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Abstract. We introduce a new decidable logic for reasoning about infinite arrays
of integers. The logic is in the∃∗∀∗ first-order fragment and allows (1) Presburger
constraints on existentially quantified variables, (2) difference constraints as well
as periodicity constraints on universally quantified indices, and (3) difference
constraints on values. In particular, using our logic, one can express constraints
on consecutive elements of arrays (e.g.∀i . 0≤ i < n→ a[i +1] = a[i]−1) as well
as periodic facts (e.g.∀i . i ≡2 0→ a[i] = 0). The decision procedure follows the
automata-theoretic approach: we translate formulae into aspecial class of Büchi
counter automata such that any model of a formula corresponds to an accepting
run of the automaton, and vice versa. The emptiness problem for this class of
counter automata is shown to be decidable, as a consequence of earlier results on
counter automata with a flat control structure and transitions based on difference
constraints. We show interesting program properties expressible in our logic, and
give an example of invariant verification for programs that handle integer arrays.

1 Introduction

Arrays are a fundamental data structure in computer science. They are used in all mod-
ern imperative programming languages. To verify software which manipulates arrays, it
is essential to have a sufficiently powerful logic, which canexpress meaningful program
properties, arising as verification conditions within, e.g., inductive invariant checking,
or verification of pre- and post-conditions. In order to havean automatic decision pro-
cedure for the program verification problems, one needs a decidable logic.

In this paper, we develop a logic of arrays indexed by integernumbers, and having
integers as values. To be as general as possible, and also to avoid having to deal explic-
itly with expressions containing out-of-bounds array accesses, we interpret formulae
over both-ways infinite arrays. Bounded arrays can then be conveniently expressed in
the logic by restricting indices to be within given bounds.

Properties that are typically expressed about arrays in a program are (existentially
quantified) boolean combinations of formulae of the form∀i.G→ V, whereG is a
guard expressioncontaining constraints over the universally quantified index variables
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i (which often range in between some existentially quantifiedbounds), andV is avalue
expressioncontaining constraints over array values. Based on examples, we identified
two types of array properties which seem to appear quite often in programs: (1) proper-
ties relating consecutive elements of an array, e.g.∀i . l1 ≤ i < l2→ a[i +1] = a[i]−1,
which states the fact that each value ofa between two boundsl1 and l2 is less than
its predecessor by one, (2) properties stating periodic facts, e.g.∀i . i ≡2 0→ a[i] = 0,
stating that all even elements of arraya are equal to 0.

In the absence of specific syntactic restrictions, a logic with such an expressive
power can be easily shown to be undecidable, as one can encodethe histories of a 2-
counter machine [12] as models of a formula over arrays. Fromthis reduction, one can
derive two restrictions leading to decidability. The first restriction forbids references to
a[i] anda[i+1] in the same formula, which is considered in the work of Bradley, Manna,
and Sipma [5]. The second restriction, considered in this paper, allows only array for-
mulae∀i.G→V in whichV does not contain disjunctions. We have chosen the second
option, mainly to retain the possibility of relating consecutive arrays elements, i.e.a[i]
anda[i +1], which appears to be important for expressing properties ofprograms.

We introduce a new logicLIA (Logic on Integer Arrays) in the∃∗∀∗ first-order
fragment. The logicLIA is essentially the set of existentially quantified boolean com-
binations of (1) array formulae of the form∀i . ϕ(k, i)→ ψ(k, i,a), wherei is a set of
index variables,a (resp.k) is a set of existentially quantified array (resp.array-bound)
variables;ϕ is a formula on index variables with difference as well as periodicity con-
straints on variablesi wrt. the array-boundsk, andψ is a difference constraint on array
terms, and (2) Presburger Arithmetic formulae on array-bound variables. We give an ex-
ample program showing the usefulness of this logic to express verification conditions.

In this paper, we prove the decidability of the logicLIA using the classical idea of
the connection between logic and automata [17]: from a formulaϕ of the logic, we build
an automatonAϕ, such thatϕ is satisfiable if and only ifAϕ is not empty. Decidability
of the logic follows from the decidability of the emptiness problem for the class of au-
tomata that is deployed. To this end, we define a new class of counter automata, called
FBCA (bi-infinite Flat Büchi Counter Automata). These are counter automata running
to the infinity in both left and right directions, equipped with a Büchi acceptance condi-
tion. For an arbitrary formulaϕ of LIA , we give the construction of an FBCAAϕ whose
runs correspond to models ofϕ: the value of the counterxa at a given pointi in an exe-
cution ofAϕ corresponds to the value ofa[i] in a model ofϕ. We prove the decidability
of LIA by showing that the emptiness problem for FBCA is decidable by extending
known results [6, 4] on flat counter automata with differencebound constraints.

Related work. In the seminal paper [11], the read and write functions from/to arrays
and their logical axioms were introduced. A decision procedure for the quantifier-free
fragment of the theory of arrays was presented in [9]. Since then, various decidable
logics on arrays have been considered—e.g., [16, 10, 8, 15, 1, 7]. These logics include
working with various predicates (reasoning about sortedness, permutations, etc.) and in
terms of various arithmetic (usually Presburger) constraints on array indices and/or val-
ues of array entries. However, unlike our logic, most of these works consider quantifier
free formulae. In these cases, nested array reads (likea[a[i]]) are allowed, which is not
the case in our logic.
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In [5], an interesting logic, within the∃∗∀∗ fragment, is developed. Unlike our deci-
sion procedure based on automata theory, the decision procedure of [5] is based on the
fact that the universal quantification can be replaced by a finite conjunction. The result
is parameterised in the sense of allowing an arbitrary decision procedure to be used for
the data stored in arrays. However, compared to our results,[5] does not allow modulo
constraints (allowing to speak about periodicity in the array values), general difference
constraints onuniversallyquantified indices (onlyi− j ≤ 0 is allowed), nor reasoning
about array entries at a fixed distance (i.e. reasoning abouta[i] anda[i + k] for a con-
stantk and a universally quantified indexi). The authors of [5] give also interesting
undecidability results for extensions of their logic. For example, they show that relating
adjacent array values (a[i] anda[i +1]), or having nested reads, leads to undecidability.

A restricted form of universal quantification within∃∗∀∗ formulae is also allowed in
[2], where decidability is obtained based on a small model property. Unlike [5] and our
work, [2] allows a hierarchy-restricted form of array nesting. However, similar to the
restrictions presented above, neither modulo constraintson indices nor reasoning about
array entries at a fixed distance are allowed. A similar restriction not allowing to express
properties of consecutive elements of arrays then appears also in [3] where a quite
general∃∗∀∗ logic on multisets of elements with associated data values is considered.

2 Counter Automata

Given a formulaϕ, we denote byFV(ϕ) the set of its free variables. If we denote a
formula asϕ(x1, ...,xn), we assumeFV(ϕ)⊆ {x1, ...,xn}. Forϕ(x), we denote byϕ[t/x]
the formula in which each occurrence ofx is replaced by a termt. Given a formula
ϕ, we denote by|= ϕ the fact thatϕ is logically valid, i.e. it holds in every structure
corresponding to its signature. Byσ : Z→ Z, σ(n) = n+ 1, we denote the successor
function on integers. In the following, we work with two setsof arithmetic formulae:
difference bound matrices (DBM) and Presburger Arithmetic(PA).

A difference bound matrix(DBM) formula is a conjunction of inequalities of the
formx−y≤ c, x≤ c, orx≥ c, wherec∈Z is a constant. If there is no constraint between
x andy, we may explicitly writex−y≤ ∞. In the following,Z∞ denotesZ∪{∞}. Let
z= {z1, . . . ,zn} be a designated set of variables, calledparameters. A parametric DBM
formula is a conjunction of a DBM formula with atomic propositions of the formsx≤
f (z) or x≥ f (z), wheref is a linear combination of parameters, i.e.f = a0 + ∑n

i=1aizi

for someai ∈ Z, 0≤ i ≤ n.
A Presburger arithmetic(PA) formula is a disjunction of conjunctions of either

linear constraints of the form∑n
i=1aixi +b≥ 0 or modulo constraints∑n

i=1aixi +b≡ c
modd, whereai ,b,c,d ∈ Z, c≥ 0 andd > 0, are constants. It is well-known that every
formula of the arithmetic of integers with addition〈Z,≥,+,0,1〉 can be written in this
form, by quantifier elimination [14]. Clearly, every DBM formula is also in PA.

A counter automatonis a tupleA = 〈x,Q,−→〉, wherex is a finite set of counters,

ranging overZ, Q a finite set of control states, and−→ the transition relation, given by

rulesq
ϕ(x,x′)
−−−−→ q′, whereϕ is an arithmetic formula relating current values of counters

x to their future valuesx′. A configurationof a counter automatonA is a pair(q,ν)
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whereq ∈ Q is a control state, andν : x→ Z is a valuation of the counters inx. For
a configurationc = (q,ν), we designate byval(c) = ν the valuation of the counters in
c. A configuration(q′,ν′) is an immediate successorof (q,ν) if and only if A has a

transition ruleq
ϕ(x,x′)
−−−−→ q′ such that|= ϕ(ν(x),ν′(x′)). A configurationc is asuccessor

of another configurationc′ if and only if there exists a sequence of configurationsc =
c0c1 . . .cn = c′ such that, for all 0≤ i < n, ci+1 is an immediate successor ofci . Given
two control statesq,q′ ∈Q, a run ofA from q to q′ is a finite sequence of configurations
c0c1 . . .cn with c0 = (q,ν), cn = (q′,ν′) for some valuationsν,ν′ : x→ Z, andci+1 is an
immediate successor ofci , for all 0≤ i < n.

Let S be a set. Abi-infinite sequenceof S is a functionβ : Z→ S.4 We denote by
ωSω the set of all bi-infinite sequences overS. A bi-infinite Büchi counter automatonis
a tupleA = 〈x,Q,L,R,−→〉, wherex is a finite set of counters,Q is a finite set of control

states,L,R⊆ Q are the left-accepting and right-accepting states, and−→ is a transition

relation, defined in the same way as for counter automata.
A run of a bi-infinite Büchi automatonA is a bi-infinite sequence of configurations

. . .c−2c−1c0c1c2 . . . such that, for alli ∈ Z, ci+1 is an immediate successor ofci . A
run r is left-acceptingiff there exists a stateq∈ L and an infinite decreasing sequence
of integers. . . < i2 < i1 < 0 such that for allj ∈ N, we haver(i j ) = (q,ν j) for some
valuationsν j of the counters ofA. Symmetrically, a run isright-acceptingiff there ex-
ists a stateq∈ R and an infinite increasing sequence of integers 0< i0 < i1 < i2 < .. .
such that for allj ∈ N, we haver(i j ) = (q,ν j), for some valuationsν j of the coun-
ters of A. A run is acceptingiff it is both left- and right-accepting. The set of all
accepting runs ofA is denoted asR (A). If r ∈ R (A) is a run ofA, we define by
val(r) = . . .val(r(−1))val(r(0))val(r(1)) . . . the bi-infinite sequence of valuations in
r, andV (A) = {val(r) | r ∈ R (A)}.

Lemma 1. For any FBCA A, we have r∈ R (A) if and only if r◦σ ∈ R (A).

Proof. Let A = 〈x,Q,L,R,−→〉. “⇒” r is left-accepting iff there exists an infinite de-

creasing sequence. . . i3 < i2 < i1 < 0 of positions inr, visiting a control state from
L. This implies thati3− 1 < i2− 1 < i1− 1 < 0 visits the same control state, hence
r ◦s is left-accepting.r is right-accepting iff there exists an infinite increasing sequence
0 < j1 < j2 < j3 < .. . of positions inr, which visits a control state fromR. But this
implies that 0< j2−1 < j3−1 < .. . visits the same state fromR, hencer ◦ s is right-
accepting. “⇐” This direction follows a similar argument. ut

A control pathin a counter automatonA is a finite sequenceq0q1 . . .qn of control

states such that, for all 0≤ i < n, there exists a transition ruleqi
ϕi
−→ qi+1. A cycle is

a control path starting and ending in the same control state.An elementary cycleis a
cycle in which each state, except the first one, appears only once. A counter automaton
is said to beflat iff each control state belongs to at most one elementary cycle.

4 In the early literature [13], a bi-infinite sequence is defined as the equivalence class of all
compositionsβ◦σn◦σ−m for arbitraryn,m∈N. This is because a bi-infinite sequence remains
the same if shifted left or right. For simplicity reasons, here we formally distinguish the bi-
infinite sequencesβ, β◦σn, andβ◦σ−n.
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Decidability and Closure Properties of FBCA We consider in the following the class
of bi-infinite Büchi counter automata which are flat, and whose elementary cycles are
labelled with parametric DBM formulae. We call this class FBCA in the following. We
prove that the emptiness problem for FBCA is decidable, using results of [4], and their
extensions, that can be found in Appendix A.

Lemma 2. The emptiness problem is decidable for the class of FBCA.

Proof. The proof uses the results of Appendix A, namely Lemmas 10 and11. LetA =
〈x,Q,L,R,−→〉 be a FBCA. W.l.o.g. we can assume that any control stateq ∈ L∪R

belongs to exactly one elementary cycle. For, ifq does not belong to a cycle, it cannot
occur infinitely often on a run. Moreover, ifq belongs to two or more elementary cycles,
thenA is not flat, in contradiction with the definition of FBCA. Letl ∈ L and r ∈ R
be fixed for the rest of this proof. We construct a Presburger formulaΦl ,r which is
satisfiable if and only if there exists a bi-infinite run that visits l infinitely often on the
left andr infinitely often on the right.

Let γ be the elementary cycle to whichl belongs, and
←
γ be the cycle obtained by

reversing each transitionq
ϕ
−→ q′ into q′

ϕ′
−→ q, whereϕ′ is obtained fromϕ by inter-

changing the occurrences of the counters inx with x′, and vice versa. LetI
l ,
←
γ (x) be

the Presburger formula defining the set of valuationsν for which there exists an infinite
computation along

←
γ starting in(l ,ν).

Let δ be the elementary cycle to whichr belongs, andIr,δ(x) be the Presburger
formula defining the set of valuationsν for which there exists an infinite computation
alongδ starting in(r,ν). The formula encoding the existence of a bi-infinite run that
visits l infinitely often on the left andr infinitely often on the right, is the following:

Φl ,r : ∃x∃x′ . I
l ,
←
γ (x) ∧ Rl ,r(x,x′) ∧ Ir,δ(x

′)

The proof thatΦl ,r is satisfiable if and only ifR (A) 6= /0 comes as an immediate conse-
quence of the meaning of theI

l ,
←
γ , Rl ,r andIr,δ formulae. ut

The FBCA class is also effectively closed under the operations of union and inter-
section. However, before proceeding, we need to elucidate the meaning of these opera-
tions for counter automata. Ifz⊆ x is a subset of the counters inx, letν↓z denote the re-
striction ofν to the domainz. For some subsetz⊂ x of the counters ofA, ands∈ V (A),
we define the restriction operator on sequencess↓z= . . .val(s(−1)) ↓z val(s(0)) ↓z
val(s(1)) ↓z . . ., andV (A) ↓z= {s↓z | s∈ V (A)}. Symmetrically, forz⊃ x, we de-
fine the extension operator on sequencesV (A)↑z= {v∈ ω(z 7→ Z)ω | v↓x∈ V (A)}.

A class of counter automata is said to beclosedunder union and intersection if
there exist operations] and⊗ such that, for any two FBCAAi = 〈xi ,Qi ,Li ,Ri ,→i〉,
i = 1,2, we have thatV (A1]A2) = V (A1)↑x1∪x2 ∪ V (A2)↑x1∪x2 andV (A1⊗A2) =
V (A1) ↑x1∪x2 ∩ V (A2) ↑x1∪x2, respectively. The class is said to beeffectivelyclosed
under union and intersection if these operators are effectively computable.

Proposition 1. Let A= 〈x,Q,L,R,−→〉 be a FBCA. Let Ac = 〈x,Q,Lc,Rc,−→〉 be the

FBCA such that (1) for all q∈ L and q′ ∈Q, q′ belongs to the same elementary cycle as
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q iff q′ ∈ Lc, (2) for all q∈ R and q′ ∈ Q, q′ belongs to the same elementary cycle as q
iff q′ ∈Rc. Then we have thatR (A) = R (Ac).

Proof. The directionR (A) ⊆ R (Ac) is trivial, sinceL ⊆ Lc andR⊆ Rc. To prove the
fact thatR (A)⊇ R (Ac), let r be an accepting run ofAc. Then there exists a stateq∈ Lc

that repeats infinitely often on the left inr. There are two situations: eitherq ∈ L, in
which caser is directly left-accepting forA, or there exists a stateq′ ∈ L which belongs
to the same elementary cycle asq in A. By the flatness ofA, this means thatq′ will
be visited infinitely often on the left as well. Analogously,one proves thatr is a right-
accepting run ofA. ut

Assuming w.l.o.g. thatQ1∩Q2 6= /0, the union is defined asA1]A2 = 〈x1∪x2,Q1∪
Q2,L1∪ L2,R1∪R2,→1 ∪ →2〉. The product is defined asA1⊗A2 = 〈x1∪ x2,Q1×

Q2,Lc
1×Lc

2,R
c
1×Rc

2,−→〉, where−→ is as follows:(q1,q′1)
ϕ1 ∧ ϕ2−−−−→ (q2,q′2) iff q1

ϕ1−→ q2 is

a transition rule ofA1 andq′1
ϕ2
−→ q′2 is a transition rule ofA2. HereLc

i andRc
i , denote the

extended left-accepting and right-accepting sets ofAi , from Proposition 1, fori = 1,2.

Lemma 3. The class of FBCA is effectively closed under union and intersection.

Proof. The proof for closure under union is trivial. We will give theproof for closure
under intersection in the following.

Let Ai = 〈xi ,Qi ,Li ,Ri ,→i〉, i = 1,2 be two FBCA, andA = 〈x,Q,L,R,−→〉 be their

product, i.e.A = A1⊗A2.

1. We first prove thatA belongs to the class FBCA. For this we need to show that
each control state ofA belongs to at most one elementary cycle. For an arbitrary state
(q,q′) ∈ Q1×Q2, let pr1((q,q′)) = q, pr2((q,q′)) = q′ and for an arbitrary cycleγ in
A, let pri(γ) denote the corresponding cycles inAi , obtained by projection of thei-th
control state,i = 1,2. Suppose that there is a control state(q,q′) ∈Q1×Q2 that belongs
to (at least) two different elementary cycles,γ and δ. Thenq belongs topr1(γ) and
pr1(δ) in A1, andq′ belongs topr2(γ) and pr2(δ) in A2. Since, by the hypothesisA1

andA2 are flat, thenpri(γ) andpri(δ) must be (possibly trivial) unfoldings of the same
elementary cycleεi in Ai , for i = 1,2, respectively. In other words,pri(γ) = ki · εi and
pri(δ) = l i · εi , for i = 1,2 andki , l i ∈ N.

Let m be the least common multiple of|ε1| and|ε2|, andni = m
|εi |

, for i = 1,2. Let
α be the cycle inA obtained by the composition of the two cycles obtained by iterating
ε1 n1 times, andε2 n2 times, respectively, i.e.pri(α) = ni · εi , i = 1,2. Sinceεi are
elementary cycles ofAi , it follows thatα is the smallest cycle ofA with the property
that pri(α) is an unfolding ofεi . Henceγ andδ, must both be eitherα or unfoldings of
α, contradicting the assumption that they were different elementary cycles ofA.

To prove that the elementary cycles ofA are labelled with (parametric) DBM for-
mulae only, notice that any cycle ofA is a composition of two (unfoldings of) cycles
in A1 andA2. Since both component cycles are labelled with DBM formulae, and the
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label of the transitions ofA is the conjunction of the labels of the transitions inA1, A2,
it follows that the resulting cycle is labelled with DBM formulae as well.

2. Second, we prove thatV (A) = V (A1)↑x1∪x2 ∩ V (A2)↑x1∪x2.
Lets∈V (A1)↑x1∪x2 ∩ V (A2)↑x1∪x2 be a bi-infinite sequence of counter valuations.

From the definition ofV (.), there existr1 ∈ R (A1) andr2 ∈ R (A2) such thatval(r1) =
s↓x1 andval(r2) = s↓x2.

Let i ∈ Z be an arbitrary position, andr1(i) = (q1,ν1), r1(i +1) = (q′1,ν′1), r2(i) =
(q2,ν2), r ′2(i + 1) = (q′2,ν

′
2) be successive configurations ofr1 and r2, respectively,

whereν1,ν′1 : x1→ Z andν2,ν′2 : x2→ Z are valuations ofx1, x2. Then there exist

transition rulesq1
ϕ1(x1,x′1)−−−−−→ q′1 in A1, andq2

ϕ2(x2,x′2)−−−−−→ q′2 in A2, such thatϕ1(ν1(x1),ν′1(x′1))
andϕ2(ν2(x2),ν′2(x′2)) are both valid. Hence, by construction ofA, there exists a tran-

sition rule (q1,q2)
ϕ1∧ϕ2−−−→ (q′1,q

′
2), such thatϕ1 ∧ ϕ2 is satisfied by(ν1∪ν′1) ↑x1∪x2

∩(ν2∪ν′2)↑x1∪x2. In this way, one can build a bi-infinite runr of A, such thatval(r) = s.
It remains to be proven that this run is an accepting run ofA.

Sincer i is an accepting run ofAi, then by Proposition 1, it is also an accepting
run of Ac

i , for i = 1,2. By the flatness ofA1, and, implicitly of Ac
1, there exist a se-

quenceσ1 of states fromLc
1 that repeats infinitely often to the left ofr1, i.e. there

exists a positionk1 ∈ Z, such that the restriction ofr1 to (−∞,k1] is of the form
. . .σ1σ1. Analogously, there exists a sequenceσ2 of states fromLc

2, and a position
k2 ∈ Z such that the restriction ofr2 to (−∞,k2] is of the form . . .σ2σ2. Then, the
restriction ofr to (−∞,min(k1,k2)] is of the form. . .σσ, whereσ is a sequence of
pairs(q,q′) ∈ Lc

1× Lc
2. Hence there exists such a pair repeating infinitely often tothe

left in r, i.e. r is left-accepting. Analogously, one proves thatr is right-accepting.
We have proved thatV (A) ⊇ V (A1) ↑x1∪x2 ∩ V (A2) ↑x1∪x2. The directionV (A) ⊆
V (A1)↑x1∪x2 ∩ V (A2)↑x1∪x2 is proved using a similar argument. ut

3 A Logic for Integer Arrays

In this section we define the Logic of Integer Arrays (LIA ) that we use to specify
properties of programs handling arrays of integers.

3.1 Syntax

We consider three types of variables. Thearray-bound variables(k, l ) appear within
the so-called array-bound terms. These terms can be used to define the intervals of
the indices, and also as static references inside arrays. The index(i, j) andarray (a,b)
variablesare used to build array terms. Fig. 1 shows the syntax of the logicLIA . We use
the> symbol to denote the boolean valuetrue. In the following, we will usef ≤ i ≤ g
instead off ≤ i ∧ i ≤ g, i < f instead ofi ≤ f − 1, andi = f instead off ≤ i ≤ f .
Intuitively, our logic is the set of existentially quantified boolean combinations of:

1. Array formulae of the form∀i . ϕ(k, i) → ψ(k, i,a), wherek is a set of array-
bound variables,i is a set of index variables,a is a set of array variables,ϕ is
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n,m,s,t . . . ∈ Z constants(0≤ t < s)
k, l , . . . ∈ BVar array-bound variables
i, j , . . . ∈ IVar index variables
a,b, . . . ∈ AVar array variables

B := n | k | B+B | B−B array-bound terms
I := i | I +n index terms
A := a[I ] | a[B] array terms
G := B≤ I | I ≤ B | I − I ≤ n | I ≡s t | G∨G | G∧G guard expressions
V := A≤ B | B≤ A | A−A≤ n |V ∧V value expressions
C := B≤ n | B≡s t array-bound constraints
P := >→V | G→V | ∀i . P array properties
U := P |C | ¬U |U ∨ U |U ∧ U universal formulae
F := P | ∃k . F | ∃a . F LIA formulae

Fig. 1. Syntax of the logicLIA

an arithmetic formula on index variables, andψ is an arithmetic formula on array
terms. In particular,ψ is a DBM formula, andϕ is composed of atomic propositions
of the form eitherf ≤ i, i ≤ f , i− j ≤ n, i ≡s t, wheref is a linear combination of
array-bound variables,n∈ Z, and 0≤ t < s. Bothk anda variables are free in the
array formulae, but they can be existentially quantified at the top-most level.

2. PA formulae on array-bound variables.

3.2 Examples

To accustom the reader with the logic, we consider several properties of interest that
can be stated about arrays. For instance, a strictly increasing ordering ofa up to a
certain bound is defined as∃k ∀i . 0 ≤ i < k→ a[i]− a[i + 1] ≤ −1. The fact that
the firstk elements of arraya are below the firstl elements of arrayb at distance 5
is defined as∃k, l ∀i, j . 0≤ i < k ∧ 0≤ j < l → a[i]− b[ j] ≤ −5. Equality of two
arrays up to a certain bound can be expressed as∃n∀i . 0≤ i < n→ a[i] = b[i]. The use
of modulo constraints as guards for indices allows one to express periodic facts, e.g.
∀i, j . i ≡2 0 ∧ j ≡2 1→ a[i] ≤ a[ j], meaning that any value at some even position is
less than or equal to any value at some odd position ina. The following section shows
that to prove the correctness of an array merging program, such properties are needed.

Verification Conditions for an Array Merging Example Consider the following pro-
gram that takes two arraysa andb, and merges their firstn elements by alternating el-
ements froma with elements fromb. Suppose, moreover, that the firstn elements ofa
are less than or equal to the firstn elements ofb. The resulting array will have all its first
n elements on even positions less than or equal to the firstn elements on odd positions.
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{{ n > 0 ∧ ∀i, j . 0≤ i, j < n→ a[i]≤ b[j ] }}
for (k=0, l=0; k< n; k++, l+=2)
{{ n > 0 ∧ k ≤ n ∧ l = 2k ∧
∀i, j . 0≤ i, j < 2k ∧ i ≡2 0 ∧ j ≡2 1→ c[i]≤ c[j ] ∧
∀i, j . 0≤ i, j < n→ a[i]≤ b[j ] }}

{ c[l] = a[k];
c[l + 1] = b[k]; }
{{ n > 0 ∧ ∀i, j . 0≤ i, j < 2n ∧ i ≡2 0 ∧ j ≡2 1→ c[i]≤ c[j ] }}

The pre-, post-condition, and loop invariant needed for theproof of this program are
annotated directly into the program text using double curlybraces. We show in the
following that the verification conditions to be checked to prove the correctness of the
program fall into our logic, and so they are decidable.

We need to check three verification conditions corresponding to the initialisation of
the loop, the loop body, and the finalisation of the loop.

The initialisation consists of the two unconditional assignment statements k=0 and
l=0. We need to check that the following formula is logicallyvalid (we use primed
names of variables to distinguish the current and future values of the variables):

∀ a,a′,b,b′,c,c′,n,n′,k,k′, l , l ′.
n > 0 ∧ (∀i, j . 0≤ i, j < n→ a[i]≤ b[ j]) ∧ k′ = 0 ∧ l ′ = 0 ∧ n′ = n ∧
(∀i . a′[i] = a[i]) ∧ (∀i . b′[i] = b[i]) ∧ (∀i . c′[i] = c[i])
−→
n′ > 0 ∧ k′ ≤ n′ ∧ l ′ = 2k′ ∧
(∀i, j . 0≤ i, j < 2k′ ∧ i ≡2 0 ∧ j ≡2 1→ c′[i]≤ c′[ j]) ∧
(∀i, j . 0≤ i, j < n→ a′[i]≤ b′[ j])

However, checking the validity of the above formula is equalto checking that its nega-
tion, which clearly fits our logic, is unsatisfiable:

∃ a,a′,b,b′,c,c′,n,n′,k,k′, l , l ′.
n > 0 ∧ (∀i, j . 0≤ i, j < n→ a[i]≤ b[ j]) ∧ k′ = 0 ∧ l ′ = 0 ∧ n′ = n ∧
(∀i . a′[i] = a[i]) ∧ (∀i . b′[i] = b[i]) ∧ (∀i . c′[i] = c[i])
∧
(n′ ≤ 0 ∨ k′ > n′ ∨ l ′ < 2k′ ∨ l ′ > 2k′ ∨
(∃i, j . 0≤ i, j < 2k′ ∧ i ≡2 0 ∧ j ≡2 1 ∧ c′[i] > c′[ j]) ∨
(∃i, j . 0≤ i, j < n ∧ a′[i] > b′[ j]))

To see this, note that the existentially quantified index variables in the last two lines of
the above formula can be given unique names and the appropriate quantifiers moved to
the prefix of the formula.

To check the effect of theloop body, i.e. the assignments c[l] = a[k], c[l+1] = b[k],
k++, and l+=2 which are executed provided that k<n, we have to prove that the follow-
ing holds:

∀ a,a′,b,b′,c,c′,n,n′,k,k′, l , l ′.
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n > 0 ∧ k≤ n ∧ l = 2k ∧
(∀i, j . 0≤ i, j < 2k ∧ i ≡2 0 ∧ j ≡2 1→ c[i]≤ c[ j]) ∧
(∀i, j . 0≤ i, j < n→ a[i]≤ b[ j]) ∧
k < n ∧ k′ = k+1 ∧ l ′ = l +2 ∧ n′ = n ∧
(∀i . a′[i] = a[i]) ∧ (∀i . b′[i] = b[i]) ∧
(∀i . i < l → c′[i] = c[i]) ∧ (∀i . i > l +1→ c′[i] = c[i]) ∧
c′[l ] = a[k] ∧ c′[l +1] = b[k]
−→
n′ > 0 ∧ k′ ≤ n′ ∧ l ′ = 2k′ ∧
(∀i, j . 0≤ i, j < 2k′ ∧ i ≡2 0 ∧ j ≡2 1→ c′[i]≤ c′[ j]) ∧
(∀i, j . 0≤ i, j < n→ a′[i]≤ b′[ j])

Again, checking the validity of the above formula is equal tochecking that its negation,
is unsatisfiable:

∃ a,a′,b,b′,c,c′,n,n′,k,k′, l , l ′.
n > 0 ∧ k≤ n ∧ l = 2k ∧
(∀i, j . 0≤ i, j < 2k ∧ i ≡2 0 ∧ j ≡2 1→ c[i]≤ c[ j]) ∧
(∀i, j . 0≤ i, j < n→ a[i]≤ b[ j]) ∧
k < n ∧ k′ = k+1 ∧ l ′ = l +2 ∧ n′ = n ∧
(∀i . a′[i] = a[i]) ∧ (∀i . b′[i] = b[i]) ∧
(∀i . i < l → c′[i] = c[i]) ∧ (∀i . i > l +1→ c′[i] = c[i]) ∧
c′[l ] = a[k] ∧ c′[l +1] = b[k]
∧
(n′ ≤ 0 ∨ k′ > n′ ∨ l ′ < 2k′ ∨ l ′ > 2k′ ∨
(∃i, j . 0≤ i, j < 2k′ ∧ i ≡2 0 ∧ j ≡2 1 ∧ c′[i] > c′[ j]) ∨
(∃i, j . 0≤ i, j < n ∧ a′[i] > b′[ j]))

Finally, in order to check thefinalisation of the loop(i.e. the exit of the loop when k≥
n), one has to check the validity of the following formula:

∀ a,a′,b,b′,c,c′,n,n′,k,k′, l , l ′.
n > 0 ∧ k≤ n ∧ l = 2k ∧
(∀i, j . 0≤ i, j < 2k ∧ i ≡2 0 ∧ j ≡2 1→ c[i]≤ c[ j]) ∧
(∀i, j . 0≤ i, j < n→ a[i]≤ b[ j]) ∧
k≥ n ∧ k′ = k ∧ l ′ = l ∧ n′ = n∧
(∀i . a′[i] = a[i]) ∧ (∀i . b′[i] = b[i]) ∧ (∀i . c′[i] = c[i]) ∧
−→
n′ > 0 ∧ (∀i, j . 0≤ i, j < 2n′ ∧ i ≡2 0 ∧ j ≡2 1→ c′[i]≤ c′[ j])

Like in the previous cases, checking the validity of the above formula is equal to check-
ing that its negation is unsatisfiable:

∃ a,a′,b,b′,c,c′,n,n′,k,k′, l , l ′.
n > 0 ∧ k≤ n ∧ l = 2k ∧
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(∀i, j . 0≤ i, j < 2k ∧ i ≡2 0 ∧ j ≡2 1→ c[i]≤ c[ j]) ∧
(∀i, j . 0≤ i, j < n→ a[i]≤ b[ j]) ∧
k≥ n ∧ k′ = k ∧ l ′ = l ∧ n′ = n∧
(∀i . a′[i] = a[i]) ∧ (∀i . b′[i] = b[i]) ∧ (∀i . c′[i] = c[i]) ∧
∧
(n′ ≤ 0 ∨ (∃i, j . 0≤ i, j < 2n′ ∧ i ≡2 0 ∧ j ≡2 1 ∧ c′[i] > c′[ j]))

3.3 Semantics

The logicLIA is interpreted onboth-ways infinite arrays. This allows to conveniently
deal with out-of-bound reference situations quite common in programs handling arrays.
One can prevent and/or check for out-of-bound references byintroducing explicit exis-
tentially quantified array-bound variables for array variables. Letϕ(k,a) be any formula
of LIA . A valuation is a pair of partial functions5 〈ι,µ〉, with ι : BVar∪ IVar→ Z⊥,
associating an integer value with every free integer variable, andµ : AVar→ ω

Z
ω
⊥, asso-

ciating a bi-infinite sequence of integers with every array symbol a∈ a. The valuation
ι is extended in the standard way to array-bound terms (ι(B)) and index terms (ι(I)).
By Iι,µ(A), we denote the value of the array termA given by the valuation〈ι,µ〉. The
semantics of a formulaϕ is defined in terms of the forcing relation|= as follows:

Iι,µ(a[I ]) = µ(a, ι(I))
Iι,µ(a[B]) = µ(a, ι(B))

〈ι,µ〉 |= A≤ B ⇐⇒ Iι,µ(A)≤ ι(B)
〈ι,µ〉 |= A1−A2≤ n ⇐⇒ Iι,µ(A1)− Iι,µ(A2)≤ n
〈ι,µ〉 |= ∀i . G→V ⇐⇒ ∀ n∈ Z . 〈ι[i← n],µ〉 |= G→V
〈ι,µ〉 |= ∃a . ψ ⇐⇒ ∃ β ∈ ω

Z
ω . 〈ι,µ[a← β]〉 |= ψ

For space reasons, we do not give here a full definition. However, the missing rules are
standard in first-order arithmetic. Amodelof ϕ(k,a) is a valuation〈ι,µ〉 such that the
formula obtained by interpreting each variablek ∈ k as ι(k), and each array variable
a ∈ a asµ(a) is logically valid: 〈ι,µ〉 |= ϕ. We define[[ϕ]] = {〈ι,µ〉 | 〈ι,µ〉 |= ϕ}. A
formula issatisfiableif and only if [[ϕ]] 6= /0.

3.4 An Undecidability Result

The reason behind the restriction that array terms may not occur within disjunctions
in value expressions (cf. Fig. 1) is that, without it, the logic becomes undecidable. The
essence of the proof is that an array formula∀i.G→ V1 ∨ . . . ∨ Vn, for n > 1, corre-
sponds ton nested loops in a counter automaton. Undecidability is shown by reduction
from the halting problem for 2-counter machines [12].

Lemma 4. The logic obtained by extendingLIA with disjunctions within the value
expressions is undecidable.

5 The symbol⊥ is used to denote that a partial function is undefined at a given point.
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Proof. This can be proven by a reduction from the halting problem for2-counter au-
tomata [12]. A 2-counter machine with non-negative countersc1,c2 is a sequential pro-
gram:

0 : ins0;1 : ins1; · · · ;n : insn;

whereinsn is a halt instruction andinsi with i = 0,1, · · · ,n are instructions of the
following two types, for 0≤ k,k1,k2≤ n, and 1≤ j ≤ 2:

1. c j = c j +1;goto k;
2. if c j = 0 then gotok1 else(c j = c j −1; gotok2);

We give a formulaϕ such that the machine halts iff the formula is satisfiable.ϕ
uses three arraysa1, a2 anda3. a1 (resp.a2) contains values of counter 1 (resp. 2) and
a3 contains the control location. Each instructionk : insk is translated into a formula
ϕk(i) having a parameteri. We give the translation for instructions concerning counter
c1. Instructions concerning counterc2 are encoded in a similar way. Instructions of the
form k : c1 = c1 +1;goto k′ are translated into:

ϕk(i) : a3[i] = k∧a1[i +1] = a1[i]+1∧a2[i +1] = a2[i]∧a3[i +1] = k′

Instructions of the formk : if c j = 0 then gotok1 else(c j = c j −1; gotok2) are trans-
lated into:

ϕk(i) : (a3[i] = k∧a1[i] = 0∧a1[i +1] = a1[i]∧a2[i +1] = a2[i]∧a3[i +1] = k1)

∨(a3[i] = k∧a1[i] > 0∧a1[i +1] = a1[i]−1∧a2[i +1] = a2[i]∧a3[i +1] = k2)

Now the formulaϕ is given as

∃a1,a2,a3∃m.∀i.((0≤ i ≤m−1)→ (a3[0] = 0∧
n−1
_

j=0

ϕ j(i)∧a3[m] = n))

The models of the formula are exactly the halting runs of the counter machine in
m steps.a1[i] (resp.a2[i]) is the value of counterc1 (resp.c2) after i steps anda3[i] is
the corresponding control location.a3[0] = 0 anda3[m] = n make sure that the machine
starts at the initial control location 0 and goes to the halting locationn and

Wn−1
j=0 ϕ j(i)

insures that counter values and control locations stored intwo consecutive positions (i
andi +1) in the arraysa1, a2 anda3 correspond to values in a run of the machine. Then
it is clear, that the machine halts iffϕ is satisfiable.

Note that one can easily give a formula using just one array. This is done by inter-
leaving the three arrays and using the modulo constraints toaccess the counter values
and the control locations. ut

Note that having more than one nested loop is a necessary condition for undecid-
ability of 2-counter machines since a flat 2-counter machinewould trivially fall into the
class of decidable counter machines from [6, 4].
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4 Decidability of the Satisfiability Problem

The idea behind our method for deciding the satisfiability problem forLIA is that, for
any formula ofLIA , there exists an FBCAAϕ such thatϕ has a model if and only if
Aϕ has an accepting run. More precisely, each array variable inϕ has a corresponding
counter inAϕ, and given any model ofϕ that associates integer values to all array entries,
Aϕ has a run such that the values of the counters at different points of the run match the
values of the array entries at corresponding indices in the model. Since, by Lemma 2,
the emptiness problem is decidable for FBCA, this leads to decidability of LIA .

In order to build automata fromLIA formulae, we first normalize them into existen-
tially quantified positive boolean combinations of simple array property formulae (cf.
Fig. 1). Second, each such array property formula is translated into an FBCA. The final
automatonAϕ is defined recursively on the structure of the normalized formulae, with
the] and⊗ operators being the counterparts for the∨ and∧ connectives, respectively.

4.1 Normalization of Formulae

The goal of this step is to transform any formula written using the syntax of Figure 1
into a formula of the following normal form.

∃k∃a .
_

p

(
^

q

φpq(a,k)
)

∧θp(k) (NF)

wherea is a set of array variables,k is a set of integer variables, and

– θp is a conjunction of terms of the forms: (i)g(k) ≥ 0, or (ii) g(k) ≡s t, with g
being a linear combination of the variables ink, and 0≤ t < s,

– φpq is a formula of the following forms, for somem∈ N, 0≤ t < s, 0≤ v < u, and
p∈ Z, q∈ Z

∞:

∀i .
K̂

k=1

fk ≤ i ∧
L̂

l=1

i ≤ gl ∧ i ≡s t→ a[i]∼ h(k) (F1)

The (F1) formulae bind all values ofa in some interval by some linear combination
h of variables ink.

∀i .
K̂

k=1

fk ≤ i ∧
L̂

l=1

i ≤ gl ∧ i ≡s t→ a[i]−b[i + p]∼ q (F2)

The (F2) formulae relate all values ofa andb in the same interval such that the
distance between the indices ofa andb, respectively, is constant.

∀i, j .
VK1

k=1 f 1
k ≤ i ∧

VL1
l=1 i ≤ g1

l ∧
VK2

k=1 f 2
k ≤ j ∧

VL2
l=1 j ≤ g2

l ∧
i− j ≤ p ∧ i ≡s t ∧ j ≡u v→ a[i]−b[ j]∼ q

(F3)

The (F3) formulae relate all values ofa with all values ofb within two (possi-
bly equal) intervals. The case whenp = ∞ corresponds to the situation when no
constrainti− j ≤ p with p∈ Z is used.

13



Lemma 5. A formula ofLIA can be equivalently written into the form (NF).

Proof. We show how a formula, written in the syntax of Figure 1, can betransformed
into an equivalent formula of the form (NF), by applying the steps below:

1. Put the left-hand sides of the subformulae∀i . ϕ(i)→ ψ(i) into disjunctive normal
form, and then split both the left-hand and right-hand sidesby applying exhaus-
tively the following equivalence preserving transformations:

∀i . ϕ1∨ϕ2→ ψ ⇐⇒ ∀i . ϕ1→ ψ ∧ ∀i . ϕ2→ ψ
∀i . ϕ→ ψ1∧ψ2 ⇐⇒ ∀i . ϕ→ ψ1 ∧ ∀i . ϕ→ ψ2

The resulting formula will have only conjunctions of atomicformulae on the left-
hand side of the implications and only atomic formulae on theright hand side of
the implications.

2. Put the entire formula into disjunctive normal form, treating the implications∀i . ϕ(i)→
ψ as atomic propositions, and distribute the existential prefix to each disjunctive
clause.

3. Eliminate negated implications using the equivalence¬
(
∀i . ϕ→ψ

)
⇐⇒ ∃k . ϕ∧

(> → ¬ψ[k/i]). Notice that, because of the previous step,ψ is an atomic DBM
formula involving array terms, hence¬ψ can be written equivalently without nega-
tion. We move the existential quantifier to the prefix of existential quantifiers of
the formula, renaming the index variablesi by some fresh array-bound variables
k. We makeϕ a part ofθp. The newly introduced implication is not preceded by a
universal quantifier (as expected by the normal form we use),but this will be taken
care of by the next step.

4. For each implication of the form∀i . ϕ(k, i)→ ψ(a,k, i), such thatψ contains an
array terma[ f (k)] where f (k) is a linear combination of array-bound variables,
introduce a fresh universally quantified index variablej, and rewrite the whole
implication as∀i ∪ { j} . ϕ∧ j = f (k)→ ψ[ j/ f (k)]. This step ensures that array
terms are indexed only by universally quantified index variables.

5. Normalise all DBM subformulae of the premisesϕ of the array subformulae∀i . ϕ→
ψ. This step computes also the transitive closure of the DBMs,making explicit all
dependencies between indices. For each pair of constraintsi− j ≤ n and j− i≤−m
occurring in a conjunction within the premise of an implication of the form∀i . ϕ→
ψ, either it is the case thatn−m< 0, in which case replace the whole implication by
true, or elsen−m≥ 0, in which case replace both constraints by

W

l∈[m,n] i− j = l6

and eliminatei from the implication subformula, by replacing each occurrence of
i by j + l . This step ensures that no constraints of the formm≤ i− j ≤ n are left
within the formula.

6. Rename the universally quantified index variables such that each array constraint of
the form (i)a[i+n]∼ g(k), (ii) a[i+n]−b[i+m]∼ p, or (iii) a[i+n]−b[ j +m]∼ p,
n,m, p ∈ Z, uses index variables that are distinct from the other. In the following,
we distinguish three cases:

6 By
W

l∈[a,b] φ(l) we denote the disjunctionϕ(a)∨ϕ(a+1)∨ . . .∨ϕ(b).
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(i) For subformulae of the forma[i +n]∼ g(k), replacei with i−n throughout the
formula. In particular, the array termsa[i +n] are substituted witha[i].

(ii) For subformulae of the forma[i + n]− b[i + m]∼ p, suppose thatn≤ m, the
other case being symmetric. We replacei with i−n throughout the formula. In
particular, the array termsa[i + n] are substituted witha[i], anda[i + m] with
a[i +m−n], respectively.

(iii) For subformulae of the forma[i +n]−b[ j +m]∼ p, replacei with i−n and j
with j −m. In particular, the array termsa[i + n] andb[ j + m] are substituted
with a[i] andb[ j], respectively.

This step ensures that the only constraints involving arrayterms are of the form
a[i] ∼ g, a[i]−b[i + n]∼m anda[i]−b[ j] ∼ m, whereg is a linear polynomial in
bound variables,∼∈ {≤,≥}, n∈N andm∈ Z.

7. Normalise the atomic propositions in all the premises of the implications∀i . ϕ→ψ
by applying the following substitutions:
(a) f ∼ i +n with f −n∼ i for∼∈ {≤,≥},
(b) i− j +n≤ p with i− j ≤ p−n,
(c) i +n≡s t with i ≡s t ′, where 0≤ t ′ < t andt ′ ≡s t +n.

It can be easily checked that the formula obtained after applying the normalisation steps
is in the form (NF), and that is equivalent to the initial formula, since every transforma-
tion preserves logical equivalence. ut

In the following, we refer to thematrixof ϕ as to the formula obtained by forgetting
the existential quantifier prefix from the (NF) form ofϕ.

4.2 Formulae and Constraint Graphs

In [6, 4], the set of runs of a flat counter automaton is represented by an unbounded
constraint graph. Here, we view the models of a formula as a constraint graph both
left- and right-infinite. These constraint graphs are then seen as executions of FBCA,
relating in this way models of formulae to runs of automata.

Let ϕ(k,a) be a formula of type (F1)-(F3), andι : k → Z a valuation of its array-
bound variablesk. For the rest of this section, we fix the valuationι, and we denote by
ϕι the formula obtained fromϕ by replacing each occurrence ofk∈ k by the valueι(k).

The formulaϕι can be thus represented by a weighted directed graphGι,ϕ, in which
each node(a,n) represents the array entrya[n], for somea∈ a andn∈ Z, and there is
a path of weightw between nodes(a,n) and(b,m) iff the constrainta[n]−b[m]≤ w is
implied byϕι. In the next section, we will show that these graphs are in a one-to-one
correspondence with the accepting runs of an FBCA.

In order to build the constraint graph of a formula, one needsto pay attention to
the following issue. Consider, e.g., the formula∀i, j.i − j ≤ 3∧ i ≡2 0∧ j ≡2 1→
a[i]− b[ j] ≤ 5. The constraint graph of this formula needs to have a path ofweight
5 between, e.g.,a[0] andb[1], a[0] andb[3], a[0] andb[5], etc. As one can easily no-
tice, the span of such paths is potentially unbounded. Sincewe would like this graph
to represent a computation of a flat counter automaton, it is essential to define it as a
sequence composed of (a possibly unbounded number of) repetitions of a finite number
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of (finite) sub-graphs (see, e.g., Fig. 5 or Fig. 6). To this end, we introduce interme-
diary nodes which are connected between themselves with 0 arcs such that, for each
non-local constraint of the forma[n]−b[m]≤ w where|n−m| can be arbitrarily large,
there exists exactly one path of weightw through these nodes. E.g., in Fig. 5, there is a

path(a,0)
5
−→ (tϕ,−3)

0
−→ . . .

0
−→ (tϕ,1)

0
−→ (b,1) for the constrainta[0]−b[1]≤ 5, another

path(a,0)
5
−→ (tϕ,−3)

0
−→ . . .

0
−→ (tϕ,3)

0
−→ (b,3) for the constrainta[0]−b[3]≤ 5, etc.

Formally, the constraint graph ofϕ is Gι,ϕ = 〈V,E〉 with the set of verticesV =
(A ∪ T ∪ {ζ})×Z, whereA = {a,b} are the array symbols inϕ, T = {tϕ} are the
auxiliary symbols (tracks), andζ is a special symbol (zero track). The set of edgesE is
defined based on the type ofϕ, i.e. (F1)-(F3). In general, for all types of formulae, we
have:

E ⊃ {(ζ,k)
0
−→ (ζ,k+1) | k∈ Z} ∪ {(ζ,k+1)

0
−→ (ζ,k) | k∈ Z}

i.e., the value of the zero track stays constant.

Constraint graphs for (F1) formulae Let ϕ be the formula

∀i .
K̂

k=1

fk ≤ i ∧
L̂

l=1

i ≤ gl ∧ i ≡s t

︸ ︷︷ ︸

φ

→ a[i]∼ h(k)

where 0≤ t < s. Let P ι = {n∈ Z | |= φι[n/i]}.
The set of edgesE is defined by the following case split:

1. If the right hand side of the implication isa[i]≤ h(k), we have (cf. Figure 2):

E ⊃ {(a,k)
h(k)
−−→ (ζ,k) | k∈ P ι}

 
0 0 0 00 0

a

ζ

h(k) h(k)h(k)

ι(l) ι(u)

Fig. 2. Constraint graph for∀i . l ≤ i ≤ u ∧ i ≡2 0→ a[i]≤ h(k)

2. Otherwise, if the right hand side of the implication isa[i]≥ h(k), we have:

E ⊃ {(ζ,k)
−h(k)
−−−→ (a,k) | k∈ P ι}

Nothing else is inE.
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Constraint graphs for (F2) formulae Let ϕ be the formula:

∀i .
K̂

k=1

fk ≤ i ∧
L̂

l=1

i ≤ gl ∧ i ≡s t

︸ ︷︷ ︸

φ

→ a[i]−b[i + p]∼ q

where 0≤ s< t, p∈N, andq∈ Z. Let P ι = {n∈ Z | |= φι[n/i]}.
The set of edgesE is defined by the following case split:

1. If the right hand side of the implication isa[i]−b[i + p]≤ q, we have (cf. Fig. 3):

E ⊃ {(a,k)
q
−→ (b,k+ p) | k∈ P ι}

a

b

5 5 5

ι(l) ι(u)

Fig. 3. Constraint graph for∀i.l ≤ i ≤ u∧ i ≡2 0→ a[i]−b[i +3]≤ 5

2. If the right hand side of the implication isa[i]−b[i + p]≥ q, then (cf. Figure 4):

E ⊃ {(b,k+ p)
−q
−→ (a,k) | k∈ P ι}

a

b

−5 −5 −5

ι(u)ι(l)

Fig. 4. Constraint graph for∀i.l ≤ i ≤ u∧ i ≡2 0→ a[i]−b[i +3]≥ 5

Nothing else is inE.

Constraint graphs for (F3) formulae Let ϕ be the formula below, where 0≤ s< t,
0≤ u < v, p∈ Z

∞, andq∈ Z :

∀i, j .
K1̂

k=1

f 1
k ≤ i ∧

L1̂

l=1

i ≤ g1
l ∧ i ≡s t

︸ ︷︷ ︸

φ1

∧
K2̂

k=1

f 2
k ≤ j ∧

L2̂

l=1

j ≤ g2
l ∧ j ≡u v

︸ ︷︷ ︸

φ2

∧ i− j ≤ p→ a[i]−b[ j]∼ q
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Let φ1(i,k) andφ2( j,k) be the subformulae defining the ranges ofi and j, respec-
tively, andP 1

ι = {n ∈ Z | |= φ1
ι[n/i]}, P 2

ι = {n ∈ Z | |= φ2
ι[n/ j]}, be these ranges

under the valuationι. Let T≤ = {(tϕ,k)
0
−→ (tϕ,k+1) | ∃n∈ P 1

ι ∃m∈ P
2
ι . n−m≤ p}

andT≤ = {(tϕ,k)
0
−→ (tϕ,k−1) | ∃n∈ P 1

ι ∃m∈ P
2
ι . n−m≥ p}. Note thatT≤ andT≥

are empty is the precondition ofϕ is not satisfiable. The set of edgesE is defined by the
following case split:

1. If p < ∞, we consider two cases, based on the direction ofa[i]−b[ j]∼ q:
(a) fora[i]−b[ j]≤ q, we have (Fig. 5):

E ⊃ {(a,k)
q
−→ (tϕ,k− p) | k∈ P 1

ι } ∪ {(tϕ,k)
0
−→ (b,k) | k∈ P 2

ι }∪ T≤

a

b

0 0 0 0

0

0 0 0

0

5 5 5

tϕ 0

0

ι(l1) ι(u1)

ι(l2) ι(u2)

Fig. 5. Constraint graph for∀i, j .l1 ≤ i ≤ u1 ∧ l2 ≤ j ≤ u2 ∧ i − j ≤ 3∧ i ≡2 0∧ j ≡2 1→
a[i]−b[ j ]≤ 5

(b) for a[i]−b[ j]≥ q, we have:

E ⊃ {(b,k)
−q
−→ (tϕ,k+ p) | k∈ P 2

ι } ∪ {(tϕ,k)
0
−→ (a,k) | k∈ P 1

ι }∪ T≥
2. If p = ∞, we consider again two cases, based on the direction ofa[i]−b[ j]∼ q:

(a) fora[i]−b[ j]≤ q, we have (Fig. 6):

E ⊃ {(a,k)
q
−→ (tϕ,k) | k∈ P 1

ι } ∪ {(tϕ,k)
0
−→ (b,k) | k∈ P 2

ι } ∪ T≤ ∪ T≥

(b) for a[i]−b[ j]≥ q, we have:

E ⊃ {(b,k)
−q
−→ (tϕ,k) | k∈ P 2

ι } ∪ {(tϕ,k)
0
−→ (a,k) | k∈ P 1

ι } ∪ T≤ ∪ T≥

Nothing else is inE.

Relating constraint graphs and models of formulaeLet us point out the correspon-
dence between constraint graphs and models of formulae of the forms (F1)-(F3), i.e. if
the vertices of a constraint graph for a formulaϕ can be labelled in a consistent way,
then from the labelling one can extract a model forϕ and vice versa. This proves the
correctness of the construction for constraint graphs, using the additional tracks.
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a

b

0 0 0 0

0 0

55

tϕ 0 0

ι(l1)

ι(u2)ι(l2)

ι(u1)

Fig. 6. Constraint graph for∀i, j .l1≤ i ≤ u1∧ l2≤ j ≤ u2∧ i ≡2 0∧ j ≡2 1→ a[i]−b[ j ]≤ 5

Let ϕ(k,a) be a formula of the forms (F1)-(F3),ι : k→ Z a valuation of the array-
bound variables inϕ, andGι,ϕ = (V,E) its corresponding constraint graph. Alabelling

Lab : V→ Z of Gι,ϕ is calledconsistentif and only if (1) for all edgesv1
k
−→ v2 ∈ E, we

haveLab(v1)−Lab(v2)≤ k and (2)Lab((ζ,n)) = 0 for all n∈ Z.

Lemma 6. Let ϕ(k,a) be a formula of the form (F1)-(F3). Then, for all valuations
ι : k → Z and µ : a→ ω

Z
ω, we have that〈ι,µ〉 |= ϕ if and only if there exists a

consistent labelling Lab of Gι,ϕ such that µ(a, i) = Lab((a, i)), for all a∈ a and i∈ Z.

Proof. We carry out the proof separately forϕ being of type (F1)-(F3).

(F1) ϕ : ∀i .
VK

k=1 fk ≤ i ∧
VL

l=1 i ≤ gl ∧ i ≡s t→ a[i]∼ h(k) where 0≤ t < s

“⇒” By the construction ofGι,ϕ = (V,E), we haveV = {a,ζ}×Z. DefineLab : V→ Z

asLab((a,n))= µ(a,n) andLab((ζ,n))= 0 for alln∈Z. To show thatLab is consistent,
let ∼ be≤, the other case being symmetric. Let us consider any edge from E. For
edges linking nodes fromζ×Z, we have triviallyLab((ζ,n))− Lab((ζ,n+ 1)) ≤ 0
and Lab((ζ,n+ 1))− Lab((ζ,n)) ≤ 0. The only other edges inGι,ϕ are of the form

(a,n)
h(k)
−−→ (ζ,n) with n ∈ P ι whereP ι is the set given in the construction ofGι,ϕ.

Any n ∈ P ι satisfies the precondition ofϕ. Since(ι,µ) is a model ofϕ, we have that
µ(a,n)−0≤ h(k), which impliesLab((a,n))−Lab((ζ,n))≤ h(k).

“⇐” This direction follows from a similar argument.

(F2) ϕ : ∀i .
VK

k=1 fk ≤ i ∧
VL

l=1 i ≤ gl ∧ i ≡s t → a[i]−b[i + p]∼ q where 0≤ s< t,
p∈ N, q∈ Z.

“⇒” By the construction ofGι,ϕ = (V,E), we haveV = {a,b,ζ}×Z. DefineLab :
V → Z asLab((a,n)) = µ(a,n), Lab((b,n)) = µ(b,n), andLab((ζ,n)) = 0 for all n∈
Z. To show thatLab is consistent, let∼ be≤, the other case being symmetric. Let
us consider any edge fromE. For edges linking nodes fromζ×Z, we have trivially
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Lab((ζ,n))−Lab((ζ,n+1))≤ 0 andLab((ζ,n+1))−Lab((ζ,n))≤ 0. The only other

edges inGι,ϕ are of the form(a,n)
q
−→ (b,n+ p) with n∈ P ι whereP ι is the set given

in the construction ofGι,ϕ. Since(ι,µ) is a model ofϕ, then for alln ∈ P ι, we have
µ(a,n)−µ(b,n+ p)≤ q, which impliesLab((a,n))−Lab((b,n+ p))≤ q.

“⇐” This direction follows from a similar argument.

(F3) ϕ : ∀i, j .
VK1

k=1 f 1
k ≤ i ∧

VL1
l=1 i ≤ g1

l ∧
VK2

k=1 f 2
k ≤ j ∧

VL2
l=1 j ≤ g2

l ∧ i− j ≤
p ∧ i ≡s t ∧ j ≡u v→ a[i]−b[ j]∼ q where 0≤ s< t, 0≤ u < v, p∈ Z

∞, andq∈ Z.
Let us assume first thatp < ∞ and that∼ is≤, the other cases being very similar.

Let the setsP 1
ι andP 2

ι be defined as in the construction of the constraint graphGι,ϕ.

“⇒” By the construction ofGι,ϕ = (V,E), we haveV = {a,b,ζ,tϕ}×Z. First of all, we
defineLab : V→ Z asLab((a,n)) = µ(a,n), Lab((b,n)) = µ(b,n), andLab((ζ,n)) = 0
for all n∈ Z. It remains to defineLab for tϕ×Z.

Let us consider first the case whereT≤ = /0. Then, there do not existk ∈ P 1
ι and

l ∈ P 2
ι such thatk− l ≤ p. This allows us to defineLab((tϕ,n)) = µ(a,n+ p)−q for

n+ p∈ P 1
ι , Lab((tϕ,n)) = µ(b,n) for n∈ P 2

ι andLab((tϕ,n)) = 0 for all othern∈ Z.
As there is non such thatn+ p∈ P 1

ι andn∈ P 2
ι and as there are no arcs linking nodes

of tϕ×Z, it can be easily checked that the labelling is consistent.
Second, we consider the case whereT≤ 6= /0. In such a case, there existk′ ∈ P 1

ι and
l ∈ P 2

ι such thatk′− l ≤ p. Thus,P 2
ι is not empty, and by definition it is finite, hence it

has a maximum element.
Then, we defineLab((tϕ,n)) as follows: Forn≤max(P 2

ι ), Lab((tϕ,n))= min{µ(b, i) | i ∈
P 2

ι andi ≥ n}. Forn > max(P 2
ι ), we define the labelling inductively as follows: Ifn+

p∈ P 1
ι , thenLab((tϕ,n))= max(Lab((tϕ,n−1)),µ(a,n+ p)−q), otherwiseLab((tϕ,n))=

Lab((tϕ,n−1)). It remains to show thatmin{µ(b, i) | i ∈ P 2
ι andi ≥ n} exists and that

Lab is consistent.
Sinceµ is a model, we haveµ(a,k′)−µ(b, j) ≤ q for all j ∈ P 2

ι with k′− j ≤ p.
This implies that the set{µ(b, i) | i ∈ P 2

ι andi ≥ n} is bounded from below. Therefore
min{µ(b, i) | i ∈ P 2

ι andi ≥ n} exists.
To show thatLab is consistent, we consider all edges ofGι,ϕ.
For edges linking nodes fromζ×Z, we have triviallyLab((ζ,n))− Lab((ζ,n+

1))≤ 0 andLab((ζ,n+1))−Lab((ζ,n))≤ 0.
For edges ofT≤, we have by definition of the labelling oftϕ×Z thatLab((tϕ,n))≤

Lab((tϕ,n+1)) for all n∈Z. Indeed, forn≤max(P 2
ι ), we setLab(tϕ,n)= min{µ(b, i) | i ∈

P 2
ι and i ≥ n}. Notice that, forn1 ≤ n2 we haveLab(tϕ,n1) ≤ Lab(tϕ,n2). For n >

max(P 2
ι ), we setLab(tϕ,n) = Lab(tϕ,n−1).

For edges in{(a,k)
q
−→ (tϕ,k− p) | k ∈ P 1

ι }, we consider two cases. Ifk− p >

max(P 2
ι ), then by definition of the labelling, we have thatLab((a,k)) = µ(a,k) and

Lab((tϕ,k−p))= max(Lab((tϕ,n−1)),µ(a,k)−q). Therefore,Lab((a,k))−Lab((tϕ,k−
p))≤ q. If k−p≤max(P 2

ι ), then by definition of the labelling, we have thatLab((a,k))=
µ(a,k) andLab((tϕ,k− p)) = min{µ(b, i) | i ∈ P 2

ι andi ≥ k− p}. Let m∈ P 2
ι be such

thatµ(b,m) = Lab((tϕ,k− p)). Sinceµ is a model, we haveµ(a,k)−µ(b,m)≤ q. This
impliesLab((a,k))−Lab((tϕ,k− p))≤ q.

20



Finally, for edges in{(tϕ,k)
0
−→ (b,k) | k∈ P 2

ι }, we have by definition of the labelling

thatLab((tϕ,k))−Lab((b,k))≤ 0.

“⇐” Let Lab be a consistent labelling ofGι,ϕ and µ a valuation such thatµ(a, i) =

Lab((a, i)) for all a∈aandi ∈Z. Let i, j such that
VK1

k=1 f 1
k ≤ i ∧

VL1
l=1 i≤ g1

l ∧
VK2

k=1 f 2
k ≤

j ∧
VL2

l=1 j ≤ g2
l ∧ i− j ≤ p ∧ i ≡s t ∧ j ≡u v. By the construction ofGι,ϕ, there are

edges(a, i)
q
−→ (tϕ, i− p), (tϕ, i)

0
−→ (tϕ, i +1),...,(tϕ, j−1)

0
−→ (tϕ, j) and(tϕ, j)

0
−→ (b, j).

By the fact thatLab is consistent, we haveLab((a, i))−Lab((b, j))≤ q which implies
thatµ(a, i)−µ(b, j)≤ q. ut

4.3 From Formulae to Counter Automata

In this section, we describe the construction of an FBCAAϕ corresponding to a formula
ϕ such that (1) each run ofAϕ corresponds to a model ofϕ, and (2) for each model ofϕ,
Aϕ has at least one corresponding run. In this way, we effectively reduce the satisfiability
problem forLIA to the emptiness problem for FBCA.

The construction of FBCA is by induction on the structure of the formulae. For the
rest of this section, letϕ be a formula,k the set of array-bound variables inϕ, and
a the set of array variables inϕ, i.e. FV(ϕ) = k ∪a. Suppose thatϕ is the matrix of
a formula in the normal form (NF), i.e.ϕ :

W

i∈I θi(k)∧
V

j∈J ψi j (k,a), whereθi are
PA constraints andψi j are formulae of types (F1)-(F3). The automatonAϕ is defined as
U

i∈I Aθi⊗
N

j∈J Aψi j , where] and⊗ are the union and intersection operators on FBCA.
The construction of counter automataAψi j for the formulaeψi j of type (F1)-(F3) relies
on the definition of the constraint graphs in Section 4.2. Namely, each accepting run of
Aψi j gives a consistent valuation of the constraint graph ofψi j .

Counter Automata Templates. To simplify the definition of counter automata, we
note that each constraint graph for the basic formulae of type (F1)-(F3) is composed
of horizontal, vertical, anddiagonaledges, which are defined in roughly the same way
for all types of formulae (cf. Section 4.2). We take advantage of this fact, and we start
by defining three types of counter automatatemplates, which are subsequently used to
define the counter automata for the basic formulae.7 More precisely, the automata for
(F1)-(F3) formulae will be defined as⊗-products of particular instances of the automata
templates for the horizontal, vertical, and diagonal edgesof the appropriate constraint
graphs. In the following definitions, we assume the existence of a special counterxτ
(tick), incremented by each transition rule, i.e. we suppose that the constraintx′τ = xτ +1
is implicitly in conjunction with each formula labelling a transition rule. Intuitively, the
role of thexτ counter is to synchronism all automata composed by the⊗-product on a
common current position.

The template for the horizontal edges.Letabe an array symbol,dir ∈{left,right,bi}
be adirectionparameter, andφ be a formula on array-bound variables. Letxk be the set
{xk | k∈ FV(φ)}. We define the templateH(a,dir,φ) = 〈x,Q,L,R,−→〉, where:

7 By templatewe mean a class of counter automata which all share the same structure.
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– x = {xa}∪xk. These counters will have the same names in all instances ofH.
– Q = {qL,qR, pL, pR}. The control states are required to have fresh names in every

instance ofH. L = {qL, pL} andR= {qR, pR}.

– qL
ξ
−→ qL, qR

ξ
−→ qR, qL

φ(xk) ∧ ξ
−−−−−→ qR, pL

>
−→ pL, pR

>
−→ pR, andpL

¬φ(xk)
−−−−→ pR.

In the above,φ(xk) is the formula obtained by replacing each occurrence of an array-
bound variablek∈ FV(φ) by its corresponding counterxk. The formulaξ(xa,x′a) is xa−
x′a≤ 0 if dir = right, x′a−xa≤ 0 if dir = left, andx′a = xa if dir = bi. Moreover, for
each transition rule, we assume the conjunction

V

k∈FV(φ) x′k = xk to be added implicitly
to the labelling formula, i.e. the value of anxk counter stays constant throughout a run.
Thexk parameters are used within guards of the formxτ∼ f (xk), where∼∈{≤,≥} and
f is a linear combination ofxk , in order to mark the position of the array boundaries,
during the run of the automata.

If, for a given valuation of the parametersxk , the formulaφ holds, then any accept-
ing run of (any instance of)H visitsqL infinitely often on the left, andqR infinitely often
on the right. Otherwise, if for the given valuation ofxk , φ does not hold, the instance
automata have a run that goes infinitely often throughpL on the left, and throughpR on
the right. In this case, the automata do not impose any constraints onxa.

The template for the diagonal edges.Let a,b be array symbols,q ∈ Z, p,s∈ N
+,

t ∈ [0,s−1], anddir ∈ {left,right} be a direction parameter. In the following, we
refer to the setsL = {l1, . . . , lK} andU = {u1, . . . ,uL} of lower, and respectively upper
bounds, wherel i andu j are linear combinations of array-bound variables, and letxk =
{xk | k ∈

SK
i=1FV(l i) ∪

SL
j=1FV(u j)}. Further, we assume thatL∪U 6= /0 – we deal

with the case ofL∪U = /0 later on. We define the templateD(a,b, p,q,s,t,L,U,dir) =
〈x,Q,L,R,−→〉, where:

– x = {xa,xb}∪xk ∪{xi | 1≤ i < p}. The countersxa,xb, andxk will have the same
names in all instances ofD. On the other hand, the countersxi , 1≤ i < p, will
have fresh names in every instance ofD. The xi counters are used for splitting
diagonal edges that span over more than one position, into series of diagonal edges
connecting only adjacent positions.8

– Q = {qL,qR}∪{qi | 0≤ i < s}∪{q j
i | 0≤ j < s, j + 1≤ i < j + p}. The control

states are required to have fresh names in every instance ofD. Let L = {qL} ∪
{qi | 0≤ i < s} andR= {qR}∪{qi | 0≤ i < s}.

– qL
>
−→ qL, qR

>
−→ qR, andqL

¬(∃i .
V

l∈L i≥l(xk) ∧
V

u∈U i≤u(xk) ∧ i≡st)
−−−−−−−−−−−−−−−−−−−−−−−−−→ qR.

– qL

V

l∈L xτ≥l(xk)−1 ∧ (
W

l∈L xτ=l(xk)−1) ∧ xτ+1≡si
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ qi , for all 0≤ i < s.

– qi

V

l∈L xτ≥l(xk) ∧
V

u∈U xτ<u(xk) ∧ ξi [xa/x0,xb/xp]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q(i+1) mods, for all 0≤ i < s.

8 For instance, the constrainta[i]−b[i + 3] ≤ 5 can be split toa[i]− x1[i + 1] ≤ 5, x1[i + 1]−
x2[i+2]≤ 0, andx2[i+2]−b[i+3]≤ 0. The constraints for array values of neighboring indices
can then be conveniently expressed by using the current and future values of the appropriate
counters (e.g., for our example constraint,xa−x′1 ≤ 5, x1−x′2 ≤ 0, andx2−x′b ≤ 0, which of
course appear on subsequent transitions of the appropriateFBCA).
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– qi

W

u∈U xτ=u(xk) ∧ xτ≡si ∧ ξi [xa/x0,xb/xp]
−−−−−−−−−−−−−−−−−−−−−−−→ qi

i+1, for all 0≤ i < s.

– qi

W

u∈U xτ=u(xk) ∧ xτ≡si ∧ ξi [xa/x0,xb/xp]
−−−−−−−−−−−−−−−−−−−−−−−→ qR, for all 0≤ i < s, if p = 1.

– q j
i

ξi [xa/x0,xb/xp]
−−−−−−−−→ q j

i+1, for all 0≤ j < s, j < i < j + p−1.

– q j
j+p−1

ξi [xa/x0,xb/xp]
−−−−−−−−→ qR, for all 0≤ j < s, if p > 1.

In the above,l(xk) andu(xk) denote the expressionsl andu in which each occurrence of
an array-bound variablek is replaced by its corresponding parameterxk. As before, for
each transition rule, we assume the conjunction

V

k∈FV(φ) x′k = xk to be added implicitly
to the labelling formula, i.e. we require that the value of anxk counter stays constant
throughout the run. The formulaeξi are defined as follows:

– if dir = right, ξi =
V

k∈Ki
xk− x′k+1 ≤ αk, for Ki = {k | 0≤ k < p, i ≡s k+ t},

α0 = q andαk = 0, k > 0,
– if dir = left, ξi =

V

k∈Ki
x′k−1−xk ≤ αk, Ki = {k | 1≤ k≤ p, k+ i ≡s t}, α1 = q

andαk = 0, k > 1.

Finally, for the caseL = U = /0, we define any instance ofD(a,b, p,q,s,t, /0, /0,dir) to
beA1⊗A2, whereA1 is an instance ofD(a,b, p,q,s,t, /0,{0},dir) andA2 is an instance
of D(a,b, p,q,s,t,{0}, /0,dir).

qL qR

q1 q1
2

q0
1 q0

2

q1
3

x′a−x1 ≤ 5

> >

xτ ≥
l1−

4∧xτ = l1−
4

xτ ≥ l1−4∧xτ = l1−4

x′1−x2 ≤ 0

xτ ≥ l1−3∧xτ < u1−3

q0 ∧xτ ≡2 0
xτ = u1−3

x ′a −x1 ≤ 5

x′ 1
−x2
≤

0

x′1−x2 ≤ 0∧xτ ≡2 1

xτ = u1−3∧

∧x′a−x1 ≤ 5
∧x′2−xtϕ ≤ 0

∧x′1−x2 ≤ 0 xτ ≥ l1−3∧xτ < u1−3

∧x′2−xtϕ ≤ 0

∧x ′
2 −xtϕ ≤ 0

∧xτ +1≡
2 1

∧xτ +1≡2 0

∧x′a−x1 ≤ 5∧x′2−xtϕ ≤ 0

¬(∃i . l1 ≤ i ≤ u1∧ i ≡2 0)

Fig. 7.The FBCA for the diagonal edges in the formulaϕ : ∀i, j .l1≤ i ≤ u1∧ l2≤ j ≤ u2∧ i− j ≤
3∧ i ≡2 0∧ j ≡2 1→ a[i]−b[ j ]≤ 5 from Fig. 5 obtained asD(a,tϕ,3,5,2,0−3,{l1−3},{u1−
3},left). To understand the formulaξ0 on the transition fromq0 to q1, note that the constraint
i ≡s k+t in the definition of the setK0 instantiates to 0≡2 k−3, and henceK0 = {1,3}. A similar
reasoning applies for the other transitions.

The construction can be understood by considering an accepting run of (any instance
of) D. Let us consider the case in which there exists a valuei in between the bounds that
satisfies also the modulo constraint. If this is not the case,there will be an accepting run

that takes the transitionqL
¬(∃i .

V

l∈L i≥l(xk) ∧
V

u∈U i≤u(xk) ∧ i≡st)
−−−−−−−−−−−−−−−−−−−−−−−−−→ qR exactly once.

23



Since the run is accepting, it must visit a state fromL infinitely often on the left, and
a state fromR infinitely often on the right. There are three cases: (1)L 6= /0 andU 6= /0, (2)
L = /0 andU 6= /0, and (3)L 6= /0 andU = /0. In the case (1), a bi-infinite run will visitqL

infinitely often on the left, andqR, infinitely often on the right. Notice that the run cannot
visit the loopq0 −→ . . . −→ qs−1 infinitely often, due to the presence of both lower and

upper bounds onxτ. In the case (2), the run cannot take any of the transitionsqL −→ qi ,

0≤ i < s, due to the emptiness ofL, which makes the guard unsatisfiable. Hence the
only possibility for an accepting bi-infinite run is to visitthe statesq0 −→ . . . −→ qs−1

infinitely often on the left. Due to the presence of the upper bound onxτ, the run cannot
stay forever inside this loop, and must exit via one of theqi −→ qi

i+1 (or qi −→ qR for

p = 1) transitions, getting trapped intoqR on the right. Case (3) is symmetric to (2).
Note that, in all cases, due to the modulo tests onxτ in the entry and exit of the main

loopq0−→ . . .−→ qs−1 on any accepting run, whenever a stateqi, 0≤ i < s, is visited, the

value of thexτ counter must equali modulos. Note also that the role of theq j
i states is

to describe constraints corresponding to edges that start inside the given interval bounds
and lead above its upper bound (or vice versa). The number of such edges is bounded.
We do not use the same construction at the beginning of the interval, as the templates
are applied such that none of the edges represented goes below the lower bounds.

Template for the vertical edges.Let a,b be array symbols,q ∈ Z, p,s∈ N
+, andt ∈

[0,s− 1]. We again refer to the setsL = {l1, . . . , lK} andU = {u1, . . . ,uL} of lower,
and respectively upper bounds, wherel i andu j are linear combinations of array-bound
variables. Also, letxk = {xk | k ∈

SK
i=1FV(l i) ∪

SL
j=1FV(u j)}. Further, we assume

thatL∪U 6= /0 – we deal with the case ofL∪U = /0 later on. We define the template
V(a,b, p,q,s,t,L,U) = 〈x,Q,L,R,−→〉, where:

– x= {xa,xb}∪xk. The countersxa,xb, xk have the same names in all instances ofV.
– Q = {qL,qR}∪{qi | 0≤ i < s}. The control states are required to have fresh names

in every instance ofV. L = {qL}∪{qi | 0≤ i < s} andR= {qR}∪{qi | 0≤ i ≤ s}.

– qL
>
−→ qL, qR

>
−→ qR, andqL

¬(∃i .
V

l∈L i≥l(xk) ∧
V

u∈U i≤u(xk) ∧ i≡st)
−−−−−−−−−−−−−−−−−−−−−−−−−→ qR.

– qL

V

l∈L xτ≥l(xk)−1 ∧
W

l∈L xτ+1=l(xk) ∧ xτ+1≡si
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ qi , 0≤ i < s.

– qi

V

l∈L xτ≥l(xk) ∧
V

u∈U xτ<u(xk) ∧ xa−xb≤q
−−−−−−−−−−−−−−−−−−−−−−−−−→ q(i+1) mods, 0≤ i < sandi ≡s t.

– qi

V

l∈L xτ≥l(xk) ∧
V

u∈U xτ<u(xk)
−−−−−−−−−−−−−−−−−−→ q(i+1) mods, 0≤ i < sandi 6≡s t.

– qi

W

u∈U xτ=u(xk) ∧ xτ≡si ∧ xa−xb≤q
−−−−−−−−−−−−−−−−−−−−→ qR, 0≤ i < sandi ≡s t.

– qi

W

u∈U xτ=u(xk) ∧ xτ≡si
−−−−−−−−−−−−−→ qR, 0≤ i < sandi 6≡s t.

In the above,l(xk) andu(xk) denote the expressionsl andu in which each occurrence of
an array-bound variablek is replaced by the parameterxk. As before, for each transition
rule, we assume the conjunction

V

k∈FV(φ) x′k = xk to be added implicitly to the labelling
formula, i.e. the value of anxk counter stays constant throughout the run. Finally, if
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L = U = /0, we define any instance ofV(a,b, p,q,s,t, /0, /0) asA1⊗A2, whereA1 is an
instance ofV(a,b, p,q,s,t, /0,{0}) andA2 is an instance ofV(a,b, p,q,s,t,{0}, /0). The
intuition behind the construction ofV is similar to the one ofD.

¬(∃i . l2 ≤ i ≤ u2∧ i ≡2 1)

qL

q0

q1

>

xτ ≥
l2−

1∧xτ = l2−
1

xτ ≥ l2−1∧xτ = l2−1

xτ = u2 ∧xτ ≡2 0

xτ = u2∧
xτ ≡

2 1
∧xτ +1≡

2 1

∧xτ +1≡2 0

qR

>

∧xτ < u2

xτ ≥ l2

∧xtϕ −xa ≤ 0

xτ ≥ l2
∧xτ < u2

Fig. 8.The FBCA for the vertical edges in the formulaϕ : ∀i, j .l1≤ i ≤ u1∧ l2≤ j ≤ u2∧ i− j ≤
3∧ i ≡2 0∧ j ≡2 1→ a[i]−b[ j ]≤ 5 from Fig. 5 obtained asV(tϕ,b,2,1,{l2},{u2}).

4.4 Counter Automata for Basic Formulae

We are now ready to define the construction of FBCA for the basic formulae. This is
done by composing instances of templates, using the⊗ operator for intersection (cf.
Section 2).

Formulae of type (F1) Let ϕ be

∀i .
K̂

k=1

fk ≤ i ∧
L̂

l=1

i ≤ gl ∧ i ≡s t→ a[i]∼ h(k)

where 0≤ t < s. Let L = { f1, . . . , fK} andU = {g1, . . . ,gL}. Then we defineAϕ =
A1⊗A2, whereA1 andA2 are instantiated according to Table 1(a).

Formulae of type (F2) Let ϕ be the formula :

∀i .
K̂

k=1

fk ≤ i ∧
L̂

l=1

i ≤ gl ∧ i ≡s t→ a[i]−b[i + p]∼ q

where 0≤ s< t. As previously, we denoteL = { f1, . . . , fK} andU = {g1, . . . ,gL}. The
instantiation ofAϕ is done according to the value ofp and∼ as described in Table 1(b).9

Given a set of integersSand an integerp we use the notationS+ p for {s+ p | s∈ S}.

9 Note that in the last two lines of Table 1(b), we shift the original bounds appearing in the
formula in order to be able to re-use the prepared templates that do not explicitly deal with
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∼ A1 A2

≤ V(a,ζ,h,s,t,L,U) H(ζ,bi,>)

≥ V(a,ζ,−h,s,t,L,U) H(ζ,bi,>)

(a)

p ∼ Aϕ

0 ≤ V(a,b,q,s,t,L,U)

0 ≥ V(b,a,−q,s,t,L,U)

> 0 ≤ D(a,b, p,q,s,t,L,U,right)

> 0 ≥ D(b,a, p,−q,s,t,L,U,left)

< 0 ≤ D(a,b,−p,q,s,t + p,L+ p,U+ p,left)

< 0 ≥ D(b,a,−p,−q,s,t + p,L+ p,U+ p,right)

(b)

Table 1.The instantiation table for (F1) and (F2) formulae

Formulae of type(F3) Let ϕ be the (F3)-type formula:

∀i, j .
K1̂

k=1

f 1
k ≤ i ∧

L1̂

l=1

i ≤ g1
l ∧

K2̂

k=1

f 2
k ≤ j ∧

L2̂

l=1

j ≤ g2
l ∧ i− j ≤ ∧ i ≡s t ∧ j ≡u v

︸ ︷︷ ︸

φ

→ a[i]−b[ j]∼ q

where 0≤ s< t and 0≤ u< v. LetLi = { f i
1, . . . , f i

Ki
} andUi = {gi

1, . . . ,g
i
Li
}, for i = 1,2,

respectively. Byφ we denote the precondition ofϕ. The automatonAϕ is defined as
Aϕ = A1⊗A2⊗A3, whereA1, A2, A3 are instantiated according to Table 2.

Counter Automata for Array-Bound Constraints. The FBCAAθ for a Presburger
constraintθ on array-bound variables isAθ = 〈xk ,Q,L,R,−→〉, wherexk is the set

{xk | k ∈ FV(θ)}, Q = {qL,qR}, L = {qL}, R = {qR}, and−→= {qL
>
−→ qL,qL

θ(xk)
−−−→

qR,qR
>
−→ qR}, andθ(xk) denotes the formulaθ in which each occurrence of an array-

bound variablek∈ FV(θ) is replaced by its corresponding parameterxk.

4.5 From Formulae to Counter Automata

Given a formulaϕ(k,a) which is a positive boolean combination of formulae of types
(F1)-(F3) and PA constraints on the array-bound variablesk, let Aϕ be the automaton
defined inductively on the structure ofϕ as follows:

– if ϕ is of type (F1)-(F3), or a PA constraint onk, thenAϕ is as in Section 4.4,
– if ϕ = ψ1∧ψ2, thenAϕ = Aψ1⊗Aψ2,
– if ϕ = ψ1∨ψ2, thenAϕ = Aψ1]Aψ2.

edges leaving from within the given bounds and going below the lower bound. Due to the way
the templates are constructed, the shifting preserves the semantics of the formula – instead of
edges going below the lower bound of a certain interval, we obtain the same edges just going
above the upper bound of the shifted interval, which our templates are prepared for.
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p ∼ A1 A2 A3

∞ ≤ V(a,tϕ,q,s,t,L1,U1) H(tϕ,bi,∃i, j .φ) V(tϕ,b,0,u,v,L2,U2)

∞ ≥ V(b,tϕ,−q,u,v,L2,U2) H(tϕ,bi,∃i, j .φ) V(tϕ,a,0,s,t,L1,U1)

0 ≤ V(a,tϕ,q,s,t,L1,U1) H(tϕ,right,∃i, j .φ) V(tϕ,b,0,u,v,L2,U2)

0 ≥ V(b,tϕ,−q,u,v,L2,U2) H(tϕ,left,∃i, j .φ) V(tϕ,a,0,s,t,L1,U1)

> 0 ≤ D(a,tϕ, p,q,s,t− p,L1− p,U1− p,left) H(tϕ,right,∃i, j .φ) V(tϕ,b,0,u,v,L2,U2)

> 0 ≥ D(b,tϕ, p,−q,u,v,L2,U2,right) H(tϕ,left,∃i, j .φ) V(tϕ,a,0,s,t,L1,U1)

< 0 ≤ D(a,tϕ,−p,q,s,t,L1,U1,right) H(tϕ,right,∃i, j .φ) V(tϕ,b,0,u,v,L2,U2)

< 0 ≥ D(b,tϕ,−p,−q,u,v+ p,L2 + p,U2 + p,left) H(tϕ,left,∃i, j .φ) V(tϕ,a,0,s,t,L1,U1)

Table 2. The instantiation table for (F3) formulae. Note that in somelines, we shift the original
bounds appearing in the formula in order to be able to re-use the prepared templates that do not
explicitly deal with edges leaving from within the given bounds and going below the lower bound.
Due to the way the templates are constructed, the shifting preserves the semantics of the formula
– instead of edges going below the lower bound of a certain interval, we obtain the same edges
just going above the upper bound of the shifted interval, which our templates are prepared for.
Given a set of integersSand an integerp, we use the notationS+ p for {s+ p | s∈ S}

Let r ∈ R (Aϕ) be an accepting run ofAϕ andδ(r) = val(r(0))(xτ) be the value of
the xτ (tick) counter at position 0 onr. We denote byη(r) = r ◦σ−δ(r) the centered
run obtained fromr by shifting it such that the value ofxτ at position 0 is also 0. By
Lemma 1,r is an accepting run ofAϕ if and only if η(r) is. Notice thatr induces the
following valuations onk anda, respectively:ιr(k) = val(η(r)(0))(xk), for all k ∈ k,
andµr(a, i) = val(η(r)(i))(xa), for all a∈ a andi ∈ Z.

For an arbitrary valuationν ∈ V (Aϕ), there existsr ∈ R (Aϕ) such thatν = val(r).
Let Mϕ(ν) = 〈ιr ,µr〉 be the valuation of the free variables inϕ that correspond tor. One
can see now thatMϕ defines a functionMϕ : V (Aϕ)→ (k 7→ Z)× (a 7→ ω

Z
ω).10

To proof the main theorem relating a formula with its corresponding automaton we
give first several lemmas. The following two lemmas relate the control states visited by
an accepting run ofAϕ, with its positions.

Lemma 7. Let A= 〈x,Q,L,R,−→〉, where Q= {qL,qR}∪{qi | 0≤ i < s} ∪ {q j
i | 0≤

j < s, j +1≤ i < j + p}be an instance of the diagonal template D(a,b, p,q,s,t,L,U,dir),
and r0 be any normalised accepting run of A. Supposing thatL∪U 6= /0, for all k ∈ Z,
we have that, if either r0(k) = (q j

i ,ν) or r0(k) = (qi ,ν) for some valuationν of the
counters in A, thenν(k) ≡s i.

Proof. Follows easily from (1) the fact that to enter and to leave thestates{qi | 0≤
i < s} a guard checking the modulo constraint has to be satisfied and(2) the fact that if
L∪U 6= /0, then an accepting run has to either enter or leave the states{qi | 0≤ i < s}
due to the presence of guards in the transitions. ut

10 By definition, for eachν ∈ V (Aϕ) there exist valuationsιr andµr , so Mϕ is defined for all
ν ∈ V (Aϕ). Let r1, r2 ∈ R (Aϕ) be two runs such thatval(r1) = val(r2) = ν. We haveδ(r1) =
δ(r2), thereforeη(r1) = η(r2), which leads toιr1 = ιr2 andµr1 = µr2.
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Lemma 8. Let A= 〈x,Q,L,R,−→〉, where Q= {qL,qR}∪{qi | 0≤ i < s} be an instance

of the vertical template V(a,b, p,q,s,t,L,U), and r0 be any normalised accepting run
of A. Supposing thatL∪U 6= /0 for all k ∈ Z, we have that, if r0(k) = (qi ,ν) for some
valuationν, thenν(k)≡s i.

Proof. Like the proof of Lemma 7. ut

The following lemma is the basis of theorem 1.

Lemma 9. Let ϕ(k,a) be a formula of the form (F1)-(F3) and Aϕ the corresponding
automaton, as defined in Section 4.4. Then, Mϕ(V (Aϕ)) = [[ϕ]].

Proof. We only give the proof for the most difficult case, i.e. formulae of the form
(F3). For the other formulae, it is similar. Let us have a formula ϕ : ∀i, j .

VK1
k=1 f 1

k ≤

i ∧
VL1

l=1 i ≤ g1
l ∧

VK2
k=1 f 2

k ≤ j ∧
VL2

l=1 j ≤ g2
l ∧ i− j ≤ p ∧ i ≡s t ∧ j ≡u v→ a[i]−

b[ j] ∼ q where 0≤ s< t and 0≤ u < v. Let Li = { f i
1, . . . , f i

Ki
} andUi = {gi

1, . . . ,g
i
Li
}

for i = 1,2, respectively. Letφ = ∃i, j .
VK1

k=1 f 1
k ≤ i ∧

VL1
l=1 i ≤ g1

l ∧
VK2

k=1 f 2
k ≤

j ∧
VL2

l=1 j ≤ g2
l ∧ i− j ≤ p ∧ i ≡s t ∧ j ≡u v. We give the proof forp > 0 and∼=≤.

The other cases are very similar. LetAϕ be the automaton corresponding toϕ. We have
Aϕ = A1⊗A2⊗A3 whereA1 is an instance ofD(a,tϕ, p,q,s,t− p,L1− p,U1− p,left),
A2 is an instance ofH(tϕ,right,φ), andA3 is an instance ofV(tϕ,b,0,u,v,L2,U2). We
suppose thatL1∪U1 6= /0 andL2∪U2 6= /0. The other cases are treated in a similar way.

“⊆” We first show thatMϕ(V (Aϕ)) ⊆ [[ϕ]]. Let r be an accepting run ofAϕ andr0 be
the normalised run corresponding tor. Let ιr : k → Z andµr : {a,b}×Z→ Z be the
valuations of the free variables ofϕ corresponding to the runr0. Let Gιr ,ϕ = (V,E) be
the constraint graph corresponding toϕ for the valuation of the bound variablesιr . We
show below that starting from the runr0, we can define a consistent labellingLab of
Gιr ,ϕ. Thanks to Lemma 6 which implies that the labellingLabcorresponds to a model,
this is enough to prove thatMϕ(V (Aϕ))⊆ [[ϕ]].

By construction, the runr0 of the automatonAϕ = A1⊗A2⊗A3 corresponds to runs
r i
0 in the automataAi (i ∈{1,2,3}). We haveval(r0)(xa)= val(r1

0)(xa) andval(r0)(xb)=
val(r3

0)(xb) as well asval(r0)(xtϕ) = val(r1
0)(xtϕ ) = val(r2

0)(xtϕ) = val(r3
0)(xtϕ).

The labellingLab is defined as follows:Lab((a, i)) = µr(a, i), Lab((b, i)) = µr(b, i),
andLab((tϕ, i)) = val(r0(i))(xtϕ) for all i ∈ Z. We show in the following thatLab is
consistent. LetL i,ιr = max{ιr( f i

k) | 1≤ k≤ Ki} andU i,ιr = min{ιr(gi
l ) | 1≤ l ≤ Li}

for i = 1,2. Let P1,ιr = {k | L1,ιr ≤ k≤ U 1,ιr ∧ k≡s t} andP2,ιr = {k | L2,ιr ≤ k≤
U 2,ιr ∧ k ≡u v}. We have to consider several cases depending on the left and right-
accepting states visited by the runsr i

0. Let A1 = 〈x1,Q,L,R,−→〉, A2 = 〈x2,Q′,L′,R′,−→′

〉, andA3 = 〈x3,Q′′,L′′,R′′,−→′′〉. We haveQ = {qL,qR}∪{qi | 0≤ i < s}∪{q j
i | 0≤

j < s, j +1≤ i < j + p}, L = {qL}∪{qi | 0≤ i < s} andR= {qR}∪{qi | 0≤ i < s},
Q′ = {q′L,q

′
R, p′L, p′R} andQ′′ = {q′′L,q

′′
R}∪{q

′′
i | 0≤ i < s}.

1. The runr1
0 is left-accepting usingqL and right-accepting usingqR and goes through

the states{qi | 0≤ i < s}. We now show thatLab is consistent.
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(a) Let us consider an edge(a,k)
q
−→ (tϕ,k− p) for somek∈ P1,ιr . We have to show

thatLab((a,k))−Lab((tϕ,k− p)) ≤ q. Due to the structure of the automaton
A1, we have for eachk∈ P1,ιr thatr1

0(k− p) = (qi ,ν) for somei. Furthermore,
i ≡s t − p due to Lemma 7. Then, the construction of the automaton insures
that in any run, thep transitions followingqi are such thatval(r1

0(k))(xa)−
val(r1

0(k− p))(xtϕ) ≤ q. This holds due to the roles of the additional counters
{xi | 1≤ i < p} from the definition ofD. This implies directlyLab((a,k))−
Lab((tϕ,k− p))≤ q.

(b) Let us consider an edge(tϕ,k)
0
−→ (b,k) for somek ∈ P2,ιr . We have to show

thatLab((tϕ,k))−Lab((b,k)) ≤ 0. If P2,ιr is not empty, then the runr3
0 must

go through the states{q′′i | 0≤ i < s} but it cannot stay there all the time. We
have for eachk∈ P2,ιr that r3

0(k) = (qi ,ν) with i ≡u v due to Lemma 8. Then,
the transition followingqi of the automaton ensures thatval(r3

0(k))(xtϕ )−

val(r3
0(k))(xb)≤ 0. This implies directlyLab((tϕ,k))−Lab((b,k))≤ 0.

(c) Let us consider the edgesT≤. The accepting runr2
0 either goes throughq′L and

q′R or p′L andp′R. In the latter case, this means that the guardφ is not satisfied.
Therefore, by definition,T≤ is empty. In the former case, we havextϕ−x′tϕ ≤ 0

for each transition ofA2. This givesval(r2
0(k))(xtϕ)− val(r2

0(k+ 1))(xtϕ) ≤ 0
for all k∈ Z, which impliesLab((tϕ,k))−Lab((tϕ,k+1))≤ 0 for all k∈ Z.

2. The runr1
0 is left-accepting using the stateqL and right-accepting using the state

qR and does not go through{qi | 0 ≤ i < s}. In this case, the run goes through

the transitionqL
¬(∃i .

V

l∈L i≥l(xk) ∧
V

u∈U i≤u(xk) ∧ i≡st)
−−−−−−−−−−−−−−−−−−−−−−−−−→ qR. This means thatP1,ιr is

empty and diagonal edges are trivially consistent. The other edges are shown to be
consistent as in the cases 1(b) and 1(c).

3. The runr1
0 is left-accepting using a state in{qi | 0≤ i < s} and right-accepting

usingqR. In this case, Lemmas 7 and 8 can still be applied in a similar way to the
first case to show that the labelling is consistent.

4. The runr1
0 is left-accepting using the stateqL and right-accepting using{qi | 0≤

i < s}. Symmetric to the previous case.
5. The runr1

0 is left-accepting using a state in{qi | 0≤ i < s} and right-accepting using
{qi | 0≤ i < s}. This is impossible becauseL1∪U1 6= /0 implies that an accepting
run must either enter or leave the states{qi | 0≤ i < s} due to the presence of
guards in the transitions.

“⊇” Now, we show that[[ϕ]]⊆Mϕ(V (Aϕ)). This is, given a model ofϕ, we have to show
that the counter automatonAϕ has a corresponding accepting run. Let〈ι,µ〉 be a model
of ϕ. Because of Lemma 6, there exists a consistent labellingLab of the constraint
graphGι,ϕ with µ(a, i) = Lab((a, i)) andµ(b, i) = Lab((b, i)) for all i ∈ Z. It remains to
show thatAϕ has a run corresponding to the labellingLab. It is enough to show that the
three automataA1,A2, andA3 have runs corresponding to the same labellingLab. That
is, there are runsr1

0 of A1, r2
0 of A2, r3

0 of A3 such thatval(r1
0(i))(xa) = Lab((a, i)) and

val(r3
0(i))(xb) = Lab((b, i)) for all i ∈ Z as well asval(r1

0(i))(xtϕ ) = val(r2
0(i))(xtϕ ) =

val(r3
0(i))(xtϕ ) = Lab((tϕ, i)) for all i ∈ Z.
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We define a bi-infinite sequenceν : Z→ ({xa,xb,xtϕ}∪{xk|k∈ k}∪{x j | j ∈{1, ..., p−
1}}→ Z) of valuations of the counters ofAϕ such that :

– ∀k∈ k∀i ∈ Z.ν(i)(xk) = ι(k)
– ∀i ∈ Z.ν(i)(xa) = L((a, i)) andν(i)(xb) = L((b, i))
– ∀i ∈ Z.ν(i)(xtϕ ) = L((tϕ, i))
– ∀ j ∈ {1, ..., p−1}∀i ∈ Z.ν(i)(x j ) = L((a, i + j))−q

Now, asν corresponds in the needed way toLab, it remains to show that each au-
tomatonA1,A2, A3 has runs corresponding toν (taking into account the relevant coun-
ters only). LetL i,ι = max{ι( f i

k) | 1≤ k≤ Ki} andU i,ι = min{ι(gi
l ) | 1≤ l ≤ Li} for

i = 1,2. LetP 1
ι = {k | L1,ι≤ k≤U 1,ι ∧ k≡s t} andP 2

ι = {k | L2,ι≤ k≤U 2,ι ∧ k≡u v}.

– The runr1
0 of the automatonA1 is composed of three parts. The “left-accepting

part”, the “middle part”, and the “right-accepting” part. There are two cases to
consider depending on the emptiness or non-emptiness of thesetP 1

ι .
• If P 1

ι is empty, then the run is constructed in the following way: The left-

accepting part goes through the transitionqL
>
−→ qL, then the middle part is

the transitionqL
¬(∃i .

V

l∈L i≥l(xk) ∧
V

u∈U i≤u(xk) ∧ i≡st)
−−−−−−−−−−−−−−−−−−−−−−−−−→ qR taken at an arbitrary

point. The right-accepting part goes through the transitionqR
>
−→ qR. Since there

are no constraints (up to choosing the values of the parametersk), the run can
be trivially chosen to correspond toν.

• If P 1
ι is not empty, then the left-accepting part goes through the transitionqL

>
−→

qL until one of the guards of the outgoing transitions is satisfied, which happens
whenxτ reaches the valueL1,ι−1− p. The run then continues to one of theqi

states, namely the one for whichxτ + 1≡s i. The middle part of the run then
goes through the states{qi | 0≤ i < s} till xτ reaches the valueU 1,ι− p−
1. Subsequently, the run continues through the statesq j

i to qR where it loops
forever. Within the run, the constraints that are to be satisfied when taking a
transition from aqi state include:
1. x′a−x1 ≤ q, which can be satisfied as in the sequenceν of valuations that

the run needs to follow, the value ofx1 equalsx′a−q,
2. x′k−1− xk ≤ 0 for 1< k < p, which can be satisfied as in the sequence of

valuationsν to be followed, allx′k−1 andxk have the same value, and
3. x′p−1−xtϕ ≤ 0. This last kind of constraints is tested at the moments when

the value ofxτ corresponds to an indexl when a diagonal arc arrives to
tϕ. At that moment, in the sequenceν of valuations that we try to follow,
x′p−1 has the value ofL((a, l + p))−q, and from the fact that the labelling
is consistent (and henceL((a, l + p))− L((tϕ, l)) ≤ q), it is clear that the
last kind of constraints can be satisfied too.

Hence, there is an accepting run corresponding to the bi-infinite sequenceν of
valuations. A similar reasoning applies when passing through the statesq j

i .
– The runsr2

0 of A2 andr3
0 of A3 are constructed in a similar way.

ut
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Theorem 1. Let ϕ(k,a) be a positive boolean combination of formulae of types (F1)-
(F3) and PA constraints on the array-bound variablesk, and Aϕ be the automaton
defined in the previous. Then, Mϕ(V (Aϕ)) = [[ϕ]].

Proof. Let us first introduce some notation. Letx be an arbitrary set of variables, inter-
preted over some domainD, andI ⊆ x 7→ D be a set of valuations. For some superset
y ⊃ x of the set of variables, we defineI ↑y= {ι : y→ D | ι↓x∈ I }. If x1,y1 andx2,y2
are sets of variables interpreted over domainsD1 andD2, respectively,x1⊆ y1, x2⊆ y2,
andI12⊆ x1 7→D1×x2 7→D2 is a set of pairs of valuations, letI12↑y1,y2= {〈ι1, ι2〉 | ι1 :
y1→D1, ι2 : y2→D2, 〈ι1↓x1, ι2↓x2〉 ∈ I12}. The proof is by induction on the structure
of ϕ. Lemma 9 takes care about the cases ofϕ being of type (F1)-(F3). Ifϕ is a PA
constraint onk, the proof is immediate.

For the inductive caseϕ = ψ1∧ψ2, let k i andai , be the sets of array-bound and
array variables ofψi , for i = 1,2, respectively. We have by Lemma 3, that:

V (Aψ1⊗Aψ2) = V (Aψ1)↑x1∪x2 ∩ V (Aψ2)↑x1∪x2

wherex1 are the counters ofAψ1 andx2 are the counters ofAψ2. Applying Mϕ to this
equality, we obtain:

Mϕ(V (Aψ1⊗Aψ2)) = Mϕ(V (Aψ1)↑x1∪x2) ∩ Mϕ(V (Aψ2)↑x1∪x2)

sinceMϕ is defined point wise on sets of runs. By the induction hypothesis, we have
Mψi (V (Aψi ))= [[ψi ]], for i = 1,2. It is easy to see that,Mϕ(V (Aψi )↑x1∪x2)= [[ψi ]]↑k1∪k2,a1∪a2,
for i = 1,2. Hence, we have:

Mϕ(V (Aψ1⊗Aψ2)) = [[ψ1]]↑k1∪k2,a1∪a2 ∩ [[ψ2]]↑k1∪k2,a1∪a2= [[ψ1∧ψ2]]

The proof for the caseϕ = ψ1∨ψ2 follows a similar argument. ut

The main result of the paper is the following:

Corollary 1. The logicLIA is decidable.

The proof of Corollary 1 uses the normalization step (cf. Lemma 5) to rewrite any
formula ofLIA into the form (NF), and applies Theorem 1 to the matrix of the formula
(i.e. the formula obtained by skipping the existential quantifier prefix).

5 Conclusions and Future Work

We present a new decidable logic for reasoning about properties of programs handling
integer arrays. This logic allows to relate adjacent array values, as well as to express pe-
riodic facts relating all values situated at equidistant positions. We establish decidability
of this logic following the automata-theoretic approach. To this end, we define a new
class of Büchi automata with counters, for which emptinessis decidable, and translate
each formula into a corresponding automaton.

Future work will include the study of the complexity of our decision procedure and
its implementation. We furthermore plan to develop invariant generation methods in
order to give automatic correctness proofs for programs with integer arrays.
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A Extensions of Flat Counter Automata

The purpose of this appendix is to motivate the extensions ofthe result in [6, 4], on
flat counter automata. Given a flat counter automatonA = 〈x,Q,−→〉, and a loopγ on

a control stateq ∈ Q, labelled with DBM formulae only, one can effectively builda
PA formulaΨq,γ(y,x,x′) which is satisfied by all triples〈n,v,v′〉, where there exists an
execution corresponding ton loop iterations, in which the initial values of the counters
arev and the final values arev′. Based on this result, we prove two important lemmas.

Lemma 10. If any control loop of A is labelled by a parametric DBM formula, then for
any two control states q,q′ ∈Q, one can effectively build a PA formula Rq,q′(x,x′) such
that, for any two configurations(q,ν) and(q′,ν′), (q′,ν′) is a successor of(q,ν) if and
only if |= Rq,q′(ν(x),ν′(x′)).

Proof. First, we eliminate the atomic propositions of the formx∼ f (k) wherek are the
parameters ofA and∼∈ {≤,≥} from all control loops ofA. This is done by introducing
an extra parameterxf , Then we changex∼ f into x∼ xf ∧ x′f = xf for all transition
rules ofA. Consequently, all loops ofA will be labelled only with DBM formulae. Let
Ω be the conjunction of all formulaexf = f (k), for all linear combinationsf that are
eliminated in this way from the transition rules ofA.

If A is flat, any control path betweenq andq′ is of the form

π : q = q0
γ∗0−→ q0

σ0−→ q1
γ∗1−→ q1

σ1−→ . . .qk−1
γ∗k−1
−−→ qk−1

σk−1
−−−→ qk−1 = q′

for k > 1, whereγi are elementary loops andσi are control paths in which each state
appears only once, for 1≤ i ≤ k. Sinceσi are finite, one can build PA formulaeφi(x,x′),

by composing the PA formulae on the transitions ofσi . In other words, ifσi : q1
ϕ1−→

q2
ϕ2−→ q3 . . .qn−1

ϕn−1
−−−→ qn thenφi : ∃x0∃x1 . . .∃xn . x = x0∧x′ = xn∧

Vn−1
i=0 ϕi(xi ,xi+1).

The needed formula is the conjunction ofΩ with the disjunction over all path
schemesπ, of formulae of the form:

Θπ : ∃x1 . . .∃x2k−1∃n0∃n1 . . .∃nk−1 . x = x1∧x′ = x2k+1∧
k̂

i=1

Ψqi ,γi (ni ,x2i−1,x2i)∧φi(x2i,x2i+1)

ut
The next result concerns the termination of one control loop, labelled with DBM

formulae. Since DBM formulae are closed under composition,we can consider w.l.o.g.

only one self-loop of the formq
ϕ(x,x′)
−−−−→ q′. We first instrument the DBM formula, by

replacing each constraint of the formx≤ k by x− ζ ≤ k∧ζ′ = ζ andx≥ k by ζ−x≤
−k∧ ζ′ = ζ, whereζ is a fresh counter, initially set to zero. From now on, we refer to
the setx as to the set of all counters, includingζ as well.

In general, a DBM formulaϕ(x,x′) can be represented as a directed weighted graph
whose set of vertices is the set of variablesx∪ x′, and there is an edge with weight
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Fig. 9. Constraint Graph and Automaton for the DBMx′−x≤−1∧u′ ≥ 0∧u′−x≤ 0.

k from x to y if and only if there is an explicit constraintx− y≤ k in ϕ. An n-step
execution of the loop is represented by a constraint graphGn

ϕ, defined as the minimal
graph whose set of vertices is

Sn
i=0xi , wherexi = {xi |x∈ x} and, for all 0≤ i < n, there

is an edge labelledk:

– from xi to yi , if there is a constraintx−y≤ k in ϕ.
– from xi+1 to yi+1, if there is a constraintx′−y′ ≤ k in ϕ.
– from xi to yi+1, if there is a constraintx−y′ ≤ k in ϕ.
– from xi+1 to yi , if there is a constraintx′−y≤ k in ϕ.

We define the infinite graphG∞
ϕ =

S∞
n=0Gn

ϕ. For instance, Figure 9 (a) shows the con-
straint graphGn

ϕ corresponding to the DBM formulax′−x≤−1∧u′ ≥ 0∧u′−x≤ 0.

If π : xi k1−→ . . .
km−→ y j , 0≤ i, j ≤ n is a path inGn

ϕ, let ω(π) denote the sum of all

labels along the path, i.e.ω(π) = ∑m
i=1ki . Clearly, we havexi − y j ≤ ω(π). We define

min{xi −→ y j} = min{ω(π) | π : xi k1−→ . . .
km−→ y j}. By convention, if there are no paths

in G∞
ϕ , betweenxi andy j , we take min{xi −→ y j} = ∞. On the other hand, if the set of

paths betweenxi andx j does not have a minimal element, we take min{xi −→ y j}=−∞.

Notice that this can only be the case ifGn
ϕ has a cycle whose weight is negative. With

this notation, we havexi − y j ≤min{xi −→ y j}. Moreover, this is the strongest relation

involving the values ofx andy at the execution timesi and j, respectively. Notice that
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the satisfiability of all constraints betweenxi andy j is equivalent with the absence of
negative cycles involving the nodesxi any j from G∞

ϕ . For example, the thick edges in
Figure 9 (a) show a cycle inGn

ϕ.
The essence of the proof in [4] is to encode paths in the constraint graphGn

ϕ by
words of lengthn. Intuitively, a wordw of lengthn represents a pathπ between, say,x0

andyn, with x,y∈ x, as follows: thewi symbol representssimultaneouslyall edges of
π that involve only nodes fromxi ∪xi+1, 0≤ i < n. Note that, for a path fromx0 to yn,
coded by a wordw, the number of times thewi symbol is traversed by the path is odd,
whereas for a path fromx0 to y0, or fromxn to yn, this number is even. In particular, if
the path is cyclic, we are in the second case. We define theweightof a symbol as the
sum of the weights of all the edges in it. The weight of a finite word is the sum of the
weights of all symbols occurring in the word.

Given a DBM relationϕ(x,x′), theeven alphabetof ϕ, denoted asΣe
ϕ, is the set of

all graphs satisfying the following conditions, for eachG∈ Σe
ϕ:

1. the set of nodes ofG is x∪x′,
2. for anyx,y∈ x∪x′, there is an edge with labelk from x to y, only if the constraint

x−y≤ k occurs inϕ,
3. the in-degree and out-degree of each node are at most one,
4. the number of edges fromx to x′ equals the number of edges fromx′ to x.

Starting from this encoding, it is possible to define a finite weighted automatonAe
ϕ, in

which each transition is labelled with a subgraph ofGϕ, and the weight of a transition
is the weight of the subgraph. Moreover, the construction issuch that all paths between
certain pairs of control states are encodings of all cycles in the constraint graphGn

ϕ.
Hence, fromAe

ϕ, it is possible to give a PA formula stating the absence (or presence) of
paths of negative weight inAe

ϕ, and hence of negative cycles inG∞
ϕ . For example, the

automaton in Figure 9 (b) accepts the word encoding of the cycle in Figure 9 (a).
The following lemma is a consequence of the construction described above. Namely,

we are interested by a formula that characterises all initial values of the counters from
which there exists an infinite computation along the loop. Notice that termination is a
universal problem: we are interested in the set of all statesfrom which there is a termi-
nating (or, vice versa, non-terminating) run of the loop.

Lemma 11. Given a control loopγ labelled by a parametric DBM formula, and a con-
trol state q onγ, one can effectively build a PA formula Iq,γ(x), such that, for any con-
figuration(q,ν), there exists an infinite computation alongγ, starting with(q,ν) if and
only if |= Iq,γ(ν(x)).

Proof. Let q
ϕ
−→ q be a self-loop, whereϕ(x,x′) is a parametric DBM formula, and let

G∞
ϕ be the corresponding infinite constraint graph. Letx0 = {x0 | x∈ x} be the set of

initial values of the counters.
Let ϕn : ∃x0∃x1 . . .∃xn . x = x0∧x′ = xn∧

Vn−1
i=0 ϕ(xi ,xi+1) be the formula corre-

sponding to then-th iteration of the loop, and letψn(x0,x,x′) = ϕn(x,x′)∧
V

x∈x x = x0

be the formula corresponding to then-th iteration of the loop starting fromx0.
Notice that the constraint graphGn

ψ corresponding toψn(x0,x,x′) can be obtained
from Gn

ϕ by adding edges labelled withx0 betweenx0 andζ0, and with−x0 betweenζ0
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andx0, for all x∈ x. Based on the encoding of unbounded constraint graphs as words, we
define a weighted automaton recognizing all cycles inGn

ψ. Notice that this automaton
has edges labelled with linear combinations of thex0 parameters, and that these edges
do not occur within cycles.

Using the method described in [4], one can effectively builda PA formulaθ(y,x0)
that is satisfied by all tuples〈n,v〉, such that there exists a negative cycle of spann,
when the parametersx0 are assigned tov. Hence the formula∃y . θ(y,x0) defines all
values ofx0 for which there exists a negative cycle inGn

ψ, and for which the loop has a
finite computation. The needed formula is∀y . ¬θ(y,x0). ut

For example, the PA formula defining the values for which the iteration of the loop
labelled with the DBM formulax′− x≤ −1∧u′ ≥ 0∧u′− x≤ 0, started withx = x0,
terminates inn steps can be derived from the automaton in Figure 9:x0− n−1≤ 0.
Then, one can establish that the loop terminates for any initial value ofx by verifying
the validity of the PA formula∀x0∃n . x0−n−1≤ 0.
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