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About Greedoids

The objective is to understand algorithmic greediness, and in
particular why it works so well in applications.
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Figure: Greediness Landscape
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En français le Glouton ou Carcajou
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Accessible systems

(V ,F) is an accessible system if it satisfies the following condition :
a finite set V , F a family of subsets of V that satisfies :

1. ∅ ∈ F
2. If X ∈ F such that X 6= ∅ then ∃x ∈ X such that X \ x ∈ F

Remarks :
I If F is not empty then axiom 2 implies that ∅ ∈ F . Axiom 2 is

just a weakening of the hereditary property of matroids.

I For every accessible set, there exists a way to build it from the
empty set by adding at each step a new element.
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Accessible exchange systems also called gredoids

GR = (V ,F) an accessible exchange system or greedoid :
for a finite set V , is F a family of subsets of V that satisfies :

1. ∅ ∈ F
2. If X ∈ F such that X 6= ∅ then ∃x ∈ X such that X \ x ∈ F
3. If X ,Y ∈ F et |X | = |Y |+ 1 then ∃x ∈ X -Y such that :

Y ∪ {x} ∈ F .

4. Or equivalently
If X ,Y ∈ F et |X | > |Y | then ∃x ∈ X -Y such that :
Y ∪ {x} ∈ F .

Notation

An element of F is called a feasible element.
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As a consequence :
All maximal (under inclusion) elements of F have the same size are
called basis. This common size is called the rank of the greedoid.
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A matroid by its independents

Withney [1935] : Let M = (X , I) be a set family where X is a
finite ground set and I a family of subsets of X .
M is a matroid if it satisfies the 3 following axioms :

1. ∅ ∈ I
2. If I ∈ I alors ∀J ⊆ I , J ∈ I
3. If I , J ∈ I et |I | = |J|+ 1 then ∃x ∈ I -J such that :

J ∪ {x} ∈ I.
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Variations around axiom 3

I 3’ If I , J ∈ I and |I | > |J| then ∃x ∈ I -J such that :
J ∪ {x} ∈ I.

I 3” ∀A ⊆ X and ∀I , J ⊆ A, I , J ∈ I and maximal then
|I | = |J|

I It is easy to be convinced that 3, 3’ and 3” are equivalent.
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To be an hereditary family is stronger than axiom 2 of greedoids.
Thus every matroid is a greedoid. Furthermore matroids are exactly
the hereditary greedoids.
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Examples of greedoid :

Rooted trees systems or undirected branchings

For an undirected connected graph G and a vertex r ∈ G , we
define the set systems :
(E (G ),F)
Where F ∈ F iff F is the edge set of a tree containing r .

Rooted trees gredoids

Axiom 1 of greedoids is trivially satisfied, because r itself is a tree
rooted in r .
If F defines a tree and has at least one edge, then it contains least
two leaves x , y . Say x 6= r and ex its attached edge.
F \ ex is a tree (eventually empty is y = r). Therefore axiom 2 is
satisfied.
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Axiom 3

Let X ,Y be two subtrees rooted in r such that : |X | > |Y |.
If we denote by span(X ), resp. span(Y ) the set of vertices
adjacent to at least one edge of X , resp. Y .
|span(X )| > |span(Y )| and therefore if we consider the cut C
yielded by span(Y ) in span(X ) around the component containing
r , there exists at least one edge e in this cut and Y + e is a tree
containing r .
So Y + e ∈ F .
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Theorem

Undirected rooted branchings are greedoids.
A basis of an undirected branching corresponds to the set of edges
of a graph search in G starting at r .

Rooted trees are not matroids

Although forests in a graph yield a matroid, rooted trees does not
share the hereditary property of matroids, since deleting an edge
could disconnect the rooted tree.
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Rooted branchings in directed graphs

Rooted branchings

For a directed connected graph G and a vertex x0 ∈ G , we define
the set systems :
(A(G ),F)
Where F ∈ F iff F ⊆ A(G ) is the arc set of an arborescence
containing x0 or equivalently for each vertex x ∈ F there is a
unique path from x0 to x .

Rooted trees gredoids

Axiom 1 of greedoids is trivially satisfied, because r itself is a tree
rooted in r .
If F is an arborescence and has at least one arc, then it contains
least two leaves x , y . Say x 6= x0 and ax its attached arc.
F \ ax is an arborescence (eventually empty is y = x0). Therefore
axiom 2 is satisfied.
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Axiom 3

Let X ,Y be two arborescences rooted in x0 such that : |X | > |Y |.
If we denote by span(X ), resp. span(Y ) the set of vertices
adjacent to at least one arc of X , resp. Y .
|span(X )| > |span(Y )| and therefore if we consider the cut C
yielded by span(Y ) in span(X ) around the component containing
x0, there exists at least one arc a in this cut and Y + a is a tree
containing x0.
So Y + a ∈ F .
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Theorem

Directed rooted branchings are greedoids.
Br = (V (G ),F) is a directed branching greedoid if
F is the set of all branchings rooted in x0 of G .
A basis of an undirected branching corresponds to the set of arcs
of a graph search in G starting at x0.

Directed branchings are not matroids

Since they does not share the hereditary property of matroids,
since deleting an edge could disconnect the branching.
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Antimatroids another example of greedoids

AM = (V ,F) is an antimatroid :
a finite set V , F a family of subsets of V that satisfies :

1. ∅ ∈ F
2. If X ∈ F such that X 6= ∅ then ∃x ∈ X such that X \ x ∈ F
3. If X ,Y ∈ F and Y * X then ∃x ∈ Y \ X such that

X ∪ {x} ∈ F .
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Remarks :

1. Axiom 3 of antimatroids implies the third axiom of greedoids.
Because if |Y | = |X |+ 1 then necessarily Y * X .

2. Therefore Antimatroids yield another particular case of
greedoids

3. We notice that Axiom 3 implies X ∪ Y ∈ F .
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I Antimatroid is a bad name, since an antimatroid is not the
inverse of some matroid.
Anti comes from anti-exchange property which we will see
soon.

I Matroids are closed by intersection

I Antimatroids are closed by union

I But both are greedoids !

I The intersection of 2 matroids is not a matroid.
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The intersection (i.e. ; common parts ) of a matröıd and an
antimatröıd does not lead to a greedöıd.
But there exist set families which are both matröıd and
antimatröıd. As for example the trivial complete set family 2V .
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A large class of greedoids share the interval property

Interval property

A greedoid (E ,F) satisfies the interval property if :
∀A,B,C ∈ F , with A ⊆ B ⊆ C and x ∈ E \ C ,
A ∪ x ,C ∪ x ∈ F implies B ∪ x ∈ F .

First consequences

Matroids and Antimatroids have both this interval property.
Directed branchings also satisfy this property, but not every
greedoid does.
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Interval property without lower bounds

Matroids also satisfy a stronger property :
∀A,B ∈ F , with A ⊆ B and x ∈ E \ C ,
B ∪ x ∈ F implies A ∪ x ∈ F .

Interval property without upper bounds

Antimatroids also satisfy a stronger property :
∀A,B ∈ F , with A ⊆ B and x ∈ E \ C ,
A ∪ x ∈ F implies B ∪ x ∈ F .
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Rank function for greedoids

Let GR = (V ,F) be a greedoid.
We define :
r : 2V → N such that :
∀A ⊆ V , r(A) = max{|F | such that F ∈ A ∩ F}
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Characterization theorem

A function r : 2V → N is a rank function of a greedoid iff r
satisfies the following properties :

1. r(∅) = 0

2. ∀A ∈ 2V , r(a) ≤ |A|
3. ∀A,B ∈ 2V , A ⊆ B implies r(A) ≤ r(B)

4. a ∀A ∈ 2V and x , y ∈ V
r(A) = r(A + x) = r(A + y) implies r(A) = r(A + x + y)

a. This property is called local submodularity
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Some usual definitions

Given a finite alphabet E , we denote by E ∗ the free monoid of all
words over the alphabet E .
For a word ω we denote by |ω| its length (number of letters) and
ωs its support i.e., the set of letters in ω
A word is simple if it does not contain any letter more than once
(i.e., |ω| = |ωs |), and language L ⊂ E ∗ is simple if it is made up
with simple words.
Every simple language over a finite alphabet is always finite. Let us
denote by E ∗s the set of simple words over the alphabet E .
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A simple language L ⊆ E ∗s over a finite alphabet E is a greedoid
language if it satisfies :

1. If ω = µν ∈ L then µ ∈ L.

2. If ω, µ ∈ L and |ω| > |µ| , then ω contains a letter x such
that µx ∈ L

Maximal words in L are called basic words.
This presentation of greedoids as languages captures the
construction process of feasible words.
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Greedoids and greedoid languages are somehow equivalent

1. If L is a greedoid language over an alphabet E then Ls is a
greedoid.

2. If (E ,F) in which E is a finite set, F a family of subsets of E
is a greedoid
then L(F ) = {x1 . . . xk ∈ E ∗s such that {x1, . . . xi} ∈ F for
every i , 1 ≤ i ≤ k}
is a greedoid language.
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First examples

I Ideals (resp. filters) of a partial order yield an antimatroid.

I Shelling of a forest. T = (X ,E ) a forest.
AM = (E ,S) such that S = {F ⊆ E such that E \ F has the
same number of non trivial connected components as T}
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Example of the most famous antimatroid

Let G be a chordal graph.
F= {X ⊆ V (G )|X is the beginning of a simplicial elimination
scheme of G}
AM = (V ,F) is an antimatroid.
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proof

Axiomes 1 and 2 are trivially satisfied by F .
Let us consider the third one. First we use the Y as the starting of
a simplicial elimination of G . Consider the ordering τ of X which is
the starting of a simplicial elimination scheme of G . Let σ be an
elemination scheme starting with Y . Let x1 the first element of
X \ Y with respect to σ.
Necessarily just after Y we can use x1 as a simplicial vertex in the
remaining graph, since all necessary vertices as been eliminated
before (in Y ∩ X ) and x1 was simplicial in τ .
Therefore Y ∪ {x} is the beginning of a simplicial elimination
scheme of G .
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Natural question

Which are the conditions that must satisfies an elimination scheme
for a particular class of graphes to yield an antimatroid ?
(false or true twins for cographs, pending vertex and twin for
distance hereditary graphs . . .)
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The problem :
Given a greedoid language L over an alphabet E , an objective
function c : L→ R, find a basic word α which maximizes c(α).
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The greedy algorithm

ω ← ε ; % ε the empty word %
tant que |A| 6= ∅ faire

A← {x ∈ E tel que ωx ∈ L};
Choose z ∈ A such that c(ωz) ≥ c(ωy) for all y ∈ A ;
ω ← ωz ;

fin
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An objective function c : L→ R is compatible with a greedoid
language if it satisfies the following conditions :
For αx ∈ L such that c(αx) ≥ c(α.y) for every αy ∈ L (i.e., x is
the best choice after α).

1. αβxγ ∈ L and αβzγ ∈ L imply that c(αβxγ) ≥ c(αβzγ)
(i.e., ”x” is the best choice at every stage)

2. αxβzγ ∈ L and αzβxγ ∈ L imply that
c(αxβzγ) ≥ c(αzβxγ)

Remark

Of course is c(α) depends only on the support set αs then the
second previous axiom is trivially true.
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Main theorem

Characterization

Let F be an accessible set system, if for all compatible objective
functions the greedy algorithm gives the optimum then F is a
greedoid.

Comment

The proof is quite simple and straightforward for interval greedoids.
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Applications

We are now going to show that Prim and Dijkstra are just
instances of the greedy algorithm applied on their respective
(undirected or directed) greedoids with special objective functions.
Graphs are equipped with a positive cost function ω on the edges.
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Dijkstra’s algorithm

Prim and Dijkstra are just instances of the greedy algorithm
applied on their respective (undirected or directed) branching
greedoids with special objective functions. Graphs are equipped
with a positive cost function ω on the edges.

I For Dijkstra the objective function is :
For every directed branching F :
Cost(F ) = Σx∈FdF (x0, x)
where dF (x0, x) is the sum of the cost of the arcs of the
unique path from x0 to x in F .

I As a consequence of the main greediness theorem,
Dijkstra’s algorithm computes an optimum directed branching
rooted in x0 with respect to the function cost.
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I Dijkstra’s algorithm just maintains a data structure in order to
be able to choose an arc with minimum cost. The greediness
explains why it is not necessary to reevaluate a vertex already
explored.

I Similar argument holds for Layered search LL (and also a
BFS) which computes an optimum rooted branching
minimizing the unit cost distance from x0.
Since at each step a minimal vertex is visited.

I Of course this does not hold for a DFS.

I And what for A* ?
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Prim’s algorithm

Prim and Dijkstra are just instances of the greedy algorithm
applied on their respective (undirected or directed) greedoids with
special objective functions. Graphs are equipped with a positive
cost function ω on the edges.

I For Prim the objective function is :
For every branching F :
Cost(F ) = Σx∈FdF (x0, x)
where dF (x0, x) is the maximum of the cost of the edge of the
unique path from x0 to x in F .

I As a consequence of the main greediness theorem,
Prim’s algorithm computes an optimum branching rooted in
x0 with respect to the function Cost.

I To finish we need to argue that it is a minimum spanning tree.
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Another example : convex point set shelling

The shelling sequences of set of points E in the Euclidean space.
Each time a vertex is shelled, it must belong to the convex hull of
the set of points.
Partial shelling sequences yield an antimatroid on E .

Proof

Same proof as for the antimatroid of simplicial elemination
schemes.
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Other examples

This last antimatroid is interesting since it yields to convex
geometries.
Let AM = (V ,F) be an antimatroid, we define :
If ∪F∈FF = U
CG = (V ,G) where G = {U \ F |F ∈ F}
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Convex geometries satisfy an anti-exchange axiom, together with a
closure operateur L.
Let K a set and x , y /∈ K if x ∈ L(K + y) then y /∈ L(K + x)
Easy interpretation for convexity in Euclidian spaces where L
means convex hull.
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How can we use this antimatroidal structure ?
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Optimisation on simplicial elimination schemes

For a chordal graph G :
Let τ = x1, . . . xn be a simplicial elimination scheme.
Bump(τ) = # consecutive pair of elements in τ which are not
adjacent in the graph G .
Bump(G ) = minτBump(τ)
Can we compute in a greedy way a simplicial elimination scheme
with a minimum number of bump ?
Seems to be related to the leafage problem :
We have Bump(G ) = 0 if G is an interval graph and more
generally :
Bump(G ) ≤ Leafage(G )− 2.



About Greedoids

Other examples

Submodular functions

Definition

E a finite ground set, and f : 2E → R. f is submodular if for all
∀A,B ⊆ E , f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B)
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I For a bipartite graph G = (X ,Y ,E )
Let us define ∀A ⊆ X , δ(A) = # the number of edges
adjacent to A.
δ this generalized degree function is modular.
δ(A) + δ(B) = δ(A ∪ B) + δ(A ∩ B)

I As a little generalization we can define, cut functions in
graphs (resp. hypergraphs ) as follows :
∀A ⊆ V (G ), c(A) = # the number of edges having exactly
one extremity in A
Then c is submodular (no equality).
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Examples

I Number of splitters of a module (a case by case proof)

I Rank functions of matroids

I Any positive linear combination of submodular functions is
still submodular.
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We similarly define supermodular functions.
Sometimes we have to consider families that are only submodular
on intersecting (resp. crossing) elements.
We called them intersecting (resp. crossing) submodular functions.
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Minimizing a submodular functions is most of the time polynomial.
Examples (flows , modules, . . .).
Maximizing is more difficult.
Recent uses in Machine Learning Theory.
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Polymatroids from Jack Edmonds

A polymatroid is a set systems for which the rank function is a
monotone non-decreasing submodular function
verifying :
f (∅) = 0
∀A,B ⊆ E , A ⊆ B implies f (A) ≤ f (B)
Greedy algorithms can be defined in this framework.
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