Recognition Algorithms
MPRI 2017–2018

Michel Habib
habib@irif.fr
http://www.irif.fr/~habib

Sophie Germain, septembre 2017
Schedule

Algorithmic aspects of modular decomposition
 Historical Notes
 Bottom up Techniques
 Top Down techniques

Interval recognition

Recognition of permutation graphs
Applications of modular decomposition

- A very natural operation to define on discrete structures, searching for regularities.
- A structure theory for comparability graphs
- A compact encoding using module contraction and if we keep at each prime node the structure of the prime graph.
- Divide and conquer paradigm can be applied to solve optimization problems. For example to test isomorphism.
- A very basic graph algorithmic problem (similar to graph isomorphism problem).
- A better understanding of graph algorithms and their data structures.
Historical notes

The big list of published algorithms for modular decomposition
(N.B. Perhaps some items are missing . . . please give me the missing references)

- Cowan, James, Stanton 1972 $O(n^4)$
- Maurer 1977 $O(n^4)$ directed graphs
- Blass 1978 $O(n^3)$
- Habib, Maurer 1979 $O(n^3)$
- Habib 1981 $O(n^3)$ directed graphs
- Corneil, Perl, Stewart 1981, $O(n + m)$ cograph recognition.
- Cunningham 1982 $O(n^3)$ directed graphs
- Buer, Mohring 1983 $O(n^3)$
- McConnell 1987 $O(n^3)$
- McConnell, Spinrad 1989 $O(n^2)$ incremental
- Adhar, Peng 1990 $O(\log^2 n), O(nm)$ proc. parallel, cographs, CRCW-PRAM
▶ Lin, Olariu 1991 $O(\log n), O(nm)$ proc. parallel, cographs, EREW-PRAM
▶ Spinrad 1992 $O(n + \alpha(m, n))$
▶ Cournier, Habib 1993 $O(n + \alpha(m, n))$
▶ Ehrenfeucht, Gabow, McConnell, Spinrad 1994 $O(n^3)$ 2-structures
▶ Ehrenfeucht, Harju, Rozenberg 1994 $O(n^2)$ 2-structures, incremental
▶ McConnell, Spinrad 1994 $O(n + m)$
▶ Cournier, Habib 1994 $O(n + m)$
▶ Bonizzoni, Della Vedova 1995 $O(n^{3k-5})$ Committee decomposition for hypergraphs
▶ Dahlhaus 1995 $O(\log^2 n), O(n + m)$ proc. parallel, cographs, CRCW-PRAM
▶ Dahlhaus 1995 $O(\log^2 n), O(n + m)$ proc. parallel, CRCW-PRAM
Habib, Huchard, Sprinrad 1995 $O(n + m)$ inheritance graphs
McConnell 1995 $O(n^2)$ 2-structures, incremental
Capelle, Habib 1997 $O(n + m)$ if a factoring permutation is given
Dahlhaus, Gustedt, McConnell 1997 $O(n + m)$
Dahlhaus, Gustedt, McConnell 1999 $O(n + m)$ directed graphs
Habib, Paul, Viennot 1999 $O(n + m \log n)$ via a factoring permutation
McConnell, Spinrad 2000 $O(n + m \log n)$
Habib, Paul 2001 $O(n + m)$ cographs via a factoring permutation
Capelle, Habib, Montgolfier 2002 $O(n + m)$ directed graphs if a factoring permutation is provided.
Shamir, Sharan 2003 $O(n + m)$ cographs, fully-dynamic
McConnell, Montgolfier 2003 $O(n + m)$ directed graphs
Habib, Montgolfier, Paul 2003 $O(n + m)$ computes a factoring permutation
Simpler Linear-Time Modular Decomposition via Recursive Factorizing Permutation
Tedder, Corneil, Habib, Paul, ICALP (1) 2008 : 634-646.
Why it is so important?

[Jerry Spinrad’ book 03]
The new [linear time] algorithm [MS99] is currently too complex to describe easily [...] The first $O(n^2)$ partitioning algorithms were similarly complex; I hope and believe that in a number of years the linear algorithm can be simplified as well.
Minimal Modules

Minimal module containing a set
For every $A \subseteq V$ there exists a unique minimal module containing A

Proof:
Since the module family is partitive and therefore closed under \cap.
Definition
A splitter for a $A \subseteq V$, is a vertex $z \notin A$
s.t. $\exists x, y \in A$ with $zx \in E$ and $zy \notin E$.

Modules
$A \subseteq V$ is a module iff A does not have any splitter.

Usefull lemma
If z is a splitter for a $A \subseteq V$, then any module containing A must also contain z.
Submodularity

Let us denote by $s(A)$ the number of splitters of a set A, then s is a submodular function.

Definition

A function is submodular if

\[
\forall A, B \subseteq E \quad f(A \cup B) + f(A \cap B) \leq f(A) + f(B)
\]

This is the basic idea of Uno and Yagura’s algorithm for the modular decomposition of permutation graphs in $O(n)$.
Bottom-up Techniques

Sketch of the algorithm

For each pair of vertices \(x, y \in V \)

Compute the minimal module \(m(x, y) \) containing \(x \) and \(y \).

Closure with splitters

While there exists a splitter add it to the set.

Complexity

\(O(n^2.(n + m)) \)
Primality testing

One can derive a primality test since if there exists a non trivial module, it contains at least two vertices.
For some problems Bottom-Up techniques are the best known.
Origins : Golumbic, Kaplan, Shamir 1995

Input : $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ 2 undirected graphs such that $E_1 \subseteq E_2$ and Π be a graph property.

Results : a sandwich graph $G_s = (V, E_s)$ satisfying property Π and such that $E_1 \subseteq E_s \subseteq E_2$.

Edges of E_1 are forced, those of E_2 are optional ones, but those of $E_3 = \overline{E_2}$ are forbidden.

Unfortunately most cases are NP-complete, as for example of Π

- G_s being comparability, chordal, strongly chordal, …
Only few polynomial cases

- cographs Golumbic, Kaplan, Shamir (1995)
- sandwich module Cerioli, Everett, de Figueiredo, Klein (1998)

Natural question

Find efficient algorithms for these polynomial cases.
Sandwich module problem

Input: $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ 2 undirected graphs such that $E_1 \subseteq E_2$.

Result: a sandwich graph $G_s = (V, E_s)$ having a non trivial module and such that $E_1 \subseteq E_s \subseteq E_2$.
Minimal Sandwich Module

Splitter

For a subset $A \subseteq V$, a splitter is a vertex $z \notin A$ s.t. $\exists x, y \in A$ with $zx \in E_1$ and $zy \notin E_2$ (or equivalently $zy \in E_3$)

A splitter is also called **bias vertex**.

Algorithm

The computation of a minimal sandwich module can be done in $O(n^2(n + m_1 + m_3))$.

Hard to do better with this idea, using a bottom up approach.
Brute Force Algorithm

Using the decomposition theorem, we only have to compute at most n times some connected components of G or its complement. $O(n(n + m))$ complexity.
Three explored directions

- Ehrenfeucht et al approach
- Using Factoring Permutation
- Using LexBFS (as for cographs).
Ehrenfeucht et al approach

$\mathcal{M}(G, \nu)$

$\mathcal{M}(G, \nu)$ is the partition of $V(G)$ composed by $\{\nu\}$ and the maximal modules of G that do not contain ν.

Principle of the Ehrenfeucht et al.’s algorithm

1. Compute $\mathcal{M}(G, \nu)$
2. Compute $MD(G/\mathcal{M}(G,\nu))$
3. For each part $\mathcal{X} \in \mathcal{M}(G, \nu)$ compute $MD(G[\mathcal{X}])$
Computing $\mathcal{M}(G, v)$ via Partition Refinement

Splitter again

If z is a splitter of $A \subseteq V(G)$ then any strong module contained in A is either contained in $N(z) \cap A$ or in $A - N(z)$.
Computation of $\mathcal{M}(G, v)$

$\Rightarrow O(n + m \log n)$ time using vertex partitioning algorithm.
1. Particular partition refinement rule:
 Do not refine its part
 Just to maintain the invariant:
 Modular partition \leq Current partition

2. To obtain a $\log n$
 Avoid the biggest part
How to reconstruct the modular decomposition tree from the partition $M(G, v)$? The most difficult step in many algorithms.
Computation of $MD(G/\mathcal{M}(G,v))$

- The modules of $G/\mathcal{M}(G,v)$ are linearly nested: any non-trivial module contains v
- The forcing graph $\mathcal{F}(G,v)$ has edge \overrightarrow{xy} iff y separates x and v
The strong connected components of the forcing graph \(\mathcal{F}(G, v) \) provides the modules of of \(G_{/ \mathcal{M}}(G, v) \).

Recurse on each module.
Recognition Algorithms MPRI 2017–2018

Algorithmic aspects of modular decomposition
Top Down techniques

Complexity

- [Ehrenfeucht et al.’94] gives a $O(n^2)$ complexity. It is quite tricky to efficiently compute the forcing graph $F(G, v)$.
- [MS00] gives a very simple $O(n + m \log n)$ algorithm based on vertex partitioning.
- [DGM’01] proposes a $O(n + m.\alpha(n, m))$ and a more complicated $O(n + m)$ implementation.

Other algorithms

- [CH94] and [MS94] present the first linear algorithms.
- [MS99] present a new linear time algorithm which extends to transitive orientation.
Factoring permutations

The set of strong modules is nested into an inclusion tree (called the \textit{modular decomposition tree} $MD(G)$ of G).

A factoring permutation is simply a left-right ordering of the leaves of a plane drawing of $MD(G)$.
Consequence: it always exists factoring permutations. There are easier to compute than the modular decomposition tree.
Invariant

Any strong module is a factor of the partition.
A factoring permutation of a graph $G = (V, E)$ is a permutation of V in which any strong module of G is a factor. [CH 97]
Algorithmic aspects of modular decomposition

Top Down techniques
Algorithmic aspects of modular decomposition

Top Down techniques
Algorithmic aspects of modular decomposition

Top Down techniques
From G to factoring permutation: $O(n + m \log n)$ [HPV99]

From factoring permutation to $MD(G): O(n + m)$ [CdMH01] [UY00] [BXHP05]
Factoring permutation (of cographs) via vertex partitioning

Starting with the partition \(\{N(x), \{x\}, N(x)\} \), we maintain the following invariant:

It exists a factoring permutation smaller than the current partition.
Recall of the tree structure of cographs
Splitter interpretation

Starting with the partition \(\{ N(x), \{x\}, \overline{N(x)} \} \), we maintain the following invariant:

There exists a factoring permutation smaller than the current partition.
Algorithmic aspects of modular decomposition

Top Down techniques
Recognition Algorithms MPRI 2017–2018

- Algorithmic aspects of modular decomposition
- Top Down techniques
Algorithmic aspects of modular decomposition

Top Down techniques
Invariant

Any strong module is a factor of the partition.
1. Brute force, just partition refinement. Using recursivity. $O(nm)$

2. Using the rule: take the smallest half $O(m\log n)$

3. Using at most one vertex per part to refine the other parts.
 Idea: only two parts (the extreme ones) refine nothing. Then we can restart the procedure to the closest one to the initial pivot.
 In the whole a vertex is at most used twice as a pivot.
 $O(n + m)$
Modular decomposition algorithms via partition refinement are very similar than the cograph recognition algorithms just a little more complicated.
Anna Bretscher, Derek G. Corneil, Michel Habib, and Christophe Paul.
A simple linear time lexbfs cograph recognition algorithm.

Michel Habib and Christophe Paul.
A simple linear time algorithm for cograph recognition.

Michel Habib and Christophe Paul.
A survey of the algorithmic aspects of modular decomposition.
Characterization Theorem for interval graphs (Folklore)

(i) \(G = (V, E) \) is an interval graph, i.e.; \(G \) is the intersection graph of a family of intervals of the real line

(ii) There exists a total ordering \(\tau \) of the vertices of \(V \) s.t. \(\forall x, y, z \in G \) with \(x \leq_\tau y \leq_\tau z \) and \(xz \in E \) then \(xy \in E \).

(iii) \(G \) admits a maximal clique tree which is a chain.
(iii) implies (i) is obvious, since the chain of maximal cliques gives the interval representation.
(i) implies (iii). From the interval representation it is easy $O(n)$ to compute the sequence of maximal cliques.
(i) implies (ii) : one can associate to every vertex x of G an interval $[\text{left}(x), \text{right}(x)]$ of the real line.
Let us define τ as the left sides ordering : $x \leq_\tau y$ iff $\text{left}(x) \leq \text{left}(y)$. It is easy to verify that τ satisfies the condition.
(ii) implies (i) : starting with τ, for every vertex x we associate an interval in $\tau [x, \text{last}(x)]$, where $\text{last}(x)$ is its rightmost neighbor in τ. This provides an interval representation of G.
To recognize an interval graph, we just have to compute a maximal clique tree and check if it is a chain ?

Difficulty : an interval graph has many clique trees and among them some are chains
Figure: G a chordal graph
Figure: $C_r(G)$ its reduced clique graph
Figure: A good maximal clique tree T_1 showing that G is an interval graph
Figure: Another maximal clique tree T_2 obtained via LBFS
$\sigma = c, a, b|d|e|f|g$
How can we transform T_2 to obtain T_1?
Many linear time algorithms already proposed for interval graph recognition using nice algorithmic tools : graph searches, modular decomposition, partition refinement, PQ-trees ...
Linear time recognition algorithms for interval graphs

- Booth and Lueker 1976, using PQ-trees.
- Hsu and Ma 1995, using modular decomposition and a variation on Maximal Cardinality Search.
- M.H, McConnell, Paul and Viennot 2000, using LBFS and partition refinement on maximal cliques.
- P. Li, Y. Wu 2014, using a series of 4 kind of LBFS
- ...
A partition refinement algorithm working on maximal cliques

1. Compute a tree T using LBFS
 If T is not a maximal clique tree; then G is not chordal, neither interval.

2. Start from the last maximal clique visited by the search
 Refine the cliques with the minimal separator.

3. Refine until each part is a singleton

4. If a part is not a singleton start recursively from the last clique of this part according to LBFS.

5. Check if the last partition is a chain of maximal cliques.
Interval recognition

Figure: T_2 obtained via LBFS $\sigma = c, a, b | d | e | f | g$

- $\{bg\}|\{abc, abd, abe, af\}$
- Refine with b gives:
 - $\{bg\}|\{abc, abd, abe\}, |\{af\}$
- Refine with a does not change the partition
- abe is the last maximal clique of the central part.
 - $\{bg\}|\{abe\}|\{abc, abd\}, |\{af\}$
 - Refine with a,b does not change the partition
- abd is the last maximal clique of the central part.
 - $\{bg\}|\{abe\}|\{abd\}|\{abc\}, |\{af\}$
Similar problems

1. Recognition of permutation graphs
2. Consecutive one property
3. Transitive orientation of a comparability graph
4. Planarity testing
5. Decomposition of boolean matrices
6. Robinsonian matrices
7. Other problems on symmetric positive matrices.
Recognition of Permutation graphs

PERMUTATION(G) :
Input: A connected graph \(G = (V, E) \), cocomp ordering \(\sigma \) of \(G \) and cocomp ordering \(\tau \) of \(\overline{G} \)
Output: The message that at least one of \(\sigma, \tau \) is not a cocomp ordering of its graph \((G, \overline{G})\) or total orderings \(\pi_1, \pi_2^{\text{dual}} \) of \(1, 2, \cdots |V| \) that certify that \(G \) is a permutation graph

\[P_{G(\tau)} \leftarrow \text{an acyclic orientation of } G \text{ using } \tau; \]

\[\pi_1 \leftarrow \text{dfgreedy}^+(P_{G(\tau)}, \sigma); \]

\[\pi_2 \leftarrow \text{dfgreedy}^+(P_{G(\tau)}, \sigma^{\text{dual}}); \]

Check if \(\pi_1, \pi_2^{\text{dual}} \) represent \(G \) as a permutation graph;
Recognition of permutation graphs

\[\sigma = 1, 3, 5, 4, 2, 6 \] is a cocomp ordering of \(G \), but not a cocomp ordering of \(\overline{G} \) (see umbrella (1, 5, 2))

\[\tau = 1, 2, 3, 4, 5, 6 \] is a cocomp ordering of \(\overline{G} \), but not a cocomp ordering of \(G \) (see umbrella (2, 3, 6))

\[\pi_1 = 2, 1, 6, 4, 3, 5 = \text{dfgreedy}(P_{G(\tau)}, \sigma) \]

\[\pi_2 = 1, 3, 4, 2, 5, 6 = \text{dfgreedy}(P_{G(\tau)}, \sigma_{\text{dual}}) \]

\(\pi_1 \) and \(\pi_2 \) are cocomp orderings of both \(G \) and \(\overline{G} \)
- dfgreedy is a graph search applied on posets and if σ is a cocomp then $\text{dfgreedy}^+(P_{G(\tau)}, \sigma)$ is also a cocomp.

- If G is a permutation graph, $\text{dfgreedy}^+(P_{G(\tau)}, \sigma)$ and $\text{dfgreedy}^+(P_{G(\tau)}, \sigma^{\text{dual}})$ provide a representation of G as a permutation graph.