of colors C let f_C be the mapping that removes all vertices from G that are isolated and not of color C. We are interested in f_{\emptyset} .

Invariants:

$$\begin{split} f_C(\bot) &= \bot. \ f_C(\underline{i}) = \underline{i} \text{ if } i \in C \text{ and } f_C(\underline{i}) = \bot, \text{ otherwise.} \\ f_C(G \oplus G') &= f_C(G) \oplus f_C(G') \\ f_C(\eta_{i,j}(G)) &= f_{C'}(G) \text{ with } C' = \begin{cases} C \cup \{i, j\} \text{ if } G \text{ contains } i\text{- and } j\text{-vertices} \\ C \text{ otherwise} \\ \end{cases} \\ f_C(\rho_{i \to j}(G)) &= f_{C'}(G) \text{ with } C' = \begin{cases} C \cup \{i\} \text{ if } j \in C \\ C \setminus \{i\} \text{ if } j \notin C \end{cases} \end{split}$$

Implementation: Transducer keeps track of the set C using the invariants.

Lookahead sets:

$$\begin{array}{rcl} L_{\underline{i}} &=& \{\underline{i}\} & L_{\perp} &=& \{\bot\} \\ L_{\oplus} &=& \{t \mid t = \oplus(t_1, t_2)\} & L_{\rho_{i \to j}} &=& \{t \mid t = \rho_{i \to j}(t_1)\} \\ L_{\eta_{i,j}} &=& \{t \mid t = \eta_{i,j}(t_1) \text{ and } val(t_1) \text{ contains } i\text{- and } j\text{-vertices}\} \\ \overline{L_{\eta_{i,j}}} &=& \{t \mid t = \eta_{i,j}(t_1) \text{ and } val(t_1) \text{ does not contain } i\text{- and } j\text{-vertices}\} \end{array}$$

Some of the rewriting rules:

•
$$\langle C, q_{\text{look}} \rangle (x \in L_{\underline{i}}) \to \langle C, q_{\underline{i}} \rangle (x), \qquad \langle C, q_{\underline{i}} \rangle (x \in L_{\underline{i}}) \to \begin{cases} \underline{i} & \text{if } i \in C \\ \bot & \text{otherwise} \end{cases}$$

•
$$\langle C, q_{\text{look}} \rangle \left(x \in \overline{L_{\eta_{i,j}}} \right) \to \langle C, q_{\text{cons}} \rangle \left(x \right)$$

• $\langle C, q_{\text{look}} \rangle (x \in L_{\eta_{i,j}}) \rightarrow \langle C \cup \{i, j\}, q_{\eta_{i,j}} \rangle (x)$

•
$$\langle C, q_{\text{look}} \rangle (x \in L_{\oplus}) \to \langle C, q_{\oplus} \rangle (x), \ \langle C, q_{\oplus} \rangle (x) \to \oplus (\langle C, q_{\oplus,1} \rangle (x), \langle C, q_{\oplus,2} \rangle (x))$$

•
$$\langle C, q_{\text{look}} \rangle (x \in L_{\rho_{i \to j}}) \to \langle C' \cup \{i\}, q_{i \to j} \rangle (x) \text{ with } C' = \begin{cases} C \cup \{i\} \text{ if } j \in C \\ C \setminus \{i\} \text{ if } j \notin C \end{cases}$$

PROPERTIES OF DETERMINISTIC TRANSDUCERS

- The inverse image of a rational set of terms by a deterministic transducer is rational.
- The image of a rational set of terms by a deterministic transducer needs not to be rational.
- The image of a regular term (unfolding of a finite folded term) by a deterministic transducer is a regular term.
- Deterministic transducers are closed under composition.

OUTLINE

- (1) Basic definitions and terminology terms, folded terms, MSO logic, rational sets of terms
- (2) Overview and background

transformation of objects by transformation of representation

- (3) Deterministic top-down tree transducers with rational lookahead
- (4) MSO transductions
- (5) Main result: comparison of deterministic transducers and MSO transductions

MSO TRANSDUCTIONS

$$M = (\Sigma_{\mathcal{F}}, \Sigma_{\mathcal{F}'}, (\phi_{a,i,j}(x,y)), (\rho_i(x,y)), n)$$
$$a \in \Sigma_{\mathcal{F}'}, i, j \in \{1, \dots, n\}$$

MSO-formulas $\phi_{a,i,j}(x,y)$ and $\rho_i(x,y)$ over the signature $(E_a)_{a\in\Sigma_F}$

For a folded term $G = (V_G, E_G)$ with root r_G , M defines a folded term $M(G) = (V_{M(G)}, E_{M(G)})$ with root $r_{M(G)}$:

- $V_{M(G)} = V \times [1, n]$
- $((v,i), a, (u,j)) \in E_{M(G)}$ iff $G \models \phi_{a,i,j}(v,u)$
- $r_{M(G)} = (u, i)$ for the unique u and i with $G \models \rho_i(r_G, u)$.

OUTLINE

- (1) Basic definitions and terminology terms, folded terms, MSO logic, rational sets of terms
- (2) Overview and background

transformation of objects by transformation of representation

- (3) Deterministic top-down tree transducers with rational lookahead
- (4) MSO transductions
- (5) Main result: comparison of deterministic transducers and MSO transductions

BISIMILARITY PRESERVING TRANSDUCTIONS

An MSO Transduction M is **bisimilarity preserving** if for any two rooted folded terms G, G':

 $unfold(G) = unfold(G') \Rightarrow unfold(M(G)) = unfold(M(G'))$

Bisimilarity preserving MSO Transductions and deterministic transducers have the same expressive power.

MAIN RESULT

Bisimilarity preserving MSO Transductions and deterministic transducers have the same expressive power.

More precisely:

(i) For each deterministic transducer T there exists a bisimilarity preserving MSO transduction M_T such that for all folded terms G:

 $\operatorname{unfold}(M_T(G)) = T(\operatorname{unfold}(G))$

(ii) For each bisimilarity preserving MSO transduction M there exists a deterministic transducer T_M such that for all folded terms G:

 $\operatorname{unfold}(M(G)) = T_M(\operatorname{unfold}(G))$

- If T has N states, then M_T uses $2 \cdot N$ copies of G.
- State q identified uniquely with a number n_q .
- To deal with consumption and lookahead rules a new symbol ε of arity 1 is introduced. This can be removed by a second MSO transduction.

- If T has N states, then M_T uses $2 \cdot N$ copies of G.
- State q identified uniquely with a number n_q .
- To deal with consumption and lookahead rules a new symbol ε of arity 1 is introduced. This can be removed by a second MSO transduction.

Production rule $q(x) \rightarrow g(q_1(x), \ldots, q_{|g|}(x))$

- If T has N states, then M_T uses $2 \cdot N$ copies of G.
- State q identified uniquely with a number n_q .
- To deal with consumption and lookahead rules a new symbol ε of arity 1 is introduced. This can be removed by a second MSO transduction.

Consumption rule $q(f(x_1, \ldots, x_{|f|})) \rightarrow q'(x_i)$

if exists u with $v \xrightarrow{f} u \xrightarrow{i} v'$ in G

- If T has N states, then M_T uses $2 \cdot N$ copies of G.
- State q identified uniquely with a number n_q .
- To deal with consumption and lookahead rules a new symbol ε of arity 1 is introduced. This can be removed by a second MSO transduction.

Lookahead rule $q(x \in L) \rightarrow q'(x)$

 $\text{if } \mathrm{unfold}(G,v) \text{ is in } L$

For each bisimilarity preserving MSO transduction M there exists a deterministic transducer T_M such that for all folded terms G:

 $\operatorname{unfold}(M(G)) = T_M(\operatorname{unfold}(G))$

For each bisimilarity preserving MSO transduction M there exists a deterministic transducer T_M such that for all folded terms G:

 $\operatorname{unfold}(M(G)) = T_M(\operatorname{unfold}(G))$

It suffices to consider M on terms:

M bisimilarity preserving \Rightarrow unfold(M(G)) = unfold(M(unfold(G)))

For each bisimilarity preserving MSO transduction M there exists a deterministic transducer T_M such that for all terms t:

 $\operatorname{unfold}(M(t)) = T_M(t)$

For each bisimilarity preserving MSO transduction M there exists a deterministic transducer T_M such that for all terms t:

 $\operatorname{unfold}(M(t)) = T_M(t)$

Main difficulty:

- Transducers work top-down.
- If *M* defines new edges `going upward', these edges cannot be constructed by a finite state transducer.
- \Rightarrow In a first step normalize M such that defined edges are `going downward'.

t:

t:

Consider M on \hat{t} (with root inherited from t) and assume a new edge goes upward.

Consider M on \hat{t} (with root inherited from t) and assume a new edge goes upward.

Then the same formula defines another edge with the same origin. Hence $M(\hat{t})$ is not a folded term.

- In \hat{t} the edges defined by M are going downward.
- The formulas $\phi_{a,i,j}$ on \hat{t} can be transformed into formulas $\hat{\phi}_{a,i,j}$ on t (\hat{t} can be obtained from t by the Muchnik/Walukiewicz construction).
- The new MSO transduction \hat{M} using the formulas $\hat{\phi}_{a,i,j}$ has the following properties:
 - unfold(M(t)) = unfold $(\hat{M}(t))$
 - The edges defined by \hat{M} are going downward.

NORMALIZED TRANSDUCTION — **TRANSDUCER**

Rough sketch:

- Normalized Transduction $M = (\Sigma_{\mathcal{F}}, \Sigma_{\mathcal{F}'}, (\phi_{a,i,j}(x,y)), (\rho_i(x,y)), n)$
- Transform formulas $\phi_{a,i,j}(x,y)$ into (Rabin) tree automata accepting 'marked terms':

$t: \{g\}v_0$			
$\bigvee f$	$\mathcal{A}_{g,i,j_1,j_2}$ accepts	s t if f	or some ℓ and v
$ \begin{array}{c c} 1 \\ \downarrow \\ c \\ \downarrow \\ \end{array} \qquad \qquad$	t	Þ	$\phi_{g,i,\ell}(v_0,v)$
$1 \swarrow 2$	t	=	$\phi_{1,\ell,j_1}(v,v_1)$
$v_1\{1\} \{2\}v_2$	t	=	$\phi_{1,\ell,j_2}(v,v_2)$
$f \bigvee \qquad \bigvee g$			

- Transducer T_M keeps track of the states of the automata $\mathcal{A}_{a,i,j_1,...,j_k}$ while going through the term.
- The lookahead is used to check for which automaton there exists a marking that is accepted. This information is used to construct the next edge.

CONCLUSION

- For every deterministic transducer there is an equivalent MSO transduction.
 → decidability of the MSO theory of terms is preserved
- For every bisimilarity preserving MSO transduction there is an equivalent deterministic transducer.

 → deterministic transducers are expressively complete for MSO logic
- Transducers are more handy than MSO transductions concerning their construction and the proofs of correctness (cf. thesis of T. Colcombet)

Open:

- We assume that *M* is bisimilarity preserving for finite and infinite folded terms. Can one transfer the result if *M* has this property only for finite folded terms?
- Transfer (and analyze) other models of transducers that have been defined for finite terms to the infinite world.