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Abstract. We propose new antichain-based algorithms for checkingeusality
and inclusion of nondeterministic tree automata (NTA). Veeehimplemented
these algorithms in a prototype tool and our experiments/ghat they provide
a significant improvement over the traditional determitiisabased approaches.
We use our antichain-based inclusion checking algorithrbuitd an abstract
regular tree model checking framework based entirely on NWA show the sig-
nificantly improved efficiency of this framework through aiss of experiments
with verifying various programs over dynamic linked tréeped data structures.

1 Introduction

Tree automata are useful in numerous different areas,dimgdue.g., the implementa-
tion of decision procedures for various logics, XML mangtidn, linguistics or formal
verification of systems, such as parameterised networksaafegses, cryptographic
protocols, or programs with dynamic linked data structutedassical implementation
of many of the operations, such as minimisation or inclusioecking, used for dealing
with tree automata in the different application areas ofiesumes that the automata
are deterministic. However, as our own practical expegeatiscussed later in the paper
shows, the determinisation step may yield automata beindgtge to be handled al-
though the original nondeterministic automata are quitelsiit may even be the case
that the corresponding minimal deterministic automatasanall, but they cannot be
computed as the intermediary automata resulting from detésation are too big.

As the situation is similar for other kinds of automata, rete a lot of research
has been done to implement efficiently operations like misation (or at least reduc-
tion) and universality or inclusion checking on nondeteristic word, Buchi, or tree
automata. We follow this line of work and propose and experitally evaluate newf-
ficient algorithmdor universality and inclusion checkiran nondeterministi¢gbottom-
up)tree automatalnstead of the classical subset construction, weansiehains of sets
of stateof the considered automata and extend some of the antitfaaied algorithms
recently proposed for universality and inclusion checkavgr finite word automata
[11] to tree automata (while also showing that the othersiateractical for them).



To evaluate the proposed algorithms, we have implemenéad th a prototype tool
over the Timbuk tree automata library [8] and tested them serdes of experiments
showing that they provide a significant advantage over tdittonal determinisation-
based approaches. The experiments were done on randordyagsh automata with
different densities of transitions and final states likelifi][as well as within an impor-
tant complex application of tree automata. Indeed, ouchatn-based inclusion check-
ing algorithm for tree automata fills an important hole in thee automata technology
enabling us to implement aabstract regular tree model checkifgRTMC) frame-
work based entirely on nondeterministic tree automata. MRTs a generic technique
for automated formal verification of various kinds of inferstate and parameterised
systems. In particular, we consider its use for verificatibprograms manipulating dy-
namic tree-shaped data structuresid we show that the use of nondeterministic instead
of deterministic tree automata improves significantly tfiigiency of the technique.

Related Workln [11], antichains were used for dual forward and backwdgdrithms
for universality and inclusion testing over finite word amt@ta. In [7], antichains were
applied for Biichi automata. Here, we show how the forwagd@ihms from [11] can
be extended to finite (bottom-up) tree automata (using d@lgos computing upwards).
We also show that the backward computation from word autarnsatot practical for
tree automata (where it corresponds to a downward compunjatrhe regular tree
model checking framework was studied in, e.g., [10, 5, 24, imabstract version in [3,
4]—in all cases using deterministic tree automata. Whernémpnting a framework
for abstract regular tree model checking based on nondgtistio tree automata, we
exploit the recent results [1] on simulation-based redunotif tree automata.

2 Preiminaries

An alphabet) is ranked if it is endowed with a mappingnk : X' — N. Fork > 0,
Y ={f € X | rank(f) = k} is the set of symbols of rarikk The sefl’s, of terms over
X is defined inductively: ifc > 0, f € X, andty, ... tx € Tx, thenf(ty, ..., tx)
is in T's;. We abbreviate the so-calléelf termsof the forma(), a € Xy, by simplya.
A (nondeterministic, bottom-upfee automator{NTA) is a tuple A = (Q, X, F,¢)
where( is a finite set of states), is a ranked alphabef; C @ is a set of final states,
andé is a set of rules of the fornf(¢1, . .. ,qn) — q wheren > 0, f € X,, and
q1,---,0n,9 € Q. We abbreviate théeaf rulesof the forma() — ¢, a € Xy, as
a — q. Lett be aterm ovel’. A bottom-up run of4 ont is obtained as follows: first,
we assign a state to each leaf according to the leaf rulés tinen for each internal
node, we collect the states assigned to all its children aaddate a state to the node
itself according to the non-leéfrules. Formally, if during the state assignment process
subtermg;, ..., t, are labelled with stateg, . . ., ¢,, and ifarulef (q1,...,q,) — ¢
is in , which we will denote byf (q1, . .., qn) —s ¢, thentheterny(¢4,...,t,) can be
labelled withg. A termt is accepted ifA reaches its root in a final state. The language
accepted by the automatot is the set of terms that it accept8(A4) = {t € Ty, |
t 55 q(t)andg € F}.

A tree automaton isompleteif forall n > 0, f € X, ¢1,..,q, € Q, there is
at least ong; € @ such thatf(q1,...,¢,) —s ¢. A tree automaton may in general



be nondeterministie-we call it deterministicif there is at most one € @ such that
flq1yeyqn) —s gforanyn >0, f € X, q1, ..., qn € Q.

3 Universality Checking

Lattices and AntichainsThe following definitions are similar to the correspondimge

in [11]. LetQ be afinite set. AmntichainoverQ isasetS C 29 s.tVs,s' € S: s ¢ s/,
i.e., a set of pairwise incomparable subset§ofWe denote by the set of antichains.
Asets € S C 29 is minimal inS iff Vs’ € S : s’ ¢ s. Given a setS C 29,
|.S] denotes the set of minimal elementsfWe define a partial order on antichains:
for two antichainsS, S’ € L,letS C S'iff Vs’ € §'3s € § : s C s'. Given
two antichainsS, S’ € L, the C-lub (least upper bound) is the antich&in S/ =
[{sUs'|s € SAs € S} and theC-glb (greatest lower bound) is the antichain
SnS' = |{s|se€ SVvseS}|. Weextend these definitions to lub and glb of arbitrary
subsets of. in the obvious way, giving the operatdrsand[ |. Then, we get a complete
lattice (L, C, |],[], {0}, 0), where{0} is the minimal element antithe maximal one.
Upward Universality Checking Using Antichain3o check universality of a tree au-
tomaton, the standard approach is to make it complete,rditise it, complement it,
and check for emptiness. As determinisation is expensigg@napose here an algorithm
for checking universality without determinisation. Theimigea is to try to find at least
one term not accepted by the automaton. For this, we perfddamdeof symbolic sim-
ulation of the automaton to cover all runs necessarily legith non-accepting states.

In the following,q, ¢1, ¢2, ... denote states of NTAs, s1, s, ... denote sets of such
states, and, S1, S, ... denote antichains of sets of states. We assume dealingawith ¢
plete automata and first give some definitions. Far X,,, n > 0, Post?(sl, ey Sp) =
{g| 3¢ €si,1 <i<n:f(q,-.q) —s q}. We omitd if no confusion arises. Note
that, fora € Xy, Post, (D) = {q | a —5 q} is the set of states that may be assigned to
the leafa, andPost s (0) = O for f € X, n > 1. Let Post(S) = [{Post¢(s1, ..., $n) |
n>0,s1,..,8, €8, f € X,}]. Clearly,Post is monotonic wrt_.

Let Posto(S) = S and for alli > 0, Post;(S) = Post(Post;_1(S)) M S. Intu-
itively, Post;(S) contains the_-smallest sets C () of states into which the automaton
can nondeterministically get after processing a term dfitgip to: starting from the
states in the elements 6f Using only the minimal sets is enough as we just need to
know if there is a term on which the given automaton runs estedly into non-final
states. This makes universality checking easier than m@tesation using the general
subset construction.

Clearly, Post1(S) = Post(Posto(S)) 1S C .S = Posty(S). Moreover, fori > 0,
if Post;(S) C Post;—1(S5), then due to the monotonicity dost, Post(Post;(S)) C
Post(Post;_1(S)), Post(Post;(S)) M.S T Post(Post;—1(S)) M S, and therefore
Posti+1(S) C Post;(S). Altogether, we get (1¥S € L Vi > 0 : Post;+1(S) C
Post;(S). Since we work on a finite lattice, this implies that for &lthere existsjs
such thatPost ;. (S) = Post;s+1(S). We letPost*(S) = Post ;4 (5).

Lemmal. LetA = (Q, X, F, ) be a tree automaton anda term overX. Lets =
{q|t =5 q}, thenPost*(0) C {s}.



Proof. We proceed by structural induction enFor thebasic casglett = a € Xj.
Then,s = {q | a —s q} = Post,(0), and thus there is’ € Post(D) s.t.s’ C s since
Post is obtained by taking the minimal elements. Furthermoreabse of (1), there
is alsos” C s’ such thats” € Post*(). For theinduction steplett = f(t1, ..., tn).
Lets; = {g € Q | t; 55 ¢y fori € {1,...,n}. Lets = {qg | t =5 ¢}. Then,
s={q| 3¢ € s1,..,qn € sn: f(q1,.--,qn) —5 q}. By induction, there exists; C s;
s.t.s; € Post*(0). Lets’ = Post¢(s}, ..., s),). Then, by definition ofPost s, we have

<y Sp

s’ C s, and by definition ofPost*, there exists” C s’ with s” € Post*(0). O

Lemma2. LetA = (Q, X, F,§) be an automaton and let € Post*(0). Then there
exists a ternt over X, such thats = {q | t =5 ¢}.

Proof. Leti > 1 be the smallest index s4.€ Post;(). We proceed by induction an
For thebasic casgi = 1. Then, there is € X s.t.s = Post,(0) = {q | a 55 ¢}, t =
a. For theinduction stepleti > 1. There existy’ € X, andsy, ..., s, € Post;_1(0)
with s = Post¢(s1, ..., $»). By induction, there exists,, ..., t,, s.t. forj € {1,...,n},
sj={q|t; >sq}. Lett = f(t1,...t,). By definition of Post;, s = {q|t "5 q}. O

We can now give a theorem allowing us to decide universafditiyout determinisation
Theorem 1. Atree automatot=(Q, X, F, §) is not universal if8s € Post*(}).s C F.

Proof. Let.A be not universal. Letbe a term not accepted byands = {q | ¢ S5 q).
As t is not accepted by the automatenc . By Lemma 1, there is’ € Post*(0)
s.t.s’ C s C F. Suppose now that there existe Post*(0) s.t.s C F. By Lemma 2,

there exists a termwith s = {q | t =5 ¢}. Sinces C F, tis notaccepted byl. O

Experiments with Upward Universality Checking Using Amdims. We have imple-
mented the above approach for testing universality of té@raata in a prototype based
on the Timbuk tree automata library [8]. We give the resultswo experiments run on
an Intel Xeon processor at with 2.7GHz and 16GB of memory @ Ei We ran our
tests on randomly generated automata and on automata @t fairm abstract regular
tree model checking applied in verification of several painmhanipulating programs.

In the random tests, we first used automata with 20 statesaeththedensity of
their transitions(the average number of different right-hand side statea fgven left-
hand side of a transition rule, i.6d)/|{f(q1,--,¢») | 3¢ € @ : f(q1, -, qn) —5 q}|)
and thedensity of their final stategs.e.,|F|/|Q]). Fig. 1(a) shows the probability of such
automata being universal, and Fig. 1(b) the average timesatsfor checking their uni-
versality using our antichain-based approach. The diffingtances are naturally those
where the probability of being universal is about one halfFig. 1(c), we show how
the running times change for some selected instances of thséem (in terms of some
chosen densities of transitions and final states, incluttinge for which the problem
is the most difficult) when the number of states of the autangabws. We also show
the time needed when universality is checked using detésation, complement, and
emptiness checking. We see that the antichain-based ajpvehaves in a significantly
better way. The same conclusion can also be drawn from théses Fig. 1(d) obtained
on automata from experimenting with abstract regular tredehchecking applied for
verifying various procedures manipulating trees preskimé&ection 5.3.
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Fig. 1. Experiments with universality checking on tree automata

Downward Universality Checking with Antichain¥he upward universality checking
introduced above for tree automata conceptually corredptmtheorward universality
checking of finite word automata of [11]. In [11], a dielckwarduniversality checking
is also introduced. It is based on computing tioatrollable predecessord the set of
non-final states. Controllable predecessors are the peesgexs that can be forced by an



input symbol to continue into a given set of states. Thenatliematon is non-universal
iff the controllable predecessors of the non-final stategcthe set of initial states.
Downward universality checkinfpr tree automata as a dual approach to upward
universality checking is problematic since the contrdéglredecessors of a set of states
s CQofanNTAA = (Q, X, F, ) do not form a set of states, but a settaplesof
states, i.e.CPre(s) = {(¢1,--»qn) | n € NATf € ZVqg € Q : flq1,...qn) —5
q = q € s}. Note that if we flatten the s&t Pre(s) to the setF'C Pre(s) of states
that appear in some of the tuples@®Pre(s) and check that starting from leaf rules
the computation can be forced into some subsét@fre(s), then this does not imply
that the computation can be forced into some state froihat is because for any rule
flq1, ., qn) —s ¢, g € s, not all of the stategy, ..., ¢, may be reached. Moreover,
it is too strong to require that starting from leaf rules, iishbe possible to force the
computation into all states df'C' Pre;(s). Clearly, it is enough if the computation
starting from leaf rules can be forced intovia some of the vectors i Pre(s), not
necessarily all of them. Also, if we ke€pPre(s) for s C @ as a set of vectors, we also
have to define the notion of controllable predecessors ferdaectors of states, which
is a set of vectors of vectors of states, etc. Clearly, sudpanoach is not practical.

4 Inclusion Checking

Let A= (Q, X, F,d)andB = (Q', X, F', ") be two tree automata. We want to check
if L(A) C L(B). The traditional approach computes the complemegtarfid checks if
it has an empty intersection with. This is costly as computing the complement neces-
sitates determinisation. Here we show how to check inctugithout determinisation.

As before, the idea is to find at least one term accepteditand not bys5. For
that, we simultaneously simulate the runs of the two autarnaing pairgp, s) with
p € Q ands C Q' wherep memorises the run ofl ands all the possible runs ds. If
t is a term accepted hyl and not by, the simultaneous run of the two automataton
reaches the root afat a pair of the forn{p, s) with p € F ands C F’. Notice thats
must represerdll the possible runs of ont to make sure that no run & can accept
the termt. Therefores must be a set of states.

Formally, anantichainover Q x 29" is a setS C @ x 29’ such that for every
(p,s),(p',s") € S,if p=p,thens ¢ s'. We denote by.; the set of all antichains over
Q%29 GivenaselS € Q x 29, an elementp, s) € S is minimalif for every s’ C s,
(p,s’) ¢ S. We denote by S| the set of minimal elements &f. Given two antichains
S andS’, we define the orde;, the least upper bound;, and the greatest lower
bound; as follows:S C; S’ iff for every (p, s') € &', thereis(p,s) € Ss.t.s C ¢/;
SUrS = {p,sUs) | (p,s) € SA(p,s') € S} andST1; 8 = [{(p,s) | (p,s) €
SV (p,s) € §'}]. These definitions can be extended to arbitrary sets in thal usy
leading to the operatofg, and[],, yielding a complete lattice as in Section 3.

Givenf € X,,n > 0, we definelPost s ((p1,51), .-, (Pns $n)) = {0, 8)| f(p1, .-,
Pn) —s pAs = Posty (s1,...,s,)}. Let S be an antichain ove) x 2¢". Then,

let IPost(S) = L{Ipostf((pl,sl),...,(pn,sn)) | n > 0,(p1,51), -, (Pn, Sn) €
S,f € X,}]. Let [Posto(S) = S and IPost;(S) = IPost(IPost;_1(S)) My S.
As before, we can show thatS € L; Vi > 0 : IPost,+1(S) C; IPost;(S), and



that for every antichair§, there exists aJ such that/Post ;+1(S) = IPost;(S).
Let IPost™(S) = IPost;(S). Note that, like in the case dPost,(f) in Section 3,
IPost,(0) = {(q, Post’ (0)) | a —s ¢} for a € Xy, andIPost;(0) = 0 for f € %,
n > 1. Then, we get the following lemma. The proof is similar to time of Lemma 1.

Lemma3. LetA = (Q, X, F,0) andB = (Q’, X, F’,¢’) be two tree automata, and

lett be aterm over. Letp € @ such that =5 p, ands = {qg € Q" | t =4 q}. Then,
IPost™(0) Cr {(p, s)}.

We can also show the following lemma. Its proof is similartte bne of Lemma 2.

Lemmad. LetA = (Q, X, F,0) andB = (Q’, X, F’,¢’) be two tree automata, and
let (p, s) € IPost*(()). Then there is atermover ¥ s.t.t 5 pands = {q | t =4 q}.

Then, we can decide inclusiavithout determinising the automasa follows:

Theorem 2. Let A = (Q, X, F,0) andB = (Q', X, F",4’) be two tree automata.
Then,L(A) C L(B) iff for every(p, s) € IPost*(0),p € F = s  F".

Proof. Suppose thalp, s) € IPost* () with p € F ands C F'. Using Lemma 4 there
isatermtwitht =5 pands = {¢q |t s ¢}.Asp € F ands C F/, t is accepted byd
and notbyB, i.e.,L(A) € L(B). Suppose now(A) Z L(B). Lett be aterm accepted
by A and not byB. Letp € F such that 55 p, and lets = {¢q | t =5 ¢}. Then,
s C F’. Lemma 3 implies thafPost* () contains a paifp, s') s.t.s' Cs C F'. O

4.1 Experimentswith Inclusion Checking Using Antichains

Below, in Fig. 2 and Fig. 3, we present the results that we lodtained from experi-
menting with our prototype implementation of the antichlased inclusion checking
for tree automata, which we have built on top of the Timbule teeitomata library.
The experiments were performed on an Intel Xeon processbv&Hz with 16GB of
available memory (the same as in Section 3).

We first ran our tests on pairs of randomly generated autoh@atag 10 states and
different possible densities of transitions and final staténe probability that'(A;) C
L(A2) holds for randomly generated tree automdtaand.4, (both having the same
densities of transitions and final states) is shown in Fig).2fig. 2(b) then shows
how the antichain-based inclusion checking behaves onauttimata. We see that its
time consumption is naturally growing for automata whee ghobability of whether
L(A;1) C L(A2) holds is neither too low nor too high.

Fig. 2(c) and Fig. 2(d) show what happens if eitbér or A, is left completely
random, and only4, or A, respectively, follows a given density of transitions and
final states. The fact that the results in Fig. 2(c) follow.Ri¢b), whereas the time
consumption in Fig. 2(d) is roughly implied by the size4f (in terms of transitions),
implies that the time consumption of the antichain-basetligion checking is—as
expected—influenced much more by the automaten

Finally, in Fig. 3(a), we show how the running times changedome selected
instances of the problem (in terms of some selected dengifiéransitions and final
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Fig. 2. Experiments with inclusion checking on tree automata

states, including those for which the problem is the modtcdit) when the number
of states of the automata starts growing. The figure also shioe/time needed when
the inclusion checking is based on determinising and com@ieing.A, and checking
emptiness of the languag¥.4,) N £(A2). We see that the antichain-based approach
really behaves in a very significantly better way. The sameclkusion can then be
drawn also from the results shown in Fig. 3(b) that we obthmmeautomata saved from
experimenting with abstract regular tree model checkinglia@ for verifying various
real-life procedures manipulating trees (cf. Section .B3)act, the antichain-based
inclusion checking allowed us to implement an abstract leeguee model checking
framework entirely based on nondeterministic tree autawdich is significantly more
efficient than the framework based on deterministic autamat
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5 Regular Tree Model Checking

Regular tree model checkif®@TMC) [10, 5, 2, 3] is a general and uniform framework
for verifying infinite-state systems. In RTMC, configuratsof a system being verified
are encoded by trees, sets of the configurations by tree atepand transitions of the
verified system by a term rewriting system (usually given tie@transducer or a set of
tree transducers). Then, verification problems based danpging reachability analysis
correspond to computing closures of regular languagesrueggiting systems, i.e.,
given a term rewriting system and a regular tree languageone needs to compute
7*(I), wherer* is the reflexive-transitive closure of This computation is impossible
in general. Therefore, the main issue in RTMC is to find adewsiad powerful fixpoint
acceleration techniques helping the convergence of canmplainguage closures. One
of the most successful acceleration techniques used in RiEMBstraction whose use
leads to the so-calleabstract regular tree model checkiggRTMC) [3], on which we
concentrate in this work.

5.1 Abstract Regular Tree Model Checking

We now briefly recall the basic principles of ARTMC in the wagy were introduced in
[3]. Let X be a ranked alphabet aivis; the set of all tree automata ovEr LetZ € My



be a tree automaton describing a set of initial configuratiom term rewriting system
describing the behaviour of a system, d@hd M 5, a tree automaton describing a set of
bad configurations. The safety verification problem can nefiobmulated as checking
whether the following holds:

THL(T) N L(B) =0 1)

In ARTMC, the precise set of reachable configuratioeh&Z(Z)) is not computed to
solve Problem (1). Instead, its overapproximation is comgby interleaving the ap-
plication ofr and the union inC(Z) U 7(£L(Z)) U 7(7(£(Z))) U ... with an application

of an abstraction function. The abstraction is applied on the tree automata encoding
the so-far computed sets of reachable configurations.

An abstraction function is defined as a mappingMy, — Ay whereAy C My
andvVA € My : L(A) C L(a(A)). An abstractiom’ is called arefinemenbf the
abstractiony if VA € My, : L(o/(A)) C L(a(A)). Given a term rewriting system
and an abstraction, a mappingr,, : My — My is defined a¥ A € My : 7,(A) =
7(a(A)) where7(A) is the minimal deterministic automaton describing the leage
T(L(A)). An abstraction is finitary, if the setA 5, is finite.

For a given abstraction functiom, one can compute iteratively the sequence of
automata(7: (Z));>o. If the abstraction is finitary, then there exists > 0 such that
78+1(T) = 7%(Z). The definition of the abstraction functiarimplies thatC (7% (Z)) 2
T*(L(T)).

If £(7%(Z)) N L(B) = (), then Problem (1) has a positive answer. If the intersection
is non-empty, one must check whether a real or a spuriouste@mxample has been
encountered. The spurious counterexample may be causéeé biged abstraction (the
counterexample is not reachable from the set of initial cuméitions). Assume that
L(tX(T)) N £(B) # 0, which means that there is a symbolic path:

T, 7.(Z), T2(I),..., 72 H(T), T(T) 2)
such thatZ (77 (Z)) N L(B) # 0.

Let X,, = L(72(Z)) N L(B). Now, for eachl, 0 < I < n, X; = L(7.(Z)) N
771(X;41) is computed. Two possibilities may occur: (&), # @, which means that
Problem (1) has a negative answer, aig C £(Z) is a set of dangerous initial con-
figurations. (bEm,0 < m < n, X,,41 # 0 A X,,, = 0 meaning that the abstraction
function is too rough—one needs to refine it and start thdigation process again.

In [3], two general-purpose kinds of abstractions are psepoBoth are based on
automata state equivalencebree automata states are split into several equivalence
classes, and all states from one class are collapsed intstatee An abstraction be-
comes finitary if the number of equivalence classes is fiflite refinement is done by
refining the equivalence classes. Both of the proposedaattisins allow for an auto-
matic refinement to exclude the encountered spurious caxample.

The first proposed abstraction is abstraction based on languages of trees of a fi-
nite height It defines two states equivalent if their languages up t@ireheightn are
equivalent. There is just a finite number of languages oftiteigtherefore this abstrac-
tion is finitary. A refinementis done by an increase of the hieig The second proposed
abstraction is aabstraction based on predicate languagest P = {Py, P, ..., Py}
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be a set opredicatesEach predicat® € P is a tree language represented by a tree au-
tomaton. Letd = (@, X, F, qp, 0) be a tree automaton. Then, two stajesy, € @ are
equivalent if the language3(.A,, ) andL(A,, ) have a nonempty intersection with ex-
actly the same subset of predicates from thePsptovided thatd,, = (Q, X, F, ¢1,6)
andA,, = (Q, X, F, ¢2,9). Since there is just a finite number of subset$othe ab-
straction is finitary. A refinement is done by adding new pratiis, i.e. tree automata
corresponding to the languages of all the states in the attonof X,,,,; from the
analysis of spurious counterexamplé { = 0).

5.2 Nondeterministic Abstract Regular Tree Model Checking

As is clear from the above mentioned definitiorrpARTMC was originally defined for
and tested ominimal deterministi¢ree automata (DTA). However, the various exper-
iments done showed that the determinisation step is a signtfbottleneck. To avoid
it and to implement ARTMC using nondeterministic tree auatan(NTA), we need the
following operations over NTA: (1) application of the tratien relationr, (2) union,
(3) abstraction and its refinement, (4) intersection with $let of bad configurations,
(5) emptiness, and (6) inclusion checking (needed forrtgsfithe abstract reachabil-
ity computation has reached a fixpoint). Finally, (7) a mettmreduce the size of the
computed NTA is also desirable#:A) is then redefined to be the reduced version of
the NTA obtained from an application ofon an NTAA.

An implementation of Points (1), (2), (4), and (5) is easy.rbtaver, concerning
Point (3), the abstraction mechanisms of [3] can be liftedddk on NTA in a straight-
forward way while preserving their guarantees to be finjtarerapproximating, and
the ability to exclude spurious counterexamples. Furtloeenthe recent work [1] gives
efficient algorithms for reducing NTA based on computingahie simulation equiva-
lences on their states, which covers Point (7). Hence, gi®lsstacle for implementing
nondeterministic ARTMC was Point (6), i.e., the need to &fiy check inclusion on
NTA. We have solved this problem by the approach proposeceati@ 4, which al-
lowed us to implement a nondeterministic ARTMC frameworkiprototype tool and
test it on suitable examples. Below, we present the first eagouraging results that
we have achieved.

5.3 Experimentswith Nondeterministic ARTMC

We have implemented the nondeterministic ARTMC framewaikg the Timbuk tree
library [8] and compared it with an ARTMC implementation bd®n the same library,
but using DTA. In particular, the deterministic ARTMC framark uses determinisa-
tion and minimisation after computing the effect of eachwiard or backward step to
try to keep the automata as small as possible and to allowef®y xpoint checking:
The fixpoint checking on DTA is not based on inclusion, buhiity checking on the
obtained automata (due to the fact that the computed set®Brgrowing and minimal
DTA are canonical). For NTA, the tree automata reductiomffd] that we use does
not yield canonical automata, and so the antichain-basgdsiion checking is really
needed.

We have applied the framework to verify several procedurasipulating dynamic
tree-shaped data structures linked by pointers. The trdag manipulated are encoded
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Table 1. Running times (in sec.) of det. and nondet. ARTMC appliedviaification of various
tree manipulating programsc(denotes a too long run or a failure due to a lack of memory)

DET RB-delete RB-insert
(null,undef) (null,undef)
det. nondet. det. nondet. det. nondet.
full abstr, 5.2 2.7 X X 33 15
restricted absty. 40 35 X 60 145 5.4
RB-delete RB-insert RB-insert
(RB preservation)|| (RB preservation) (gen., test.)
det. nondet. det. nondet. det. nondet.
full abstr, X X X X X X
restricted abst. ~ x 57 X 89 X 978

directly as the trees handled in ARTMC, each node is labdilethe data stored in it
and the pointer variables currently pointing to it. All pragn statements are encoded as
(possibly non-structure preserving) tree transducers.érftoding is fully automated.
The only allowed destructive pointer updates (i.e., peim@nipulating statements
changing the shape of the tree) are tree rotations [6] anid@udf new leaf nodes.

We have in particular considered verification of the deptéi-firee traversal and
the standard procedures for rebalancing red-black treesiagertion or deletion of a
leaf node [6]. We have verified that the programs do not mdaipwndefined and null
pointers in a faulty way. For the procedures on red-bladstrere have also verified that
their result is a red-black tree (without taking into accthie non-regular balancedness
condition). In general, the set of possible input treestienterified procedures as well
as the set of correct output trees were given as tree autométe case of the procedure
for rebalancing red-black trees after an insertion, we lats@used a generator program
preceding the tested procedure which generates randoilaeklitrees and a tester
program which tests the output trees being correct. Heeesehof input trees contained
just an empty tree, and the verification was reduced to chgakiat a predefined error
location is unreachable. The size of the programs ranges fwto about 100 lines of
pure pointer manipulations.

The results of our experiments on an Intel Xeon processai7&t2z with 16GB of
available memory (as in Section 3) are summarised in Tabléné.predicate abstrac-
tion proved to give much better results (therefore we do pasider the finite-height
abstraction here). The abstraction was either applied fifteg each statement of the
program (“full abstraction”) or just when reaching a loopman the program (“re-
stricted abstraction”). The results we have obtained arg ecouraging and show a
significantimprovementin the efficiency of ARTMC based ondeterministic tree au-
tomata. Indeed, the ARTMC framework based on determirtig&automata has either
been significantly slower in the experiments (uR&etimes) or has completely failed
(atoo long running time or a lack of memory)—the latter casiadp quite frequent.

6 Conclusion

We have proposed new antichain-based algorithms for wsaligr and inclusion check-
ing on (nondeterministic) tree automata. The algorithmseHhzeen thoroughly tested
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both on randomly generated automata and on automata othtora various verifi-
cation runs performed within the abstract regular tree rholgecking framework. The
new algorithms have been proved to be significantly moreieffichan the classical
determinisation-based approaches to universality anldsiun checking. Moreover,
using the proposed inclusion checking algorithm togethith wome other recently
published results, we have implemented a complete absegetar tree model check-
ing framework based on nondeterministic tree automata esigd it on verification
of several real-life pointer-intensive procedures. Treulis show a very encouraging
improvement in the capabilities of the framework. In theufet we would like to im-
plement the antichain-based universality and inclusioeckimg algorithms (as well
as other recently proposed algorithms for dealing with N3iéch as the simulation-
based reduction algorithms) on automata symbolically daedas in the MONA tree
automata library [9]. We hope that this will yield anothegrsficant improvement in
the tree automata technology allowing for a new generafiomads using tree automata
(including, e.g., the abstract regular tree model checkimgework).
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