Dicing on the Streett*

Florian Horn

LIAFA, Université Paris 7, Case 7014, 2 place Jussieu, F-75251 Paris 5, France
Lehrstuhl fiir Informatik VII, RWTH, Ahornstrae 55, 52056 Aachen, Germany
horn@liafa. jussieu.fr

Abstract. Streett/Rabin games are an adequate model of strong fairness in reactive systems.
We show here some results about their stochastic version. We extend the known lower bound
in memory for the pure winning strategies of the Streett player to randomized strategies. We
also propose algorithms computing the almost sure winning regions of both players in stochastic
Streett/Rabin games. The Rabin algorithm also yields directly a pure memoryless almost-sure
winning strategy.

1 Introduction

Problems of control related to distributed resources often use the concept of fairness. It is
underlying in classical frameworks such as mutual exclusion. In this situation, agents ask for
access to a critical section, and then wait for their turn until the scheduler grants them access.
This is weak fairness: a request needs to be fulfilled only if it is continuously enabled.

This notion of fairness is ill-adapted to online resources where both clients and providers are
multiple: at any time, a client may choose another provider and drop his request. For example, a
routing program confronted with an overloaded node will just change the path for its packages.
Such abandoned requests need not to be addressed, yet a good controller must ensure that
everyone gets a fair amount of the resource. The problem is then to distinguish, in finite time, a
slow system from an unfair one. Strong fairness, or Streett condition, corresponds to this kind
of specification: a system is strongly fair if each request that is repeatedly enabled is eventually
fulfilled. Requests that are enabled only finitely often can be ignored. The complementary
condition is called a Rabin condition. Thus, a Streett/Rabin game is played between an Streett
player and a Rabin player.

Deciding if a state is winning for the Rabin player is a NP-complete problem [EJ88|. The NP
membership comes from the existence of memoryless winning strategies for the Rabin player,
and the NP-hardness is proven through a reduction from 3-SAT. By contrast, the Streett player
may need memory to win. In [DJW97|, the authors compute the exact memory requirements
for all Muller games. In the case of Streett games, their result shows that winning strategies
may need up to k!' memory states, on a game of exponential size. In [Hor05], we presented
a family of games of polynomial size where winning strategies had to use at least k! memory
states.

Several algorithms were proposed for Streett games. The first one was a reduction to parity
games via indices of appearance records |[BLV96|. Later on, [Zie98| presented an algorithm for
the more general Muller games, and [KV98]| a reduction to the emptyness problem for weak
alternating automata. In [Hor(05|, we presented a specialized version of the algorithm of |Zie98]
for Streett games which can also be seen as an on-the-fly version of [KV98|. Finally, a rank
algorithm inspired by the one in [Jur00| for parity games was presented in [PP06].

* Work supported by the EU-TMR, network GAMES.
! In all the paper, k, n and m are the numbers of pairs, states and transitions in the game we consider.

This paper shows a factorial memory lower bound and a recursive algorithm for the qualita-
tive solution of stochastic Streett games, thus extending the results of [Hor05] to the stochastic
setting. In general, the lower bounds on memory of [DJW97| cannot be applied in the case
of randomized strategies (see [CDHO04]). And in the family of [Hor05|, there is a randomized
memoryless almost-sure winning strategy. In [CDHO05|, Chatterjee et al. showed that there are
pure memoryless almost-sure winning strategies in stochastic Rabin games, while the Streett
player needs no more than k! memory. We present here a family of games where even random-
ized almost-sure winning strategies have to use at least k! memory, providing a lower bound
that matches the upper bound of [CDHO05|. In the same paper, the authors also presented
a reduction from stochastic Streett games to non stochastic ones, that allows to use the al-
gorithms for non-stochastic games at small cost. The algorithm we present here extends the
one of [Hor05] at no cost, and yields an alternative proof that pure memoryless strategies are
enough for almost-sure winning strategies in stochastic Rabin games. However, using the al-
gorithm of [PP06] in addition to the reduction of [CDHO5| is still faster, albeit more expensive
in space than our approach.

2 Definitions

An infinite 2%—player2 game G is a triplet (V = V4 U Vg, E, Win) consisting of a finite graph
(V,E) and a winning condition Win C V¥. A token is assumed to be in one of the states of
V. It can only move along the edges. The set of states V is partitioned

into Eve’s states (Vg, denoted by circles), Adam’s states (Vy, ‘
denoted by squares), and randomized states (Vg, denoted
by diamonds). The owner of the state containing the token 2 c

chooses the next state. If the state is randomized, the next

state is chosen randomly® among its successors, with equal

probabilities. An infinite play p = qi1,¢o,... is a sequence 6
of states visited by the token, respecting the edge relation:
(gi,qiv1) € E for all i > 0. We consider only infinite plays,
and we assume that every state has at least one successor. A
play in Win C V* is winning for Eve. Otherwise, it is winning Fig. 1. A game graph
for Adam.

7

Definition 1. A subgame of a game G = (V, E, Win) is a game defined on a subset X of V
such that each state in X has a successor in X, and each randomized state in X has all its
successors in X. The edges and the winning set are restrictions of E and Win to X? and X*.

A basic Streett condition is a pair of set of states (Q, R) C V2. The set @) can be seen as a
request, and the set R as the desired response. A Streett winning condition is a conjunction
of basic conditions (Qj, R;)i=1,. k- In such a game, Eve - the Streett player - wins if for each
pair 4, either the request set @); is visited only finitely often, or the response set R; is visited
infinitely often. Conversely, Adam - the Rabin player - wins if the token visits infinitely often
one of the sets (); while the corresponding set R; is visited only finitely often. A Streett game
with k basic conditions is called a Streett game of degree k.

2 The "half" player represents the randomized states.
3 We decided here to consider only equal probabilities for each successor. This hypothesis could be loosened
a lot, if one would want to investigate it. All our results depend only on the validity of property 3.

In this section, we introduce several notions about stochastic games. See [Tho95,Zie98| for
more details on non-stochastic games, and [DA97,CJH03| for stochastic ones.

A randomized strategy for a player P is a function o from V*Vp to 2V \ {(} respecting
the edge relation: for all ¢ € o(wq) we have (q,¢') € E. Informally, if P uses the strategy
o, then whenever he has to play after a prefix w, he chooses randomly* a successor in o(w).
A play p = q1, 42, ... is consistent with a strategy o for P if for all i with ¢; € Vp we have
gi+1 € 0(q1 -+ qi). A strategy is called pure (non-randomized) if |o(w)| = 1 for all w € V*Vp.
It is memoryless if the next move depends only on the current position of the token, that is,
for all w, w’ and ¢, o(wq) = o(w'q). A strategy uses a memory of size m if it can be realized
by a control automaton with m states: at each step, the next game state and memory state
depend only on their previous values. A strategy o for player P is almost surely winning if for
any counter-strategy 7 of the other player, the probability that a play consistent with both o
and 7 belongs to Winp is one. In the rest of the paper, whenever we use the qualifier winning,
we mean almost surely winning. The winning region of a player P in a game G, denoted by
Wp(G), is the set of states from where he has a winning strategy. We do not consider here the
problem of optimal strategies, which would involve computing probabilities of winning that
are neither zero nor one: our only concern here is about almost-sure winning.

For a game G and a finite-memory strategy o for player P, we call G restricted to o
for player P the 1%—player game defined naturally by replacing the states belonging to P by
randomized states whose possible successors are the ones prescribed by . In addition, the
memory of ¢ is simulated by having multiple copies of each state, one for each memory value.
Clearly, the projected paths of the restricted game are paths in the original game.

Definition 2. An end-component K of a game graph is a strongly connected set of states such
that each successor of a randomized state in K also belongs to K.

Property 3. [DA97| For any strategies o, m of Eve and Adam, the probability over the plays
consistent with ¢ and 7 that the set of states visited infinitely often is an end-component is
one.

An end component is consistent with a finite memory strategy o for player P if it is an
end-component of G restricted to o for player P. In Muller games, where the winner depends
only on the set of states visited infinitely often, we define the winner of an end component
K: it is the winner of a play that visits infinitely often each state in K, and only these. In
the special case of Streett/Rabin games, an end component is winning for Eve if for each
appearing request, a matching response appears. Otherwise, it is winning for Adam.

For strategies with finite memory on Muller games, an interesting (and non-trivial) corol-
lary to Property 3 is that a strategy is winning if and only if each consistent end-component
is winning [DA97].

The attractor of W for player P in the game G, denoted Attrg(W), is the set of states
where P can ensure that the token has a positive probability to reach the set W. It is computed
inductively as usual: Wy = W and W,,11 is the union of W,,, {q € VpUVg | 3¢’ € Wy, (q,¢) €
E} and {q € V\(VpUVR) | V¢ € Wy, (q,q") € E}. The attractor strategy for player P consists
in always going from a state of W, to a state in W,,_1, thus getting closer to W. It is pure and
memoryless. The following property is a direct consequence of the definition of attractors:

4 More complex strategies could be considered, but they are not needed for almost-sure winning.

Property 4. An end-component consistent with the attractor strategy to W for player P con-
tains either a state of W or no state of Attrp(W).

A trap is a set from which one of the players cannot escape: A set T' C V is a trap for
player P if each state of T belonging to the other player has a successor in 7', and each other
state (in Vp or Vg) has all its successors in T'. Notice that the complement of an attractor is
a trap for the same player, and that a trap is always a subgame.

Remark 5. While the attractor is a weak notion (the token may escape the attractor without
visiting the desired target set, even if the attractor strategy is used), the trap is a strong one
(the token will never leave a trap if the untrapped player does not allow it to do so).

3 A memory lower bound for randomized strategies in Streett games

In [DJW9T7], the authors address the problem of memory in the more general case of Muller
games. From their results, one can derive a family of Streett games where the k** representative
is of degree k and any winning strategy for Eve uses at least k! memory states. This game has
O(K? - k!) states. In [Hor05], we present a family of quadratic size with the same properties.

In [CDHO04|, the authors show that the lower bound on memory from [DJW97| does not
hold for randomized strategies. They also show that 1-player and lé—player Streett games
admit memoryless randomized winning strategies, while pure winning strategies need a mem-
ory of size k. It is natural to ask whether something similar happens with 2-player Streett
games. Note that the family of [Hor05] does not answer this question, as it admits memoryless
randomized winning strategies.

In this section, we present a family of 2-player games, where the k' representative has
degree k (and O(k?) states) and any winning randomized strategy for Eve uses at least k!
memory. This matches the upper bound of [CDHO05|, which showed that Eve had winning
strategies with k! memory states, even in the case of 2%—player games.

Theorem 6. For any k, there is a 2-player Streett game G of degree k and size O(k?) such
that any winning randomized strategy for Eve uses at least k! different memory states®.

3.1 Presentation of the family

The game graph Gy is presented in Figure 2. Note that we do not use randomized states. It
is a succession of basic loops:

— In the initial state X, Adam chooses two basic Streett conditions i and j, where i # j.
— Eve must add a request to either ¢ (by going to ;) or j (by going to j;).
— Adam must answer to either i (by going to the state i) or j (by going to the state j).

For each G, there is a winning strategy oy for Eve that uses k! memory states:

— The memory state is identified with a permutation m € Sy
— In the state {4, j}, Eve moves to the state ¢; if i appears first in 7, and to j; otherwise.
— In the state ¢, Eve updates her memory by moving 4 at the beginning of 7.

To show that oy is winning, note that each time a condition ¢ is requested, and does not
immediately get a response, it will get farther in 7. As it will not go back to the beginning
unless it gets a response, we can conclude that there can be at most k successive requests @;
without a response R;. Thus o is winning.

5 Actually, Adam can win with probability 1 against any strategy with less than k! memory.

Requests: Q; = {i; | j € {1,...,k}} Responses: R; = {i}

Fig. 2. Game Gy,

3.2 Proof of the lower bound

Proposition 7. Any winning strategy for Eve in Gy, needs at least k! different memory states.

Let us fix for this section a winning finite-memory strategy o for Eve, possibly randomized.
The point now is to exhibit strategies for Adam against which o must behave in different ways.
For this we use the notion of high priority condition.

Definition 8. A condition i is a high priority condition (HPC for short) for o in the memory
state p if in every finite play p that 1) is consistent with o, 2) starts in state N with memory
state p and 3) ends with the request i, there is at least one occurrence of a response i.

Intuitively, the above definition states that if ¢ is an HPC, then regardless of what happens
in Adam’s states and random states, the token will not visit Q; before it had visited R;. Notice
that there cannot be two different HPC 7 and j in the same memory state, as Eve has to move
to either i; or j; if Adam goes from N to the state {7, j}.

Proposition 9. For each condition i, there is a memory state p such that ¢ s an HPC for o.

Proof. Consider GY, the game G, restricted to o. It is a 1%—player game, whose states are
of the form (q,p) where ¢ is a state of Gy and p a memory state of oj. The property The
condition i is not an HPC for o in the memory state p is equivalent to There is a path in GY,
from (X,p) to a state in Q; that does not go through a state in R;.

Assume now by contradiction that, for each memory state p at the initial configuration
N, the condition 4 is not an HPC. Consider GY restricted to Adam’s strategy "Avoid R; and
otherwise, act randomly". It is a Markov chain where there is no edge leading to a state of
R;. On the other hand, there is still a path to a state of @; from every (X,p). As the end-
components of a Markov chain are the bottom strongly connected components (scc’s without

successors outside of itself), it follows that each of these includes a state of @;, and no state
of R;. Thus Adam wins with probability one, which contradicts the assumption that o is
winning. O

By Proposition 9, we know that there is a memory state in which ¢ is an HPC. Suppose
that, once Eve goes to this memory state, Adam chooses never to go again to a state {i,7}.
The token cannot reach the state 4, so ¢ will remain an HPC. Meanwhile, Adam and Eve play
in a subgame that is isomorphic to Gk_1, so Eve needs memory (k — 1)! for winning. As a
memory state cannot have two different HPC’s, Eve needs at least a total memory of size k!

4 Algorithms

In this section, we describe an algorithm which computes the winning region of Eve in 2%—
player games. It is an adaptation of the algorithm for 2-player games presented in [Hor05].
The solution for these games can also be achieved by using the reduction from stochastic
Streett games to non-stochastic ones presented in [CDHO5], along with any algorithm solving
non-stochastic Streett games (|BLV96[, |Hor05], or [PP06]). The cost of the reduction is small
(from n states, m transitions and k basic conditions to nk states, mk transitions and k+1 basic
conditions), but we show here that our algorithm of [Hor05] can be extended to stochastic
games at no extra cost at all.

4.1 An algorithm for Streett games

The main idea of our algorithm is that Adam cannot win if Eve can reach each of the R; from
anywhere with a positive probability. Let’s note already that Adam may win while being in
all the R; attractors, if one of these attractors does not cover the whole graph. Otherwise, Eve
can win by playing the attractor strategy to Ri, then, once a state of R; has been reached,
switching to the attractor strategy to Ro, and so on, restarting once each R; has been visited.
The only end-components that are consistent with this strategy intersect each of the R; (see
Property 4). Thus Eve would win with probability one.

From this, we conclude that if Adam’s winning region is non-empty, it must contain a state
outside of one of the R;-attractors. Thus we can first ask that he chooses a condition ¢ and
plays outside of the R;-attractor. This defines a subgame, that we call H, which is a trap for
Eve. In this subgame, Adam can win either by visiting infinitely often @); or by winning with
respect to the other conditions. Similarily, Eve may have a non-empty winning region in H
only if she has a winning state outside the H-attractor of Adam to @);. This defines a second
subgame K which is a H-trap for Adam, and has no occurrence of Q);. We can thus compute
the winning region of Eve in K using the algorithm recursively. As K is a trap for Adam in
H, the winning region of Eve in K is included in her winning region in H. We now remove
it and its attractor, and repeat this procedure to obtain a decreasing succession of traps for
Eve, removing at each step a non-empty set of states winning for her in H. This decreasing
sequence can end either with the empty set or not. In the first case, we have to check what
happens with the other conditions. In the second case, we claim that the final set is in the
winning region of Adam. Finally, if it ends in an empty set for each condition, we claim that
Eve wins everywhere. The full procedure is formally written in Algorithm 1. For the sake of
clarity, Figure 3 shows more visually the workings of the internal loop.

Algorithm 1 Algorithm computing the winning region of the Streett Player

Require: Algorithms to compute attractors and remove sets of states
input G, Win
for all i € {1,2,..,k} do
H— G\ Attrg(Ri)
repeat
K — H\ Attrf (Q))
L — WinStreett(K,Win \ {Q:, R:})
H «— H\ Attri(L)
until L =
if H # () then
return WinStreett(G\ AttrG(H), Win)
end if
end for
return G

1. The subgame H has been set to G'\ Attr§(R;) in the main
loop. It is a trap for Eve.

2. The subgame K is set to H\ Attrf] (Q;). It is a trap for Adam
in H, but not in G.

3. The pair (Q;, R;) does not appear in K. L is set to the win-
ning region of Eve in K, computed recursively.

4. Tf L is not empty, Attri (L) is removed from H for the next
iteration of the repeat loop (step 2).

5. If both L and H are empty, the algorithm proceeds to the
next iteration of the for all loop.

6. If L is empty, but H is not empty, the for all loop is broken,
and the algorithm is called recursively on G\ AttrG (H).

Fig. 3. First execution of the repeat loop for the condition %

4.2 Correctness

The validity of Algorithm 1 depends on the lemmas 10 and 11 below, which state properties
about G' when the internal loop ends. A representation of the two ending cases (depending
whether H is empty or not) is given in Figure 4. For better readability, we indexed the names
of the sets with the number of the iteration of the loop in which they were defined, and
replaced the symbol Atir by just A.

AR (Lo), o

(a) H: is winning for Adam (b) Reaching an empty region

Fig. 4. End of a run of the internal loop

Lemma 10. When the internal loop of Algorithm 1 ends, H is winning for Adam.

Proof. If H is empty, the result is trivial. We can thus restrict ourselves to the case where H
is not empty, and G looks like Figure 4(a).

Adam uses the attractor strategy in Attra(Q;) and his winning strategy in the subgame
K. Note that Adam wins with probability 1 in K, since L = (), (see Theorem 8 in [DAHO00]).
Moreover, H is a trap for Eve, and Adam’s strategy does not move out of it. Thus, the
end-components consistent with it are included in H. The cases to consider now concern the
presence of a state of Attra(Q;) in the end-component: if there is one, Property 4 states that
there must also be a state of (Q; in the end-component; if there is none, the end-component is
an end-component of K, consistent with Adam’s winning strategy for this subgame.

In both cases Adam wins with probability 1. O

Lemma 11. If H is empty at the end of each internal loop of Algorithm 1, Eve wins every-
where.

Proof. If H is empty at the end of the internal loop for condition ¢, G looks like in Figure
4(b). We suppose here that this is the case for each i.

We now describe a winning strategy og for Eve in G. It uses a top-level memory of size k
to switch between k substrategies oy ... oy, each of these using a memory of size (k —1)!. The
strategy o; is described below:

— In the subgames L: the subgame strategy (memory (k — 1)!).

— In the attractors Attri(L): the attractor strategy (memoryless).
— In Attrg(R;): the attractor strategy (memoryless).
— In R;: Eve updates her top-level memory to (i + 1) mod k and applies 0511 mod k-

There are two cases: Either the token goes infinitely often in each of the R;, or Eve’s
top-level memory is ultimately constant (at a value i) after a finite prefix. In the first case,
she wins. In the second case, we consider the end-components consistent with the strategy o;.

We claim that each of them is included in one of the subgames L. Note that each L is a
trap for Adam in the current subgame H, and the token can escape from L only by going to
an earlier H (defined earlier in the internal loop). Consider now the first H of the internal
loop that intersects the end-component. Property 4 says that the end-component intersects
the associated L. If the end-component is not included in this L, then by connexity it should
intersect an earlier H, which contradicts the minimality of H. Thus, Eve wins with the strategy
of the subgame L. O

4.3 Algorithm for the Streett fighting man

We want now to compute the almost-sure winning region of Adam. In the course of algorithm 1,
we found some regions where Adam was winning with probability 1 (see lemma 10). However,
it is not true that the complement of Eve almost-sure winning region is winning for Adam
(see figure 5(a)). The reason is that the winning region we find are expanded through a weak
attractor, that corrupts the remainder of the computation. A natural idea would be to replace
it with a strong attractor®, where the target set is reached with probability 1. This doesn’t
work either, as illustrates figure 5(b): If a variant of Algorithm 1 with strong attractors starts
by considering condition 1, it will remove only the rightmost state as winning for Adam. The
remainder of the graph is now winning for Eve, though Adam can also win with probability 1

ReEeRoN A3

(a) Equal chances to win (b) Inadequacy of the strong attractor

Fig. 5. Motivation for Algorithm 2.

Our solution is to add an external loop to algorithm 1:

Algorithm 2 Algorithm computing the winning region of the Rabin player
Require: Algorithms to compute attractors and remove sets of states, Algorithm 1
input G, Win
while WinStreett(G) # 0 do
G — (G \ Attrg(WinStreett(Q)))

end while

return G

5 The computation of such an attractor can be done through the computations of 2n weak attractors

This algorithm works by removing almost-sure winning regions for Eve and the corre-
sponding attractors. None of these regions is a likely candidate to an almost-sure winning
region of Adam. When it cannot find a winning region for Eve, we claim that the remainder of
the graph is winning for Adam. Indeed, in this case, the computation of Algorithm 1 yields a
game graph only composed of a succession of region winning for Adam and the corresponding
attractors (much like Figure 4(b) without the leftmost region). By the argument we used for
Figure 4(b), the token will eventually end in one of the subgames, and Adam will win with
probability one.

Notice that the strategy of Adam in the attractor is memoryless, as is the one in the
subgames (described in the proof of lemma 10). This yields an alternative proof, without a
reduction to a 2-player game, for the following theorem of |CDHO05]:

Theorem 12. For any stochastic Streett/Rabin Game, if Adam has an almost-sure winning
strateqy, then he also has an almost-sure winning strateqy that is pure and memoryless.

4.4 Time and space complexity

Algorithm 1 may have to call k different runs of the internal loop to remove a single state
in G, if it guesses wrong. With the same worst-case scenario, the internal loop has to call
an attractor and a recursive call to the algorithm to remove one state in G;. The attractor
computation being linear in the number of transitions m, we get the equation C(n, k) =k -n-
(O(m)+n-C(n—1,k—1)) for aloop of the main algorithm. Thus C(n, k) = O(m-n?*-k!), and
the time complexity needed to compute all the states is O(m - nk. k!). For the winning region
of the Rabin player, we need one more loop, yielding a total complexity of O(m - n2*+1. k).
Our algorithm uses memory in the form of variables. There are four variables in our version,
and each holds a subgame, which can be represented as a set of states (size O(n)). As there are
at most k£ nested versions of the algorithm running simultaneously, the space needed by our
algorithm is O(n - k). One can improve this space easily by noticing that each time a subgame
is defined, it is smaller than the subgames defined before. Thus we need only to remember
when a state was removed. This reduces the space complexity to O(n -log k). Notice that this
allows only to compute the winning regions. Recording the strategy takes O(n - k!-logn). It
can be done in the same time, though.

The three algorithms we mentioned for Streett games (|[BLV96], [Hor05] and [PP06|) each
have an advantage. The reduction to a parity game doesn’t have a good upper bound in
time, and uses a lot of memory. Yet, it could still be the fastest if the parity problem were
in P. The best upper bound in time is the algorithm of [PP06], with O(n¥T1k!). However
it also uses a lot of space: O(n - k - k! - log(n)). Our algorithm achieves a balance between
time and space complexities. These three algorithms can be used along with the reduction of
[CDHO5]|, which transforms a stochastic game of size (n,m, k) to a non-stochastic one of size
(nk,mk, k +1). This paper allows us to circumvent the reduction when we use the algorithm
of [Hor05], reducing the complexity from km - (kn)2**2. (k4 1)! to m - n?* - k!. However, it is
not enough to change the fact that even with the cost of the reduction, [PP06] is still faster,
and the reduction could still be even faster, should the parity games problem be in P.

5 Conclusion

We have extended several results from the non-stochastic Streett/Rabin games to the stochas-
tic setting: factorial lower bound on the memory for Streett games strategies, and a direct

10

algorithm for determining the winning regions and strategies. We intend to extend these re-
sults to infinite game graphs (e.g. pushdowns graphs), and to extend them for Muller games.
Acknowledgments. I wish to thank Wolfgang Thomas and Anca Muscholl, for their support
in both research and writing. I would also like to thank the referees, whose comments helped
me a lot in (re)writing, as well as Julien Cristau and Olivier Serre, who managed to find the
tex source that I managed to lose.

References

[BLV96]

[CDHO4]

[CDHO3]

|CTHO3|

[DA97]
[DAHO0|

[DIW9T]

[EJ88]

[Hor05]

[Jur00]

[KV98]

[MS95]

[PPO6]

[Tho95]

[Zic98]

N. Buhrke, H. Lescow and J. Vige. Strategy Construction in Infinite Games with Streett and Rabin
Chain Winning Conditions. In proceedings of Tools and Algorithms for Construction and Analysis
of Systemns, volume 1055 of Lecture Notes in Computer Science, TACAS’96, p. 207 224, Springer,
1996.

K. Chatterjee, L. de Alfaro and T.A. Henzinger. Trading Memory for Randomness. In proceedings
of Quantitative Evaluation of Systems, QEST 04, p. 206 217, IEEE Computer Society, 2004.

K. Chatterjee, L. de Alfaro and T.A. Henzinger. The Complexity of Stochastic Rabin and Streett
Games. In proceedings of International Conference on Automata, Languages and Programming,
volume 3580 of Lecture Notes in Computer Science, ICALP’05, p. 878 890, Springer, 2005.

K. Chatterjee, M. Jurdzinski and T.A. Henzinger. Simple Stochastic Parity Games. In proceedings
of Computer Science Logic, volume 2803 of Lecture Notes in Computer Science, CSL’03 p. 100 113,
Springer, 2003.

L. de Alfaro. Formal Verification of Probabilistic Systems. Ph.D. Dissertation, Stanford University,
1997.

L. de Alfaro and T.A. Henzinger. Concurrent Omega-Regular Games. In proceedings of Logic In
Computer Science, LICS’00, p. 141-154, IEEE Computer Society, 2000.

S. Dziembowski, M. Jurdziiski and I. Walukiewicz. How Much Memory Is Needed to Win Infinite
Games ? In proceedings of Logic In Computer Science, LICS’97, p. 99-110, IEEE Computer Society,
1997.

E. A. Emerson and C. S. Jutla. The Complexity of Tree Automata and Logics of Programs. In
proceedings of Foundation Of Computer Science, FOCS’88, p. 328-337, IEEE Computer Society,
1988

F. Horn. Streett Games on Finite Graphs. Games in Design and Verification, Workshop collocated
with Computer Aided Verfication, 2005

M. Jurdziniski Small Progress Measures for Solving Parity Games. In proceedings of Symposium
on Theoretical Aspects of Computer Science, STACS’00, volume 1770 of Lecture Notes in Computer
Science, p. 290-301, Springer, 2000

O. Kupferman and M. Y. Vardi Weak Alternating Automata and Tree Automata Emptiness. In
proceedings of Symposium on the Theory of Computing, STOC’98, p.224 233, Association for Com-
puting Machinery, 1998.

D. E. Muller and P. E. Schupp. Simulating Alternating Tree Automata by Nondeterministic Au-
tomata: New Results and New Proofs of the Theorems of Rabin, McNaughton and Safra. In Theo-
retical Computer Science, volume 141(1-2), p. 69-107, 1995.

N. Piterman and A. Pnueli. Faster Solutions of Rabin and Streett Games. In proceedings of Logic
in Computer Science, LICS’06, IEEE Computer Society, 2006.

W. Thomas. On the Synthesis of Strategies in Infinite Games. In proceedings of Symposium on
Theoretical Aspects of Computer Science, STACS’95, volume 900 of Lecture Notes in Computer
Science, p. 1 13, Springer, 1995.

W. Zielonka. Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite
Trees. In Theoretical Computer Science, volume 200(1-2), p. 135-183, 1998

11

