Communication Complexity

Yassine HAMOUDI
under the supervision of Anil ADA

February 1 - June 17, 2016

Abstract

In this internship report we describe several results about communication complexity, both in the two player and number on the forehead (NOF) models. Our first contribution is a construction for Ramsey numbers over F_p^n using communication complexity ideas. We then describe a new efficient protocol for composed functions of constant block-width, and the implications on the log n barrier problem. Finally, we recall the links of decision tree complexities to the log-rank conjecture, and fully characterize the decision tree complexities of symmetric functions.

Contents

1 Introduction
 1.1 Definitions .. 1
 1.2 Motivations and open problems 2
 1.3 Fourier analysis of boolean functions 4

2 Ramsey numbers and $EVAL_G$
 2.1 The multidimensional corner problem 6
 2.2 A large corner-free set over F_p^n 7
 2.3 Future work .. 8

3 The log n barrier and composed functions 9
 3.1 Previous candidates to break the barrier 9
 3.2 Composed functions of constant block-width 12
 3.3 Future work .. 15

4 Decision tree complexity and log-rank conjecture 15
 4.1 Definitions and links to communication complexity 16
 4.2 Decision tree complexities of symmetric functions .. 17
 4.3 Future work .. 20

5 Conclusion .. 20

References ... 21

Appendices ... 24
 A Proof of Proposition 10 24
 B Proof of Theorem 17 25
 C Proof of Theorem 26 28
 D Comments on the internship 30
1 Introduction

Communication complexity measures the amount of information to be exchanged in order to compute a function whose input is distributed between a certain number of players. For instance, if Alice and Bob each have an integer \(x \) and \(y \), what is the minimum number of bits they need to communicate before deciding whether \(x = y \)? And what if they are allowed a small probability of error?

The two player communication complexity model was first formalized in the seminal paper [Yao79] from Yao. Later, Chandra, Furst and Lipton [CFL83] proposed the number on the forehead (NOF) model that generalizes to \(k \geq 2 \) players. Roughly speaking, each player now sees all the input, except the part which is written on her forehead. The computational power of everyone is unlimited, but the number of exchanged bits has to be minimized.

Communication complexity has proved to be of value in the study of many areas of computer science. It has applications in circuit complexity [HG91, BT94], streaming algorithms [AMS96], Ramsey theory [CFL83], branching programs [CFL83], proof complexity [BPS07], quasirandom graphs [CT93], etc. On the other hand, many basic questions in communication complexity remain open and the NOF model is still poorly understood.

In this report, we first study the links of communication complexity to Ramsey theory. We especially devise the first efficient construction for Ramsey numbers over \(F_p^n \). Then, two of the main open problems in communication complexity are addressed. The first one consists of finding a function which is hard to compute for \(\geq \log n \) players (where \(n \) is the size of the input on each player's forehead). We prove that some candidates to break this barrier turn out to have efficient communication protocols. The second open problem is the famous log-rank conjecture, which states that the two party communication complexity is upper bounded by the log-rank of the communication matrix. One of the approaches to tackle this question uses a link between communication and decision tree complexities. We study the latter in the context of symmetric functions.

1.1 Definitions

Let \(\mathcal{X} \), \(\mathcal{Y} \) and \(\mathcal{Z} \) be three arbitrary sets, and \(F : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z} \). Consider two players, Alice and Bob, who respectively know \(x \in \mathcal{X} \) and \(y \in \mathcal{Y} \). They want to collaboratively evaluate \(F(x, y) \). To this end, they communicate bits to each other according to a predetermined protocol. This protocol specifies whose turn it is to speak, and which bit is to be sent given the information exchanged so far and the input of the speaking player. It also determines when communication stops. At the end, both Alice and Bob must be able to recover \(F(x, y) \) from their input and the transcript of the exchange. The cost of the protocol on input \((x, y) \) is the number of exchanged bits. The total cost of the protocol is the worst case cost on all inputs \((x, y) \).

Definition 1. The deterministic (two player) communication complexity of a function \(F : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z} \) is the smallest cost of a protocol computing \(F(x, y) \) for all \((x, y) \in \mathcal{X} \times \mathcal{Y} \). This quantity is denoted by \(D_2(F) \).

The usual setting is \(\mathcal{X} = \mathcal{Y} = \{0, 1\}^n \) and \(\mathcal{Z} = \{0, 1\} \). It is always possible for one player to send her entire input to the other party (\(n \) bits), who then computes \(F(x, y) \) and sends back the result (1 bit). Thus, we always have \(D_2(F) \leq n + 1 \). On the other hand, a protocol is considered to be efficient if it has cost \(\text{polylog} \ n \). For instance, the \(\text{Equality} : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\} \) function, that outputs 1 if and only if \(x = y \), is hard since it does not have any efficient protocol (we will see later that \(D_2(\text{Equality}) = \Omega(n) \)).
The previous model can be extended by allowing the players to make decisions based on a shared random string. A protocol is then said to compute F with error ϵ if it correctly outputs $F(x, y)$ with probability $\geq 1 - \epsilon$, for any $(x, y) \in \mathcal{X} \times \mathcal{Y}$.

Definition 2. The randomized (public coin) communication complexity of a function $F : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$ is the smallest cost of a protocol computing F with error ϵ when the two players have access to a shared random string. This quantity is denoted by $R^\epsilon_2(F)$. We also drop the ϵ when it is equal to $1/3$.

The Equality function is easy to compute in the randomized model. Indeed, Alice and Bob can exchange $x \cdot r$ and $y \cdot r$ for sufficiently many random $r \in \{0, 1\}^n$ (where $x \cdot r = x_1 r_1 + \cdots + x_n r_n \in \{0, 1\}$), and then decide $x = y$ if and only if they always observed $x \cdot r = y \cdot r$. It is easy to prove that this protocol succeeds with probability $3/4$ when two random r are used. Thus, the randomized model can be much more efficient than the deterministic one: $R_2(\text{Equality}) = \Omega(1)$ whereas $D_2(\text{Equality}) = \Omega(n)$.

Other kinds of models can be similarly defined (non-deterministic, quantum, randomized private coin, etc.). For a complete introduction to communication complexity, see the book [KN97]. We will also study the simultaneous model in which Alice and Bob do not interact with each other, but instead send information to a referee. The latter does not know the players’ inputs, and cannot give any information back. At the end, the referee must be able to recover $F(x, y)$ from what she obtained. The simultaneous deterministic communication complexity is denoted by $D^\epsilon_2(F)$, and the randomized one is $R^\epsilon_2(F)$.

The communication matrix of a function $F : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z}$ is the $|\mathcal{X}| \times |\mathcal{Y}|$ matrix whose entry (x, y) contains $F(x, y)$. The following result is a well-known lower bound in communication complexity:

Proposition 3 ([MS82]). For any $F : \mathcal{X} \times \mathcal{Y} \rightarrow \{0, 1\}$, we have:

$$\log \text{rank } M_F \leq D_2(F)$$

where the rank can be taken over any field.

Similar results hold in other frameworks (randomized, quantum, etc.), see [LS09] for a recent survey. In particular, it proves $D_2(\text{Equality}) = \Omega(n)$ since $\text{rank } M_{\text{Equality}} = 2^n$.

The two player model was later generalized by Chandra et al. [CFL83] to an arbitrary number of parties k. Given a function $F : \mathcal{X}_1 \times \cdots \times \mathcal{X}_k \rightarrow \mathcal{Z}$, player i now sees all of the input $(x_1, \ldots, x_k) \in \mathcal{X}_1 \times \cdots \times \mathcal{X}_k$, except x_i. The situation is as if input x_i was written on the forehead of player i, hence the name number on the forehead (NOF) model. The players still follow a protocol, and each bit someone sends is seen by all the other players. Note that when $k = 2$ this is equivalent to the two player model previously defined. The deterministic and randomized communication complexities are denoted by $D_k(F)$ and $R_k(F)$. The simultaneous model is also generalized to $D^\epsilon_k(F)$ and $R^\epsilon_k(F)$.

One of the interesting aspects of the NOF model is the increasing overlap of information as k grows up. For instance, the generalized Equality_k function, which outputs 1 if and only if $x_1 = \cdots = x_k$, has complexity $D_k(\text{Equality}_k) = \Theta(1)$ when $k \geq 3$. It suffices for player 1 to check if $x_2 = \cdots = x_k$ and for player 2 to check if $x_1 = x_3 = \cdots = x_k$, in order to know whether the output is 1.

1.2 Motivations and open problems

The log-rank result from Proposition 3 is a convenient way to obtain lower bounds in the two player model. Indeed, it converts a communication problem into the study of a well-known
Problem 1 (The log-rank conjecture). Prove that $D_2(F) \leq \log^c \text{rank } M_f$ for some absolute constant c, and all $F : \mathcal{X} \times \mathcal{Y} \to \{0, 1\}$ (where the rank is taken over \mathbb{R}).

This conjecture is a long-standing open problem in communication complexity. It was proved to be true for many classes of functions [BdW01, ZS09, TWXZ13], but the general case does not seem within easy reach (see [Lov14] for the latest advances). Recently, the attention has focused on two classes called the XOR and AND functions, for which the log-rank conjecture can be linked to Fourier analysis and decision tree complexity. We will further investigate this relation in Sections 1.3 and 4.

The log-rank method does not generalize to the NOF model. More generally, very few techniques are known to produce lower bounds for $k \geq 3$ players. However, the NOF model has much richer applications than the two player model. For instance, the communication complexity of the EVAL_G function (defined and studied in Section 2) is directly linked to Ramsey theory. Another major challenge is to find a function which is hard to compute for more than $\log n$ players:

Problem 2 (The $\log n$ barrier). Find a function F such that $D_k(F) = \omega(\text{polylog } n)$ when $k \geq \log n$. The non-simultaneous case $D_k(F) = \omega(\text{polylog } n)$ is also of interest.

The main motivation for solving this problem comes from circuit complexity. Recall that any function in \mathbb{P} can be computed by polynomial size circuits made of AND, OR and NOT gates. On the other hand, it is believed that not all functions in \mathbb{NP} can be computed by such circuits. In particular, this conjecture implies $\mathbb{P} \neq \mathbb{NP}$. A first step toward this end is to prove an easier separation, namely $\text{ACC}^0 \neq \mathbb{NP}$, where ACC^0 stands for the functions computable by polynomial size constant-depth circuits made of AND, OR, NOT and MOD gates. Finding a function f which is in \mathbb{NP} but not in ACC^0 is directly linked to Problem 2:

Proposition 4 ([HG91]). For any function f in ACC^0 and any partition of the input between $k = \Omega(\text{polylog } n)$ players, there exists an efficient k-party simultaneous protocol of cost $\text{polylog } n$ computing f.

Proof. Let’s define $\text{SYM}^+(s,k)$ to be the class of functions computable by depth-2 circuits whose top gate is a symmetric gate (i.e. its output only depends on the number of inputs set to 1) of fan-in s, and each bottom gate is an AND gate of fan-in k. Yao, Beigel and Tarui [Yao90, BT94] proved that $\text{ACC}^0 \subset \text{SYM}^+(2^{\text{polylog } n}, \text{polylog } n)$.

Consider now a function f computed by a $\text{SYM}^+(s,k-1)$ circuit, and a partition of the input between k players. Each bottom gate has fan-in $k-1$, so it can be computed by at least one of the players. We fix a partition of the AND gates between the k players, such that player i only receives gate which she can evaluate. Then, each player sends to the referee the number of her gates that evaluate to 1. These information are enough to recover the output of the function. The total cost of the protocol is $O(k \log s)$. \qed
Consequently, any function solving Problem 2 cannot be in ACC^0. The majority function MAJ is conjectured to be outside of ACC^0 [Smo87], but the multiparty communication complexity of the functions involving MAJ is widely unknown. More generally, the strongest known lower bounds in the NOF model are of the form $\Omega(n/2^k)$, which does not give any information when $k \geq \log n$. It might seem like these bounds are not optimal, but there exist surprising protocols that start to be efficient when $k = \text{polylog } n$. We will build such a protocol in Section 3, which prevents a new class of functions from solving Problem 2.

1.3 Fourier analysis of boolean functions

We introduce some notions of Fourier analysis for boolean functions. This tool is of great interest in the study of theoretical computer science, and will be used throughout this report. We refer the reader to the book [O'D14] for more details on the topic.

Any function $f : \{0, 1\}^n \to \mathbb{R}$ can be uniquely written as:

$$f(x) = \sum_{s \in \{0, 1\}^n} \hat{f}(s) \cdot (-1)^{x \cdot s}$$

where $x \cdot s = x_1s_1 + \cdots + x_ns_n$ and $\hat{f}(s) \in \mathbb{R}$ are the Fourier coefficients. This expression is called the Fourier transform of f.

For $x \in \{0, 1\}^n$, we define $|x| = \sum_{i=1}^n x_i$ the Hamming weight of x. The number of nonzero Fourier coefficients of f is the monomial complexity $\text{mon}(f)$. The degree, $\deg(f)$, is the largest $|s|$ such that $\hat{f}(s) \neq 0$. If we replace each $(-1)^{x \cdot s}$ by $\prod_{i:s_i=1} (1 - 2x_i)$, we obtain a polynomial in x_1, \ldots, x_n whose number of monomials is denoted by $\text{mon}^*(f)$.

We also define the polynomial representation over \mathbb{F}_p of $f : \mathbb{F}_p^k \to \mathbb{F}_p$ as the unique polynomial:

$$f(x) = \sum_{0 \leq i_1, \ldots, i_k \leq p-1} f_p(i_1, \ldots, i_k) \cdot x_1^{i_1} \cdots x_k^{i_k}$$

with $f_p(i_1, \ldots, i_k) \in \mathbb{F}_p$. If we embedded $\{0, 1\}$ into \mathbb{F}_p, this is a different way to represent boolean functions. This expression is sometimes more convenient to use, since the coefficients now lie in \mathbb{F}_p instead of \mathbb{R}. We will denote by $\deg_p(f)$ and $\text{mon}_p(f)$ the degree and number of monomials of the polynomial representation of f over \mathbb{F}_p.

Example 5. Let’s consider the majority function $\text{MAJ}_3 : \{0, 1\}^3 \to \{0, 1\}$ which outputs the input most frequent bit. The Fourier transform of MAJ_3 is:

$$\text{MAJ}_3(x_1, x_2, x_3) = \frac{1}{2} - \frac{1}{4}(-1)^{x_1} - \frac{1}{4}(-1)^{x_2} - \frac{1}{4}(-1)^{x_3} + \frac{1}{4}(-1)^{x_1+x_2+x_3}$$

The polynomial representation over \mathbb{F}_2 is:

$$\text{MAJ}_3(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2x_3$$

To illustrate the use of Fourier analysis in communication complexity, let’s focus on the following functions:

Definition 6. A function $F : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}$ is an XOR function if there exists $f : \{0, 1\}^n \to \{0, 1\}$ such that $F(x, y) = f(x \oplus y)$, where \oplus is the bit-wise XOR. Similarly, F is said to be an AND function if $F(x, y) = f(x \land y)$, for some function $f : \{0, 1\}^n \to \{0, 1\}$.

Example 7. Here are some famous XOR and AND functions:

1. $\text{EQUALITY}(x, y) = \text{NOR}(x \oplus y)$, which outputs 1 if $x = y$.

2. \textsc{Hamming}_d(x, y) = \textsc{Gap}_d(x \oplus y)$ (where \textsc{Gap}_d(z) = 1 if $\sum z_i \leq d$), which outputs 1 if the Hamming distance between x and y is less than d.

3. \textsc{Disjointness}(x, y) = \textsc{Nor}(x \land y)$, which outputs 1 if the sets X and Y, associated to the characteristic vectors x and y, are disjoint.

4. \textsc{InnerProduct}(x, y) = \textsc{Mod}_2(x \land y)$, which outputs 1 if $\sum x_i y_i = 1 \mod 2$.

The Fourier transforms of \textsc{Xor} and \textsc{And} functions have interesting links with communication complexity (see [BdW01, TWXZ13] for instance). One of the main motivations for studying them is the following results:

\textbf{Proposition 8 ([BC99])}. \textit{For any $F(x, y) = f(x \oplus y)$, we have $\text{rank}(M_F) = \text{mon}(f)$}.

\textit{Proof}. Define $H = \begin{bmatrix} (-1)^{x \cdot y} \end{bmatrix}_{x, y \in \{0, 1\}^n}$ to be the Hadamard matrix, and let D be the $2^n \times 2^n$ diagonal matrix with entries $[f(s)]_{s \in \{0, 1\}^n}$ on the diagonal. Then, it is easy to see that $M_F = HDH$, and since H is orthogonal:

$$\text{rank}(M_F) = \text{rank}(HDH) = \text{rank}(D) = \text{mon}(f)$$

\hfill \Box

\textbf{Proposition 9 ([BdW01])}. \textit{For any $F(x, y) = f(x \land y)$, we have $\text{rank}(M_F) = \text{mon}^*(f)$}.

Thus, using Proposition 3, we obtain $\log \text{mon}(f) \leq D_2(F)$ for \textsc{Xor} functions, and $\log \text{mon}^*(f) \leq D_2(F)$ for \textsc{And} functions. Moreover, the log-rank conjecture for \textsc{Xor} and \textsc{And} functions is equivalent to proving $D_2(F) \leq \log \text{mon}(f)$ and $D_2(F) \leq \log \text{mon}^*(f)$ respectively.

Finally, we will sometimes restrict to the \textit{symmetric} functions, which are invariant under any permutation of the input variables. Note that being symmetric for a boolean function $f : \{0, 1\}^n \to \{0, 1\}$ means that $f(x)$ only depends on $|x|$. Thus, we will sometimes use f as a function $f : \{0, \ldots, n\} \to \{0, 1\}$ with the understanding that $f(|x|) = f(x)$. Some natural quantities can also be associated with the symmetric boolean functions over $\{0, 1\}^n$.

For instance, we let $\ell_0(f)$ and $\ell_1(f)$ be the minimum integers less than $n/2$ such that $f(i) = f(i + 1)$ for $i \in \ell_0(f), n - \ell_1(f) - 1$, and $\ell(f) = \max\{\ell_0(f), \ell_1(f)\}$. Similarly, we define $r_0(f)$ and $r_1(f)$ as the minimum integers less than $n/2$ such that $f(i) = f(i + 2)$ for $i \in \ell_0(f), n - r_1(f) - 2$, and $r(f) = \max\{r_0(f), r_1(f)\}$. We also call $t(f)$ the smallest integer such that $f(t(f) - 1) \neq f(t(f))$ (if f is constant then $t(f) = n$). We will link these quantities to some complexity measures in Section 4.

2 \textbf{Ramsey numbers and \textsc{Eval}_G}

For any Abelian group G, the $\textsc{Eval}_G : G^k \to \{0, 1\}$ function outputs 1 on input $x_1, \ldots, x_k \in G$ if and only if $x_1 + \cdots + x_k = 0$. It is one of the very first functions studied in the NOF model. In particular, since $x_1 + \cdots + x_k = 0$ is equivalent to $x_1 = -(x_2 + \cdots + x_k)$, applying the randomized protocol for $\textsc{Equality}$ leads to:

$$R^R_k(\textsc{Eval}_G) = \mathcal{O}(1)$$

On the other hand, the deterministic communication complexity of \textsc{Eval}_G is way harder to determine. Indeed, as observed in [CFL83], it is intricately linked to certain Ramsey numbers, which are poorly understood. We first recall what this connection is in Section 2.1. We then propose the first non-trivial construction for Ramsey numbers over \mathbb{F}_p^m. Our
work is based on ideas from a recent multiparty communication protocol for composed functions (see Section 3.1), and a previous result over F_2^n obtained in [ACFN15].

We will also briefly talk of $\text{EXACT}_N: \{1, \ldots, N\}^k \to \{0, 1\}$ that outputs 1 if and only if $x_1 + \cdots + x_k = N$. Most of the results of Section 2.1 were in fact established for EXACT_N in the seminal paper [CFL83] that introduced the NOF model.

2.1 The multidimensional corner problem

A k–dimensional corner is a set of $k + 1$ points in G^k of the form:

$$(x_1, x_2, \ldots, x_k), (x_1 + \lambda, x_2, \ldots, x_k), (x_1, x_2 + \lambda, \ldots, x_k), \ldots, (x_1, x_2, \ldots, x_k + \lambda)$$

where $\lambda \neq 0$. We denote by $c_k^\perp(G)$ the minimum number of colors needed to color G^k, so that no k–dimensional corner is monochromatic. Also, $r_k^\perp(G)$ is defined to be the size of the largest corner-free subset of G^k. The communication complexity of Eval_G is essentially equal to $\log c_k^\perp(G)$:

Proposition 10 ([CFL83]). We have:

$$\log(c_k^\perp(G)) \leq D_{k+1}(\text{Eval}_G) \leq D_{k+1}^\perp(\text{Eval}_G) \leq k \cdot \log(c_k^\perp(G))$$

and:

$$D_{k+1}(\text{Eval}_G) \leq k + \log(c_k^\perp(G))$$

Proof. The proof is presented in Appendix A.

Remark 11. Proposition 10 implies that any protocol for Eval_G can be made simultaneous with an extra cost factor k (since $D_{k+1}^\perp(\text{Eval}_G) \leq k \cdot \log(c_k^\perp(G)) \leq k \cdot D_{k+1}(\text{Eval}_G)$).

Thus, finding the complexity of Eval_G reduces to estimating the value of $c_k^\perp(G)$. To this end, it is also relevant to define the minimum number $c_k(G)$ of colors needed to color G so that no k–term arithmetic progression is monochromatic. Similarly, $r_k(G)$ is the size of the largest subset of G that does not contain any k–term arithmetic progression. The following lemmas link all these Ramsey numbers:

Lemma 12. For any Abelian group G, we have:

$$\frac{|G|^k}{r_k^\perp(G)} \leq c_k^\perp(G) \leq \frac{2|G|^k \log |G|^k}{r_k^\perp(G)}$$

and:

$$\frac{|G|}{r_k(G)} \leq c_k(G) \leq \frac{2|G| \log |G|}{r_k(G)}$$

Proof. These are straightforward generalizations of Theorem 4.3 from [CFL83].

Lemma 13. For any Abelian group G, we have:

$$r_{k+1}(G) \leq \frac{r_k^\perp(G)}{|G|^{k-1}}$$

and for $G = \mathbb{F}_p^n$:

$$c_k^\perp(\mathbb{F}_p^n) \leq c_k(\mathbb{F}_p^n)$$
Proof. The first inequality is proved via a standard reduction. See [Ada14] for a sketch of it when \(k = 2 \). The second one is straightforward generalization of Theorem 4.2 from [CFL83].

The counterpart numbers \(c_k^c(N), r_k^c(N), c_k(N) \) and \(r_k(N) \) for Exact\(N \) are similarly defined in [CFL83]. They satisfy \(\frac{N^k}{r_k^c(N)} \leq c_k^c(N) \leq \frac{2N^k \log N}{r_k^c(N)} \leq c_k(N) \leq \frac{2N \log N}{r_k(N)} \) and \(c_k^c(N) \leq c_k(kN) \). We will also let \(N = |G| \) when working over an Abelian group \(G \), in order to make the comparison easier.

The famous Van der Waerden’s and Szemerédi’s theorems prove that \(c_k(N) \) and \(N/r_k(N) \) are superconstant. The best (very weak) lower bounds [FK78, Gow07] known on \(\frac{N^k}{r_k(N)} \) also implies that \(D_k(\text{Exact}\, N) \) is superconstant (whereas \(R_k(\text{Exact}\, N) = O(1) \)). On the other hand, using an upper bound on \(c_k^c(N) \) due to Behrend [Beh46], Chandra, Furst and Lipton [CFL83] proved that \(D_p(\text{Exact}\, N) = O(\sqrt{\log N}) \). There have been few improvements since (see [ACFN15] for the recent results relevant to Exact\(N \)).

On the other hand, it was observed that lower bounds on \(N/r_k(N) \) were in fact simpler to handle in the finite field setting. Moreover, an argument from Bourgain [Bou99] makes possible to convert results over \(\mathbb{F}_p^n \) into results over any Abelian group \(G \) (see [Gre05] for instance). Some results about Ramsey numbers over \(\mathbb{F}_p^n \) are gathered in [ACFN15]. In particular, the best known lower bound on \(N^2/r_k^c(\mathbb{F}_p^n) \) is due to [LM07]:

\[
\frac{N^2}{r_k^c(\mathbb{F}_p^n)} \geq \frac{\log \log N}{\log \log \log N}
\]

Using an efficient protocol for \(\text{Eval}_\mathbb{F}_2 \), the authors of [ACFN15] established the first non-trivial upper bound on \(c_k^c(\mathbb{F}_2^n) \), namely \(c_k^c(\mathbb{F}_2^n) \leq O\left(N^{1/2k-2} \log^{k+1} N \right) \). Moreover, they described an explicit large corner-free set that matches this bound.

The only known upper bound for general \(\mathbb{F}_p^n \) stems from a recent communication protocol that applies to \(\text{Eval}_\mathbb{F}_p^n \) (see [CS14] and Proposition 23):

Proposition 14. If \(k > 1 + p \log(3n) \) then:

\[
\frac{N^k}{r_k^c(\mathbb{F}_p^n)} \leq c_k^c(\mathbb{F}_p^n) \leq 2^{O(p \log^2 n)} p^{O(p \log n)}
\]

This result is obtained via the reduction of Proposition 10. Thus, it does not give an explicit description of a large corner-free set over \(\mathbb{F}_p^n \). A construction of such a set is provided for the first time in next section.

2.2 A large corner-free set over \(\mathbb{F}_p^n \)

We describe the first non-trivial corner-free set over \(\mathbb{F}_p^n \). Our construction is inspired by the communication protocol from [CS14] (see the proof of Proposition 23) and the previous corner-free set built over \(\mathbb{F}_2^n \) in [ACFN15].

We interpret each \(M \in (\mathbb{F}_p^n)^k \) as a \(k \times n \) matrix over \(\mathbb{F}_p \), whose columns are \(c_1, \ldots, c_n \in \mathbb{F}_p^k \). For all \(c \in \mathbb{F}_p^k \), the Hamming distance \(d(c, c_j) \) between \(c \) and \(c_j \) is the number of coordinates at which \(c \) and \(c_j \) differ. We also define the following quantity:

\[
n_{i,c}(M) = |\{j \in \{1, \ldots, n\} : d(c, c_j) = i\}|
\]

The next proposition provides a general way to build corner-free sets over \(\mathbb{F}_p^n \).
Proposition 15. Let $N_k = 0$ and $N_0, \ldots, N_{k-1} \geq 0$ such that $\sum_{i=0}^{k} N_i = n$. Then
\[
S_c^k = \{ M \in (\mathbb{F}_p^n)^k : \forall i \in \{0, \ldots, k\}, n_{i,c}(M) = N_i \}
\]
is a corner-free set.

Proof. The proof goes as in [ACFN15], Theorem 4.4.

Let’s assume that S_c^k contains a corner. Then there exist $M \in S_c^k$ and $\lambda \in \mathbb{F}_p^n \setminus \{0\}$ such that $M + \lambda^t \in S_c^k$ for all $t \in \{1, \ldots, k\}$ (where $\lambda^t \in (\mathbb{F}_p^n)^k$ is zero everywhere, except for the t-th row where it is equal to λ).

Consider the columns of M corresponding to indices j such that $\lambda_j \neq 0$. Let t denotes the maximum Hamming distance to c among these columns. Note that $t < k$ since the number $n_{k,c}$ of columns at distance k to c is zero ($N_k = 0$).

The columns of M at distance $t+1$ to c remain intact in $M + \lambda^t$ for all t. However, by definition of t, there exists j and ℓ' such that column j is at distance t from c in M, and at distance $t+1$ from c in $M + \lambda^t$ (because $\lambda_j \neq 0$). Thus, $n_{t+1,c}(M + \lambda^t) > n_{t+1,c}(M)$.

This is a contradiction since $n_{t,c}(X)$ is constant for all $X \in S_c^k$.

Remark 16. If we restrict our attention to \mathbb{F}_2^n and take $c = (1, \ldots, 1)$, we obtain the reasoning carried out in [ACFN15].

It remains to choose the N_i’s so as to maximize the size of S_c^k. We use the following parameters:
\[
\begin{cases}
N_i = \binom{k}{i} \frac{(p-1)^i}{p^i} n, & 1 \leq i \leq k-1 \\
N_0 = n - \sum_{i=1}^{k-1} N_i
\end{cases}
\]

We now estimate the size of the associated set:

Theorem 17. Let $n, p \geq 2$ and $k \geq \left\lceil \log n \log \left(\frac{1}{1 + \frac{1}{p-1}}\right) \right\rceil$. The set S_c^k defined above does not contain a corner, and
\[
|S_c^k| \geq \frac{N^k}{O(\log^2 n)^k p^{k^2}}
\]
for some absolute constant C, and $N = |\mathbb{F}_p^n|$.

The proof is rather computational, and is left to Appendix B. Note that the size we obtain is close to the lower bound $r_k^c(\mathbb{F}_p^n) \geq \frac{N^k}{2^{O(p \log^2 n)} p^{O(p \log n)}}$ from Proposition 14 when $k \approx p \log n$.

2.3 Future work

The EVAL$_G$ and EXACT$_N$ functions are undeniably among the most important ones in communication complexity. Their randomized communication complexity is $O(1)$. However, the deterministic communication cost is poorly known, but is conjectured to be high in many interesting cases. For instance, $D_3(\text{EXACT}_N)$ is believed to be close to the known upper bound $O(\sqrt{\log N})$. If proved, it would be the first efficient separation between randomized and deterministic communication complexity for $k \geq 3$ players.

On the other hand, communication complexity has proved to be of interest for studying Ramsey theory. It provided the first upper bounds over \mathbb{F}_p^n and inspired the construction of large corner-free sets. It is always relevant to try to convert communication protocols into Ramsey constructions, and vice versa.
Finally, the \textsc{Eval}_G function (for well-chosen \(G\)) is conjectured to break the \(\log n\) barrier. It turns out that \textsc{Eval}_F has a particular structure that makes it easier to study. Indeed, it belongs to the family of \textit{composed functions} that will be studied in next section.

3 The \(\log n\) barrier and composed functions

As explained in introduction, finding a function that breaks the \(\log n\) barrier is one of the main open questions in communication complexity. Here we study this problem for a large class of functions called the \textit{composed functions}. We especially give the first efficient simultaneous protocol for a certain class of composed functions of constant block-width.

3.1 Previous candidates to break the barrier

One of the first strong lower bounds in the NOF model was obtained for the \textit{GIP} function, defined as follow:

\textbf{Definition 18.} Given \(x_1, \ldots, x_k \in \{0, 1\}^n\), the \textit{Generalized Inner Product (GIP)} function for \(k\) players outputs \(\sum_{i=1}^n x_{1,i} \cdots x_{k,i} \mod 2\).

Babai, Nisan and Szegedy proved in [BNS92] that \(R_k(\text{GIP}) \geq \Omega(n/4^k)\). Thus, GIP is hard up to \((1 - \epsilon) \log n\) players. It might seem like GIP remains hard for \(k \geq \log n\) players. However, Grolmusz [Gro94] found later an efficient (non simultaneous) protocol of cost \(\log^2 n\) when \(k \geq \log n\).

The GIP function can be seen as an element of a broader family, called the \textit{composed functions}:

\textbf{Definition 19.} Let \(f : \{0, 1\}^n \rightarrow \{0, 1\}\) and \(\overrightarrow{g} = (g_1, \ldots, g_n)\) where \(g_i : \{0, 1\}^k \rightarrow \{0, 1\}\). Given \(x_1, \ldots, x_k \in \{0, 1\}^n\), the \textit{composed function} \(f \circ \overrightarrow{g}\) for \(k\) players outputs \(f \circ \overrightarrow{g}(x_1, \ldots, x_k) = f(\ldots, g_i(x_{1,i}, \ldots, x_{k,i}), \ldots)\). When \(g = g_1 = \cdots = g_n\), we will denote it by \(f \circ g\).

It is convenient to visualize the input of a composed function as a \(k \times n\) matrix \(M\) over \(\{0, 1\}\), where row \(i\) is the number \(x_i\) on the forehead of player \(i\), and column \(j\) is the input of function \(g_j\) (see Figure 2). By definition of the NOF model, player \(i\) sees all of \(M\) except row \(j\).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{matrix_structure.png}
\caption{Matrix structure of a composed function \(f \circ \overrightarrow{g}\) on input \((x_1, \ldots, x_k)\).}
\end{figure}

We will call \textsc{Any} \(\circ\) \textsc{Any} (resp. \textsc{Any} \(\circ\) \textsc{Any}) the set of all composed functions \(f \circ \overrightarrow{g}\) (resp. \(f \circ g\)). We define similarly \textsc{Sym} \(\circ\) \textsc{Sym} for symmetric \(f\) and symmetric \(g\), \textsc{Sym} \(\circ\) \textsc{Any} for symmetric \(f\) and any \(\overrightarrow{g}\), etc.
Example 20. Here are some example of composed functions:

1. GIP = MOD₂ ∘ AND ∈ SYM ∘ SYM, the Generalized Inner Product.
2. MAJ ∘ MAJ ∈ SYM ∘ SYM, where MAJ is the Majority function.
3. DISJ = NOR ∘ AND ∈ SYM ∘ SYM, the generalized Disjointness function (for which is known [RY15] that $R_k(DISJ) \geq \Omega(n/4^k)$).

The (non simultaneous) protocol from [Gro94] applies to all composed functions in SYM ∘ AND (the inner function g must be the AND function).

Next, Babai, Kimmel and Lokam [BKL95] proposed MAJ ∘ MAJ as a candidate to break the barrier (since MAJ is conjectured to be outside ACC⁰). However, they found later an efficient simultaneous protocol for SYM ∘ SYM:

Proposition 21 ([BGKL04]). Let M be a $k \times n$ matrix over $\{0,1\}$ with $k > 1 + \lceil \log n \rceil$. For $0 \leq i \leq k$, let y_i be the number of columns with i ones. For $j = 1, \ldots, k$, let player j see all of M except row j. Then there exists a simultaneous multiparty protocol in which each player sends $O(k \log n)$ bits to the referee, after which the referee can calculate y_0, \ldots, y_k.

According to the interpretation of Figure 2, this provides a protocol of total cost $O(k^2 \log n)$ for any $f \circ g \in SYM \circ SYM$. Indeed, since f and g are symmetric, recovering the y_i’s is enough to compute $f \circ g(x_1, \ldots, x_k)$. We briefly state the proof of Proposition 21:

Proof of Proposition 21. For all $1 \leq j \leq k$ and $0 \leq i \leq k - 1$, player j sends to the referee the number $a_j(i)$ of columns she sees with exactly i ones. Note that player j does not see row j, so she cannot see k ones in a same column. If we denote $b_i = \sum_{j=1}^k a_j(i)$, we observe that the y_i’s must satisfy the following equations:

\[
\begin{cases}
(k - i)y_i + (i + 1)y_{i+1} = b_i, & i = 0, 1, \ldots, k - 1 \\
y_i \geq 0, & 0 \leq i \leq k \text{ and } \sum_{i=0}^k y_i \leq n
\end{cases}
\]

If it admits only one integral solution, the referee can recover it and compute $f \circ g(x_1, \ldots, x_k)$. Let us assume that it is not the case, and denote by $y = (y_i)_{0 \leq i \leq k}$ and $y' = (y'_i)_{0 \leq i \leq k}$ two different solutions. For all i, define $d_i = y_i - y'_i$. Since $y_i + y'_i \geq |y_i - y'_i| = |d_i|$, we obtain:

\[
\begin{cases}
(k - i)d_i + (i + 1)d_{i+1} = 0, & i = 0, 1, \ldots, k - 1 \\
\sum_{i=0}^k |d_i| \leq 2n
\end{cases}
\]

Thus, $d_1 = -kd_0 = -(\binom{k}{1})d_0$, $d_2 = -\frac{k-1}{2}d_1 = (\binom{k}{2})d_0$, and more generally:

\[d_i = (-1)^i \binom{k}{i} d_0\]

However, since $y \neq y'$, one of the d_i’s is different from 0. It implies that $d_0 \neq 0$ and $|d_i| = \binom{k}{i} |d_0| \geq \binom{k}{i}$ for all i. We obtain a contradiction:

\[2n \geq \sum_{i=0}^k |d_i| \geq \sum_{i=0}^k \binom{k}{i} = 2^k > 2^{1+\log n} = 2n\]
When the number k of players is polylog n, this is an efficient protocol over $\text{SYM} \circ \text{SYM}$. For larger k, Babai et al. only showed how to handle efficiently $\text{SYM} \circ \text{COMP}$, where COMP (compressible symmetric functions) is a subclass of SYM that includes the functions of Example 20 (compressibility will be defined in Section 3.2). Later, combining ideas from [Gro94] and [BGKL04], Ada et al. [ACFN15] removed the compressibility condition and provided an efficient simultaneous protocol of cost $O(\log^2 n)$ for any $f \circ \overline{g} \in \text{SYM} \circ \overline{\text{ANY}}$ and $k > 1 + 2 \log n$. In other words, none of the functions in $\text{SYM} \circ \overline{\text{ANY}}$ can break the $\log n$ barrier.

The next step was to study composed functions of larger block-width t. Instead of g_i acting on a single $k \times 1$ column of M, we now have $g_i : \{0,1\}^{k \cdot t} \to \{0,1\}$ acting on t columns of M. See Figure 3 for the matrix representation.

![Figure 3: Matrix structure of a composed function $f \circ \overline{g}$ of block-width t.](image)

The MAJ \circ MAJ function is generalized to MAJ \circ MAJ$_t$ where MAJ$_t : \{0,1\}^{k \cdot t} \to \{0,1\}$ outputs 1 if at least $kt/2$ bits of the input are set to 1. It is conjectured that MAJ \circ MAJ \sqrt{n} breaks the log n barrier. However, even the case $t = 2$ is unsolved.

A more convenient way to look at composed functions of block-width t is to interpret each sub-row $r \in \{0,1\}^t$ of each block as a number in \mathbb{F}_2. Thus, a composed function over \mathbb{F}_p is defined as $f \circ \overline{g}$ where $\overline{g} = (g_1, \ldots, g_n)$ and $g_i : \mathbb{F}_p^k \to \{0,1\}$. The corresponding $k \times n$ matrix M has now entries in \mathbb{F}_p instead of $\{0,1\}$, and each g_i acts on a single column of M. We call ANY $\circ \overline{\text{ANY}}_p$ the family of composed functions over \mathbb{F}_p (we define similarly ANY $\circ \overline{\text{ANY}}_p$, SYM $\circ \overline{\text{SYM}}_p$, etc.). Note for instance that the class ANY $\circ \overline{\text{ANY}}$ of Definition 19 is in fact ANY $\circ \overline{\text{ANY}}$.

Example 22. The EVAL$_{F_p}$ function studied in Section 2 belongs to SYM \circ SYM$_p$ (since EVAL$_{F_p}$ = NOR \circ MOD$_p$). We can also interpret MAJ \circ MAJ$_t$ as an element of SYM \circ SYM$_{2t}$ with MAJ$_t : \mathbb{F}_{2^t}^n \to \{0,1\}$.

The first efficient protocol for SYM $\circ \overline{\text{ANY}}_p$ was proposed by Chattopadhyay and Saks:

Proposition 23 ([CS14]). Let $f : \{0,1\}^n \to \{0,1\}$ be a symmetric function and $\overline{g} = (g_1, \ldots, g_n)$ where $g_i : \mathbb{F}_p^k \to \{0,1\}$ are any functions. If $k > 1 + p \log(3n)$ then:

$$D_k(f \circ \overline{g}) \leq O(p \log n \log(pn))$$

and:

$$R^\parallel_k(f \circ \overline{g}) \leq O(p \log^2 n)$$

Proof. When $k > 1 + p \log(3n)$, it is easy to see by a probabilistic argument that there exists $c = (s_1, \ldots, s_k) \in \mathbb{F}_p^k$ such that each column of M has at least one coordinate in common
with \(c \). We then take a prime \(q \in [n, 2n] \) and consider the polynomial representation shifted by \(c \) over \(\mathbb{F}_q \) of each of the \(g_i \)'s:
\[
g_i(x) = \sum_{0 \leq i_1, \ldots, i_k \leq q-1} g_{iq}(i_1, \ldots, i_k) \cdot (x_1 - s_1)^{i_1} \cdots (x_k - s_k)^{i_k}
\]

For all \(i_1, \ldots, i_k \neq 0 \), we know that \(g_{iq}(i_1, \ldots, i_k) \cdot (x_1 - s_1)^{i_1} \cdots (x_k - s_k)^{i_k} \) will evaluate to 0 on column \(i \) of \(M \) (by definition of \(c \)). Thus, we only care of the terms \(g_{iq}(i_1, \ldots, i_k) \cdot (x_1 - s_1)^{i_1} \cdots (x_k - s_k)^{i_k} \) where at least one of the \(i_j \)'s is equal to 0. These terms are partitioned between the players such that player \(j \) only has terms for which \(i_j = 0 \).

Each player is able to evaluate her terms (since they do not contain values from her forehead), and send their sum (modulo \(q \)) to the referee. Finally, by summing up in \(\mathbb{F}_q \) the values she received, the referee obtains the numbers of columns that evaluate to 1, and compute \(f \circ \overline{g}(x_1, \ldots, x_k) \).

The only non-simultaneous part of the protocol is the share of the vector \(c \) at the beginning. However, the players can agree simultaneously on \(c \) if they have access to a random public string.

\[
\text{Remark 24. The role of column } c \text{ in the proof above inspired the construction of the corner-free set over } \mathbb{F}_q^n \text{ in Section 2.2.}
\]

This protocol is efficient for \(\text{SYM} \circ \overline{\text{ANV}}_p \) with \(p \) up to \(\text{polylog } n \) (i.e. blocks of width \(\log \log n \)). However, since it is not simultaneous it does not prevent any function from breaking the \(\log n \) barrier. Next section, we will build the first \textit{simultaneous} protocol for composed functions of block-width greater than one.

3.2 Composed functions of constant block-width

Using ideas from [BGKL04], we describe the first efficient simultaneous protocol for composed functions of constant block-width in \(\text{SYM} \circ \text{COMP}_p \) (we will define later what \text{COMP} is).

We generalize the protocol of Proposition 21, by showing that the next system of equations admits at most one integral solution:

Theorem 25. Let \(p, k \) and \(n \) be positive integers such that \(k > 1 + 5p \log n - p \). Let \((b_{i_1, \ldots, i_p})_{0 \leq i_1 + \cdots + i_p \leq k-1} \) be integers. Consider the following system of equations:
\[
\begin{align*}
(k - (i_1 + \cdots + i_p))y_{i_1, \ldots, i_p} + \sum_{j=1}^{p} (i_j + 1)y_{i_1, \ldots, i_{j-1}, i_j+1, i_{j+1}, \ldots, i_p} &= b_{i_1, \ldots, i_p} \quad (1) \\
0 \leq i_1 + \cdots + i_p &\leq k - 1
\end{align*}
\]

Assume further that
\[
y_{i_1, \ldots, i_p} \geq 0, \ 0 \leq i_1 + \cdots + i_p \leq k \quad \text{and} \quad \sum_{i_1 + \cdots + i_p \leq k} y_{i_1, \ldots, i_p} \leq n \quad (2)
\]

Then, under constraints (1), the system of equations (2) has at most one integral solution.

Theorem 25 is implied by the following one:

Theorem 26. Let \(p, k \) and \(n \) be positive integers such that \(k > 1 + 5p \log n - p \). Consider the following system of equations:
\[
\begin{align*}
(k - (i_1 + \cdots + i_p))d_{i_1, \ldots, i_p} + \sum_{j=1}^{p} (i_j + 1)d_{i_1, \ldots, i_{j-1}, i_j+1, i_{j+1}, \ldots, i_p} &= 0 \quad (3) \\
0 \leq i_1 + \cdots + i_p &\leq k - 1
\end{align*}
\]
Assume further that
\[\sum_{i_1 + \ldots + i_p \leq k} |d_{i_1, \ldots, i_p}| \leq 2n \] (4)

Then, under constraints (4), the system of equations (3) cannot have a non-zero integral solution.

Proof that Theorem 26 implies Theorem 25. We assume by contradiction that Equation (1) under constraints (2) has two different integer solutions \(y = (y_{i_1, \ldots, i_p})_{0 \leq i_1 + \ldots + i_p \leq k} \) and \(y' = (y'_{i_1, \ldots, i_p})_{0 \leq i_1 + \ldots + i_p \leq k} \). For \(0 \leq i_1 + \cdots + i_p \leq k \), let \(d_{i_1, \ldots, i_p} = y_{i_1, \ldots, i_p} - y'_{i_1, \ldots, i_p} \). Since \(y \neq y' \), we know there exists at least one \(d_{i_1, \ldots, i_p} \neq 0 \).

From (1), we obtain the following relations:
\[
\begin{align*}
(k - (i_1 + \cdots + i_p))d_{i_1, \ldots, i_p} + \sum_{j=1}^{p} (i_j + 1)d_{i_1, \ldots, i_j-1, i_j+1, i_{j+1}, \ldots, i_p} &= 0 \\
0 \leq i_1 + \cdots + i_p &\leq k - 1
\end{align*}
\] (5)

Moreover, since \(y_{i_1, \ldots, i_p} + y'_{i_1, \ldots, i_p} \geq |y_{i_1, \ldots, i_p} - y'_{i_1, \ldots, i_p}| = d_{i_1, \ldots, i_p} \), we have:
\[2n \geq \sum_{i_1 + \cdots + i_p \leq k} (y_{i_1, \ldots, i_p} + y'_{i_1, \ldots, i_p}) \geq \sum_{i_1 + \cdots + i_p \leq k} |d_{i_1, \ldots, i_p}| \]

Thus, we proved that Equations (3) under constraints (4) has a non-zero integral solution. It implies that Equation (1) under constraints (2) cannot have more that one integral solution if Theorem 26 holds.

Theorem 26 is proved by induction on \(p \). The base case \((p = 1)\) has already been established in [BGKL04] (see the proof of Proposition 21). The induction step is detailed in Appendix C. This new result leads to the following simultaneous protocol for composed functions:

Theorem 27. Let \(M \) be a \(k \times n \) matrix over \(\mathbb{F}_{p+1} \) with \(k > 1 + 5^p \log n - p \). For \(0 \leq i_1 + \cdots + i_p \leq k \), let \(y_{i_1, \ldots, i_p} \) be the number of columns of \(M \) such that each \(s \in \{1, \ldots, p\} \) occurs exactly \(i_s \) times in \(M \). For \(j = 1, \ldots, k \), let player \(j \) see all of \(M \) except row \(j \). Then there exists a simultaneous multiparty protocol in which each player sends \(O((k + p)^p \log n) \) bits to the referee, after which the referee can calculate \((y_{i_1, \ldots, i_p})_{1 + \cdots + i_p \leq k} \).

Proof. As in [BGKL04] and the proof of Proposition 21, player \(j \) sends for all \(i_1 + \cdots + i_p \leq k - 1 \) the number \(a_j(i_1, \ldots, i_p) \) of columns she sees which contain exactly \(i_s \) occurrences of the element \(s \in \mathbb{F}_{p+1} \setminus \{0\} \). Then, the referee computes \(b_{i_1, \ldots, i_p} = \sum_{j=1}^{k} a_j(i_1, \ldots, i_p) \) (for all \(i_1 + \cdots + i_p \leq k - 1 \)) and considers the associated equations defined in Theorem 25. It is easy to see that the \(y_{i_1, \ldots, i_p} \)'s must verify these equations. Since they admit exactly one integral solution (according to Theorem 25), the referee can compute it and recover the \(y_{i_1, \ldots, i_p} \)'s.

Note that the total number of variables \((y_{i_1, \ldots, i_p})_{1 + \cdots + i_p \leq k} \) is \(O((k + p)^p) \), hence the cost of the protocol.

The total cost of the previous protocol is \(O((k + p)^p \log n) \). Thus, it is efficient for any function in \(\text{SYM} \circ \text{SYM}_p \) when \(k \) is polylog \(n \) and \(p \) is constant. We now generalize the notion of compressibility introduced in [BGKL04] to handle larger \(k \):

Definition 28. Let \(X = \{x_1, \ldots, x_k\} \) be a set of variables over \(\mathbb{F}_p \), and \(f : \mathbb{F}_p^k \to \{0, 1\} \). For any partition \(A \cup B \) of \(X \), let denote by \(C_{A \to B}(f) \) the (one-way) communication complexity of the following two party problem:
\begin{itemize}
 \item Alice sees \(A\) and Bob sees \(B\).
 \item Alice sends a message to Bob.
 \item Bob deduces \(f(x_1, \ldots, x_k)\).
\end{itemize}

The function \(f\) is said to be \emph{\(c\)-compressible} (for some constant \(c\)) if for any partition \(A \cup B\) of \(X\), we have:

\[
C_{A \rightarrow B}(f) = c \log |B|
\]

We call \(\text{COMP}_p\) the set of all compressible symmetric functions over \(\mathbb{F}_p\). Our previous protocol applies to \(\text{SYM} \circ \text{COMP}_p\), whenever \(k \geq 5^p \log n\) and \(p\) is constant:

Theorem 29. Let \(n, p, k \geq 2\) such that \(p\) is a constant and \(k \geq 5^p \log n\). If \(f : \{0,1\}^n \rightarrow \{0,1\}\) and \(g : \mathbb{F}_p \rightarrow \{0,1\}\) are symmetric functions, then:

\[
D_k^\parallel (f \circ g) = O((k + 1)^p \log n)
\]

Moreover, if \(g\) is \(c\)-compressible then:

\[
D_k^\parallel (f \circ g) = O\left(\log^{1+c+p} n\right)
\]

Proof. The first point directly stems from Theorem 27.

We prove the second one. Let’s consider the \(k \times n\) matrix \(M\) over \(\mathbb{F}_p\) representing the input of \(f \circ g\). We define \(\ell = 5^p + 1 \log n\), so that only the first \(\ell\) players are going to speak. We also let \(u_i \in \mathbb{F}_p^k\) be the content of column \(i\), and \(v_i \in \mathbb{F}_p^\ell\), \(w_i \in \mathbb{F}_p^{k-\ell}\) such that \(u_i = v_i \cdot w_i\) (\(u_i\) is the vector appearing from row 1 to \(\ell\), and \(w_i\) is the remaining values).

Since \(g\) is compressible, \(g(u_i)\) is determined by \(v_i\) and a message \(m_i\) of size at most \(c \log \ell\) that only depends on \(w_i\) (thus \(m_i\) is known by players 1 to \(\ell\)). The set of all possible messages \(m_i\)’s has size \(r = 2^c \log \ell = 5^{(p+1)} \log^c n\).

Players 1 to \(\ell\) now form \(r\) new matrices \(M_1, \ldots, M_r\) where each \(M_j\) groups all the columns \(u_i\)’s of \(M\) that lead to a same message \(m_i\). Once again, this step does not require any communication. We then discard rows \(\ell + 1\) to \(k\) in each \(M_j\), and apply separately the protocol from Theorem 27 to the first \(\ell\) rows of each \(M_j\). Since \(f\) and \(g\) are symmetric, and the message associated to each \(M_j\) is known, the referee can recover \(f \circ g(x_1, \ldots, x_k)\).

The \(\text{EVAL}_{\mathbb{F}_p}\) function is compressible since it suffices for Alice to send \(\sum_{x \in A} x \mod p\) to Bob. This is also the case of the \(\text{MAJ}_t\) function:

Lemma 30. The \(\text{MAJ}_t\) function is \(2\)-compressible.

Proof. The proof goes as in [BGKL04]. Let’s consider a partition \(A \cup B = X\) of the input \(X = (x_1, \ldots, x_k) \in \mathbb{F}_2^k\). We have \(\text{MAJ}_t(x_1, \ldots, x_k) = 1\) if and only if \(\sum_{i=1}^k |x_i| \geq kt/2\) (where \(|x_i|\) is the Hamming weight of the binary representation of \(x_i\) over \(t\) bits). If \(\sum_{x \in A} |x_i| < kt/2 - t |B|\) then Alice already knows \(\text{MAJ}_t(x_1, \ldots, x_k) = 0\). On the other hand, if \(\sum_{x \in A} |x_i| \geq kt/2\) then she knows \(\text{MAJ}_t(x_1, \ldots, x_k) = 1\). Finally, if \(\sum_{x \in A} |x_i|\) is between \(kt/2 - t |B|\) and \(kt/2\) then \(\text{MAJ}_t(x_1, \ldots, x_k)\) also depends on what Bob sees. Thus, it is enough for Alice to send one of the \(2 + t |B|\) messages that describe the previous situations. This requires \(\log(2 + t |B|)\) bits.

Consequently, we obtain the first efficient simultaneous protocol for \(\text{MAJ} \circ \text{MAJ}_t\) when \(t > 1\) is constant:
Proposition 31. For all constant t and $k \geq 5^{2t} \log n$, we have:

$$D^f_k(\text{MAJ} \circ \text{MAJ}_t) = O\left(\log^{3+2t} n\right)$$

The same reasoning shows that the threshold function Th_s is also compressible (where $Th_s(x_1, \ldots, x_k) = 1$ if and only if $\sum_{i=1}^k x_i \geq s$). This solves open problem 1.(a) formulated in Section 8 of [BGKL04] when the block-width t is constant.

3.3 Future work

We detailed the first efficient simultaneous protocol for composed functions of constant block-width in $\text{SYM} \circ \text{COMP}_p$. Removing the compressibility condition would be an improvement to this result. However, the technique used in [ACFN15] for $\text{SYM} \circ \text{COMP}_2$ does not generalized to $p > 2$. On the other hand, the protocol from [CS14] works for $\text{SYM} \circ \text{ANY}_p$ and p up to polylog n, but is not simultaneous. It is remarkable that the only known simultaneous protocols for large families of composed functions ([BGKL04], [ACFN15] and Theorem 29) are always derived from the equations introduced in [BGKL04].

The biggest open problem remains to find a function that breaks the $\log n$ barrier. We proved that such a function cannot be in $\text{SYM} \circ \text{COMP}_p$, but other composed functions are still conjectured to be hard for more than $\log n$ players. This is for instance the case of the $\text{MAJ} \circ \text{MAJ}_{\sqrt{n}}$ function. The EVAL_G function described in Section 2 is also believed to break the barrier (for well-chosen G), but the connection with Ramsey theory makes it even harder to prove. Finally, many matrix related problems are also considered to be of great interest. For instance, Raz [Raz00] showed an $\Omega(n/2^k)$ lower bound for deciding the top-left entry of the multiplication of $k \times n$ matrices over \mathbb{F}_2. More recently, Gowers and Viola [GV15] studied the interleaved group products, where each player receives a tuple $(x_{i,1}, \ldots, x_{i,n})$ in $G = \text{SL}(2, q)$, with the promise that $\prod_{i=1}^n x_{i,1} \cdots x_{i,k} = g$ or h. Finding which is the case has cost $\Omega(n \log |G|)$ when $k = 2$, and it is conjectured to remain hard for larger k.

To conclude, one of the difficulties to break the $\log n$ barrier is the lack of methods to produce lower bounds in the NOF model. The discrepancy method is the only one that generalizes from the two player case, but it is hard to use and it applies in fact directly to randomized communication. Finding a lower bound technique that works specifically for deterministic multiparty communication complexity is an open challenge.

4 Decision tree complexity and log-rank conjecture

This last section addresses another major unsolved problem in communication complexity: the log-rank conjecture, and its links to decision tree complexity.

Given a function $f : \{0, 1\}^n \to \{0, 1\}$ and an unknown input $x \in \{0, 1\}^n$, the decision tree model characterizes the amount of information that have to be queried on x in order to compute $f(x)$. It turns out that decision tree complexity is a convenient way to upper bound the communication complexity of XOR and AND functions, and possibly prove the log-rank conjecture for them.

Here, we present different models of decision tree complexity and their relations to communication complexity. We then focus on the decision tree complexities of symmetric functions.
4.1 Definitions and links to communication complexity

A query is a boolean function \(q : \{0, 1\}^t \rightarrow \{0, 1\} \) that operates on a particular subset of the \(n \) input variables \(x = x_1 \ldots x_n \in \{0, 1\}^n \). The decision tree model depends on the type of queries that are allowed. We first provide a general definition, and then three specific kinds of decision trees.

Definition 32. A **deterministic decision tree** is an ordered binary tree, where each internal node is labeled with a query, and each leaf is labeled with 0 or 1. Given \(x \in \{0, 1\}^n \), the tree is recursively evaluated by starting at the root and going in the left subtree if the query of the current node evaluates to 0 on \(x \), or the right subtree if it evaluates to 1.

The **deterministic decision tree complexity** of a boolean function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) is the smallest depth of a decision tree that computes \(f(x) \) for all \(x \). The (error-bounded) **randomized decision tree complexity** is defined similarly, with the extra possibility of choosing the queries at random. We also refer the reader to [HŠ05] for a description of the (error-bounded) quantum decision tree complexity, that will be briefly used later.

We now define three different set of queries and the corresponding decision tree models:

- **Regular query:** returns the value of one of the variables (e.g. \(x_2 \)). The corresponding model is the regular decision tree model (or just decision tree model). The deterministic, randomized and quantum decision tree complexities of a function \(f \) will be denoted respectively by \(\text{DT}(f) \), \(\text{RDT}(f) \) and \(\text{QDT}(f) \).

- **Parity query:** returns the parity of a subset of the variables (e.g. \(x_1 \oplus x_4 \oplus x_7 \)). The corresponding model is the parity decision tree model, and the complexities are denoted by \(\text{DT}^\oplus(f) \), \(\text{RDT}^\oplus(f) \) and \(\text{QDT}^\oplus(f) \).

- **Conjunctive query:** returns the conjunction of a subset of the variables (e.g. \(x_2 \land x_3 \)). The corresponding model is the conjunctive decision tree model, and the complexities are denoted by \(\text{DT}^\land(f) \), \(\text{RDT}^\land(f) \) and \(\text{QDT}^\land(f) \).

See Figure 4.1 for an example of a decision tree computing the MAJ_3 function.

![Figure 4: A (regular) deterministic decision tree computing the majority function on 3 bits (each query is next to its node). The computation on input \(x = 100 \) is shown in bold.](image)

The regular decision tree complexity (also called query complexity) is a well-studied subject. For instance, it is known that \(\text{DT}(f) \) is polynomially related to \(\text{deg}(f) \) ([NS92]) and \(\log \text{DT}(f) \) is the time needed to compute \(f \) on a CREW PRAM ([Nis89]). In a breakthrough result, Grover [Gro96] also proved that \(\text{QDT}(<\text{OR}) = \Theta(\sqrt{n}) \), whereas \(\text{RDT}(\text{OR}) = \Omega(n) \).

Parity and conjunctive decision trees can be much more efficient than regular ones (for instance \(\text{DT}(\text{AND}) = n \), whereas \(\text{DT}^\land(\text{AND}) = 1 \)). They are also intricately related to the communication complexity of XOR and AND functions.
Proposition 33 (Folklore). For any XOR function $F(x, y) = f(x \oplus y)$ we have:

$$D_2(F) \leq 2 \cdot DT^\oplus(f)$$

Similarly, for any AND function $F(x, y) = f(x \wedge y)$:

$$D_2(F) \leq 2 \cdot DT^\wedge(f)$$

These results also hold in the randomized and quantum frameworks.

Proof. Let’s consider a parity decision tree T computing f. Alice and Bob want to compute $F(x, y) = f(x \oplus y)$. They simulate T on input $x \oplus y$: for each parity query $(x_i \oplus y_i) \oplus \cdots \oplus (x_i \oplus y_i)$, Alice sends $x_i \oplus \cdots \oplus x_i \in \{0, 1\}$ to Bob who computes $(x_i \oplus \cdots \oplus x_i) \oplus (y_i \oplus \cdots \oplus y_i) = (x_i \oplus y_i) \oplus \cdots \oplus (y_i \oplus y_i) \in \{0, 1\}$ and sends back the result to Alice. The total cost of the protocol is $2 \cdot DT^\oplus(f)$.

The proof is similar for AND functions. \qed

These relationships between communication and decision tree complexities provide a new framework to prove the log-rank conjecture for XOR and AND functions. Indeed, according to Propositions 8, 9 and 33, it is now enough to show $DT^\oplus(f) \leq \log^\star \text{mon}(f)$ and $DT^\wedge(f) \leq \log^\star \text{mon}^*(f)$. In practice, this approach has already been used to prove the log-rank conjecture for XOR functions with constant deg$_2(f)$ over \mathbb{F}_2 (see [TWXZ13]).

However, the gap in the inequalities from Proposition 33 could be so important that the log-rank conjecture holds for communication complexity and not for decision trees. In other words, it would be comforting to know whether these complexities are polynomially related or not:

Conjecture 34. For any XOR function $F(x, y) = f(x \oplus y)$:

$$D_2(F) =_{\text{poly}} DT^\oplus(f), \quad R_2(F) =_{\text{poly}} RDT^\oplus(f) \quad \text{and} \quad Q_2(F) =_{\text{poly}} QDT^\oplus(f)$$

For any AND function $F(x, y) = f(x \wedge y)$:

$$D_2(F) =_{\text{poly}} DT^\wedge(f), \quad R_2(F) =_{\text{poly}} RDT^\wedge(f) \quad \text{and} \quad Q_2(F) =_{\text{poly}} QDT^\wedge(f)$$

The first case has been closed very recently by proving $D_2(F) \leq O(DT^\oplus(f)^6)$ (see [HL16]). The other ones remain widely open. In next section, we solve them for symmetric functions.

4.2 Decision tree complexities of symmetric functions

Recall that a function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ is symmetric if $f(x)$ only depends on the Hamming weight $|x|$ of x. We often use $f : \{0, \ldots, n\} \rightarrow \{0, 1\}$ instead, with the understanding that $f(|x|) = f(x)$. Symmetric functions are commonly studied in complexity theory, because of their simplicity and the basic measures associated with them (e.g. $r(f)$, $\ell(f)$ and $t(f)$ defined in Section 1.3). Note that AND, OR, MAJ and MOD$_m$ are all symmetric.

Several properties of the Fourier spectrum of symmetric functions are already known. There exist characterizations of the approximate degree [Pat92], minimal degree [KLM+09], spectral norm [AFH12], etc. The communication complexity of symmetric XOR and AND functions is also well studied ($F(x, y) = f(x \oplus y)$ is said to be symmetric if f is symmetric). It is already known that the log-rank conjecture holds for them, both in the deterministic ([ZS09, BdW01]), randomized ([ZS09, BdW01]) and quantum ([ZS09, Raz03]) frameworks. More precisely, here are the communication complexities established in the previous papers.
Let the following, we will prove the matching upper bounds and obtain the next results: bounds on the parity and conjunction decision tree complexities of symmetric functions. In
\(f(x, y) \) during their protocol are \(x \cdot r \) and \(y \cdot r \), for \(RDT(f) \) random \(r \in \{0, 1\}^n \)
(recall that \(x \cdot r = x_1 r_1 \oplus \cdots \oplus x_n r_n \in \{0, 1\} \)). This is equivalent to performing \(RDT(f) \) parity queries on random subsets of \(x \) and \(y \).

\(h(n) \in \Theta^*(c(n)) \) means \(\Omega(c(n)) \leq h(n) \leq O(c(n) \cdot \log n) \), and \(h(n) \in \Theta^\dagger(c(n)) \) means \(\Omega(c(n)/\log n) \leq h(n) \leq O(c(n)) \):

<table>
<thead>
<tr>
<th></th>
<th>XOR functions</th>
<th>AND functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>(\Theta(n))</td>
<td>(\Theta \left((n - t(f)) \left(1 + \log \frac{n}{n - \ell(f)} \right) \right))</td>
</tr>
<tr>
<td>Randomized</td>
<td>(\Theta(r(f)))</td>
<td>(\Theta^\dagger \left((n - t(f)) \left(1 + \log \frac{n}{n - \ell(f)} \right) \right))</td>
</tr>
<tr>
<td>Quantum</td>
<td>(\Theta(r(f)))</td>
<td>(\Theta^* \left(\sqrt{n \cdot \ell_0(f)} + \ell_1(f) \right))</td>
</tr>
</tbody>
</table>

Figure 5: Communication tree complexities of (nontrivial\(^1\)) symmetric XOR and AND functions.

The regular decision tree complexity of symmetric functions is also known [BBC+01, BdW02]. On the other hand, Ada et al. [AFH12] proved that the smallest size of a parity decision tree computing \(f \) is \(2^{\Theta_0(r(f) \cdot \log n / r(f))} \) and Aspnes et al. [ABD+10] obtained a tight characterization in terms of \(\ell(f) \) for \(k^+ \) decision trees (a model for which each node has \(k + 1 \) branching options). Moreover, Proposition 33 and Figure 5 already provide lower bounds on the parity and conjunction decision tree complexities of symmetric functions. In the following, we will prove the matching upper bounds and obtain the next results:

<table>
<thead>
<tr>
<th></th>
<th>Regular</th>
<th>Parity</th>
<th>Conjunctive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
<td>(\Theta \left((n - t(f)) \left(1 + \log \frac{n}{n - \ell(f)} \right) \right))</td>
</tr>
<tr>
<td>Randomized</td>
<td>(\Theta(n))</td>
<td>(\Theta(r(f)))</td>
<td>(\Theta^\dagger \left((n - t(f)) \left(1 + \log \frac{n}{n - \ell(f)} \right) \right))</td>
</tr>
<tr>
<td>Quantum</td>
<td>(\Theta \left(\sqrt{n \cdot \ell(f)} \right))</td>
<td>(\Theta(r(f)))</td>
<td>(\Theta^* \left(\sqrt{n \cdot \ell_0(f)} + \ell_1(f) \right))</td>
</tr>
</tbody>
</table>

Figure 6: Decision tree complexities of (nontrivial\(^2\)) symmetric functions.

The lower bounds for \(DT(f) \) and \(RDT(f) \) can be found in [BdW02]. Using the quantity
\[\Gamma(f) = \min \{ |2k - n + 1| : f(k) \neq f(k + 1) \} \], it has already been proved in [BBC+01] that
\(QDT(f) = \Theta \left(\sqrt{n \cdot (n - \Gamma(f))} \right) \). It is easy to see that \(n - \Gamma(f) \) is in fact \(\approx 2\ell(f) \).

We now prove the first missing upper bound:

Theorem 35. Let \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) a symmetric function. We have:

\[RDT(f) = O \left(r(f) \right) \]

Proof. Using results from [Yao03, GKdW04, HSZZ06] (see also [BBG14]), Leung et al. [LLZ11] built a (public coin) randomized communication protocol of cost \(O \left(r(f) \right) \) for computing any symmetric XOR function. The only information exchanged by the two players on input \((x, y) \) during their protocol are \(x \cdot r \) and \(y \cdot r \), for \(O \left(r(f) \right) \) random \(r \in \{0, 1\}^n \) (recall that \(x \cdot r = x_1 r_1 \oplus \cdots \oplus x_n r_n \in \{0, 1\} \)). This is equivalent to performing \(O \left(r(f) \right) \) parity queries on random subsets of \(x \) and \(y \).

\(^1\)The trivial XOR functions \(F(x, y) = f(x \oplus y) \) are the constant functions and the two parity functions \((f(x) = |x| \mod 2 \) or \(f(x) = 1 - |x| \mod 2 \). They all have \(O(1) \) complexity.

\(^2\)The trivial functions in the regular model are the two constant functions. The trivial functions in the parity model are the constant functions and the two parity functions. They all have \(O(1) \) complexity.
Thus, for any fixed y, we can simulate the previous protocol on a randomized parity decision decision tree in order to compute $F(x, y)$. In particular, for $y = 0$, we can compute $F(x, 0) = f(x)$ for any x. □

Next, we build a conjunctive decision tree protocol for $DT^\wedge(f)$ that matches the previous known lower bound. In fact, our algorithm also applies to non-symmetric functions (the definition of $t(f)$ has to be slightly changed in this case).

Theorem 36. Let $f : \{0, 1\}^n \to \{0, 1\}$ a symmetric function. We have:

$$DT^\wedge(f) = \mathcal{O}\left((n - t(f)) \left(1 + \log \frac{n}{n - t(f)}\right)\right)$$

with the convention that it is 0 if $t(f) = n$.

Proof. In the following, we use t instead of $t(f)$. If $t \leq n/2$, then $(n - t) \left(1 + \log \frac{n}{n - t}\right) = \Omega(n)$. Similarly, if $t = n$, then we trivially have $DT^\wedge(f) = \mathcal{O}(1)$. Thus, we will only be interested in $n/2 < t < n$.

For $B \subseteq \{1, \ldots, n\}$, we denote by \wedge^Bx the conjunctive query performed on the subset of x indexed by B. For instance, $\wedge^{\{1, 3\}}1010 = 1$, whereas $\wedge^{\{1, 2\}}1010 = 0$.

<table>
<thead>
<tr>
<th>Input</th>
<th>$x \in {0, 1}^n$ and $f : {0, \ldots, n} \to {0, 1}$ with $n/2 < t(f) < n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>$f(</td>
</tr>
<tr>
<td>1</td>
<td>Let $T = {1, \ldots, n}$</td>
</tr>
<tr>
<td>2 while $</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>Take a partition $\bigcup B_i$ of T into $2(n - t)$ sets of size $\approx \frac{</td>
</tr>
<tr>
<td>4</td>
<td>Compute $S = {i : \wedge^Bx = 0}$</td>
</tr>
<tr>
<td>5 if $</td>
<td>S</td>
</tr>
<tr>
<td>6</td>
<td>Return $f(0)$</td>
</tr>
<tr>
<td>7 else</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Update $T = \bigcup_{i \in S} B_i$</td>
</tr>
<tr>
<td>9 Query separately all the x_i's for $i \in T$</td>
<td></td>
</tr>
<tr>
<td>10 Define $y \in {0, 1}^n$ such that $y_i = x_i$ if $i \in T$, and $y_i = 1$ otherwise</td>
<td></td>
</tr>
<tr>
<td>11 Return $f(</td>
<td>y</td>
</tr>
</tbody>
</table>

At each step of the algorithm, if $i \notin T$ then $x_i = 1$. Thus, $y = x$ at the end, and the algorithm correctly returns $f(|x|)$ on line 11. On the other hand, if line 6 is reached then it implies $|x| < t$ (since there exists more than $n - t$ disjoint conjunctive queries on which x evaluates to 0). Thus, $f(|x|) = f(0)$ by definition of t. The algorithm is always correct.

Whenever line 8 is reached, the size of T is divided at least by 2. Moreover, the **while** loop stops if $|T| < n - t$. Thus, line 2 is executed $\mathcal{O}\left(\log \frac{n}{n - t}\right)$ times. Finally, each operation from lines 3 to 11 has complexity $\mathcal{O}(n - t)$. Thus, the total complexity of the algorithm is $\mathcal{O}\left((n - t) \left(1 + \log \frac{n}{n - t}\right)\right)$.

Finally, in order to prove the last missing upper bound, we use a reasoning introduced in [Raz03] for quantum communication complexity of AND-functions.

Theorem 37. Let $f : \{0, 1\}^n \to \{0, 1\}$ a symmetric function. We have:

$$QDT^\wedge(f) = \mathcal{O}\left(\sqrt{n \cdot \ell_0(f)} + \ell_1(f) \cdot \log \left(\frac{n}{\ell_1(f)}\right)\right)$$
Proof. We assume, without loss of generality, that \(f = 0 \) in \([\ell_0, n - \ell_1]\). We also define \(f_0, f_1 : \{0, \ldots, n\} \to \{0, 1\} \) such that \(f = f_0 \lor f_1 \) where \(f_0^{-1}(1) \subseteq [0, \ell_0 - 1] \) and \(f_1^{-1}(1) \subseteq [n - \ell_1 + 1, n] \). We have \(\text{QDT}^\lor(f) \leq \text{QDT}^\lor(f_0) + \text{QDT}^\lor(f_1) \).

We remark that \(\ell(f_0) = \ell_0(f) \). Thus, using the upper bound known for \(\text{QDT}(f_0) \), we obtain \(\text{QDT}^\lor(f_0) \leq \text{QDT}(f_0) \leq O\left(\sqrt{n \cdot \ell_0(f)}\right) \). On the other hand, since \(t(f_1) = n - \ell_1(f) + 1 \), we have \(\text{QDT}^\lor(f_1) \leq \text{DT}^\lor(f_1) \leq O\left(\ell_1(f) \cdot \log\left(\frac{n}{\ell_1(f)}\right)\right) \).

All these results, summarized in Figure 6, provide a better understanding of the regular, parity and conjunctive decision tree complexities of symmetric functions. In particular, it confirms that Conjecture 34 is true for symmetric functions.

4.3 Future work

The study of symmetric functions in the decision tree model is not completed. For instance, is it possible to extend the characterization from [AFH12] of the parity decision tree size to the conjunctive model?

Regarding the log-rank conjecture for XOR and AND functions, we provide new evidence that communication and decision tree complexities are polynomially related. The proof of Conjecture 34 in the general case probably requires very advanced tools (the result \(D_2(F) = \text{poly} \cdot \text{DT}_\oplus(f) \) from [HL16] relies on additive combinatoric), but it could be easier to study it first for other restricted families of boolean functions (monotone, bounded-degree, etc.).

5 Conclusion

Three of the main open questions in communication complexity were addressed in this report. We first studied the \text{Eval}_G function and its links to Ramsey theory. We proposed the first construction of a large corner-free set over \(\mathbb{F}_p^n \). The \text{Eval}_G function gathers several of the biggest challenges in communication complexity, but the associated Ramsey number are still poorly understood.

We then described the \(\log n \) barrier problem, and proved that it cannot be solved by composed functions in \(\text{SYM} \circ \text{COMP}_p \) for constant \(p \). In particular, our result applies to \(\text{MAJ} \circ \text{MAJ}_t \), which is the first time that an efficient simultaneous protocol is found for \(t > 1 \). Recall that breaking the barrier would help to close a major conjecture about \(\text{ACC}^0 \), but the current lower bound techniques do not seem to be powerful enough for such a result.

On the other hand, we think that other strong upper bounds can be obtained for larger families of composed functions. We particularly seek to remove the compressibility condition in our result.

Finally, we gave a full characterization of the regular, parity and conjunctive decision tree complexities of symmetric functions. These results strengthen the conjecture that communication and decision tree complexities are polynomially related. It also provides a better understanding of decision tree complexities, which could be used to solve the log-rank conjecture for XOR and AND functions. Besides that, the study of symmetric functions is interesting in its own right and we hope to further characterize the related complexity measures.
References

Appendices

A Proof of Proposition 10

We first prove the upper bound $D^\parallel_{k+1}(\text{Eval}_G) \leq k \cdot \log(c_k^G(G))$. Let’s consider a valid coloring of G^k with $c_k^G(G)$ colors. We build a protocol for Eval_G on input (x_1, \ldots, x_{k+1}) as follow:

- Player $k+1$ sends the color of (x_1, \ldots, x_k) to the referee.

- For all $1 \leq i \leq k$, player i computes $x'_i = - \sum_{j \neq i} x_j$ and sends the color of $(x_1, \ldots, x'_i, \ldots, x_k)$ to the referee.
• The referee outputs 1 (i.e. \(\sum x_i = 0 \)) if and only if all the colors she received are the same.

If \(\sum x_i = 0 \) then \(x'_i = x_i \) for all \(i \), and all the colors are indeed the same. On the other hand, if \(\sum x_i = -\lambda \neq 0 \) then:

• Player 1 sent the color of \((x_1 + \lambda, x_2, \ldots, x_k)\).
• Player 2 sent the color of \((x_1, x_2 + \lambda, x_3, \ldots, x_k)\).
• ...
• Player \(k \) sent the color of \((x_1, \ldots, x_{k-1}, x_k + \lambda)\).
• Player \(k + 1 \) sent the color of \((x_1, \ldots, x_k)\).

In other words, the players sent the colors of a corner into \(G_k \). Since the coloring is valid, the corner is not monochromatic and at least two colors are different. The referee will correctly output 0.

Note that only one player needs to send her color to the other ones if we do not care of simultaneity. Thus \(D_{k+1}(\text{Eval}_G) \leq k + \log(c_{k}^c(G)) \).

We now prove the lower bound \(\log(c_{k}^c(G)) \leq D_{k+1}(\text{Eval}_G) \). To this end, we make use of two of the most basic objects in the NOF model: stars and cylinder intersections (see [KN97] for a reminder of what they are). Let’s consider an optimal protocol for \(\text{Eval}_G \) of cost \(c = D_{k+1}(\text{Eval}_G) \). It partitions \(G^{k+1} \) into at most \(2^c \) cylinder intersections. Recall that the protocol has the same value on each of these cylinder intersections. We then color each \((x_1, \ldots, x_k) \in G^k\) by the label of the cylinder intersection that contains \((x_1, \ldots, x_k, -\sum_{i=1}^{k} x_i)\).

We want to show that this coloring is valid. Let’s assume that it is not the case, and consider a monochromatic corner:

\[(x_1, x_2, \ldots, x_k), (x_1 + \lambda, x_2, \ldots, x_k), (x_1, x_2 + \lambda, \ldots, x_k), \ldots, (x_1, x_2, \ldots, x_k + \lambda)\]

It implies that the following values belong to the same cylinder intersection:

\[(x_1, x_2, \ldots, x_k, -\sum x_i - \lambda + \lambda)\]
\[(x_1 + \lambda, x_2, \ldots, x_k, -\sum x_i - \lambda)\]
\[\vdots\]
\[(x_1, x_2, \ldots, x_k + \lambda, -\sum x_i - \lambda)\]

Note that they all sum to 0, thus the protocol outputs 1 on the cylinder intersection they belong to. Moreover, they form a star whose center is \((x_1, x_2, \ldots, x_k, -\sum x_i - \lambda)\). Since the center must be in the same cylinder intersection, it implies that the protocol outputs 1 on input \((x_1, x_2, \ldots, x_k, -\sum x_i - \lambda)\), which is false since the sum is not 0.

Thus, the previous coloring is valid and has size at most \(2^c = 2^{D_{k+1}(\text{Eval}_G)} \).

B Proof of Theorem 17

We want to estimate the size of the set \(\mathcal{S}^{k}_{c} = \{ M \in (F_p^n)^k : \forall i \in \{0, \ldots, k\}, n_{i,c}(M) = N_i \} \) when

\[k \geq \left\lfloor \frac{\log n}{\log \left(1 + \frac{1}{p^{-1}}\right)} \right\rfloor \]
and:

\[
\begin{cases}
N_i = \left\lceil \frac{k^i}{p^k} n \right\rceil, & 1 \leq i \leq k - 1 \\
N_0 = n - \sum_{i=1}^{k-1} N_i \\
N_k = 0
\end{cases}
\]

For all \(0 \leq i \leq k - 1\), we denote by \(\alpha_i\) the real number such that \(N_i = \alpha_i \frac{(p-1)^i}{p^k} n\). We obtain the following inequalities:

Lemma 38. If \(k \geq \left\lceil \frac{\log n}{\log \left(1 + \frac{1}{p-1}\right)} \right\rceil\), then:

1. \(N_0 \leq 1 + k\)
2. \(\alpha_0^N \leq e^{k+k^2} p^{k+k^2}\)
3. \(N_0 \cdots N_{k-1} \leq (1 + k)^{2k^2}\)

Proof. Let’s denote \(\lambda = \frac{\log n}{\log \left(1 + \frac{1}{p-1}\right)}\) (such that \(\left(\frac{p}{p-1}\right)^\lambda = n\)). We have \(\lambda \leq k\) and \(\left(\frac{p}{p-1}\right)^k \leq \frac{1}{n}\). We now prove the three points of the lemma:

Point 1: Since \(N_i \geq \left(\frac{k}{p^k}\right) \frac{(p-1)^i}{p^k} n - 1\) for all \(1 \leq i \leq k - 1\), we have:

\[
N_0 = n - \sum_{i=1}^{k-1} N_i \\
\leq n + (k - 1) + \frac{n}{p^k} + \frac{(p-1)^k n}{p^k} - \sum_{i=0}^{k-1} \left(\frac{k}{p^k}\right) \frac{(p-1)^i}{p^k} n \\
\leq k + \left(\frac{p-1}{p}\right)^k n \text{ since } n/p^k \leq 1 \\
\leq 1 + k
\]

Point 2: Recall that \(N_0 = \alpha_0 \frac{(p-1)^0}{p^k} n\). Thus:

\[
\alpha_0^N \leq \left(\frac{N_0 \cdot p^k}{N_0}\right)^{N_0} \\
\leq (1 + k)^{1+k} p^{k+k^2} \text{ using Point 1 above} \\
\leq e^{k+k^2} p^{k+k^2}
\]
Point 3:

\[
N_0 \cdots N_{k-1} \leq (1 + k) \prod_{i=1}^{k} \binom{k}{i} \frac{(p-1)^i}{p^k} n \\
\leq (1 + k) 2^{k^2} \frac{(p-1)^{k(k+1)/2} n^k}{p^{k^2}} \\
\leq (1 + k) 2^{k^2} (p-1)^{k^2} n^k \\
\leq (1 + k) 2^{k^2} n^k \left(\frac{p-1}{p} \right)^k \\
\leq (1 + k) 2^{k^2} n^k \left(\frac{1}{n} \right)^k \\
\leq (1 + k) 2^{k^2}
\]

Using the inequalities established in the previous Lemma and the Stirling’s formula, we estimate the size of \(S_c^k \) as follow:

\[
|S_c^k| = \left(\begin{array}{cccc}
N_0 & N_1 & \cdots & N_{k-1} \\
N_0 & N_1 & \cdots & N_{k-1} \\
\vdots & \vdots & \ddots & \vdots \\
N_0 & N_1 & \cdots & N_{k-1}
\end{array} \right) \cdot \left(\begin{array}{c}
(p-1)^0 \binom{k}{0} \\
(p-1)^1 \binom{k}{1} \\
\vdots \\
(p-1)^{k-1} \binom{k}{k-1}
\end{array} \right)^N_0 \cdots \left(\begin{array}{c}
(p-1)^0 \binom{k}{0} \\
(p-1)^1 \binom{k}{1} \\
\vdots \\
(p-1)^{k-1} \binom{k}{k-1}
\end{array} \right)^N_{k-1} \\
= \frac{n!}{N_0! \cdots N_{k-1}!} \left(\begin{array}{c}
(p-1)^0 \binom{k}{0} \\
(p-1)^1 \binom{k}{1} \\
\vdots \\
(p-1)^{k-1} \binom{k}{k-1}
\end{array} \right)^N_0 \cdots \left(\begin{array}{c}
(p-1)^0 \binom{k}{0} \\
(p-1)^1 \binom{k}{1} \\
\vdots \\
(p-1)^{k-1} \binom{k}{k-1}
\end{array} \right)^N_{k-1} \\
\geq \frac{(ne^{-1})^n \sqrt{2\pi n} \cdot \left(\begin{array}{c}
(p-1)^0 \binom{k}{0} \\
(p-1)^1 \binom{k}{1} \\
\vdots \\
(p-1)^{k-1} \binom{k}{k-1}
\end{array} \right)^N_0 \cdots \left(\begin{array}{c}
(p-1)^0 \binom{k}{0} \\
(p-1)^1 \binom{k}{1} \\
\vdots \\
(p-1)^{k-1} \binom{k}{k-1}
\end{array} \right)^N_{k-1}}{e^k (N_0 e^{-1})^N_0 \cdots (N_{k-1} e^{-1})^N_{k-1} \sqrt{(2\pi)^k N_0 \cdots N_{k-1}}} \\
\geq \frac{(ne^{-1})^n \sqrt{2\pi n} \cdot \left(\begin{array}{c}
(p-1)^0 \binom{k}{0} \\
(p-1)^1 \binom{k}{1} \\
\vdots \\
(p-1)^{k-1} \binom{k}{k-1}
\end{array} \right)^N_0 \cdots \left(\begin{array}{c}
(p-1)^0 \binom{k}{0} \\
(p-1)^1 \binom{k}{1} \\
\vdots \\
(p-1)^{k-1} \binom{k}{k-1}
\end{array} \right)^N_{k-1}}{e^k \left(\begin{array}{c}
(\alpha_k (p-1)^0 ne^{-1})^N_0 \\
(\alpha_{k-1} (p^k-1 ne^{-1})^N_{k-1}
\end{array} \right) \cdots \left(\begin{array}{c}
(\alpha_k (p-1)^0 ne^{-1})^N_0 \\
(\alpha_{k-1} (p^k-1 ne^{-1})^N_{k-1}
\end{array} \right)^N_{k-1}} \sqrt{(2\pi)^k N_0 \cdots N_{k-1}} \\
\geq \frac{(ne^{-1})^n \sqrt{2\pi n} \cdot \left(\begin{array}{c}
(p-1)^0 \binom{k}{0} \\
(p-1)^1 \binom{k}{1} \\
\vdots \\
(p-1)^{k-1} \binom{k}{k-1}
\end{array} \right)^N_0 \cdots \left(\begin{array}{c}
(p-1)^0 \binom{k}{0} \\
(p-1)^1 \binom{k}{1} \\
\vdots \\
(p-1)^{k-1} \binom{k}{k-1}
\end{array} \right)^N_{k-1}}{e^k (\alpha_k e^{-1})^N_0 \cdots \alpha_{k-1} (p^k-1 ne^{-1})^N_{k-1} \sqrt{(2\pi)^k N_0 \cdots N_{k-1}}} \\
\geq \frac{p^{nk} \sqrt{2\pi n} \cdot \left(\begin{array}{c}
(k)_0^N \\
(k)_1^N \\
\vdots \\
(k)_{k-1}^N
\end{array} \right)^N_0 \cdots \left(\begin{array}{c}
(k)_0^N \\
(k)_1^N \\
\vdots \\
(k)_{k-1}^N
\end{array} \right)^N_{k-1}}{e^{nk} \alpha_0 e^{-1} \cdots \alpha_{k-1} \sqrt{(2\pi)^k N_0 \cdots N_{k-1}}} \\
\geq \frac{p^{nk} \sqrt{2\pi n} \cdot \left(\begin{array}{c}
(k)_0^N \\
(k)_1^N \\
\vdots \\
(k)_{k-1}^N
\end{array} \right)^N_0 \cdots \left(\begin{array}{c}
(k)_0^N \\
(k)_1^N \\
\vdots \\
(k)_{k-1}^N
\end{array} \right)^N_{k-1}}{e^{nk} \alpha_0^N \sqrt{(2\pi)^k N_0 \cdots N_{k-1}}} \text{ since } \alpha_i \leq \binom{k}{i} \text{ when } i > 0 \\
\geq \frac{p^{nk} \sqrt{2\pi n} \cdot \left(\begin{array}{c}
(k)_0^N \\
(k)_1^N \\
\vdots \\
(k)_{k-1}^N
\end{array} \right)^N_0 \cdots \left(\begin{array}{c}
(k)_0^N \\
(k)_1^N \\
\vdots \\
(k)_{k-1}^N
\end{array} \right)^N_{k-1}}{e^{2k^2+2nk} \cdot \sqrt{(2\pi)^k (1+k)2^{k^2}}} \text{ according to Lemma 38} \\
\geq \frac{p^{nk} \sqrt{2\pi n} \cdot \left(\begin{array}{c}
(k)_0^N \\
(k)_1^N \\
\vdots \\
(k)_{k-1}^N
\end{array} \right)^N_0 \cdots \left(\begin{array}{c}
(k)_0^N \\
(k)_1^N \\
\vdots \\
(k)_{k-1}^N
\end{array} \right)^N_{k-1}}{e^{2k^2+2nk} \cdot \sqrt{(2\pi)^k (1+k)2^{k^2}}} \\
\geq p^{nk} \cdot \frac{C^2}{p^{k+k^2}}
\]

where \(C \) is a constant such that \(C^{2k^2} > e^{2k^2+2nk} \cdot \sqrt{(2\pi)^k (1+k)2^{k^2}} \).
C Proof of Theorem 26

We prove that Theorem 26 holds for \(p \), assuming that it is true for \(p - 1 \).

Suppose by contradiction that Equations (3) under constraints (4) has a non-zero integral solution \(d = (d_{i_1,\ldots,i_p})_{0 \leq i_1 + \cdots + i_p \leq k} \). We define:

\[
\begin{align*}
u &= \max\{t \leq k : \forall i_1 + \cdots + i_p \leq t, d_{i_1,\ldots,i_p} = 0\}
\end{align*}
\]

(if the maximum does not exist, i.e. \(d_{0,\ldots,0} \neq 0 \), then we take \(u = 0 \)). Since at least one \(d_{i_1,\ldots,i_p} \) is non-zero, we must have \(u < k \). In fact, we obtain the following stronger bound:

Lemma 39. We have:

\[
u + 1 \leq 1 + 5^{p-1}\log n - (p - 1)
\]

Proof. We assume that \(u > 0 \) (otherwise the result is trivial). According to Equations 5, for all \(i_1 + \cdots + i_p = u \):

\[
(k - u)d_{i_1,\ldots,i_p} + \sum_{j=1}^{p} (i_j + 1)d_{i_1,\ldots,i_{j-1},i_j+1,i_{j+1},\ldots,i_p} = 0
\]

Since \(d_{i_1,\ldots,i_p} = 0 \) whenever \(i_1 + \cdots + i_p \leq u \), it can be rewritten as:

\[
((u + 1) - (i_1 + \cdots + i_{p-1}))d_{i_1,\ldots,i_{p-1},i_p+1} + \sum_{j=1}^{p-1} (i_j + 1)d_{i_1,\ldots,i_{j-1},i_j+1,i_{j+1},\ldots,i_p} = 0
\]

We now define \(d' = (d'_{i_1,\ldots,i_{p-1}})_{0 \leq i_1 + \cdots + i_{p-1} \leq u + 1} \) such that \(d'_{i_1,\ldots,i_{p-1}} = d_{i_1,\ldots,i_{p-1},u+1-(i_1+\cdots+i_{p-1})} \).

The previous equations imply:

\[
\begin{align*}
&((u + 1) - (i_1 + \cdots + i_{p-1}))d'_{i_1,\ldots,i_{p-1}} + \sum_{j=1}^{p-1} (i_j + 1)d'_{i_1,\ldots,i_{j-1},i_j+1,i_{j+1},\ldots,i_{p-1}} = 0
\end{align*}
\]

\[
0 \leq i_1 + \cdots + i_{p-1} \leq u
\]

We also have \(\sum_{i_1 + \cdots + i_{p-1} \leq u+1} |d'_{i_1,\ldots,i_{p-1}}| \leq 2n \). However, there exists \(i_1 + \cdots + i_p = u + 1 \) such that \(d_{i_1,\ldots,i_p} \neq 0 \) (by definition of \(u \)), i.e. \(d'_{i_1,\ldots,i_{p-1}} \neq 0 \). Consequently, applying our induction hypothesis to \(d' \) (at rank \(p - 1 \)), we must have \(u + 1 \leq 1 + 5^{p-1}\log n - (p - 1) \) (otherwise \(d' \) would contradict Theorem 26 at rank \(p - 1 \)). \(\square \)

Next, for all \(u + 1 \leq t \leq k \), we define:

\[
m_t = \max_{i_1 + \cdots + i_p = t} |d_{i_1,\ldots,i_p}|
\]

By definition of \(u \) (and the fact that \(u < k \)), we must have \(m_{u+1} \geq 1 \). We obtain the following lower bounds on the \(m_t \)'s:

Lemma 40. For all \(t \geq u + 1 \), we have:

\[
m_t \geq \binom{k + p - 1}{t + p - 1} \binom{k + p - 1}{u + p}^{-1}
\]

28
Proof. For all \(i_1 + \cdots + i_p \leq k \), we have:

\[
0 = (k - (i_1 + \cdots + i_p))d_{i_1, \ldots, i_p} + \sum_{j=1}^{p} (i_j + 1)d_{i_1, \ldots, i_j-1, i_j+1, i_j+1, \ldots, i_p}
\]

So:

\[
(k - (i_1 + \cdots + i_p))d_{i_1, \ldots, i_p} \leq \sum_{j=1}^{p} (i_j + 1)|d_{i_1, \ldots, i_j-1, i_j+1, i_j+1, \ldots, i_p}|
\]

In particular, for all \(i_1 + \cdots + i_p \leq k \) such that \(m_{i_1 + \cdots + i_p} = |d_{i_1, \ldots, i_p}| \), we obtain:

\[
(k - (i_1 + \cdots + i_p))m_{i_1 + \cdots + i_p} \leq \sum_{j=1}^{p} (i_j + 1)m_{i_1 + \cdots + i_p+1}
\]

\[
\leq (i_1 + \cdots + i_p + p)m_{i_1 + \cdots + i_p+1}
\]

Thus, for all \(u + 1 \leq t < k \):

\[
\frac{k - t}{t + p}m_t \leq m_{t+1}
\]

Finally, it is easy to see that it implies \(m_t \geq \left(\frac{k+p-1}{u+p-1}\right)\left(\frac{u+p-1}{k+p-1}\right)^{-1}m_{u+1} \geq \left(\frac{k+p-1}{u+p-1}\right)^{-1} \cdot \frac{(k+p-1)}{(u+p-1)} \cdot \frac{1}{u+p-1}. \]

\[\square\]

The last step is to sum up over all the \(m_t \)'s, for \(t \geq u + 1 \):

\[
\sum_{t=u+1}^{k} m_t \geq \left(\frac{k+p-1}{u+p-1}\right)^{-1} \sum_{t=u+1}^{k} \left(\frac{k+p-1}{t+p-1}\right)
\]

\[
\geq \left(\frac{k+p-1}{u+p-1}\right)^{-1} \sum_{t=0}^{u+p-1} \left(\frac{k+p-1}{t}\right) - \sum_{t=0}^{u+p-1} \left(\frac{k+p-1}{t}\right)
\]

Since \(u + p - 1 \leq 5^{p-1} \log n \leq (k + p - 1)/2 \) (according to Lemma 39), we have \(\sum_{t=0}^{u+p-1} \left(\frac{k+p-1}{t}\right) \leq (u + p)\left(\frac{k+p-1}{u+p-1}\right) \) and \(\left(\frac{k+p-1}{u+p-1}\right)^{-1} \geq \left(\frac{5^{p-1} \log n}{u+p-1}\right)^{-1} \). Thus:

\[
\sum_{t=u+1}^{k} m_t \geq \left(\frac{k+p-1}{u+p-1}\right)^{-1} 2^{k+p-1} - (u + p) \left(\frac{k+p-1}{u+p-1}\right)^{-1} \left(\frac{k+p-1}{u+p-1}\right)
\]

\[
\geq \left(\frac{k+p-1}{5^{p-1} \log n}\right)^{-1} 2^{k+p-1} - (u + p)
\]

Moreover, since \(k > 1 + 5p \log n - p \), we can define \(k' \geq 1 \) such that \(k'5^p \log n \leq k+p-1 < (k' + 1)5^{p-1} \log n \). Using the well-known bound \(\left(\frac{n}{m}\right) \leq (ne/m)^{m} \), we obtain:

\[
\sum_{t=u+1}^{k} m_t \geq \left(\frac{(k'+1)5^{p} \log n}{5^{p-1} \log n}\right)^{-1} 2^{k+p-1} - (u + p)
\]

\[
\geq \left(\frac{1}{5^{p}(k'+1)}\right)^{5^{p-1} \log n} 2^{k'5^{p} \log n} - (u + p)
\]

\[
\geq n^{5^{p-1}(5k' - \log(5e(k'+1)))} - (u + p)
\]

\[
\geq n^{5^{p-1}(4k' - \log(5e))} - (u + p)
\]

29
Finally, $k' \geq 1$, $\log(5e) \approx 3.8$ and $u + p \leq 5^{p-1} \log n$. Thus, we have $\sum_{t=\text{u+1}}^{k} m_t > 2n$ (for n large enough). However, $\sum_{t=\text{u+1}}^{k} m_t \leq \sum_{i_1+\cdots+i_p \leq k} |d_{i_1,\ldots,i_p}| \leq 2n$. This is a contradiction.

D Comments on the internship

This report was produced during my internship at Carnegie Mellon University in Pittsburgh (United States of America), which took place from February 1 to June 17, 2016 under the supervision of Anil ADA. It was carried out during the last year of a Master degree in Theoretical Computer Science from the Ecole Normale Supérieure de Lyon (France).

The first part of the internship was dedicated to familiarize myself with communication complexity and the recent literature on the subject. We then tried to improve the existing protocols for composed functions. We did not succeed to make the result from [CS14] simultaneous, but we extended the construction of [BGKL04] to $\text{SYM} \circ \text{COMP}_p$ functions. Many tools from Fourier analysis were tried to remove the compressibility condition in the latter result, but they eventually failed. We then turned our attention to other functions likely to break the $\log n$ barrier (EVAL_G, interleaved group products, $\text{MAJ} \circ \text{MAJ}_{\sqrt{n}}$) and we established the corner-free set construction over \mathbb{F}_p^n. During the last part of the internship, we studied the log-rank conjecture in the context of XOR and AND functions. In particular, we discovered the recent paper [HL16] that links communication and parity decision tree complexities, and we proved a similar full characterization for symmetric functions.

Finally, I would thank Anil for having offered me the opportunity to do this internship. I really appreciated the advice he gave me throughout my stay in Pittsburgh, and the knowledge he shared with me. Carnegie Mellon University was also a great place to work, and I was very pleased to attend some of the numerous and diverse seminars ran by the computer science department.