1 Chordal graphs

In this problem we consider a connected chordal graph G (with n vertices and m edges).

1. Show that every chordal graph can be represented as the intersection graph of a family of subtrees in a host tree with maximum degree 3.

2. Let S be a minimal separator in G, show that it always exist two different maximal cliques C, C' of G such that:

 $C \cap C' = S$ and $\forall a \in C - C', \forall b \in C' - C$, S is a minimal separator for a and b.

3. * Show that every minimal separator S belongs to all maximal clique tree of G (i.e. every maximal clique tree T contains an edge labelled with S).

4. Show that each maximal clique tree uses exactly the same collection of minimal separators, including repetitions (i.e. if a separator S labels α edges of some maximal clique tree, then every maximal clique tree contains α edges labelled with S).

 Give examples of families of graphs for which the number of repetitions of a given minimal separator is unbounded in any maximal clique tree.

5. If we consider the edges of the clique tree labelled with the size of the minimal separators, show that: for every maximal clique tree T

 \[
 \text{weight}(T) = \sum_{1 \leq i \leq k} |C_i| - n, \quad \text{where } C_1, \ldots, C_k \text{ are the maximal cliques of } G.
 \]

6. Prove that a graph G is a forest iff every pairwise intersecting family of paths in G has a common vertex (i.e. family of paths satisfy Helly’s property).

1.1 Distance properties on chordal graphs

1. A convex structure consists of a set X together with a collection \mathcal{C} of subsets of X (the convex sets) such that: the empty set and X are convex and the intersection of convex sets is convex.

 For a graph $G = (V,E)$ the usual convexity is defined as follows:

 A subset $S \subseteq V$ is convex if for every two vertices $x, y \in S$, all vertices on shortest paths between x and y are also contained in S.

 Show that this correctly defines a convexity.
2. Show that we can obtain a new notion of convexity called chordless-convexity if we replace in the above definition "shortest path" by "chordless path". Are these two definitions of convexity equivalent?

3. Show that $G = (V, E)$ is chordal if $\forall v \in V \ N[v] = N(v) \cup \{v\}$ is chordless convex.

4. * An extreme point of a convex set S is a point $x \in S$ such that $S - x$ is still convex. The convex hull of a given subset $A \subseteq X$ is the smallest convex set containing A.
Show that for chordal graphs chordless convexity defines a convex geometry (i.e. every convex set is the convex hull of its extreme points).

5. For a graph G, connected but not necessarily chordal, let $C(G)$ be the induced subgraph of G made up with its centers.
Show that this graph is not always connected.

6. * For a chordal graph G show that:
$C(G)$ is connected and $diam(C(G)) \leq 3$

7. ** Propose an efficient algorithm to compute a center (resp. all the centers) of a chordal graph.

2 Algorithms

1. Propose a linear time algorithm to recognize co-chordal graphs (i.e. complement of chordal graphs).

2. Maximal cardinality Search (MCS)

 Data: a graph $G = (V, E)$ and a start vertex s

 Result: an ordering σ of V

 Assign the label 0 to all vertices

 $label(s) \leftarrow 1$

 for $i \leftarrow 1 \text{ to } n-1$

 Pick an unnumbered vertex v with largest label

 $\sigma(i) \leftarrow v$

 foreach unnumbered vertex w adjacent to v do

 $label(w) \leftarrow label(w) + 1$

 end

 end

 Propose a linear time implementation of MCS algorithm.

2. Is it possible to modify (by adding a test) MCS Algorithm in order to check if the graph is chordal (without testing that σ provides a simplicial elimination ordering)?

3 Treewidth, branchwidth

We have seen during the course when proving $\text{treewidth}(G) \leq 3/2 \text{branchwidth}(G)$: that a decomposition tree for treewidth can be transformed in a branchwidth like tree.

Does there exist a way to express treewidth in terms of a cost function on a ternary tree? Detail the cost function if any.