
Antichain-based
Universality and Inclusion Testing

over Nondeterministic Finite
Tree Automata

FIT BUT Technical Report Series

Ahmed Bouajjani, Peter Habermehl,
Lukáš Hoĺık, Tayssir Touili, and

Tomáš Vojnar

Technical Report No. FIT-TR-2008-001

Faculty of Information Technology, Brno University of Technology

Last modified: July 17, 2008

Antichain-based Universality and Inclusion Testing over
Nondeterministic Finite Tree Automata

Ahmed Bouajjani1, Peter Habermehl1,2, Lukáš Holı́k3, Tayssir Touili1, and
Tomáš Vojnar3

1 LIAFA, CNRS and University Paris Diderot, France,
email:{abou,haberm,touili}@liafa.jussieu.fr

2 LSV, ENS Cachan, CNRS, INRIA
3 FIT, Brno University of Technology, Czech republic,

email:{holik,vojnar}@fit.vutbr.cz

Abstract. We propose new antichain-based algorithms for checking universality
and inclusion of nondeterministic tree automata (NTA). We have implemented
these algorithms in a prototype tool and our experiments show that they provide
a significant improvement over the traditional determinisation-based approaches.
We use our antichain-based inclusion checking algorithm tobuild an abstract
regular tree model checking framework based entirely on NTA. We show the sig-
nificantly improved efficiency of this framework through a series of experiments
with verifying various programs over dynamic linked tree-shaped data structures.

1 Introduction

Tree automata are useful in numerous different areas, including, e.g., the implementa-
tion of decision procedures for various logics, XML manipulation, linguistics or formal
verification of systems, such as parameterised networks of processes, cryptographic
protocols, or programs with dynamic linked data structures. A classical implementation
of many of the operations, such as minimisation or inclusionchecking, used for dealing
with tree automata in the different application areas oftenassumes that the automata
are deterministic. However, as our own practical experience discussed later in the paper
shows, the determinisation step may yield automata being too large to be handled al-
though the original nondeterministic automata are quite small. It may even be the case
that the corresponding minimal deterministic automata aresmall, but they cannot be
computed as the intermediary automata resulting from determinisation are too big.

As the situation is similar for other kinds of automata, recently, a lot of research
has been done to implement efficiently operations like minimisation (or at least reduc-
tion) and universality or inclusion checking on nondeterministic word, Büchi, or tree
automata. We follow this line of work and propose and experimentally evaluate newef-
ficient algorithmsfor universality and inclusion checkingonnondeterministic(bottom-
up) tree automata. Instead of the classical subset construction, we useantichains of sets
of statesof the considered automata and extend some of the antichain-based algorithms
recently proposed for universality and inclusion checkingover finite word automata
[11] to tree automata (while also showing that the others arenot practical for them).

1

To evaluate the proposed algorithms, we have implemented them in a prototype tool
over the Timbuk tree automata library [8] and tested them in aseries of experiments
showing that they provide a significant advantage over the traditional determinisation-
based approaches. The experiments were done on randomly generated automata with
different densities of transitions and final states like in [11] as well as within an impor-
tant complex application of tree automata. Indeed, our antichain-based inclusion check-
ing algorithm for tree automata fills an important hole in thetree automata technology
enabling us to implement anabstract regular tree model checking(ARTMC) frame-
work based entirely on nondeterministic tree automata. ARTMC is a generic technique
for automated formal verification of various kinds of infinite-state and parameterised
systems. In particular, we consider its use for verificationof programs manipulating dy-
namic tree-shaped data structures, and we show that the use of nondeterministic instead
of deterministic tree automata improves significantly the efficiency of the technique.

Related Work.In [11], antichains were used for dual forward and backward algorithms
for universality and inclusion testing over finite word automata. In [7], antichains were
applied for Büchi automata. Here, we show how the forward algorithms from [11] can
be extended to finite (bottom-up) tree automata (using algorithms computing upwards).
We also show that the backward computation from word automata is not practical for
tree automata (where it corresponds to a downward computation). The regular tree
model checking framework was studied in, e.g., [10, 5, 2], and its abstract version in [3,
4]—in all cases using deterministic tree automata. When implementing a framework
for abstract regular tree model checking based on nondeterministic tree automata, we
exploit the recent results [1] on simulation-based reduction of tree automata.

2 Preliminaries

An alphabetΣ is ranked if it is endowed with a mappingrank : Σ → N. Fork ≥ 0,
Σk = {f ∈ Σ | rank(f) = k} is the set of symbols of rankk. The setTΣ of terms over
Σ is defined inductively: ifk ≥ 0, f ∈ Σk, andt1, . . . , tk ∈ TΣ, thenf(t1, . . . , tk)
is in TΣ . We abbreviate the so-calledleaf termsof the forma(), a ∈ Σ0, by simplya.
A (nondeterministic, bottom-up)tree automaton(NTA) is a tupleA = (Q, Σ, F, δ)
whereQ is a finite set of states,Σ is a ranked alphabet,F ⊆ Q is a set of final states,
andδ is a set of rules of the formf(q1, . . . , qn

)

→ q wheren ≥ 0, f ∈ Σn, and
q1, . . . , qn, q ∈ Q. We abbreviate theleaf rulesof the forma() → q, a ∈ Σ0, as
a → q. Let t be a term overΣ. A bottom-up run ofA on t is obtained as follows: first,
we assign a state to each leaf according to the leaf rules inδ, then for each internal
node, we collect the states assigned to all its children and associate a state to the node
itself according to the non-leafδ rules. Formally, if during the state assignment process
subtermst1, . . . , tn are labelled with statesq1, . . . , qn, and if a rulef(q1, . . . , qn) → q
is in δ, which we will denote byf(q1, . . . , qn) →δ q, then the termf(t1, . . . , tn) can be
labelled withq. A term t is accepted ifA reaches its root in a final state. The language
accepted by the automatonA is the set of terms that it accepts:L(A) = {t ∈ TΣ |

t
∗
→δ q(t) andq ∈ F}.

A tree automaton iscompleteif for all n ≥ 0, f ∈ Σn, q1, ..., qn ∈ Q, there is
at least oneq ∈ Q such thatf(q1, ..., qn) →δ q. A tree automaton may in general

2

be nondeterministic—we call it deterministicif there is at most oneq ∈ Q such that
f(q1, ..., qn) →δ q for anyn ≥ 0, f ∈ Σn, q1, ..., qn ∈ Q.

3 Universality Checking

Lattices and Antichains.The following definitions are similar to the corresponding ones
in [11]. LetQ be a finite set. AnantichainoverQ is a setS ⊆ 2Q s.t.∀s, s′ ∈ S : s 6⊂ s′,
i.e., a set of pairwise incomparable subsets ofQ. We denote byL the set of antichains.
A set s ∈ S ⊆ 2Q is minimal in S iff ∀s′ ∈ S : s′ 6⊂ s. Given a setS ⊆ 2Q,
bSc denotes the set of minimal elements ofS. We define a partial order on antichains:
for two antichainsS, S′ ∈ L, let S v S′ iff ∀s′ ∈ S′ ∃s ∈ S : s ⊆ s′. Given
two antichainsS, S′ ∈ L, thev-lub (least upper bound) is the antichainS t S′ =
b{s ∪ s′|s ∈ S ∧ s′ ∈ S′}c and thev-glb (greatest lower bound) is the antichain
S u S′ = b{s|s ∈ S ∨ s ∈ S′}c. We extend these definitions to lub and glb of arbitrary
subsets ofL in the obvious way, giving the operators

⊔

and
d

. Then, we get a complete
lattice(L,v,

⊔

,
d

, {∅}, ∅), where{∅} is the minimal element and∅ the maximal one.

Upward Universality Checking Using Antichains.To check universality of a tree au-
tomaton, the standard approach is to make it complete, determinise it, complement it,
and check for emptiness. As determinisation is expensive, we propose here an algorithm
for checking universality without determinisation. The main idea is to try to find at least
one term not accepted by the automaton. For this, we perform akind of symbolic sim-
ulation of the automaton to cover all runs necessarily leading to non-accepting states.

In the following,q, q1, q2, ... denote states of NTA,s, s1, s2, ... denote sets of such
states, andS, S1, S2, ... denote antichains of sets of states. We assume dealing with com-
plete automata and first give some definitions. Forf ∈ Σn, n ≥ 0, Postδf (s1, ..., sn) =
{q | ∃qi ∈ si, 1 ≤ i ≤ n : f(q1, ..., qn) →δ q}. We omitδ if no confusion arises. Note
that, fora ∈ Σ0, Posta(∅) = {q | a →δ q} is the set of states that may be assigned to
the leafa, andPostf (∅) = ∅ for f ∈ Σn, n ≥ 1. LetPost(S) = b{Postf(s1, ..., sn) |
n ≥ 0, s1, ..., sn ∈ S, f ∈ Σn}c. Clearly,Post is monotonic wrt.v.

Let Post0(S) = S and for alli > 0, Posti(S) = Post(Posti−1(S)) u S. Intu-
itively, Posti(S) contains thev-smallest setss ⊆ Q of states into which the automaton
can nondeterministically get after processing a term of height up toi starting from the
states in the elements ofS. Using only the minimal sets is enough as we just need to
know if there is a term on which the given automaton runs exclusively into non-final
states. This makes universality checking easier than determinisation using the general
subset construction.

Clearly,Post1(S) = Post(Post0(S))uS v S = Post0(S). Moreover, fori > 0,
if Posti(S) v Posti−1(S), then due to the monotonicity ofPost, Post(Posti(S)) v
Post(Posti−1(S)), Post(Posti(S)) u S v Post(Posti−1(S)) u S, and therefore
Posti+1(S) v Posti(S). Altogether, we get (1)∀S ∈ L ∀i ≥ 0 : Posti+1(S) v
Posti(S). Since we work on a finite lattice, this implies that for allS there existsjS

such thatPostjS
(S) = PostjS+1(S). We letPost∗(S) = PostjS

(S).

Lemma 1. Let A = (Q, Σ, F, δ) be a tree automaton andt a term overΣ. Let s =

{q | t
∗
→δ q}, thenPost∗(∅) v {s}.

3

Proof. We proceed by structural induction ont. For thebasic case, let t = a ∈ Σ0.
Then,s = {q | a →δ q} = Posta(∅), and thus there iss′ ∈ Post(∅) s.t.s′ ⊆ s since
Post is obtained by taking the minimal elements. Furthermore, because of (1), there
is alsos′′ ⊆ s′ such thats′′ ∈ Post∗(∅). For theinduction step, let t = f(t1, ..., tn).
Let si = {q ∈ Q | ti

∗
→δ q} for i ∈ {1, ..., n}. Let s = {q | t

∗
→δ q}. Then,

s = {q | ∃q1 ∈ s1, ..., qn ∈ sn : f(q1, ..., qn) →δ q}. By induction, there existss′i ⊆ si

s.t.s′i ∈ Post∗(∅). Let s′ = Postf (s′1, ..., s
′
n). Then, by definition ofPostf , we have

s′ ⊆ s, and by definition ofPost∗, there existss′′ ⊆ s′ with s′′ ∈ Post∗(∅). ut

Lemma 2. LetA = (Q, Σ, F, δ) be an automaton and lets ∈ Post∗(∅). Then there
exists a termt overΣ such thats = {q | t

∗
→δ q}.

Proof. Let i ≥ 1 be the smallest index s.t.s ∈ Posti(∅). We proceed by induction oni.
For thebasic case, i = 1. Then, there isa ∈ Σ0 s.t.s = Posta(∅) = {q | a

∗
→δ q}, t =

a. For theinduction step, let i > 1. There existsf ∈ Σn ands1, ..., sn ∈ Posti−1(∅)
with s = Postf (s1, ..., sn). By induction, there existst1, ..., tn s.t. forj ∈ {1, ..., n},
sj = {q | tj

∗
→δ q}. Let t = f(t1, ...tn). By definition ofPostf , s = {q |t

∗
→δ q}. ut

We can now give a theorem allowing us to decide universalitywithout determinisation.

Theorem 1. A tree automatonA=(Q, Σ, F, δ) is not universal iff∃s∈Post∗(∅).s⊆F .

Proof. LetA be not universal. Lett be a term not accepted byA ands = {q | t
∗
→δ q}.

As t is not accepted by the automaton,s ⊆ F . By Lemma 1, there iss′ ∈ Post∗(∅)
s.t.s′ ⊆ s ⊆ F . Suppose now that there existss ∈ Post∗(∅) s.t.s ⊆ F . By Lemma 2,
there exists a termt with s = {q | t

∗
→δ q}. Sinces ⊆ F , t is not accepted byA. ut

Experiments with Upward Universality Checking Using Antichains. We have imple-
mented the above approach for testing universality of tree automata in a prototype based
on the Timbuk tree automata library [8]. We give the results of our experiments run on
an Intel Xeon processor at with 2.7GHz and 16GB of memory in Fig. 1. We ran our
tests on randomly generated automata and on automata obtained from abstract regular
tree model checking applied in verification of several pointer-manipulating programs.

In the random tests, we first used automata with 20 states and varied thedensity of
their transitions(the average number of different right-hand side states fora given left-
hand side of a transition rule, i.e.,|δ|/|{f(q1, ..., qn) | ∃q ∈ Q : f(q1, ..., qn) →δ q}|)
and thedensity of their final states(i.e.,|F |/|Q|). Fig. 1(a) shows the probability of such
automata being universal, and Fig. 1(b) the average times needed for checking their uni-
versality using our antichain-based approach. The difficult instances are naturally those
where the probability of being universal is about one half. In Fig. 1(c), we show how
the running times change for some selected instances of the problem (in terms of some
chosen densities of transitions and final states, includingthose for which the problem
is the most difficult) when the number of states of the automata grows. We also show
the time needed when universality is checked using determinisation, complement, and
emptiness checking. We see that the antichain-based approach behaves in a significantly
better way. The same conclusion can also be drawn from the results of Fig. 1(d) obtained
on automata from experimenting with abstract regular tree model checking applied for
verifying various procedures manipulating trees presented in Section 5.3.

4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

probability of being universal

transition ratio

final states ratio

probability of being universal

(a) Probability that a tree automaton
(TA) with 20 states and some density of
transitions and final states is universal

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

 0

 0.2

 0.4

 0.6

 0.8

 1 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

time (s)

transition ratio

final states ratio

time (s)

(b) Average times of antichain-based uni-
versality checking on TA with 20 states and
some density of transitions and final states

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120

tim
e

(s
)

number of states

Density of transitions, final states: 1.5, 0.9
2.0, 0.5
2.5, 0.3

(checking via determinisation) 2.5, 0.3

(c) Universality checking via determinisation and antichains
on TA with selected densities of transitions and final states

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20 40 60 80 100 120 140

tim
e

(s
)

number of states

antichain-based
determinisation-based

(d) Determinisation-based and antichain-based universality
checking on TA from abstract regular tree model checking

Fig. 1. Experiments with universality checking on tree automata

Downward Universality Checking with Antichains.Theupward universality checking
introduced above for tree automata conceptually corresponds to theforwarduniversality
checking of finite word automata of [11]. In [11], a dualbackwarduniversality checking
is also introduced. It is based on computing thecontrollable predecessorsof the set of
non-final states. Controllable predecessors are the predecessors that can be forced by an

5

input symbol to continue into a given set of states. Then, theautomaton is non-universal
iff the controllable predecessors of the non-final states cover the set of initial states.

Downward universality checkingfor tree automata as a dual approach to upward
universality checking is problematic since the controllable predecessors of a set of states
s ⊆ Q of an NTAA = (Q, Σ, F, δ) do not form a set of states, but a set oftuplesof
states, i.e.,CPre(s) = {(q1, ..., qn) | n ∈ N ∧ ∃f ∈ Σ ∀q ∈ Q : f(q1, ..., qn) →δ

q ⇒ q ∈ s}. Note that if we flatten the setCPre(s) to the setFCPre(s) of states
that appear in some of the tuples ofCPre(s) and check that starting from leaf rules
the computation can be forced into some subset ofFCPre(s), then this does not imply
that the computation can be forced into some state froms. That is because for any rule
f(q1, ..., qn) →δ q, q ∈ s, not all of the statesq1, ..., qn may be reached. Moreover,
it is too strong to require that starting from leaf rules, it must be possible to force the
computation into all states ofFCPref (s). Clearly, it is enough if the computation
starting from leaf rules can be forced intos via some of the vectors inCPre(s), not
necessarily all of them. Also, if we keepCPre(s) for s ⊆ Q as a set of vectors, we also
have to define the notion of controllable predecessors for sets of vectors of states, which
is a set of vectors of vectors of states, etc. Clearly, such anapproach is not practical.

4 Inclusion Checking

Let A = (Q, Σ, F, δ) andB = (Q′, Σ, F ′, δ′) be two tree automata. We want to check
if L(A) ⊆ L(B). The traditional approach computes the complement ofB and checks if
it has an empty intersection withA. This is costly as computing the complement neces-
sitates determinisation. Here we show how to check inclusion without determinisation.

As before, the idea is to find at least one term accepted byA and not byB. For
that, we simultaneously simulate the runs of the two automata using pairs(p, s) with
p ∈ Q ands ⊆ Q′ wherep memorises the run ofA ands all the possible runs ofB. If
t is a term accepted byA and not byB, the simultaneous run of the two automata ont
reaches the root oft at a pair of the form(p, s) with p ∈ F ands ⊆ F ′. Notice thats
must representall the possible runs ofB on t to make sure that no run ofB can accept
the termt. Therefore,s must be a set of states.

Formally, anantichainover Q × 2Q′

is a setS ⊆ Q × 2Q′

such that for every
(p, s), (p′, s′) ∈ S, if p = p′, thens 6⊂ s′. We denote byLI the set of all antichains over
Q×2Q′

. Given a setS ∈ Q×2Q′

, an element(p, s) ∈ S is minimalif for everys′ ⊂ s,
(p, s′) /∈ S. We denote bybSc the set of minimal elements ofS. Given two antichains
S andS′, we define the ordervI , the least upper boundtI , and the greatest lower
bounduI as follows:S vI S′ iff for every (p, s′) ∈ S′, there is(p, s) ∈ S s.t.s ⊆ s′;
S tI S′ = b{(p, s∪ s′) | (p, s) ∈ S ∧ (p, s′) ∈ S′}c; andS uI S′ = b{(p, s) | (p, s) ∈
S ∨ (p, s) ∈ S′}c. These definitions can be extended to arbitrary sets in the usual way
leading to the operators

⊔

I and
d

I , yielding a complete lattice as in Section 3.
Givenf ∈ Σn, n ≥ 0, we defineIPostf

(

(p1, s1), ..., (pn, sn)
)

= {(p, s) |f(p1, ...,

pn) →δ p ∧ s = Postδ
′

f (s1, ..., sn)}. Let S be an antichain overQ × 2Q′

. Then,
let IPost(S) = b{IPostf

(

(p1, s1), . . . , (pn, sn)
)

| n ≥ 0, (p1, s1), ..., (pn, sn) ∈

S, f ∈ Σn}c. Let IPost0(S) = S and IPost i(S) = IPost
(

IPost i−1(S)
)

uI S.
As before, we can show that∀S ∈ LI ∀i ≥ 0 : IPost i+1(S) vI IPost i(S), and

6

that for every antichainS, there exists aJ such thatIPostJ+1(S) = IPostJ(S).
Let IPost

∗(S) = IPostJ (S). Note that, like in the case ofPosta(∅) in Section 3,
IPosta(∅) = {(q, Postδ

′

a (∅)) | a →δ q} for a ∈ Σ0, andIPostf (∅) = ∅ for f ∈ Σn,
n ≥ 1. Then, we get the following lemma. The proof is similar to theone of Lemma 1.

Lemma 3. LetA = (Q, Σ, F, δ) andB = (Q′, Σ, F ′, δ′) be two tree automata, and
let t be a term overΣ. Letp ∈ Q such thatt

∗
→δ p, ands = {q ∈ Q′ | t

∗
→δ′ q}. Then,

IPost
∗(∅) vI {(p, s)}.

We can also show the following lemma. Its proof is similar to the one of Lemma 2.

Lemma 4. LetA = (Q, Σ, F, δ) andB = (Q′, Σ, F ′, δ′) be two tree automata, and
let (p, s) ∈ IPost

∗(∅). Then there is a termt overΣ s.t.t
∗
→δ p ands = {q | t

∗
→δ′ q}.

Then, we can decide inclusionwithout determinising the automataas follows:

Theorem 2. Let A = (Q, Σ, F, δ) and B = (Q′, Σ, F ′, δ′) be two tree automata.
Then,L(A) ⊆ L(B) iff for every(p, s) ∈ IPost

∗(∅), p ∈ F ⇒ s 6⊆ F ′.

Proof. Suppose that(p, s) ∈ IPost
∗(∅) with p ∈ F ands ⊆ F ′. Using Lemma 4 there

is a termt with t
∗
→δ p ands = {q | t

∗
→δ′ q}. Asp ∈ F ands ⊆ F ′, t is accepted byA

and not byB, i.e.,L(A) 6⊆ L(B). Suppose nowL(A) 6⊆ L(B). Let t be a term accepted
by A and not byB. Let p ∈ F such thatt

∗
→δ p, and lets = {q | t

∗
→δ′ q}. Then,

s ⊆ F ′. Lemma 3 implies thatIPost
∗(∅) contains a pair(p, s′) s.t.s′ ⊆ s ⊆ F ′. ut

4.1 Experiments with Inclusion Checking Using Antichains

Below, in Fig. 2 and Fig. 3, we present the results that we haveobtained from experi-
menting with our prototype implementation of the antichain-based inclusion checking
for tree automata, which we have built on top of the Timbuk tree automata library.
The experiments were performed on an Intel Xeon processor at2.7GHz with 16GB of
available memory (the same as in Section 3).

We first ran our tests on pairs of randomly generated automatahaving 10 states and
different possible densities of transitions and final states. The probability thatL(A1) ⊆
L(A2) holds for randomly generated tree automataA1 andA2 (both having the same
densities of transitions and final states) is shown in Fig. 2(a). Fig. 2(b) then shows
how the antichain-based inclusion checking behaves on suchautomata. We see that its
time consumption is naturally growing for automata where the probability of whether
L(A1) ⊆ L(A2) holds is neither too low nor too high.

Fig. 2(c) and Fig. 2(d) show what happens if eitherA1 or A2 is left completely
random, and onlyA2 or A1, respectively, follows a given density of transitions and
final states. The fact that the results in Fig. 2(c) follow Fig. 2(b), whereas the time
consumption in Fig. 2(d) is roughly implied by the size ofA1 (in terms of transitions),
implies that the time consumption of the antichain-based inclusion checking is—as
expected—influenced much more by the automatonA2.

Finally, in Fig. 3(a), we show how the running times change for some selected
instances of the problem (in terms of some selected densities of transitions and final

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

probability of inclusion
 of L(A1) in L(A2)

transition ratio

final states ratio

probability of inclusion
 of L(A1) in L(A2)

(a) Probability of L(A1) ⊆ L(A2)
for tree automata (TA) with 10 states
and some density of transitions and final
states

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.5 1 1.5 2 2.5 3 3.5 4

 0

 2

 4

 6

 8

 10 0

 1

 2

 3

 4

 5

 6

 7

 8

time(s)

transition ratio
final states ratio

time(s)

(b) Average times of antichain-based inclu-
sion checking on TA with some density of
transitions and final states

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 0.5 1 1.5 2 2.5 3 3.5 4

 0

 0.2

 0.4

 0.6

 0.8

 1 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

time(s)

transition ratio

final states ratio

time(s)

(c) Antichain-based inclusion checking on
TA, A1 random,A2 with some density of
transitions and final states

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.5 1 1.5 2 2.5 3 3.5 4

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

time(s)

transition ratio

final states ratio

time(s)

(d) Antichain-based inclusion checking on
TA, A2 random,A1 with some density of
transitions and final states

Fig. 2. Experiments with inclusion checking on tree automata

states, including those for which the problem is the most difficult) when the number
of states of the automata starts growing. The figure also shows the time needed when
the inclusion checking is based on determinising and complementingA2 and checking
emptiness of the languageL(A1) ∩ L(A2). We see that the antichain-based approach
really behaves in a very significantly better way. The same conclusion can then be
drawn also from the results shown in Fig. 3(b) that we obtained on automata saved from
experimenting with abstract regular tree model checking applied for verifying various
real-life procedures manipulating trees (cf. Section 5.3). In fact, the antichain-based
inclusion checking allowed us to implement an abstract regular tree model checking
framework entirely based on nondeterministic tree automata which is significantly more
efficient than the framework based on deterministic automata.

8

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40

tim
e

(s
)

number of states

Inclusion - automata from ARTMC

Density of transitions, final states: 1.5,0.9
2.0, 0.5
2.5, 0.3
3.5, 0.3

(checking via determinisation) 4.0, 0.3

(a) Determinisation-based and antichain-based inclusionchecking on TA
with selected densities of transitions and final states

 0
 5

 10
 15
 20
 25
 30

 0 20 40 60 80 100 120 140

tim
e

(s
)

number of states

antichain_based
determinisation-based

(b) Determinisation-based and antichain-based inclusionchecking on TA
from abstract regular tree model checking

Fig. 3. Further experiments with inclusion checking on tree automata

5 Regular Tree Model Checking
Regular tree model checking(RTMC) [10, 5, 2, 3] is a general and uniform framework
for verifying infinite-state systems. In RTMC, configurations of a system being verified
are encoded by trees, sets of the configurations by tree automata, and transitions of the
verified system by a term rewriting system (usually given as atree transducer or a set of
tree transducers). Then, verification problems based on performing reachability analysis
correspond to computing closures of regular languages under rewriting systems, i.e.,
given a term rewriting systemτ and a regular tree languageI, one needs to compute
τ∗(I), whereτ∗ is the reflexive-transitive closure ofτ . This computation is impossible
in general. Therefore, the main issue in RTMC is to find accurate and powerful fixpoint
acceleration techniques helping the convergence of computing language closures. One
of the most successful acceleration techniques used in RTMCis abstraction whose use
leads to the so-calledabstract regular tree model checking(ARTMC) [3], on which we
concentrate in this work.

5.1 Abstract Regular Tree Model Checking

We now briefly recall the basic principles of ARTMC in the way they were introduced in
[3]. Let Σ be a ranked alphabet andMΣ the set of all tree automata overΣ. LetI ∈ MΣ

9

be a tree automaton describing a set of initial configurations,τ a term rewriting system
describing the behaviour of a system, andB ∈ MΣ a tree automaton describing a set of
bad configurations. The safety verification problem can now be formulated as checking
whether the following holds:

τ∗(L(I)) ∩ L(B) = ∅ (1)

In ARTMC, the precise set of reachable configurationsτ∗(L(I)) is not computed to
solve Problem (1). Instead, its overapproximation is computed by interleaving the ap-
plication ofτ and the union inL(I) ∪ τ(L(I)) ∪ τ(τ(L(I))) ∪ ... with an application
of an abstraction functionα. The abstraction is applied on the tree automata encoding
the so-far computed sets of reachable configurations.

An abstraction function is defined as a mappingα : MΣ → AΣ whereAΣ ⊆ MΣ

and∀A ∈ MΣ : L(A) ⊆ L(α(A)). An abstractionα′ is called arefinementof the
abstractionα if ∀A ∈ MΣ : L(α′(A)) ⊆ L(α(A)). Given a term rewriting systemτ
and an abstractionα, a mappingτα : MΣ → MΣ is defined as∀A ∈ MΣ : τα(A) =
τ̂ (α(A)) whereτ̂ (A) is the minimal deterministic automaton describing the language
τ(L(A)). An abstractionα is finitary, if the setAΣ is finite.

For a given abstraction functionα, one can compute iteratively the sequence of
automata(τ i

α(I))i≥0. If the abstractionα is finitary, then there existsk ≥ 0 such that
τk+1
α (I) = τk

α(I). The definition of the abstraction functionα implies thatL(τk
α(I)) ⊇

τ∗(L(I)).
If L(τk

α(I))∩L(B) = ∅, then Problem (1) has a positive answer. If the intersection
is non-empty, one must check whether a real or a spurious counterexample has been
encountered. The spurious counterexample may be caused by the used abstraction (the
counterexample is not reachable from the set of initial configurations). Assume that
L(τk

α(I)) ∩ L(B) 6= ∅, which means that there is a symbolic path:

I, τα(I), τ2
α(I), ..., τn−1

α (I), τn
α (I) (2)

such thatL(τn
α (I)) ∩ L(B) 6= ∅.

Let Xn = L(τn
α (I)) ∩ L(B). Now, for eachl, 0 ≤ l < n, Xl = L(τ l

α(I)) ∩
τ−1(Xl+1) is computed. Two possibilities may occur: (a)X0 6= ∅, which means that
Problem (1) has a negative answer, andX0 ⊆ L(I) is a set of dangerous initial con-
figurations. (b)∃m, 0 ≤ m < n, Xm+1 6= ∅ ∧ Xm = ∅ meaning that the abstraction
function is too rough—one needs to refine it and start the verification process again.

In [3], two general-purpose kinds of abstractions are proposed. Both are based on
automata state equivalences. Tree automata states are split into several equivalence
classes, and all states from one class are collapsed into onestate. An abstraction be-
comes finitary if the number of equivalence classes is finite.The refinement is done by
refining the equivalence classes. Both of the proposed abstractions allow for an auto-
matic refinement to exclude the encountered spurious counterexample.

The first proposed abstraction is anabstraction based on languages of trees of a fi-
nite height. It defines two states equivalent if their languages up to thegive heightn are
equivalent. There is just a finite number of languages of heightn, therefore this abstrac-
tion is finitary. A refinement is done by an increase of the heightn. The second proposed
abstraction is anabstraction based on predicate languages. LetP = {P1, P2, . . . , Pn}

10

be a set ofpredicates. Each predicateP ∈ P is a tree language represented by a tree au-
tomaton. LetA = (Q, Σ, F, q0, δ) be a tree automaton. Then, two statesq1, q2 ∈ Q are
equivalent if the languagesL(Aq1

) andL(Aq2
) have a nonempty intersection with ex-

actly the same subset of predicates from the setP provided thatAq1
= (Q, Σ, F, q1, δ)

andAq2
= (Q, Σ, F, q2, δ). Since there is just a finite number of subsets ofP , the ab-

straction is finitary. A refinement is done by adding new predicates, i.e. tree automata
corresponding to the languages of all the states in the automaton ofXm+1 from the
analysis of spurious counterexample (Xm = ∅).

5.2 Nondeterministic Abstract Regular Tree Model Checking

As is clear from the above mentioned definition ofτ̂ , ARTMC was originally defined for
and tested onminimal deterministictree automata (DTA). However, the various exper-
iments done showed that the determinisation step is a significant bottleneck. To avoid
it and to implement ARTMC using nondeterministic tree automata (NTA), we need the
following operations over NTA: (1) application of the transition relationτ , (2) union,
(3) abstraction and its refinement, (4) intersection with the set of bad configurations,
(5) emptiness, and (6) inclusion checking (needed for testing if the abstract reachabil-
ity computation has reached a fixpoint). Finally, (7) a method to reduce the size of the
computed NTA is also desirable—̂τ(A) is then redefined to be the reduced version of
the NTA obtained from an application ofτ on an NTAA.

An implementation of Points (1), (2), (4), and (5) is easy. Moreover, concerning
Point (3), the abstraction mechanisms of [3] can be lifted towork on NTA in a straight-
forward way while preserving their guarantees to be finitary, overapproximating, and
the ability to exclude spurious counterexamples. Furthermore, the recent work [1] gives
efficient algorithms for reducing NTA based on computing suitable simulation equiva-
lences on their states, which covers Point (7). Hence, the last obstacle for implementing
nondeterministic ARTMC was Point (6), i.e., the need to efficiently check inclusion on
NTA. We have solved this problem by the approach proposed in Section 4, which al-
lowed us to implement a nondeterministic ARTMC framework ina prototype tool and
test it on suitable examples. Below, we present the first veryencouraging results that
we have achieved.

5.3 Experiments with Nondeterministic ARTMC

We have implemented the nondeterministic ARTMC framework using the Timbuk tree
library [8] and compared it with an ARTMC implementation based on the same library,
but using DTA. In particular, the deterministic ARTMC framework uses determinisa-
tion and minimisation after computing the effect of each forward or backward step to
try to keep the automata as small as possible and to allow for easy fixpoint checking:
The fixpoint checking on DTA is not based on inclusion, but identity checking on the
obtained automata (due to the fact that the computed sets areonly growing and minimal
DTA are canonical). For NTA, the tree automata reduction from [1] that we use does
not yield canonical automata, and so the antichain-based inclusion checking is really
needed.

We have applied the framework to verify several procedures manipulating dynamic
tree-shaped data structures linked by pointers. The trees being manipulated are encoded

11

Table 1. Running times (in sec.) of det. and nondet. ARTMC applied forverification of various
tree manipulating programs (× denotes a too long run or a failure due to a lack of memory)

DFT
RB-delete

(null,undef)
RB-insert

(null,undef)
det. nondet. det. nondet. det. nondet.

full abstr. 5.2 2.7 × × 33 15
restricted abstr. 40 3.5 × 60 145 5.4

RB-delete
(RB preservation)

RB-insert
(RB preservation)

RB-insert
(gen., test.)

det. nondet. det. nondet. det. nondet.
full abstr. × × × × × ×

restricted abstr. × 57 × 89 × 978

directly as the trees handled in ARTMC, each node is labelledby the data stored in it
and the pointer variables currently pointing to it. All program statements are encoded as
(possibly non-structure preserving) tree transducers. The encoding is fully automated.
The only allowed destructive pointer updates (i.e., pointer manipulating statements
changing the shape of the tree) are tree rotations [6] and addition of new leaf nodes.

We have in particular considered verification of the depth-first tree traversal and
the standard procedures for rebalancing red-black trees after insertion or deletion of a
leaf node [6]. We have verified that the programs do not manipulate undefined and null
pointers in a faulty way. For the procedures on red-black trees, we have also verified that
their result is a red-black tree (without taking into account the non-regular balancedness
condition). In general, the set of possible input trees for the verified procedures as well
as the set of correct output trees were given as tree automata. In the case of the procedure
for rebalancing red-black trees after an insertion, we havealso used a generator program
preceding the tested procedure which generates random red-black trees and a tester
program which tests the output trees being correct. Here, the set of input trees contained
just an empty tree, and the verification was reduced to checking that a predefined error
location is unreachable. The size of the programs ranges from 10 to about 100 lines of
pure pointer manipulations.

The results of our experiments on an Intel Xeon processor at 2.7GHz with 16GB of
available memory (as in Section 3) are summarised in Table 1.The predicate abstrac-
tion proved to give much better results (therefore we do not consider the finite-height
abstraction here). The abstraction was either applied after firing each statement of the
program (“full abstraction”) or just when reaching a loop point in the program (“re-
stricted abstraction”). The results we have obtained are very encouraging and show a
significant improvement in the efficiency of ARTMC based on nondeterministic tree au-
tomata. Indeed, the ARTMC framework based on deterministictree automata has either
been significantly slower in the experiments (up to25-times) or has completely failed
(a too long running time or a lack of memory)—the latter case being quite frequent.

6 Conclusion

We have proposed new antichain-based algorithms for universality and inclusion check-
ing on (nondeterministic) tree automata. The algorithms have been thoroughly tested

12

both on randomly generated automata and on automata obtained from various verifi-
cation runs performed within the abstract regular tree model checking framework. The
new algorithms have been proved to be significantly more efficient than the classical
determinisation-based approaches to universality and inclusion checking. Moreover,
using the proposed inclusion checking algorithm together with some other recently
published results, we have implemented a complete abstractregular tree model check-
ing framework based on nondeterministic tree automata and tested it on verification
of several real-life pointer-intensive procedures. The results show a very encouraging
improvement in the capabilities of the framework. In the future, we would like to im-
plement the antichain-based universality and inclusion checking algorithms (as well
as other recently proposed algorithms for dealing with NTA,such as the simulation-
based reduction algorithms) on automata symbolically encoded as in the MONA tree
automata library [9]. We hope that this will yield another significant improvement in
the tree automata technology allowing for a new generation of tools using tree automata
(including, e.g., the abstract regular tree model checkingframework).

Acknowledgement.The work was supported in part by the ANR-06-SETI-001 French
project AVERISS, the Czech Grant Agency (projects 102/07/0322 and 102/05/H050),
the Czech-French Barrande project 2-06-27, and the Czech Ministry of Education by
the project MSM 0021630528Security-Oriented Research in Information Technology.

References

1. P.A. Abdulla, A. Bouajjani, L. Holı́k, L. Kaati, and T. Vojnar. Computing Simulations over
Tree Automata: Efficient Techniques for Reducing Tree Automata. InProc. of TACAS’08,
volume 4963 ofLNCS. Springer, 2008.

2. P.A. Abdulla, A. Legay, J. d’Orso, and A.Rezine. Simulation-Based Iteration of Tree Trans-
ducers. InProc. of TACAS’05, volume 3440 ofLNCS. Springer, 2005.

3. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar.Abstract Regular Tree Model
Checking.ENTCS, 149:37–48, 2006. A preliminary version was presented at Infinity’05.

4. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar.Abstract Regular Tree Model
Checking of Complex Dynamic Data Structures. InProc. of SAS’06, volume 4134 ofLNCS.
Springer, 2006.

5. A. Bouajjani and T. Touili. Extrapolating Tree Transformations. InProc. of CAV’02, volume
2404 ofLNCS. Springer, 2002.

6. T.H. Cormen, C.E. Leiserson, and R.L. Rivest.Introduction to Algorithms. MIT Press, 1990.
7. L. Doyen and J.-F. Raskin. Improved Algorithms for the Automata-based Approach to Model

Checking. InProc. of TACAS’07, volume 4424 ofLNCS. Springer, 2007.
8. T. Genet. Timbuk: A Tree Automata Library. http://www.irisa.fr/lande/genet/timbuk.
9. N. Klarlund and A. Møller. MONA Version 1.4 User Manual, 2001. BRICS, Department of

Computer Science, University of Aarhus, Denmark.
10. E. Shahar.Tools and Techniques for Verifying Parameterized Systems. PhD thesis, Faculty of

Mathematics and Computer Science, The Weizmann Inst. of Science, Rehovot, Israel, 2001.
11. M. De Wulf, L. Doyen, T.A. Henzinger, and J.-F. Raskin. Antichains: A New Algorithm

for Checking Universality of Finite Automata. InProc. of CAV’06, volume 4144 ofLNCS.
Springer, 2006.

13

