Almost ASAP Semantics : From Timed Models to Timed Implementations

M. De Wulf, L. Doyen, J.-F. Raskin

University of Brussels Centre Fédéré en Vérification IB UNIVERSITÉ LIBRE DE BRUXELLES

Motivations

Embedded Controllers

— ... are difficult to develop (concurrency, real-time, continuous environment, ...);
— ... are safety critical.

Use model-based development : Hybrid Automata and Reachability Analysis

Model-based Development

- Make a model of the environment
 Environment
- Make clear the control objective: Bad
- Make a model of your control strategy: ControllerMod
- Verify: Does Environment || ControllerMod avoid Bad ?
 Good, but after ?

From Correct Models to Correct Implementations

Should we verify code ?

this may be difficult (too much details)

Can we translate model into code ?

there are tools for that ...

and preserve properties ?

good question...

Problem

• Timed automata are (in general) not implementable (in a formal sense)...

Why?

- Zenoness: 0, 0.5, 0.75, 0.875, ...
- No minimal bound between two transitions : 0,0.5,1,1.75,2,2.875,3,...
- And more … (robustness)

ULB UNIVERSITÉ LIBRE DE BRUXELLES

No Minimal Bound between Two Transitions

1812355 YUB1/2

ULB UNIVERSITÉ LIBRE DE BRUXELLES

It can be controlled

- δ_i : time in l₂ during loop i
- the controller must ensure : $\sum_{i=0}^{i=+\infty} \delta_i < x_0 y_0$

More...

 One can specify instantaneous responses but not implement them.

Not implementable

More...

 Instantaneous synchronisations between environment and controller are not implementable.

Environment

a!

Classical controller Not implementable

a?

 Models use continuous clocks and implementations use digital clocks with finite precision

Classical controller Not implementable

Problems : Summary

- My controller stragegy may be correct because of
 - ... it is zeno...
 - … it acts faster and faster?
 - ... it reacts instanteously to events, timeouts,...? (synchrony hypothesis)
 - … it uses infinitely precise clocks?

A possible solution...

- Give an alternative semantics to timed automata : Almost ASAP semantics.
 - enabled transitions of the controller become urgent only after Δ time units;
 - events from the environment are received by the controller within ∆ time units;
 - truth values of guards are enlarged by $f(\Delta)$.

where Δ is a parameter

Definition of the AASAP semantics

Definition 13 [AASAP semantics] Given an ELASTIC controller

 $A = \langle \mathsf{Loc}, l_0, \mathsf{Var}, \mathsf{Lab}, \mathsf{Edg} \rangle$

and $\Delta \in \mathbb{Q}^{\geq 0}$, the AASAP semantics of A, noted $[\![A]\!]_{\Delta}^{\mathsf{AAsap}}$ is the STTS

$$\mathcal{T} = \langle S, \iota, \varSigma_{\mathsf{in}}, \varSigma_{\mathsf{out}}, \varSigma_{\tau}, \rightarrow \rangle$$

where:

- (A1) S is the set of tuples (l, v, l, d) where l ∈ Loc, v ∈ [Var → ℝ²⁰], l ∈ [Σ_i → ℝ²⁰ ∪ {⊥}] and d ∈ ℝ²⁰, (A2) i ∈ [0, v, l, d) where v is such that for any x ∈ Var : v(x) = 0, and l is such.
- (A2) i = (i₀, v, I, 0) where v is such that for any x ∈ Var : v(x) = 0, and I is such that for any σ ∈ Σ_{in}, I(σ) = ⊥;
- (A3) $\Sigma_{in} = Lab_{in}$, $\Sigma_{out} = Lab_{out}$, and $\Sigma_{\tau} = Lab_{\tau} \cup Lab_{in} \cup \{e\}$
- (A4) The transition relation is defined as follows:
 - for the discrete transitions, we distinguish five cases: (A4.1) let σ ∈ Lab_{out}. We have (l, l, l, d), σ, (l', v', l, 0)) ∈→ iff there exists (l, l', g, σ, R) ∈ Edg such that v |= a_{Rd} and v' = v(R := 0);
 - $(i, e, g, \sigma, n) \in Eag$ such that $v \models AgA$ and $v = v_i n := 0$; (A4.2) let $\sigma \in Lab_p$. We have $((l, v, I, d), \sigma, (l, v, I', d)) \in \rightarrow \text{ iff } I(\sigma) = \bot$ and $I' = I[\sigma := 0]$;
 - (A4.3) let $\bar{\sigma} \in Lab_{ls}$. We have $((l, v, I, d), \bar{\sigma}, (l', v', I', 0)) \in \rightarrow$ iff there exists $(l, l', g, \sigma, R) \in Edg$, $\sigma \models \Delta g_{\Delta}$, $I(\sigma) \neq \bot$, v' = v[R := 0] and $l' = I[\sigma := \bot]$;
 - (A4.4) let $\sigma \in Lab_{\tau}$. We have $(\langle l, v, I, d \rangle, \sigma, \langle l', v', I, 0 \rangle) \in \rightarrow$ iff there exists $(l, l', g, \sigma, R) \in Edg, \sigma \models \Delta g_{\Delta}, \text{ and } v' = v[R := 0];$
 - (A4.5) let $\sigma = \epsilon$. We have for any $(l, \sigma, I, d) \in S$: $((l, \sigma, I, d), \epsilon, (l, v, I, d)) \in \rightarrow$.
 - for the continuous transitions
 - (A4.6) for any $t \in \mathbb{R}^{\geq 0}$, we have $\langle (l, \sigma, I, d), t, (l, \sigma + t, I + t, d + t) \rangle \in \rightarrow$ iff the two following conditions are satisfied: • for any edge $(l, l', g, \sigma, R) \in \mathsf{Edg}$ with $\sigma \in \mathsf{Lab}_{out} \cup \mathsf{Lab}_{\tau}$, we have that:

 $\forall t' : 0 \le t' \le t : (d + t' \le \Delta \lor TS(v + t', g) \le \Delta)$ for any edge $(l, l', g, \sigma, R) \in Edg$ with $\sigma \in Lab_{bn}$, we have that: $\forall t' : 0 \le t' \le t : (d + t' \le \Delta \lor TS(v + t', g) \le \Delta \lor (I + t')(\sigma) \le \Delta)$

Intuition...

One can specify instantaneous responses but not implement them.

Intuition...

Instantaneous synchronisations between environment and controller are not implementable.

UNIVERSITÉ LIBRE DE BRUXELLES

Intuition...

Models use continuous clocks and implementations use digital clocks with finite precision

Verification

• The question that we ask when we make verification is no more:

Does Environment || ControllerMod avoid Bad ?

• But:

for which values of Δ , does Environment || ControllerMod(Δ) avoid Bad ?

UNIVERSITÉ LIBRE DE BRUXELLES

- AASAP semantics defines a "tube" of strategies instead of a unique strategy in the ASAP semantics.
- This tube can be refined into an implementation while preserving safety properties verified on the AASAP-sem

Proof of "implementability" ?

 We define an "implementation semantics" based on:

> Read System Clock Update Sensor Values Check all transitions and fire one if possible

- The timed behaviour of this scheme is determined by two values :
 - Time length of a loop : Δ
 - Time between two clock ticks : Δ_P

UNIVERSITÉ LIBRE DE BRUXELLES

Program semantics

Definition 15 [Program Semantics] Let A be an ELASTIC controller and Δ_L , $\Delta_P \in \mathbb{Q}^{>0}$. We define $\Delta_S = \Delta_L + 2\Delta_P$. The (Δ_L, Δ_P) program semantics of A, noted $[\![A]\!]_{\Delta_L, \Delta_P}^{\mathsf{Prg}}$ is the structured timed transition system $\mathcal{T} = \langle S, \iota, \Sigma_{\mathsf{in}}, \Sigma_{\mathsf{out}}, \Sigma_{\tau}, \rightarrow \rangle$ where:

- (P1) S is the set of tuples (l, r, T, I, u, d, f) such that $l \in \mathsf{Loc}$, r is a function from Var into $\mathbb{R}^{\geq 0}$, $T \in \mathbb{R}^{\geq 0}$, I is a function from $\mathsf{Lab}_{\mathsf{in}}$ into $\mathbb{R}^{\geq 0} \cup \{\bot\}$, $u \in \mathbb{R}^{\geq 0}$, $d \in \mathbb{R}^{\geq 0}$, and $f \in \{\top, \bot\}$;
- (P2) $\iota = (l_0, r, 0, I, 0, 0, \bot)$ where r is such that for any $x \in Var$, r(x) = 0, I is such that for any $\sigma \in Lab_{in}$, $I(\sigma) = \bot$;
- $(P3) \ \ \mathcal{L}_{in} = \mathsf{Lab}_{in}, \ \mathcal{L}_{\mathsf{out}} = \mathsf{Lab}_{\mathsf{out}}, \ \mathcal{L}_{\tau} = \mathsf{Lab}_{\tau} \cup \overline{\mathsf{Lab}_{in}} \cup \{\epsilon\};$
- $(P4)\,$ the transition relation \rightarrow is defined as follows:
 - for the discrete transitions: (P4.1) let $\sigma \in \mathsf{Lab}_{\mathsf{out}}$. $((l, r, T, I, u, d, \bot), \sigma, (l', r', T, I, u, 0, \top)) \in \rightarrow$ iff there exists $(l, l', g, \sigma, R) \in \mathsf{Edg}$ such that $[T]_{\Delta_P} - r \models \Delta_S g_{\Delta_S}$ and $r' = \frac{1}{2}$
- $r[R := |T|_{\Delta_{\sigma}}].$ (P4.2) let $\sigma \in \mathsf{Lab}_{in}.$ $((l, r, T, I, u, d, f), \sigma, (l, r, T, I', u, d, f)) \in \rightarrow \text{ iff } I(\sigma) =$ \perp and $I' = I[\sigma := 0];$
- $\begin{array}{l} (P4.3) \text{ let } \bar{\sigma} \in \overline{\mathsf{Lab}_{in}}. \\ ((l,r,T,I,u,d,\bot), \bar{\sigma}, (l',r',T,I',u,0,\top)) \in \to \text{ iff there} \\ \text{ exists } (l,l',g,\sigma,R) \in \mathsf{Edg} \text{ such that } \lfloor T \rfloor_{\Delta_P} r \models_{\Delta_S} g_{\Delta_S}, I(\sigma) > u, \\ r' = r[R := \lfloor T \rfloor_{\Delta_P}] \text{ and } I' = I[\sigma := \bot]; \end{array}$
- $(P4.4) \text{ let } \sigma \in \mathsf{Lab}_{\tau}. ((l, r, T, I, u, d, \bot), \sigma, (l', r', T, I, u, 0, \top)) \in \rightarrow \text{ iff there} \\ \text{ exists } (l, l', g, \sigma, R) \in \mathsf{Edg such that } \lfloor T \rfloor_{\Delta_P} r \models {}_{\Delta_S}g_{\Delta_S} \text{ and } r' = \\ r[R := \lfloor T \rfloor_{\Delta_P}].$
- (P4.5) let $\sigma = \epsilon$. $((l, r, T, I, u, d, f), \sigma, (l, r, T + u, I, 0, d, \bot)) \in \rightarrow$ iff either $f = \top$ or the two following conditions hold:
 - for any $\bar{\sigma}$ such that $\sigma \in \mathsf{Lab}_{in}$, for any $(l, l', g, \sigma, R) \in \mathsf{Edg}$, we have that either $[T]_{\Delta_P} r \not\models \Delta_S g_{\Delta_S}$ or $I(\sigma) \leq u$
 - for any $\sigma \in \mathsf{Lab}_{\mathsf{out}} \cup \mathsf{Lab}_{\tau}$, for any $(l, l', g, \sigma, R) \in \mathsf{Edg}$, we have that $\lfloor T \rfloor_{\Delta_P} r \not\models {}_{\Delta_S} g_{\Delta_S}$
 - for the continuous transitions:
- $(P4.6) \ ((l, r, T, I, u, d, f), t, (l, r, T, I + t, u + t, d + t, f)) \in \to \text{ iff } u + t \le \Delta_L.$

Proof of "implementability" ? Theorem :

For any timed controller, its AASAP semantics simulates (in the formal sense) its implementation semantics, provided that : $\Delta > 2\Delta + 4\Delta_P$

In this case, the implementation is guaranteed to preserve verified properties of the model, that is: Environment || ControllerMod(Δ) avoid Bad implies Environment || ControllerImpl(ΔL,ΔP) avoid Bad

Properties of the AASAP Semantics

• Faster is better !

For any Δ_1 , Δ_2 such that $\Delta_1 < \Delta_2$: if Environment || ControllerMod(Δ_2) avoid Bad then Environment || ControllerMod(Δ_1) avoid Bad

Properties of the AASAP Semantics

• If $\Delta > 0$, we get for free a proof that strategies:

- are nonzeno
- are such that transitions does not need to be taken faster and faster
- If only ∆=0 guarantees some reachability property, then the control strategy is not implementable

In practice ?

- The AASAP semantics can be coded into a parametric timed automata with only one clock compared to the parameter $\Delta \in Q$.
- Unfortunately, the reachability problem for that class of timed automata is undecidable... Direct corollary of [CHR02].
- Hytech implements a semi-decision procedure for that problem.

ULB UNIVERSITÉ LIBRE DE BRUXELLES

An example

(a) The ASAP controller

(b) The environment

If α =1 then the system is safe if and only if Δ =0 If α =2 then the system is safe if and only if Δ <0.25

A decidable sufficient condition

- A control strategy is structurally implementable if there exists Δ₁>0 such that
 - the actions used by the controller in

Environment || ControllerMod(Δ_1)

are identical to the actions used by the controller in Environment || ControllerMod(0)

- Environment || ControllerMod(Δ1) avoid Bad
- The largest such Δ_1 can be expressed in the theory $T(R,+,0,1,\leq)$ from

Environment || ControllerMod(0)

Methodology to develop controllers

0	Models using synchrony hypothesis
	Environment 🛛 ControllerMod

Check
Does Environment || ControllerMod(0) avoid Bad ?

Compute the largest Δ1 such that
 Environment || ControllerMod(Δ1) avoid Bad and
 ControllerMod(Δ1) is a structural implementation of ControllerMod(0) in Environment

6

4

if $\Delta_1 > 2 \Delta_L + 4 \Delta_P$

Generate code This code will enforce the safety property

Conclusion

- Almost ASAP semantics is implementable!
- If we go for the sufficient condition, the verification overhead should (on going work) be OK
- Almost ASAP semantics guarantees correct code and not only correct idealized model !