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Tree decomposition

G = (V ,E ) has a tree decomposition D = (S ,T )
S is a collection of subsets of V , T a tree whose vertices are
elements of S such that :

(0) The union of elements in S is V

(i) ∀e ∈ E , ∃i ∈ I with e ∈ G (Si ).

(ii) ∀x ∈ V , the elements of S containing x form a
subtree of T .

Definition

treewidth(G ) = MinD(MaxSi∈S{|Si | − 1})
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Recall of some Equivalences

1. Treewidth(G ) = MinH triangulation of G{ω(H)− 1}
2. Computing treewidth is NP-hard.
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Other definitions of trewidth in terms of cop-robber games, using
graph grammars ....
But it turns out that this parameter is a fundamental parameter
for graph theory.
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Some examples

1. G is a tree iff treewidth(G ) = 1

2. treewidth(Kn) = n − 1

3. If G is a cycle then treewidth(G ) = 2. (It can be seen as two
chains in parallel, i.e. a series-parallel graph)

4. treewidth(Kn,m) = min(n,m)

5. treewidth(Gn,m) = min(n,m), the lower bound is hard to
obtain !

6. treewidth(G ) (resp. pathwidth) measures the distance from G
to a tree (resp. to a chain)
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Easy properties

treewidth(G ) = k iff G can be decomposed using only separators
of size less than k.

Fundamental lemma

Let ab an edge of T some tree decomposition of G and T1, T2 be
the two connected components of T − ab, then Va ∩ Vb is a
separator between V1 − V2 and V2 − V1, where V1 = ∪i∈T1Vi and
V2 = ∪j∈T2Vj .
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Proof of the lemma

Démonstration.

Let ab be an edge of a tree decomposition T of G . T − ab is
disconnected into T1 and T2, two subtrees of T .
Let V1 = ∪t∈T1Vt and V2 = ∪t∈T2Vt . If Va ∩ Vb is not a
separator, then it exists u ∈ V1 − V2 and v ∈ V2 − V1 and uv ∈ E .
But then in which bag can the edge uv belongs to ? Since using
property (i) of tree decomposition each edge must belong to some
bag. This cannot be in T1, neither in T2, a contradiction.
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For the previous lemma, we only use the definition of any
tree-decomposition, not an optimal one. It also explains the use of
property (i) in the definition of tree decomposition.



6ème Cours Cours MPRI 2010–2011

Treewith

Computations of treewidth

I There exists polynomial approximation algorithms

I For every fixed k , it exists a linear algorithm to check wether
Treewidth(G ) ≤ k Boedlander 1992. (Big constant for the
linearity).

I Find an efficient algorithm for small values 3, 4, 5 . . . is still a
research problem
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Real applications of treewidth

1. Graphs associated with programs have bounded treewidth
4,5, 6 depending on the programming language, Thorup 1997.

2. Constraint Satisfaction Problem, Feuder’s Theorem

3. Can also be defined on hypergraphs which yields applications
for Data bases via Acyclic Hypergraphs

4. Good Heuristic for the Traveling Salesman Problem,
Chvatal
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Divide and Conquer Approach

E. Proskurowski

When he introduced partial k-trees
as a generalisation of trees preserving dynamic programming
he aimed at polynomial algorithms for bounded tree-graphs (i.e.
the size of the bags is bounded).

Generic Divide and Conquer Algorithm

Solve the problem for a leaf and then recurse



6ème Cours Cours MPRI 2010–2011

Treewith

Metaconsequence

For most graph parameters Π, there exists an exact algorithm in
O(2O(treewidth(G)).

Balanced separator

Every graph G , |G | ≥ k + 4, with treewidth(G ) = k admits a
separator S of size k + 1 such that G − S is partitionned into A,B,
with no edge between A and B and :
1
3 (n − k − 1) ≤ |A|, |B| ≤ 2

3 (n − k − 1)
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The study of the interplay between logics and combinatorial
structures
yields knowledge on complexity theories
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B. Courcelle studying graph rewriting systems or graph grammars
obtained :

Meta-Theorem

Any graph problem that can be expressed with a formula of the
Monadic Second Order Logic (MSO),
if G has bounded treewidth then it exists a linear algorithm to
solve this problem on G .

Why Meta

A unique theorem for a whole class of problems on a class of
graphs.
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Monadic Second Order Logic

For graphs :
x1, . . . xn variables
Xi subset of vertices
Atoms :
E (x , y) true iff xy is an edge of G
X (x) true if x ∈ X
Classical logical connectors (equality, implication, negation . . .) to
make formulas
Quantification over variables and subsets of vertices are allowed.
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Examples :

I φ : ∃x1 . . . ∃xk∀y
∧

1≤i≤k((xi = y)
∨

(E (xi , y))
φ = G has a dominating set of size ≤ k .

I Idem ψk = G is k-colorable.

I Of course, SAT can be expressed in MSO.

I The number of quantifiers is an indication of the complexity
of the formula (i.e. the problem)
We do not need to use quantifiers on subets of edges (via the
incidence bipartite)
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Not all graph problems can be expressed in MSO.
Example : Computing the permanent of a graph (matrix)
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Linear ?

Linear but with a giant constant :

(222...

)h.
h the size of this exponential tower which depends
on the MSOL formula, more precisely on the
alternation of quantifiers

Grohe, Frick 2005

h is unbounded unless P = NP.
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Recent work try to avoid the construction of the automaton (which
can be of huge size), using techniques from verification or game
theory.
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A Duality Theorem

Brambles

G = (V ,E ) ; B = {Xi |Xi ⊆ V } such that :
(i) ∀i , G (Xi ) connected
(ii) ∀i , j G (Xi ∪ Xj) connected.
A transversal of a bramble is a set τ ⊆ V such that ∀i τ ∩ Xi 6= ∅
bn(G ) = MaxB bramble of G (minτ transversal of B(|τ |))

Duality Theorem Roberston and Thomas 93

For every graph G , treewidth(G ) = bn(G )− 1
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Lower bound

Consider the family {{d}, {a, b}, {e, f }, {g, c}} which satisfies
the properties of a bramble .
With a transversal {d , b, c , f } of minimum of size 4.
Therefore using bramble theorem threewidth(G ) ≥ 3



6ème Cours Cours MPRI 2010–2011

Treewith

Therefore this example has exactly treewidth 3
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bn(G ) ≤ treewidth(G ) + 1

Démonstration.

Let us consider a tree decomposition T and a bramble B.
Every Xi ∈ B coresponds to a subtree TXi

in T , using connectivity
(i).
Furthermore condition (ii) implies ∀i , j , TXi

∩ TXj
6= ∅

Using Helly property on these subtrees, they all have a common
vertex t. The bag associated with t meets every element of the
bramble and is a transversal for B.
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This Min(Max) Max(Min) theorem gives evidence for treewith
computations
as for example for the grid.
Consider the bramble made up with all the crosses it has a
transversal of size min(n,m),
therefore treewidth(Gn,m) ≥ min(n,m)− 1
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Graph Minors

I A graph H is a minor of a graph G if H is isomorphic to a
graph obtained from G by contracting edges, deleting edges,
and deleting isolated nodes

I The minor ordering of graphs is that defined by H ≤ G if H is
a minor of G

I A set S of graphs is downwardly closed with respect to the
minor ordering if, whenever G ∈ S and H is a minor of G , it
holds H ∈ S .
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P. Seymour and Roberston introduced treewith and branchwidth as
parameters for an induction proof of Wagner’s conjecture.

Wagner’s Conjecture

Wagner conjectured in the 1930s (although this conjecture was not
published until later) that in any infinite set of graphs, one graph is
isomorphic to a minor of another. The truth of this conjecture
implies that any family of graphs closed under the operation of
taking minors (as planar graphs are) can automatically be
characterized by finitely many forbidden minors analogously to
Wagner’s theorem characterizing the planar graphs.



6ème Cours Cours MPRI 2010–2011

Big theorems on Graph Minors

Obstructions

An obstruction H to a family F of graphs, is a graph which does
not belong to F , but every minor of H belongs ot F .
For example a triangle is an obstruction for the family of forests.

Theorem 1

For every class of graphs G closed under minors then there exist a
set of finite obstructions Ob(G) such that :
G ∈ G iff 6 ∃H ∈ Ob(G) with H ≤ G .

Example Kuratowski’s theorem

G is planar iff G does not contain any subgraph homeomorphic to
K5 or K3,3.
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Theorem 2

For every graph H, there exists an algorithm in O(n3) to test
wether H ≤ G for a given graph G .

Remark

B. Reed claims O(nlogn) 2007.
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Topological Minors

Definition

H is a topological minor of G iff G has a subgraph H ′ isomorphic
to a subdivision of H

Definition

H is a subdivision of G iff H can be obtained from G by a series of
edge subdivisions.
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Other graph classes

I G is a forest iff G does not contain any subgraph
homeomorphic to K3 .

I G is series-parallel iff G does not contain any subgraph
homeomorphic to K4 and K3,3.

I G is planar iff G does not contain any subgraph
homeomorphic to K5 or K3,3.

I G is an outerplanar graph iff G does not contain any
subgraph homeomorphic to K4 or K2,3

I As a corollary if G does not contain any subgraph
homeomorphic to K4 or K2,3 then G is hamiltonian.
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Theorem 3

H ≤ G implies treewidth(H) ≤ treewidth(G )
and for every k, graphs with treewidth bounded by k are well
quasi-ordered for ≤.

No infinite antichain or no infinite strictly decreasing chain or finite
number of obstructions.
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Lower bound

If we contract the edges ab, ef , gc and delete edge ch, we obtain
K4 which is a minor of G
therefore threewidth(G ) ≥ treewidth(K4) = 3



6ème Cours Cours MPRI 2010–2011

Big theorems on Graph Minors

1. treewidth(G ) = 2 iff G has no K4 as minor.

2. treewidth(G ) = 3 iff G has no K5, Petersen, 8-wheel, XX as
minor.

3. treewidth(G ) = 4 iff G has no H ∈ H as minor, and H
contains 80 graphs.

4. . . .
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Theorem 4

Finite graphs are well ordered with ≤

Consequences

Any class of graphs closed under minors has a polynomial
recognition algorithm
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Another meta theorem

2006 Dawer, Kreutzer,

Every optimisation problem expressible in first order logic on class
of graphs defined with minor exclusion, has a polynomial
approximation algorithm.
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How to prove such a theorem ?

Theorem

Gaifman 1981
Every FOL formula can be expressed using local formulas

Theorem

Roberston Seymour 1999
For any graph class defined using minor exclusion there exists a
decomposition using graphs almost embeddable on some surface

Theorem

Grohe, Kawabashi 2008
This decomposition can be computed in O(nc), and c does not
depend on the size of the minor.
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Applications

I Change our knowledge about P versus NP

I Linear algorithms but with extremely big constants

I Improve our knowledge on NP-complete problems with
Fixed parameter Tractablility (FPT) a theory proposed by M.
Fellows ;
Famous Courcelle’s meta-theorem can be presented as an
FPT result.

I Non constructive algorithms
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Examples of non constructive algorithms

1. For any fixed k , it is polynomial to test wheter genius(G ) ≤ k
(we know there is a finite number of obstructions)

2. It is polynomial to decide if a graph has a non-crossing
embedding in 3D
(non-crossing means no 2 cycles cross)
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Grids are important for treewidth

Theorem Roberston Seymour 86

For every integer r, there exists an integer k = f (r) such that for
any graph G then treewidth(G ) ≥ k implies G contains Gr ,r as
minor.

Useful result

For non practical exact algorithms for disjoint path problems.
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Computing exact treewidth

From H. Boedlander’s survey :
Upper bounds :
Search for the fill-in ordering which minimises the size of the
maximum clique, this leads to the search of the best simplicial
elmination scheme
Therefore it is a problem of the construction of a particular total
ordering of the vertices (sometimes called graph layout problem).
Heuristics : prefer vertices with small degrees, or else choose a
vertex whose neighbourhood can be easily transformed into a
clique (i.e. with a minimum number of edges missing).
One can also visit all total ordering using a Tabu search ....
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Lower bounds : we use H minor of G implies
treewidth(H) ≤ treewidth(G )
Using dynamic programming, up to graphs with 70 or 80 vertices.
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Why a new width parameter ?

It must :

I Capture the structure of the graph

I Have small value for cliques

I Be computable easily

I Have a kind of Courcelle’s theorem when the parameter is
fixed.

I Have a duality, in order to give lower bounds
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Other width parameters

I Branchwidth (Seymour and Roberston)

I Cliquewidth (Courcelle, Engelfriet and Rosenberg 1993)

I Rankwidth (Oum 2004)

I Treelength (Gavoille 2004) Max diameter of a bag, for
network analysis.
refer to next course.

I . . .

I Still to be invented Directed treewidth
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Cliquewidth

Introduced by Courcelle, Engelfriet, Rosenberg 1993 from graph
rewriting techniques.
A k-expression is an algebraic expression on vertex labelled graphs
with k labels : 1, 2, . . . , k

I .i a single vertex with label i

I G1
⊕

G2 disjoint union of two graphs.

I ρ(i , j) relabel vertices of label i into j.

I ηi ,j with i 6= j add all edges between vertices of label i and j.

Definition

Clique-width of G is the min k such that G can be defined with a
k-expression.
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First remarks

1. cliquewidth(Kn) = 2 but Treewidth(Kn) = n − 1. This
explains the name cliquewidth !

2. cliquewidth(Gn,n) = n + 1, if n ≥ 3 (Golumbic, Rotics 2000)

3. The k-expression that defines a graph is not unique, the
operation η introduces a relationship with split decomposition.

4. cliquewidth(G ) ≤ 2 iff G is a cograph.

5. It requires O(n2m) to find a 3-expression if G admits one
Corneil, Habib, Paul, Lanlignel, Reed and Rotics 2000.
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I Computing cliquewidth is NP-hard 2007 (seems to be a very
technical result)
Fellows et al

I It is still an open problem to verify in polynomial time that a
given graph has cliquewith less than k, for fixed k.

I Courcelle’s Theorem
Every graph problem that can be expressed with a formula in
monadic second order logic with quantifiers on vertices (not
on edges) can be solved in polynomial time on graphs having
bounded cliquewidth.
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1. Corneil, Rotics 2005
cliquewidth(G ) ≤ 3(2treewidth(G)−1)

2. Therefore if the treewidth is bounded so is the cliquewidth

3. The converse is false, as shown by the complete graph Kn

with cliquewidth 2 and treewidth n − 1.
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