Quantum Chebyshev’s Inequality and Applications

Yassine Hamoudi, Frédéric Magniez

IRIF, Université de Paris, CNRS
Mean Estimation Problem

How many i.i.d. samples x_1, x_2, \ldots from some unknown bounded r.v. $X \in [0,B]$ do we need to compute $\tilde{\mu}$ such that

$$|\tilde{\mu} - E(X)| \leq \epsilon E(X)$$

with proba. $2/3$
How many i.i.d. samples x_1, x_2, \ldots from some unknown bounded r.v. $X \in [0,B]$ do we need to compute $\tilde{\mu}$ such that

$$|\tilde{\mu} - E(X)| \leq \epsilon E(X)$$

with proba. 2/3

Sample mean: $\tilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$
Mean Estimation Problem

How many i.i.d. samples x_1, x_2, \ldots from some unknown bounded r.v. $X \in [0, B]$ do we need to compute $\tilde{\mu}$ such that

$$|\tilde{\mu} - E(X)| \leq \epsilon E(X)$$

with proba. 2/3

Sample mean: $\tilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$

Chernoff’s Bound: $\frac{B}{\epsilon^2 E(X)}$
Mean Estimation Problem

How many i.i.d. samples x_1, x_2, \ldots from some unknown bounded r.v. $X \in [0,B]$ do we need to compute $\tilde{\mu}$ such that

$$|\tilde{\mu} - \mathbb{E}(X)| \leq \epsilon \mathbb{E}(X)$$

with proba. 2/3

Sample mean: $\tilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$

→ Chernoff’s Bound: $\frac{B}{\epsilon^2 \mathbb{E}(X)}$

→ Bernstein’s Inequality: $\frac{\text{Var}(X)}{\epsilon^2 \mathbb{E}(X)^2} + \frac{B}{\epsilon \mathbb{E}(X)}$ \quad (\text{Var}(X) \leq B \cdot \mathbb{E}(X))
Mean Estimation Problem

How many i.i.d. samples x_1, x_2, \ldots from some unknown bounded r.v. $X \in [0,B]$ do we need to compute $\tilde{\mu}$ such that

$$|\tilde{\mu} - E(X)| \leq \epsilon E(X)$$

with proba. 2/3

Sample mean: $\tilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$

→ Chernoff’s Bound: $\frac{B}{\epsilon^2 E(X)}$

→ Bernstein’s Inequality: $\frac{\text{Var}(X)}{\epsilon^2 E(X)^2} + \frac{B}{\epsilon E(X)}$ (\(\text{Var}(X) \leq B \cdot E(X)\))

→ Chebyshev’s Inequality: $\frac{\text{Var}(X)}{\epsilon^2 E(X)^2}$
Mean Estimation Problem

How many i.i.d. samples x_1, x_2, \ldots from some unknown bounded r.v. $X \in [0, B]$ do we need to compute $\tilde{\mu}$ such that

$$|\tilde{\mu} - \mathbb{E}(X)| \leq \epsilon \mathbb{E}(X)$$

with proba. 2/3

Sample mean: $\tilde{\mu} = \frac{x_1 + \ldots + x_n}{n}$

→ Chernoff’s Bound:

$$\frac{B}{\epsilon^2 \mathbb{E}(X)}$$

→ Bernstein’s Inequality:

$$\frac{\text{Var}(X)}{\epsilon^2 \mathbb{E}(X)^2} + \frac{B}{\epsilon \mathbb{E}(X)} \quad (\text{Var}(X) \leq B \cdot \mathbb{E}(X))$$

→ Chebyshev’s Inequality:

$$\frac{\text{Var}(X)}{\epsilon^2 \mathbb{E}(X)^2}$$

In practice: we often know $\Delta^2 \geq \frac{\mathbb{E}(X^2)}{\mathbb{E}(X)^2} = \frac{\text{Var}(X^2)}{\mathbb{E}(X)^2} + 1$ → take $\frac{\Delta^2}{\epsilon^2}$ samples
Applications

Counting with Markov chain Monte Carlo methods:

Counting vs. sampling [Jerrum, Sinclair’96] [Štefankovič et al.’09], Volume of convex bodies [Dyer, Frieze’91], Permanent [Jerrum, Sinclair, Vigoda’04]

Data stream model:

Frequency moments, Collision probability [Alon, Matias, Szegedy’99] [Monemizadeh, Woodruff’] [Andoni et al.’11] [Crouch et al.’16]

Testing properties of distributions:

Closeness [Goldreich, Ron’11] [Batu et al.’13] [Chan et al.’14], Conditional independence [Canonne et al.’18]

Estimating graph parameters:

Number of connected components, Minimum spanning tree weight [Chazelle, Rubinfeld, Trevisan’05], Average distance [Goldreich, Ron’08], Number of triangles [Eden et al. 17]

etc.
Quantum Mean Estimation Problem

Random variable X on finite sample space $\Omega \subset [0,B]$.

Classical sample: one value $x \in \Omega$, sampled with probability p_x
Quantum Mean Estimation Problem

Random variable X on finite sample space $\Omega \subset [0,B]$.

Classical sample: one value $x \in \Omega$, sampled with probability p_x

Quantum sample: one use of a unitary operator S_X or S_X^{-1} satisfying

$$S_X |0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |x\rangle$$
Quantum Mean Estimation Problem

Random variable X on finite sample space $\Omega \subset [0,B]$.

Classical sample: one value $x \in \Omega$, sampled with probability p_x

Quantum sample: one use of a unitary operator S_X or S_X^{-1} satisfying

$$S_X |0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |x\rangle |\psi_x\rangle$$

with $\psi_x =$ arbitrary unit vector
Quantum Mean Estimation Problem

Random variable X on finite sample space $\Omega \subset [0, B]$.

Classical sample: one value $x \in \Omega$, sampled with probability p_x

Quantum sample: one use of a unitary operator S_X or S_X^{-1} satisfying

$$
S_X |0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |x\rangle |\psi_x\rangle
$$

with $\psi_x =$ arbitrary unit vector

Question: can we estimate $E(X)$ with less samples in the quantum setting?
<table>
<thead>
<tr>
<th>Classical samples</th>
<th>Quantum samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Chernoff)</td>
<td></td>
</tr>
<tr>
<td>[B \quad \frac{\epsilon^2 E(X)}{\Delta^2}]</td>
<td></td>
</tr>
<tr>
<td>(Chebyshev)</td>
<td></td>
</tr>
<tr>
<td>[\frac{\Delta^2}{\epsilon^2} \quad \text{given} \quad \Delta^2 \geq \frac{E(X^2)}{E(X)^2}]</td>
<td></td>
</tr>
</tbody>
</table>
Quantum Mean Estimation Problem

<table>
<thead>
<tr>
<th>Classical samples</th>
<th>Quantum samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Chernoff)</td>
<td>(Amplitude Estimation)</td>
</tr>
<tr>
<td>~[\frac{B}{\epsilon^2 E(X)}]</td>
<td>~[\frac{\sqrt{B}}{\epsilon \sqrt{E(X)}}]</td>
</tr>
<tr>
<td>(Chebyshev)</td>
<td></td>
</tr>
<tr>
<td>~[\frac{\Delta^2}{\epsilon^2}] given</td>
<td>[\Delta^2 \geq \frac{E(X^2)}{E(X)^2}]</td>
</tr>
</tbody>
</table>
Quantum Mean Estimation Problem

<table>
<thead>
<tr>
<th>Classical samples</th>
<th>Quantum samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Chernoff)</td>
<td>(Amplitude Estimation)</td>
</tr>
<tr>
<td>[\frac{B}{\epsilon^2 E(X)}]</td>
<td>[\frac{\sqrt{B}}{\epsilon \sqrt{E(X)}}]</td>
</tr>
<tr>
<td>(Chebyshev)</td>
<td>[Montanaro’15]:</td>
</tr>
<tr>
<td>[\frac{\Delta^2}{\epsilon^2}] given [\Delta^2 \geq \frac{E(X^2)}{E(X)^2}]</td>
<td>[\frac{\Delta^2}{\epsilon}]</td>
</tr>
</tbody>
</table>
Quantum Mean Estimation Problem

<table>
<thead>
<tr>
<th>Classical samples</th>
<th>Quantum samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Chernoff)</td>
<td>(Amplitude Estimation)</td>
</tr>
</tbody>
</table>
| \[
\frac{B}{\epsilon^2 E(X)}
\] | \[
\frac{\sqrt{B}}{\epsilon \sqrt{E(X)}}
\] |
| | [Montanaro’15]: \[
\frac{\Delta^2}{\epsilon}
\] |
| (Chebyshev) | Our contribution: \[
\frac{\Delta}{\epsilon} \cdot \log^3 \left(\frac{B}{E(X)} \right)
\] |
| \[
\frac{\Delta^2}{\epsilon^2}
\] given \[
\Delta^2 \geq \frac{E(X^2)}{E(X)^2}
\] |

\[
B
\] denotes the maximum amplitude of a quantum state, and \[
E(X)
\] represents the expectation value of the observable \(X\). \(\epsilon\) is the error tolerance.
Our Approach
Amplitude-Estimation: \[O\left(\frac{\sqrt{B}}{e \sqrt{E(X)}}\right) \] quantum samples to estimate \(E(X) \)
Amplitude-Estimation: \(O\left(\frac{\sqrt{B}}{\epsilon\sqrt{E(X)}}\right) \) quantum samples to estimate \(E(X) \)

If \(B \leq \frac{E(X^2)}{E(X)} \): the number of samples is \(O\left(\frac{\sqrt{E(X^2)}}{\epsilon E(X)}\right) \)
Amplitude-Estimation: \(O\left(\frac{\sqrt{B}}{c\sqrt{\mathbb{E}(X)}}\right) \) quantum samples to estimate \(\mathbb{E}(X) \)

\[\left\{ \begin{array}{l}
\text{If } B \leq \frac{\mathbb{E}(X^2)}{\mathbb{E}(X)} : \text{the number of samples is } O\left(\frac{\sqrt{\mathbb{E}(X^2)}}{c\mathbb{E}(X)}\right) \checkmark \\
\text{If } B \gg \frac{\mathbb{E}(X^2)}{\mathbb{E}(X)} ?
\end{array} \right. \]
Amplitude-Estimation: \(O\left(\frac{\sqrt{B}}{e\sqrt{E(X)}}\right) \) quantum samples to estimate \(E(X) \)

- If \(B \leq \frac{E(X^2)}{E(X)} \): the number of samples is \(O\left(\frac{\sqrt{E(X^2)}}{eE(X)}\right) \) \(\checkmark \)

- If \(B \gg \frac{E(X^2)}{E(X)} \): map the outcomes larger than \(\frac{E(X^2)}{E(X)} \) to 0 \(? \)
Amplitude-Estimation: \(O\left(\frac{\sqrt{B}}{e \sqrt{E(X)}}\right) \) quantum samples to estimate \(E(X) \)

- If \(B \leq \frac{E(X^2)}{E(X)} \), then the number of samples is \(O\left(\frac{\sqrt{E(X^2)}}{e E(X)}\right) \)

- If \(B \gg \frac{E(X^2)}{E(X)} \), then map the outcomes larger than \(\frac{E(X^2)}{E(X)} \) to 0

Random variable \(X \)
Amplitude-Estimation: \[O\left(\frac{\sqrt{B}}{\epsilon \sqrt{E(X)}}\right) \] quantum samples to estimate \(E(X) \)

- If \(B \leq \frac{E(X^2)}{E(X)} \): the number of samples is \[O\left(\frac{\sqrt{E(X^2)}}{\epsilon E(X)}\right) \]

- If \(B \gg \frac{E(X^2)}{E(X)} \): map the outcomes larger than \[\frac{E(X^2)}{E(X)} \] to 0

Random variable \(X_b \)

New largest outcome
Amplitude-Estimation: \(O\left(\frac{\sqrt{B}}{\epsilon \sqrt{\mathbb{E}(X)}}\right) \) quantum samples to estimate \(\mathbb{E}(X) \)

- If \(B \leq \frac{\mathbb{E}(X^2)}{\mathbb{E}(X)} \) : the number of samples is \(O\left(\frac{\sqrt{\mathbb{E}(X^2)}}{\epsilon \mathbb{E}(X)}\right) \)

- If \(B \gg \frac{\mathbb{E}(X^2)}{\mathbb{E}(X)} \) : map the outcomes larger than \(\frac{\mathbb{E}(X^2)}{\mathbb{E}(X)} \) to 0

Lemma: If \(b \geq \frac{\mathbb{E}(X^2)}{\epsilon \mathbb{E}(X)} \) then \((1 - \epsilon)\mathbb{E}(X) \leq \mathbb{E}(X_b) \leq \mathbb{E}(X) \).

\[\Rightarrow \] We can equivalently estimate the mean of \(X_b \) for \(b \geq \frac{\mathbb{E}(X^2)}{\epsilon \mathbb{E}(X)} \)
Amplitude-Estimation: \(O\left(\frac{\sqrt{B}}{e\sqrt{E(X)}}\right) \) quantum samples to estimate \(E(X) \)

\[
\begin{align*}
\text{→ If } B & \leq \frac{E(X^2)}{E(X)} : \text{ the number of samples is } O\left(\frac{\sqrt{E(X^2)}}{eE(X)}\right) \quad \checkmark \\
\text{→ If } B & \gg \frac{E(X^2)}{E(X)} : \text{ map the outcomes larger than } \frac{E(X^2)}{E(X)} \text{ to 0} \quad \checkmark
\end{align*}
\]

\[\text{Lemma: If } b \geq \frac{E(X^2)}{eE(X)} \text{ then } (1 - \epsilon)E(X) \leq E(X_b) \leq E(X). \]

\[\Rightarrow \text{ We can equivalently estimate the mean of } X_b \text{ for } b \geq \frac{E(X^2)}{eE(X)} \]

\[\text{Problem: } \frac{E(X^2)}{E(X)} \text{ is unknown...} \]
Amplitude-Estimation: $O\left(\frac{\sqrt{B}}{\epsilon \sqrt{E(X)}}\right)$ quantum samples to estimate $E(X)$

- If $B \leq \frac{E(X^2)}{E(X)}$: the number of samples is $O\left(\frac{\sqrt{E(X^2)}}{\epsilon E(X)}\right)$

- If $B \gg \frac{E(X^2)}{E(X)}$: map the outcomes larger than $\frac{E(X^2)}{E(X)}$ to 0

Lemma: If $b \geq \frac{E(X^2)}{\epsilon E(X)}$ then $(1 - \epsilon)E(X) \leq E(X_b) \leq E(X)$.

\Rightarrow We can equivalently estimate the mean of X_b for $b \geq \frac{E(X^2)}{\epsilon E(X)}$

Problem: $\frac{E(X^2)}{E(X)}$ is unknown… but we know $\Delta^2 \geq \frac{E(X^2)}{E(X)^2}$
Amplitude-Estimation: $O\left(\frac{\sqrt{B}}{\varepsilon\sqrt{E(X)}}\right)$ quantum samples to estimate $E(X)$

- If $B \leq \frac{E(X^2)}{E(X)}$: the number of samples is $O\left(\frac{\sqrt{E(X^2)}}{\varepsilon E(X)}\right)$

- If $B \gg \frac{E(X^2)}{E(X)}$: map the outcomes larger than $\frac{E(X^2)}{E(X)}$ to 0

Lemma: If $b \geq \frac{E(X^2)}{\varepsilon E(X)}$ then $(1 - \varepsilon)E(X) \leq E(X_b) \leq E(X)$.

\Rightarrow We can equivalently estimate the mean of X_b for $b \geq \frac{E(X^2)}{\varepsilon E(X)}$

Problem: $\frac{E(X^2)}{E(X)}$ is unknown… but we know $\Delta^2 \geq \frac{E(X^2)}{E(X)^2}$ \Rightarrow $b \approx E(X) \cdot \Delta^2$?
Objective: given $\Delta^2 \geq \frac{E(X^2)}{E(X)^2}$ how to find a threshold $b \approx E(X) \cdot \Delta^2$?
Objective: given $\Delta^2 \geq \frac{E(X^2)}{E(X)^2}$ how to find a threshold $b \approx E(X) \cdot \Delta^2$?

Solution: use the **Amplitude Estimation** algorithm (again) to do a logarithmic search on b
Objective: given $\Delta^2 \geq \frac{E(X^2)}{E(X)^2}$ how to find a threshold $b \approx E(X) \cdot \Delta^2$?

Solution: use the **Amplitude Estimation** algorithm (again) to do a logarithmic search on b

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Input r.v.</th>
<th>Number of samples</th>
<th>Amplitude Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_0 = B\Delta^2$</td>
<td>X_{b_0}</td>
<td>Δ</td>
<td>$\tilde{\mu}_0$</td>
</tr>
<tr>
<td>$b_1 = (B/2)\Delta^2$</td>
<td>X_{b_1}</td>
<td>Δ</td>
<td>$\tilde{\mu}_1$</td>
</tr>
<tr>
<td>$b_2 = (B/4)\Delta^2$</td>
<td>X_{b_2}</td>
<td>Δ</td>
<td>$\tilde{\mu}_2$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Stopping rule: $\tilde{\mu}_i \neq 0$
Output: b_i
Objective: given $\Delta^2 \geq \frac{E(X^2)}{E(X)^2}$ how to find a threshold $b \approx E(X) \cdot \Delta^2$?

Solution: use the Amplitude Estimation algorithm (again) to do a logarithmic search on b

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Input r.v.</th>
<th>Number of samples</th>
<th>Amplitude Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_0 = B\Delta^2$</td>
<td>X_{b_0}</td>
<td>Δ</td>
<td>$\tilde{\mu}_0$</td>
</tr>
<tr>
<td>$b_1 = (B/2)\Delta^2$</td>
<td>X_{b_1}</td>
<td>Δ</td>
<td>$\tilde{\mu}_1$</td>
</tr>
<tr>
<td>$b_2 = (B/4)\Delta^2$</td>
<td>X_{b_2}</td>
<td>Δ</td>
<td>$\tilde{\mu}_2$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Stopping rule: $\tilde{\mu}_i \neq 0$ Output: b_i ...

Theorem: the first non-zero $\tilde{\mu}_i$ is obtained w.h.p. when:

$$2 \cdot E(X)\Delta^2 \leq b_i \leq 10 \cdot E(X)\Delta^2$$
Theorem: the first non-zero $\tilde{\mu}_i$ is obtained w.h.p. when:

$$2 \cdot \mathbb{E}(X)\Delta^2 \leq b_i \leq 10 \cdot \mathbb{E}(X)\Delta^2$$
Theorem: the first non-zero $\tilde{\mu}_i$ is obtained w.h.p. when:

$$2 \cdot E(X)\Delta^2 \leq b_i \leq 10 \cdot E(X)\Delta^2$$

Ingredient 1: The output of *Amplitude-Estimation* is 0 w.h.p. if and only if the estimated amplitude is below the inverse number of samples.

$$\sqrt{\frac{E(X_b)}{b}} \leq \frac{1}{\Delta}$$
Theorem: the first non-zero \(\tilde{\mu}_i \) is obtained w.h.p. when:

\[
2 \cdot E(X)\Delta^2 \leq b_i \leq 10 \cdot E(X)\Delta^2
\]

Ingredient 1: The output of Amplitude-Estimation is 0 w.h.p. if and only if the estimated amplitude is below the inverse number of samples.

\[
\sqrt{\frac{E(X_b)}{b}} \leq \frac{1}{\Delta}
\]

Ingredient 2: If \(b \geq 10 \cdot E(X)\Delta^2 \) then

\[
\frac{E(X_b)}{b} \leq \frac{E(X)}{b} \leq \frac{1}{10 \cdot \Delta^2}
\]
Theorem: the first non-zero $\tilde{\mu}_i$ is obtained w.h.p. when:

$$2 \cdot E(X)\Delta^2 \leq b_i \leq 10 \cdot E(X)\Delta^2$$

Ingredient 1: The output of Amplitude-Estimation is 0 w.h.p. if and only if the estimated amplitude is below the inverse number of samples.

$$\sqrt{\frac{E(X_b)}{b}} < \frac{1}{\Delta}$$

Ingredient 2: If $b \geq 10 \cdot E(X)\Delta^2$ then

$$\frac{E(X_b)}{b} \leq \frac{E(X)}{b} \leq \frac{1}{10 \cdot \Delta^2}$$

Ingredient 3: If $b \approx E(X) \cdot \Delta^2$ then

$$\frac{E(X_b)}{b} \approx \frac{E(X)}{b} \approx \frac{1}{\Delta^2}$$
Applications
Application 1: approximating graph parameters

Input: graph $G=(V,E)$ with n vertices, m edges, t triangles

Query access: unitaries

$O_{\text{deg}} |v⟩ |0⟩ = |v⟩ |\text{deg}(v)⟩$ \hspace{1cm} (degree query)

$O_{\text{pair}} |v⟩ |w⟩ |0⟩ = |v⟩ |w⟩ |(v, w) \in E ?⟩$ \hspace{1cm} (pair query)

$O_{\text{ngh}} |v⟩ |i⟩ |0⟩ = |v⟩ |i⟩ |v_i⟩$ \hspace{1cm} (neighbor query)

i^{th} neighbor of v
Application 1: approximating graph parameters

Input: graph $G=(V,E)$ with n vertices, m edges, t triangles

Query access: unitaries $O_{\text{deg}} |v\rangle |0\rangle = |v\rangle |\deg(v)\rangle$ (degree query)

$O_{\text{pair}} |v\rangle |w\rangle |0\rangle = |v\rangle |w\rangle |(v, w) \in E \ ?\rangle$ (pair query)

$O_{\text{ngh}} |v\rangle |i\rangle |0\rangle = |v\rangle |i\rangle |v_i\rangle$ (neighbor query)

ith neighbor of v

Result: $\tilde{\Theta} \left(\frac{\sqrt{n}}{m^{1/4}} \right)$ quantum queries for edge estimation

$\tilde{\Theta} \left(\frac{\sqrt{n}}{t^{1/6}} + \frac{m^{3/4}}{\sqrt{t}} \right)$ quantum queries to triangle estimation
Application 1: approximating graph parameters

Input: graph $G = (V, E)$ with n vertices, m edges, t triangles

Query access: unitaries $O_{\text{deg}} |v\rangle |0\rangle = |v\rangle |\deg(v)\rangle$ (degree query)

$O_{\text{pair}} |v\rangle |w\rangle |0\rangle = |v\rangle |w\rangle |(v, w) \in E?\rangle$ (pair query)

$O_{\text{ngh}} |v\rangle |i\rangle |0\rangle = |v\rangle |i\rangle |v_i\rangle$ (neighbor query)

Result: $\tilde{\Theta} \left(\frac{\sqrt{n}}{m^{1/4}} \right)$ quantum queries for edge estimation

(vs. $\tilde{\Theta} \left(\frac{n}{\sqrt{m}} \right)$ classical queries) [Goldreich, Ron’08] [Seshadhri’15]

$\tilde{\Theta} \left(\frac{\sqrt{n}}{t^{1/6}} + \frac{m^{3/4}}{\sqrt{t}} \right)$ quantum queries to triangle estimation

(vs. $\tilde{\Theta} \left(\frac{n}{t^{1/3}} + \frac{m^{3/2}}{t} \right)$ classical queries) [Eden, Levi, Ron’15] [Eden, Levi, Ron, Seshadhri’17]
Application 2: frequency moments in the streaming model

Initially: \(x = (0,\ldots,0) \) of \textbf{dimension n}

Input: stream of updates \(x_i \leftarrow x_i + \delta \) to \(x \)

Output: (at the end of the stream) estimate of \(F_k = \sum_{i=1}^{n} |x_i|^k \) (moment of order \(k \geq 3 \))
Application 2: frequency moments in the streaming model

Initially: $x = (0,\ldots,0)$ of dimension n

Input: stream of updates $x_i \leftarrow x_i + \delta$ to x

Output: (at the end of the stream) estimate of $F_k = \sum_{i=1}^{n} |x_i|^k$ (moment of order $k \geq 3$)

What is the smallest memory size M needed to estimate F_k using P passes over the same stream?
Application 2: frequency moments in the streaming model

Initially: $x = (0, \ldots, 0)$ of dimension n

Input: stream of updates $x_i \leftarrow x_i + \delta$ to x

Output: (at the end of the stream) estimate of $F_k = \sum_{i=1}^{n} |x_i|^k$ (moment of order $k \geq 3$)

What is the smallest memory size M needed to estimate F_k using P passes over the same stream?

Result: $M = \tilde{\Theta} \left(\frac{n^{1-2/k}}{P^2} \right)$ qubits of memory

(vs. $M = \tilde{\Theta} \left(\frac{n^{1-2/k}}{P} \right)$ classical bits of memory)

[Monemizadeh, Woodruff’10]
[Andoni, Krauthgamer, Onak’11]
Conclusion
The mean of a random variable X can be estimated with multiplicative error ε using quantum samples, given

$$\Delta^2 \geq \frac{\text{E}(X^2)}{\text{E}(X)^2}.$$

Lower bound: \(\Omega\left(\frac{\Delta - 1}{\varepsilon}\right)\) quantum samples

or \(\Omega\left(\frac{\Delta^2 - 1}{\varepsilon^2}\right)\) copies of the state \(S_x |0\rangle = \sum_{x \in \Omega} \sqrt{p_x} |\psi_x\rangle |x\rangle\)

Open questions:

- Can we improve the complexity to $O(\Delta/\varepsilon)$ exactly?
- Lower bound for the Frequency Moments estimation problem?
- Other applications?

arXiv: 1807.06456