Deterministic Transducers over Infinite Terms

Christof Löding
LIAFA (formerly RWTH Aachen)
loeding@liafa.jussieu.fr

joint work with
Thomas Colcombet, Warsaw University
(formerly IRISA, Rennes)
thomas.colcombet@laposte.net

Outline

(1) Basic definitions and terminology
(2) Overview and background
(3) Deterministic top-down tree transducers with rational lookahead
(4) MSO transductions
(5) Main result: comparison of deterministic transducers and MSO transductions

TERMS

- ranked alphabet \mathcal{F} (symbols with arity)
- $|f|$ denotes rank of $f \in \mathcal{F}$
- $|\mathcal{F}|_{\text {max }}=\max \{|f| \mid f \in \mathcal{F}\}$

Terms (possibly infinite) represented as finite edge-labeled trees over the alphabet $\Sigma_{\mathcal{F}}=\mathcal{F} \cup\left\{1, \ldots,|\mathcal{F}|_{\max }\right\}$:

Example

Folded Terms

- rooted graph G (edge labels from $\Sigma_{\mathcal{F}}$)
- unfolding of G from the root denoted by unfold (G)
- G is a folded term if $\operatorname{unfold}(G)$ is a term

Example:

MSO LOGic - Rational Sets of Terms

MSO logic over folded terms:

- Signature $\left(E_{a}\right)_{a \in \Sigma_{\mathcal{F}}}$, binary symbols interpreted as the edge relations for each symbol in $\Sigma_{\mathcal{F}}$.
- Quantification over individual vertices.
- Quantification over sets of vertices.

$$
\begin{aligned}
& \phi(x)=\forall X[\in X \wedge \forall y, z(y \in X \wedge E(y, z) \rightarrow z \in X) \\
&\left.\rightarrow \exists z^{\prime}, z^{\prime \prime} \in X\left(E_{c}\left(z^{\prime}, z^{\prime \prime}\right)\right)\right]
\end{aligned}
$$

A set of terms is rational

- if it is definable in MSO logic or equivalently
- if it is the set of terms accepted by a Rabin or parity tree automaton or equivalently
- if it is definable in the modal μ-calculus.

Outline

(1) Basic definitions and terminology terms, folded terms, MSO logic, rational sets of terms
(2) Overview and background
(3) Deterministic top-down tree transducers with rational lookahead
(4) MSO transductions
(5) Main result: comparison of deterministic transducers and MSO transductions

BACKGROUND

- (infinite) terms describe (infinite) objects, e.g., graphs or formal languages

Example - Terms Representing Graphs

Representation of vertex-colored graphs
$\mathcal{F}=\left\{\oplus, \eta_{i, j}, \rho_{i \rightarrow j}, \underline{1}, \ldots, \underline{k}, \perp\right\}$
$\oplus \quad$ disjoint union
$\eta_{i, j} \quad$ add edges between
i-vertices and j-vertices
$\rho_{i \rightarrow j} \quad$ make i-vertices to j-vertices
$\underline{i} \quad$ single i-vertex
\perp empty graph

Example - Terms Representing Graphs

$$
\begin{aligned}
& \text { Representation of vertex-colored graphs } \\
& \mathcal{F}=\left\{\oplus, \eta_{i, j}, \rho_{i \rightarrow j}, \underline{1}, \ldots, \underline{k}, \perp\right\} \\
& \oplus \quad \text { disjoint union } \\
& \eta_{i, j} \quad \text { add edges between } \\
& i \text {-vertices and } j \text {-vertices } \\
& \rho_{i \rightarrow j} \quad \text { make } i \text {-vertices to } j \text {-vertices } \\
& \underline{i} \quad \text { single } i \text {-vertex } \\
& \perp \text { empty graph }
\end{aligned}
$$

t :

Example - Terms Representing Graphs

Representation of vertex-colored graphs

$$
\mathcal{F}=\left\{\oplus, \eta_{i, j}, \rho_{i \rightarrow j}, \underline{1}, \ldots, \underline{k}, \perp\right\}
$$

$\oplus \quad$ disjoint union
$\eta_{i, j} \quad$ add edges between
i-vertices and j-vertices
$\rho_{i \rightarrow j} \quad$ make i-vertices to j-vertices
$\underline{i} \quad$ single i-vertex
\perp empty graph
$\operatorname{val}(t):$
1

t :

Example - Terms Representing Graphs

Representation of vertex-colored graphs

$$
\mathcal{F}=\left\{\oplus, \eta_{i, j}, \rho_{i \rightarrow j}, \underline{1}, \ldots, \underline{k}, \perp\right\}
$$

$\oplus \quad$ disjoint union
$\eta_{i, j} \quad$ add edges between
i-vertices and j-vertices
$\rho_{i \rightarrow j} \quad$ make i-vertices to j-vertices
$\underline{i} \quad$ single i-vertex
\perp empty graph
$\operatorname{val}(t):$
$\underline{3}$

t :

Example - Terms Representing Graphs

Representation of vertex-colored graphs

$$
\mathcal{F}=\left\{\oplus, \eta_{i, j}, \rho_{i \rightarrow j}, \underline{1}, \ldots, \underline{k}, \perp\right\}
$$

$\oplus \quad$ disjoint union
$\eta_{i, j} \quad$ add edges between
i-vertices and j-vertices
$\rho_{i \rightarrow j} \quad$ make i-vertices to j-vertices
$\underline{i} \quad$ single i-vertex
\perp empty graph

t :

Example - Terms Representing Graphs

Representation of vertex-colored graphs

$$
\mathcal{F}=\left\{\oplus, \eta_{i, j}, \rho_{i \rightarrow j}, \underline{1}, \ldots, \underline{k}, \perp\right\}
$$

$\oplus \quad$ disjoint union
$\eta_{i, j} \quad$ add edges between
i-vertices and j-vertices
$\rho_{i \rightarrow j} \quad$ make i-vertices to j-vertices
$\underline{i} \quad$ single i-vertex
\perp empły graph

t :

BACKGROUND

- (infinite) terms describe (infinite) objects, e.g., graphs or formal languages
- another way of describing objects is via equational systems
- equational systems can be represented by folded terms

$$
G=\rho_{1 \rightarrow 2}\left(\eta_{1,2}(\underline{1} \oplus G)\right) \stackrel{\rho_{1} \rightarrow 2}{\longrightarrow}>\xrightarrow{\eta_{1,2}}>\xrightarrow{\oplus}>\xrightarrow{\frac{1}{\longrightarrow}}
$$

BACKGROUND

- (infinite) terms describe (infinite) objects, e.g., graphs or formal languages
- another way of describing objects is via equational systems
- equational systems can be represented by folded terms

$$
G=\rho_{1 \rightarrow 2}\left(\eta_{1,2}(\underline{1} \oplus G)\right) \quad \stackrel{\rho_{1 \rightarrow 2}}{\stackrel{\eta_{1,2}}{\longrightarrow}}>\xrightarrow{\eta_{1}}>\xrightarrow{\oplus}>\xrightarrow{\frac{1}{\longrightarrow}}
$$

BACKGROUND

- (infinite) terms describe (infinite) objects, e.g., graphs or formal languages
- another way of describing objects is via equational systems
- equational systems can be represented by folded terms

$$
G=\rho_{1 \rightarrow 2}\left(\eta_{1,2}(1 \oplus G)\right) \xrightarrow{\rho_{1 \rightarrow 2}}>\xrightarrow{\eta_{1,2}}>\xrightarrow{\oplus}>\xrightarrow{1}
$$

- develop tools to deal with equational systems

Overview

Objective: apply transformations to the represented objects
Approach: transform the representation
for more details see thesis of Thomas Colcombet

Overview

Objective: apply transformations to the represented objects
Approach: transform the representation

for more details see thesis of Thomas Colcombet

In this talk:

Outline

(1) Basic definitions and terminology terms, folded terms, MSO logic, rational sets of terms
(2) Overview and background transformation of objects by transformation of representation

(3) Deterministic top-down tree transducers with rational lookahead
(4) MSO transductions
(5) Main result: comparison of deterministic transducers and MSO transductions
$T=\left(Q, \mathcal{F}, \mathcal{F}^{\prime}, q_{0}, \Delta\right)$ with:

- $\mathcal{F}, \mathcal{F}^{\prime}$ ranked alphabets (input and output alphabet)
- Q a finite set of states
- $q_{0} \in Q$ the initial state
- Δ a finite set of rules of one of the following forms:
(production rule): $q(x) \rightarrow g\left(q_{1}(x), \ldots, q_{|g|}(x)\right)$
$g \in \mathcal{F}^{\prime}, x$ a variable, and $q_{1}, \ldots, q_{|g|} \in Q$
(consumption rule): $q\left(f\left(x_{1}, \ldots, x_{|f|}\right)\right) \rightarrow q^{\prime}\left(x_{i}\right)$
$f \in \mathcal{F}, q, q^{\prime} \in Q$, and $x_{1}, \ldots, x_{|f|}$ variables
(lookahead rule): $q(x \in L) \rightarrow q^{\prime}(x)$
L a rational set of \mathcal{F}-terms (called lookahead set), $q, q^{\prime} \in Q$, and x a variable
$T=\left(Q, \mathcal{F}, \mathcal{F}^{\prime}, q_{0}, \Delta\right)$ with:
- $\mathcal{F}, \mathcal{F}^{\prime}$ ranked alphabets (input and output alphabet)
- Q a finite set of states
- $q_{0} \in Q$ the initial state
- Δ a finite set of rules of one of the following forms:
(production rule): $q(x) \rightarrow g\left(q_{1}(x), \ldots, q_{|g|}(x)\right)$
$g \in \mathcal{F}^{\prime}, x$ a variable, and $q_{1}, \ldots, q_{|g|} \in Q$
(consumption rule): $q\left(f\left(x_{1}, \ldots, x_{|f|}\right)\right) \rightarrow q^{\prime}\left(x_{i}\right)$
$f \in \mathcal{F}, q, q^{\prime} \in Q$, and $x_{1}, \ldots, x_{|f|}$ variables
(lookahead rule): $q(x \in L) \rightarrow q^{\prime}(x)$
L a rational set of \mathcal{F}-terms (called lookahead set), $q, q^{\prime} \in Q$, and x a variable

Semantics: Start with $q_{0}(t)$ and 'apply rewriting rules to infinity'
Determinism: for any q, t no two rules apply to $q(t)$

EXAMPLE

$\mathcal{F}=\mathcal{F}^{\prime}=\left\{\oplus, \eta_{i, j}, \rho_{i \rightarrow j}, \underline{1}, \ldots, \underline{k}, \perp\right\}$
Goal: Remove isolated vertices from $\operatorname{val}(t)$
For a set of colors C let f_{C} be the mapping that removes all vertices from G that are isolated and not of color C. We are interested in f_{\emptyset}.

EXAMPLE

$\mathcal{F}=\mathcal{F}^{\prime}=\left\{\oplus, \eta_{i, j}, \rho_{i \rightarrow j}, \underline{1}, \ldots, \underline{k}, \perp\right\}$
Goal: Remove isolated vertices from $\operatorname{val}(t)$
For a set of colors C let f_{C} be the mapping that removes all vertices from G that are isolated and not of color C. We are interested in f_{\emptyset}. Invariants:

$$
\begin{aligned}
& f_{C}(\perp)=\perp . f_{C}(\underline{i})=\underline{i} \text { if } i \in C \text { and } f_{C}(\underline{i})=\perp \text {, otherwise. } \\
& f_{C}\left(G \oplus G^{\prime}\right)=f_{C}(G) \oplus f_{C}\left(G^{\prime}\right) \\
& f_{C}\left(\eta_{i, j}(G)\right)=f_{C^{\prime}}(G) \text { with } C^{\prime}=\left\{\begin{array}{l}
C \cup\{i, j\} \text { if } G \text { contains } i \text { - and } j \text {-vertices } \\
C \text { otherwise }
\end{array}\right. \\
& f_{C}\left(\rho_{i \rightarrow j}(G)\right)=f_{C^{\prime}}(G) \text { with } C^{\prime}=\left\{\begin{array}{l}
C \cup\{i\} \text { if } j \in C \\
C \backslash\{i\} \text { if } j \notin C
\end{array}\right.
\end{aligned}
$$

Implementation: Transducer keeps track of the set C using the invariants.

EXAMPLE

Lookahead sets:
$L_{\underline{i}}=\{\underline{i}\} \quad L_{\perp}=\{\perp\}$
$L_{\oplus}=\left\{t \mid t=\oplus\left(t_{1}, t_{2}\right)\right\} \quad L_{\rho_{i \rightarrow j}}=\left\{t \mid t=\rho_{i \rightarrow j}\left(t_{1}\right)\right\}$
$L_{\eta_{i, j}}=\left\{t \mid t=\eta_{i, j}\left(t_{1}\right)\right.$ and $\operatorname{val}\left(t_{1}\right)$ contains i - and j-vertices $\}$
$\overline{L_{\eta_{i, j}}}=\left\{t \mid t=\eta_{i, j}\left(t_{1}\right)\right.$ and $\operatorname{val}\left(t_{1}\right)$ does not contain i - and j-vertices $\}$

Some of the rewriting rules:

- $\left\langle C, q_{\text {look }}\right\rangle\left(x \in L_{i}\right) \rightarrow\left\langle C, q_{i}\right\rangle(x), \quad\left\langle C, q_{i}\right\rangle\left(x \in L_{i}\right) \rightarrow \begin{cases}\underline{i} & \text { if } i \in C \\ \perp & \text { otherwise }\end{cases}$
- $\left\langle C, q_{\text {look }}\right\rangle\left(x \in \overline{L_{\eta_{i, j}}}\right) \rightarrow\left\langle C, q_{\text {cons }}\right\rangle(x)$
- $\left\langle C, q_{\text {look }}\right\rangle\left(x \in L_{\eta_{i, j}}\right) \rightarrow\left\langle C \cup\{i, j\}, q_{\eta_{i, j}}\right\rangle(x)$
- $\left\langle C, q_{\text {look }}\right\rangle\left(x \in L_{\oplus}\right) \rightarrow\left\langle C, q_{\oplus}\right\rangle(x),\left\langle C, q_{\oplus}\right\rangle(x) \rightarrow \oplus\left(\left\langle C, q_{\oplus, 1}\right\rangle(x),\left\langle C, q_{\oplus, 2}\right\rangle(x)\right)$
- $\left\langle C, q_{\text {look }}\right\rangle\left(x \in L_{\rho_{i \rightarrow j}}\right) \rightarrow\left\langle C^{\prime} \cup\{i\}, q_{i \rightarrow j}\right\rangle(x)$ with $C^{\prime}=\left\{\begin{array}{l}C \cup\{i\} \text { if } j \in C \\ C \backslash\{i\} \text { if } j \notin C\end{array}\right.$

Sample Application

Sample Application

SAMPLE Application

$\vee^{\rho_{3 \rightarrow 1}}$
v
$\downarrow \oplus$

Sample Application

Properties of Deterministic Transducers

- The inverse image of a rational set of terms by a deterministic transducer is rational.
- The image of a rational set of terms by a deterministic transducer needs not to be rational.
- The image of a regular term (unfolding of a finite folded term) by a deterministic transducer is a regular term.
- Deterministic transducers are closed under composition.

Outline

(1) Basic definitions and terminology terms, folded terms, MSO logic, rational sets of terms
(2) Overview and background transformation of objects by transformation of representation

(3) Deterministic top-down tree transducers with rational lookahead
(4) MSO transductions
(5) Main result: comparison of deterministic transducers and MSO transductions

MSO Transductions

MSO-formulas $\phi_{a, i, j}(x, y)$ and $\rho_{i}(x, y)$ over the signature $\left(E_{a}\right)_{a \in \Sigma_{\mathcal{F}}}$
For a folded term $G=\left(V_{G}, E_{G}\right)$ with root r_{G}, M defines a folded term $M(G)=\left(V_{M(G)}, E_{M(G)}\right)$ with root $r_{M(G)}$:

- $V_{M(G)}=V \times[1, n]$
- $((v, i), a,(u, j)) \in E_{M(G)}$ iff $G \models \phi_{a, i, j}(v, u)$
- $r_{M(G)}=(u, i)$ for the unique u and i with $G \models \rho_{i}\left(r_{G}, u\right)$.

EXAMPLE

$\mathcal{F}=\mathcal{F}^{\prime}=\{f, g, c\}$ with f, g binary and c constant. Swap subterms of f if the right subterm contains c

EXAMPLE

$\mathcal{F}=\mathcal{F}^{\prime}=\{f, g, c\}$ with f, g binary and c constant. Swap subterms of f if the right subterm contains c

EXAMPLE

$\mathcal{F}=\mathcal{F}^{\prime}=\{f, g, c\}$ with f, g binary and c constant.
Swap subterms of f if the right subterm contains c

Root:

$\rho_{1}(x, y)=(x=y)$

Edges:

$\phi_{a, 1,1}(x, y)=E_{a}(x, y)$ for $a \in\{g, c, 1,2\}$
$\phi_{1,2,1}(x, y)=E_{2}(x, y)$
$\phi_{2,2,1}(x, y)=E_{1}(x, y)$
$\phi_{f, 1,1}(x, y)=$
$E_{f}(x, y) \wedge \neg \phi_{f, 1,2}(x, y)$

$\phi_{f, 1,2}(x, y)=E_{f}(x, y) \wedge \exists z\left[E_{2}(y, z) \wedge\right.$

$$
\forall X\left(z \in X \wedge \forall z^{\prime}, z^{\prime \prime}\left(z^{\prime} \in X \wedge E\left(z^{\prime}, z^{\prime \prime}\right) \rightarrow z^{\prime \prime} \in X\right)\right.
$$

$$
\left.\left.\rightarrow \exists z^{\prime}, z^{\prime \prime} \in X\left(E_{c}\left(z^{\prime}, z^{\prime \prime}\right)\right)\right)\right]
$$

EXAMPLE

$\mathcal{F}=\mathcal{F}^{\prime}=\{f, g, c\}$ with f, g binary and c constant.
Swap subterms of f if the right subterm contains c

Root:

$\rho_{1}(x, y)=(x=y)$

Edges:

$\phi_{a, 1,1}(x, y)=E_{a}(x, y)$ for $a \in\{g, c, 1,2\}$

$$
\phi_{1,2,1}(x, y)=E_{2}(x, y)
$$

$$
\phi_{2,2,1}(x, y)=E_{1}(x, y)
$$

$$
\phi_{f, 1,1}(x, y)=
$$

$$
E_{f}(x, y) \wedge \neg \phi_{f, 1,2}(x, y)
$$

$$
\begin{gathered}
\phi_{f, 1,2}(x, y)=\quad E_{f}(x, y) \wedge \exists z\left[E_{2}(y, z) \wedge\right. \\
\forall X\left(z \in X \wedge \forall z^{\prime}, z^{\prime \prime}\left(z^{\prime} \in X \wedge E\left(z^{\prime}, z^{\prime \prime}\right) \rightarrow z^{\prime \prime} \in X\right)\right. \\
\left.\left.\rightarrow \exists z^{\prime}, z^{\prime \prime} \in X\left(E_{c}\left(z^{\prime}, z^{\prime \prime}\right)\right)\right)\right]
\end{gathered}
$$

Outline

(1) Basic definitions and terminology terms, folded terms, MSO logic, rational sets of terms
(2) Overview and background transformation of objects by transformation of representation

(3) Deterministic top-down tree transducers with rational lookahead
(4) MSO transductions
(5) Main result: comparison of deterministic transducers and MSO transductions

Bisimilarity Preserving Transductions

An MSO Transduction M is bisimilarity preserving if for any two rooted folded terms G, G^{\prime} :

$$
\operatorname{unfold}(G)=\operatorname{unfold}\left(G^{\prime}\right) \Rightarrow \operatorname{unfold}(M(G))=\operatorname{unfold}\left(M\left(G^{\prime}\right)\right)
$$

Main Result

Bisimilarity preserving MSO Transductions and deterministic transducers have the same expressive power.

Main Result

Bisimilarity preserving MSO Transductions and deterministic transducers have the same expressive power.

More precisely:
(i) For each deterministic transducer T there exists a bisimilarity preserving MSO transduction M_{T} such that for all folded terms G :

$$
\operatorname{unfold}\left(M_{T}(G)\right)=T(\operatorname{unfold}(G))
$$

(ii) For each bisimilarity preserving MSO transduction M there exists a deterministic transducer T_{M} such that for all folded terms G :

$$
\operatorname{unfold}(M(G))=T_{M}(\operatorname{unfold}(G))
$$

TRANSDUCER \rightarrow MSO TRANSDUCTION

- If T has N states, then M_{T} uses $2 \cdot N$ copies of G.
- State q identified uniquely with a number n_{q}.
- To deal with consumption and lookahead rules a new symbol ε of arity 1 is introduced. This can be removed by a second MSO transduction.

Transducer \rightarrow MSO TRANSDUCTION

- If T has N states, then M_{T} uses $2 \cdot N$ copies of G.
- State q identified uniquely with a number n_{q}.
- To deal with consumption and lookahead rules a new symbol ε of arity 1 is introduced. This can be removed by a second MSO transduction.

Production rule $q(x) \rightarrow g\left(q_{1}(x), \ldots, q_{|g|}(x)\right)$

TRANSDUCER \rightarrow MSO TRANSDUCTION

- If T has N states, then M_{T} uses $2 \cdot N$ copies of G.
- State q identified uniquely with a number n_{q}.
- To deal with consumption and lookahead rules a new symbol ε of arity 1 is introduced. This can be removed by a second MSO transduction.

Consumption rule $q\left(f\left(x_{1}, \ldots, x_{|f|}\right)\right) \rightarrow q^{\prime}\left(x_{i}\right)$

if exists u with $v \xrightarrow{f} u \xrightarrow{i} v^{\prime}$ in G

TRANSDUCER \rightarrow MSO TRANSDUCTION

- If T has N states, then M_{T} uses $2 \cdot N$ copies of G.
- State q identified uniquely with a number n_{q}.
- To deal with consumption and lookahead rules a new symbol ε of arity 1 is introduced. This can be removed by a second MSO transduction.

Lookahead rule $q(x \in L) \rightarrow q^{\prime}(x)$

if $\operatorname{unfold}(G, v)$ is in L

MSO TRANSDUCTION \rightarrow TrANSDUCER

For each bisimilarity preserving MSO transduction M there exists a deterministic transducer T_{M} such that for all folded terms G :

$$
\operatorname{unfold}(M(G))=T_{M}(\operatorname{unfold}(G))
$$

MSO TRANSDUCTION \rightarrow TRANSDUCER

For each bisimilarity preserving MSO transduction M there exists a deterministic transducer T_{M} such that for all folded terms G :

$$
\operatorname{unfold}(M(G))=T_{M}(\operatorname{unfold}(G))
$$

It suffices to consider M on terms:
M bisimilarity preserving $\Rightarrow \operatorname{unfold}(M(G))=\operatorname{unfold}(M(\operatorname{unfold}(G)))$

MSO TRANSDUCTION \rightarrow TrANSDUCER

For each bisimilarity preserving MSO transduction M there exists a deterministic transducer T_{M} such that for all terms t :

$$
\operatorname{unfold}(M(t))=T_{M}(t)
$$

MSO TRANSDUCTION \rightarrow TRANSDUCER

For each bisimilarity preserving MSO transduction M there exists a deterministic transducer T_{M} such that for all terms t :

$$
\operatorname{unfold}(M(t))=T_{M}(t)
$$

Main difficulty:

- Transducers work top-down.
- If M defines new edges 'going upward', these edges cannot be constructed by a finite state transducer.
\Rightarrow In a first step normalize M such that defined edges are 'going downward'.

Top-Down Normalization

t :

Top-Down Normalization

t :

Top-Down Normalization

Top-Down Normalization

Consider M on \hat{t} (with root inherited from t) and assume a new edge goes upward.

Top-Down Normalization

Consider M on \hat{t} (with root inherited from t) and assume a new edge goes upward.
Then the same formula defines another edge with the same origin. Hence $M(\hat{t})$ is not a folded term.

Top-Down Normalization

- In \hat{t} the edges defined by M are going downward.
- The formulas $\phi_{a, i, j}$ on \hat{t} can be transformed into formulas $\hat{\phi}_{a, i, j}$ on $t(\hat{t}$ can be obtained from t by the Muchnik/Walukiewicz construction).
- The new MSO transduction \hat{M} using the formulas $\hat{\phi}_{a, i, j}$ has the following properties:
- $\operatorname{unfold}(M(t))=\operatorname{unfold}(\hat{M}(t))$
- The edges defined by \hat{M} are going downward.

Normalized Transduction \rightarrow Transducer

Rough sketch:

- Normalized Transduction $M=\left(\Sigma_{\mathcal{F}}, \Sigma_{\mathcal{F}^{\prime}},\left(\phi_{a, i, j}(x, y)\right),\left(\rho_{i}(x, y)\right), n\right)$
- Transform formulas $\phi_{a, i, j}(x, y)$ into (Rabin) tree automata accepting 'marked terms':

$\mathcal{A}_{g, i, j_{1}, j_{2}}$ accepts t if for some ℓ and v

$$
\begin{aligned}
t & \models \phi_{g, i, \ell}\left(v_{0}, v\right) \\
t & \models \phi_{1, \ell, j_{1}}\left(v, v_{1}\right) \\
t & \models \phi_{1, \ell, j_{2}}\left(v, v_{2}\right)
\end{aligned}
$$

- Transducer T_{M} keeps track of the states of the automata $\mathcal{A}_{a, i, j_{1}, \ldots, j_{k}}$ while going through the term.
- The lookahead is used to check for which automaton there exists a marking that is accepted. This information is used to construct the next edge.

CONCLUSION

- For every deterministic transducer there is an equivalent MSO transduction.
\leadsto decidability of the MSO theory of terms is preserved
- For every bisimilarity preserving MSO transduction there is an equivalent deterministic transducer.
\leadsto deterministic transducers are expressively complete for MSO logic
- Transducers are more handy than MSO transductions concerning their construction and the proofs of correctness (cf. thesis of T. Colcombet)

Open:

- We assume that M is bisimilarity preserving for finite and infinite folded terms. Can one transfer the result if M has this property only for finite folded terms?
- Transfer (and analyze) other models of transducers that have been defined for finite terms to the infinite world.

