
Almost ASAP Semantics :
From Timed Models to Timed

Implementations

M. De Wulf, L. Doyen,J.-F. Raskin

University of Brussels
Centre Fédéré en Vérification

Motivations

• Embedded Controllers
– ... are difficult to develop (concurrency,

real-time, continuous environment, ...);
– ... are safety critical.

➽Use model-based development :
Hybrid Automata and
Reachability Analysis

Model-based Development

• Make a model of the environment
Environment

• Make clear the control objective:
Bad

• Make a model of your control strategy:
ControllerMod

• Verify :
Does Environment ControllerMod avoid Bad ?

• Good, but after ?

Text

From Correct Models
to Correct Implementations

• Should we verify code ?
– this may be difficult (too much details)

• Can we translate model into code ?
... there are tools for that ...

• ... and preserve properties ?
... good question...

Problem

• Timed automata are (in general) not
implementable (in a formal sense)...

Why ?
– Zenoness : 0, 0.5, 0.75, 0.875, ...
– No minimal bound between two transitions :

0,0.5,1,1.75,2,2.875,3,...
– And more ... (robustness)

No Minimal Bound
between Two Transitions

It can be controlled

More...

• One can specify instantaneous responses
but not implement them.

Not implementable

More...

• Instantaneous synchronisations between
environment and controller are not
implementable.

EnvironmentEnvironment

Classical controller
Not implementable

More...

• Models use continuous clocks and
implementations use digital clocks with
finite precision

Classical controller
Not implementable

V.S

Problems : Summary

• My controller stragegy may be correct
because of
– ... it is zeno...
– ... it acts faster and faster?
– ... it reacts instanteously to events,

timeouts,...? (synchrony hypothesis)
– ... it uses infinitely precise clocks?

Text

t

A possible solution...

• Give an alternative semantics to timed
automata : Almost ASAP semantics.
– enabled transitions of the controller become

urgent only after Δ time units;
– events from the environment are received by

the controller within Δ time units;
– truth values of guards are enlarged by f(Δ).

where Δ is a parameter

Definition of
the AASAP semantics

Intuition...

One can specify instantaneous responses
but not implement them.

Not implementable Solution : allow some delay

Intuition...

Instantaneous synchronisations between
environment and controller are not
implementable.

EnvironmentEnvironment

Classical controller
Not implementable

Solution :
Uncouple event from
perception by the controller

Intuition...

Models use continuous clocks and
implementations use digital clocks with
finite precision

Classical controller
Not implementable

Solution :
Slightly relax the constraints

V.S

Verification

• The question that we ask when we make
verification is no more:

Does Environment ControllerMod avoid Bad ?

• But:

for which values of Δ,
does Environment ControllerMod(Δ) avoid Bad ?

Intuition

• AASAP semantics defines a “tube” of strategies instead
of a unique strategy in the ASAP semantics.

• This tube can be refined into an implementation while
preserving safety properties verified on the AASAP-sem

ASAP semantics

Implementation

AASAP semantics

↑f(Δ)

Proof of “implementability” ?

• We define an “implementation
semantics” based on:

• The timed behaviour of this scheme is
determined by two values :
– Time length of a loop : ΔL
– Time between two clock ticks : ΔP

Read System Clock
Update Sensor Values
Check all transitions and fire one if possible

Program semantics

Proof of “implementability” ?

 For any timed controller, its AASAP semantics
simulates (in the formal sense) its
implementation semantics, provided that :

Δ>2ΔL+4ΔP

Theorem :

 In this case, the implementation is
guaranteed to preserve verified properties
of the model, that is:

Environment ControllerMod(Δ) avoid Bad
implies

Environment ControllerImpl(ΔL,ΔP) avoid Bad

Properties of the AASAP Semantics

• Faster is better !

For any Δ1, Δ2 such that Δ1<Δ2:
if

Environment ControllerMod(Δ2) avoid Bad
then

Environment ControllerMod(Δ1) avoid Bad

Properties of the AASAP Semantics

• If Δ>0, we get for free a proof that strategies:
• are nonzeno
• are such that transitions does not need to be

taken faster and faster
• If only Δ=0 guarantees some reachability

property, then the control strategy is not
implementable

In practice ?

• The AASAP semantics can be coded into a
parametric timed automata with only one clock
compared to the parameter Δ ∈ Q.

• Unfortunately, the reachability problem for
that class of timed automata is undecidable...
Direct corollary of [CHR02].

• Hytech implements a semi-decision procedure
for that problem.

In practice Timed Controller

Hytech Model

Code (for example BrickOS C)

Desired Properties

OK ?

Automatic Generation

Verification

Property Preservation

TextText

Environment

An example

Text

If α=1 then the system is safe if and only if Δ=0
If α=2 then the system is safe if and only if Δ<0.25

A decidable
sufficient condition

• A control strategy is structurally implementable if there
exists Δ1>0 such that
– the actions used by the controller in

Environment ControllerMod(Δ1)

are identical to the actions used by the controller in
Environment ControllerMod(0)

– Environment ControllerMod(Δ1) avoid Bad

• The largest such Δ1 can be expressed in the theory
T(R,+,0,1,≤) from

 Environment ControllerMod(0)

Methodology to develop
controllers

Models using synchrony hypothesis
Environment ControllerMod

Check
Does Environment ControllerMod(0) avoid Bad ?

Compute the largest Δ1 such that
Environment ControllerMod(Δ1) avoid Bad

and
ControllerMod(Δ1) is a structural implementation of

ControllerMod(0) in Environment

if Δ1 > 2 ΔL + 4 ΔP
Generate code

This code will enforce the safety property

❶

❷

❹

❸

❺

❶

❷

❸

❹ ❺

Conclusion

• Almost ASAP semantics is implementable!

• If we go for the sufficient condition, the
verification overhead should (on going
work) be OK

• Almost ASAP semantics guarantees
correct code and not only correct
idealized model !

