
Diing on the Streett⋆Florian HornLIAFA, Université Paris 7, Case 7014, 2 plae Jussieu, F-75251 Paris 5, FraneLehrstuhl für Informatik VII, RWTH, Ahornstraÿe 55, 52056 Aahen, Germanyhorn�liafa.jussieu.frAbstrat. Streett/Rabin games are an adequate model of strong fairness in reative systems.We show here some results about their stohasti version. We extend the known lower boundin memory for the pure winning strategies of the Streett player to randomized strategies. Wealso propose algorithms omputing the almost sure winning regions of both players in stohastiStreett/Rabin games. The Rabin algorithm also yields diretly a pure memoryless almost-surewinning strategy.1 IntrodutionProblems of ontrol related to distributed resoures often use the onept of fairness. It isunderlying in lassial frameworks suh as mutual exlusion. In this situation, agents ask foraess to a ritial setion, and then wait for their turn until the sheduler grants them aess.This is weak fairness: a request needs to be ful�lled only if it is ontinuously enabled.This notion of fairness is ill-adapted to online resoures where both lients and providers aremultiple: at any time, a lient may hoose another provider and drop his request. For example, arouting program onfronted with an overloaded node will just hange the path for its pakages.Suh abandoned requests need not to be addressed, yet a good ontroller must ensure thateveryone gets a fair amount of the resoure. The problem is then to distinguish, in �nite time, aslow system from an unfair one. Strong fairness, or Streett ondition, orresponds to this kindof spei�ation: a system is strongly fair if eah request that is repeatedly enabled is eventuallyful�lled. Requests that are enabled only �nitely often an be ignored. The omplementaryondition is alled a Rabin ondition. Thus, a Streett/Rabin game is played between an Streettplayer and a Rabin player.Deiding if a state is winning for the Rabin player is a NP-omplete problem [EJ88℄. The NPmembership omes from the existene of memoryless winning strategies for the Rabin player,and the NP-hardness is proven through a redution from 3-SAT. By ontrast, the Streett playermay need memory to win. In [DJW97℄, the authors ompute the exat memory requirementsfor all Muller games. In the ase of Streett games, their result shows that winning strategiesmay need up to k!1 memory states, on a game of exponential size. In [Hor05℄, we presenteda family of games of polynomial size where winning strategies had to use at least k! memorystates.Several algorithms were proposed for Streett games. The �rst one was a redution to paritygames via indies of appearane reords [BLV96℄. Later on, [Zie98℄ presented an algorithm forthe more general Muller games, and [KV98℄ a redution to the emptyness problem for weakalternating automata. In [Hor05℄, we presented a speialized version of the algorithm of [Zie98℄for Streett games whih an also be seen as an on-the-�y version of [KV98℄. Finally, a rankalgorithm inspired by the one in [Jur00℄ for parity games was presented in [PP06℄.
⋆ Work supported by the EU-TMR network GAMES.1 In all the paper, k, n and m are the numbers of pairs, states and transitions in the game we onsider.



This paper shows a fatorial memory lower bound and a reursive algorithm for the qualita-tive solution of stohasti Streett games, thus extending the results of [Hor05℄ to the stohastisetting. In general, the lower bounds on memory of [DJW97℄ annot be applied in the aseof randomized strategies (see [CDH04℄). And in the family of [Hor05℄, there is a randomizedmemoryless almost-sure winning strategy. In [CDH05℄, Chatterjee et al. showed that there arepure memoryless almost-sure winning strategies in stohasti Rabin games, while the Streettplayer needs no more than k! memory. We present here a family of games where even random-ized almost-sure winning strategies have to use at least k! memory, providing a lower boundthat mathes the upper bound of [CDH05℄. In the same paper, the authors also presenteda redution from stohasti Streett games to non stohasti ones, that allows to use the al-gorithms for non-stohasti games at small ost. The algorithm we present here extends theone of [Hor05℄ at no ost, and yields an alternative proof that pure memoryless strategies areenough for almost-sure winning strategies in stohasti Rabin games. However, using the al-gorithm of [PP06℄ in addition to the redution of [CDH05℄ is still faster, albeit more expensivein spae than our approah.2 De�nitions 23An in�nite 21

2
-player2 game G is a triplet (V = VA ∪ VE, E,Win) onsisting of a �nite graph

(V,E) and a winning ondition Win ⊆ V ω. A token is assumed to be in one of the states ofV. It an only move along the edges. The set of states V is partitionedinto Eve's states (VE , denoted by irles), Adam's states (VA,denoted by squares), and randomized states (VR, denotedby diamonds). The owner of the state ontaining the tokenhooses the next state. If the state is randomized, the nextstate is hosen randomly3 among its suessors, with equalprobabilities. An in�nite play ρ = q1, q2, . . . is a sequeneof states visited by the token, respeting the edge relation:
(qi, qi+1) ∈ E for all i > 0. We onsider only in�nite plays,and we assume that every state has at least one suessor. Aplay in Win ⊆ V ω is winning for Eve. Otherwise, it is winningfor Adam.

123
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67 8Fig. 1. A game graphDe�nition 1. A subgame of a game G = (V,E,Win) is a game de�ned on a subset X of Vsuh that eah state in X has a suessor in X, and eah randomized state in X has all itssuessors in X. The edges and the winning set are restritions of E and Win to X2 and Xω.A basi Streett ondition is a pair of set of states (Q,R) ⊆ V 2. The set Q an be seen as arequest, and the set R as the desired response. A Streett winning ondition is a onjuntionof basi onditions (Qi, Ri)i=1,...,k. In suh a game, Eve - the Streett player - wins if for eahpair i, either the request set Qi is visited only �nitely often, or the response set Ri is visitedin�nitely often. Conversely, Adam - the Rabin player - wins if the token visits in�nitely oftenone of the sets Qi while the orresponding set Ri is visited only �nitely often. A Streett gamewith k basi onditions is alled a Streett game of degree k.2 The "half" player represents the randomized states.3 We deided here to onsider only equal probabilities for eah suessor. This hypothesis ould be looseneda lot, if one would want to investigate it. All our results depend only on the validity of property 3.2



In this setion, we introdue several notions about stohasti games. See [Tho95,Zie98℄ formore details on non-stohasti games, and [DA97,CJH03℄ for stohasti ones.A randomized strategy for a player P is a funtion σ from V ∗VP to 2V \ {∅} respetingthe edge relation: for all q′ ∈ σ(wq) we have (q, q′) ∈ E. Informally, if P uses the strategy
σ, then whenever he has to play after a pre�x w, he hooses randomly4 a suessor in σ(w).A play ρ = q1, q2, . . . is onsistent with a strategy σ for P if for all i with qi ∈ VP we have
qi+1 ∈ σ(q1 · · · qi). A strategy is alled pure (non-randomized) if |σ(w)| = 1 for all w ∈ V ∗VP .It is memoryless if the next move depends only on the urrent position of the token, that is,for all w, w′ and q, σ(wq) = σ(w′q). A strategy uses a memory of size m if it an be realizedby a ontrol automaton with m states: at eah step, the next game state and memory statedepend only on their previous values. A strategy σ for player P is almost surely winning if forany ounter-strategy π of the other player, the probability that a play onsistent with both σand π belongs to WinP is one. In the rest of the paper, whenever we use the quali�er winning,we mean almost surely winning. The winning region of a player P in a game G, denoted by
WP (G), is the set of states from where he has a winning strategy. We do not onsider here theproblem of optimal strategies, whih would involve omputing probabilities of winning thatare neither zero nor one: our only onern here is about almost-sure winning.For a game G and a �nite-memory strategy σ for player P , we all G restrited to σfor player P the 11

2
-player game de�ned naturally by replaing the states belonging to P byrandomized states whose possible suessors are the ones presribed by σ. In addition, thememory of σ is simulated by having multiple opies of eah state, one for eah memory value.Clearly, the projeted paths of the restrited game are paths in the original game.De�nition 2. An end-omponent K of a game graph is a strongly onneted set of states suhthat eah suessor of a randomized state in K also belongs to K.Property 3. [DA97℄ For any strategies σ, π of Eve and Adam, the probability over the playsonsistent with σ and π that the set of states visited in�nitely often is an end-omponent isone.An end omponent is onsistent with a �nite memory strategy σ for player P if it is anend-omponent of G restrited to σ for player P . In Muller games, where the winner dependsonly on the set of states visited in�nitely often, we de�ne the winner of an end omponent

K: it is the winner of a play that visits in�nitely often eah state in K, and only these. Inthe speial ase of Streett/Rabin games, an end omponent is winning for Eve if for eahappearing request, a mathing response appears. Otherwise, it is winning for Adam.For strategies with �nite memory on Muller games, an interesting (and non-trivial) orol-lary to Property 3 is that a strategy is winning if and only if eah onsistent end-omponentis winning [DA97℄.The attrator of W for player P in the game G, denoted AttrGP (W ), is the set of stateswhere P an ensure that the token has a positive probability to reah the set W . It is omputedindutively as usual: W0 = W and Wn+1 is the union of Wn, {q ∈ VP ∪VR | ∃q′ ∈ Wn, (q, q′) ∈
E} and {q ∈ V \(VP ∪VR) | ∀q′ ∈ Wn, (q, q′) ∈ E}. The attrator strategy for player P onsistsin always going from a state of Wn to a state in Wn−1, thus getting loser to W . It is pure andmemoryless. The following property is a diret onsequene of the de�nition of attrators:4 More omplex strategies ould be onsidered, but they are not needed for almost-sure winning.3



Property 4. An end-omponent onsistent with the attrator strategy to W for player P on-tains either a state of W or no state of AttrP (W ).A trap is a set from whih one of the players annot esape: A set T ⊆ V is a trap forplayer P if eah state of T belonging to the other player has a suessor in T , and eah otherstate (in VP or VR) has all its suessors in T . Notie that the omplement of an attrator isa trap for the same player, and that a trap is always a subgame.Remark 5. While the attrator is a weak notion (the token may esape the attrator withoutvisiting the desired target set, even if the attrator strategy is used), the trap is a strong one(the token will never leave a trap if the untrapped player does not allow it to do so).3 A memory lower bound for randomized strategies in Streett gamesIn [DJW97℄, the authors address the problem of memory in the more general ase of Mullergames. From their results, one an derive a family of Streett games where the kth representativeis of degree k and any winning strategy for Eve uses at least k! memory states. This game has
O(k2 · k!) states. In [Hor05℄, we present a family of quadrati size with the same properties.In [CDH04℄, the authors show that the lower bound on memory from [DJW97℄ does nothold for randomized strategies. They also show that 1-player and 11

2
-player Streett gamesadmit memoryless randomized winning strategies, while pure winning strategies need a mem-ory of size k. It is natural to ask whether something similar happens with 2-player Streettgames. Note that the family of [Hor05℄ does not answer this question, as it admits memorylessrandomized winning strategies.In this setion, we present a family of 2-player games, where the kth representative hasdegree k (and O(k2) states) and any winning randomized strategy for Eve uses at least k!memory. This mathes the upper bound of [CDH05℄, whih showed that Eve had winningstrategies with k! memory states, even in the ase of 21

2
-player games.Theorem 6. For any k, there is a 2-player Streett game G of degree k and size O(k2) suhthat any winning randomized strategy for Eve uses at least k! di�erent memory states5.3.1 Presentation of the familyThe game graph Gk is presented in Figure 2. Note that we do not use randomized states. Itis a suession of basi loops:� In the initial state ℵ, Adam hooses two basi Streett onditions i and j, where i 6= j.� Eve must add a request to either i (by going to ij) or j (by going to ji).� Adam must answer to either i (by going to the state i) or j (by going to the state j).For eah Gk, there is a winning strategy σk for Eve that uses k! memory states:� The memory state is identi�ed with a permutation π ∈ Sk� In the state {i, j}, Eve moves to the state ij if i appears �rst in π, and to ji otherwise.� In the state i, Eve updates her memory by moving i at the beginning of π.To show that σk is winning, note that eah time a ondition i is requested, and does notimmediately get a response, it will get farther in π. As it will not go bak to the beginningunless it gets a response, we an onlude that there an be at most k suessive requests Qiwithout a response Ri. Thus σk is winning.5 Atually, Adam an win with probability 1 against any strategy with less than k! memory.4
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kRequests: Qi = {ij | j ∈ {1, . . . , k}} Responses: Ri = {i}Fig. 2. Game Gk3.2 Proof of the lower boundProposition 7. Any winning strategy for Eve in Gk needs at least k! di�erent memory states.Let us �x for this setion a winning �nite-memory strategy σ for Eve, possibly randomized.The point now is to exhibit strategies for Adam against whih σ must behave in di�erent ways.For this we use the notion of high priority ondition.De�nition 8. A ondition i is a high priority ondition (HPC for short) for σ in the memorystate p if in every �nite play ρ that 1) is onsistent with σ, 2) starts in state ℵ with memorystate p and 3) ends with the request i, there is at least one ourrene of a response i.Intuitively, the above de�nition states that if i is an HPC, then regardless of what happensin Adam's states and random states, the token will not visit Qi before it had visited Ri. Notiethat there annot be two di�erent HPC i and j in the same memory state, as Eve has to moveto either ij or ji if Adam goes from ℵ to the state {i, j}.Proposition 9. For eah ondition i, there is a memory state p suh that i is an HPC for σ.Proof. Consider Gσ
k , the game Gk restrited to σ. It is a 11

2
-player game, whose states areof the form (q, p) where q is a state of Gk and p a memory state of σk. The property Theondition i is not an HPC for σ in the memory state p is equivalent to There is a path in Gσ

kfrom (ℵ, p) to a state in Qi that does not go through a state in Ri.Assume now by ontradition that, for eah memory state p at the initial on�guration
ℵ, the ondition i is not an HPC. Consider Gσ

k restrited to Adam's strategy "Avoid Ri andotherwise, at randomly". It is a Markov hain where there is no edge leading to a state of
Ri. On the other hand, there is still a path to a state of Qi from every (ℵ, p). As the end-omponents of a Markov hain are the bottom strongly onneted omponents (s's without5



suessors outside of itself), it follows that eah of these inludes a state of Qi, and no stateof Ri. Thus Adam wins with probability one, whih ontradits the assumption that σ iswinning. ⊓⊔By Proposition 9, we know that there is a memory state in whih i is an HPC. Supposethat, one Eve goes to this memory state, Adam hooses never to go again to a state {i, j}.The token annot reah the state i, so i will remain an HPC. Meanwhile, Adam and Eve playin a subgame that is isomorphi to Gk−1, so Eve needs memory (k − 1)! for winning. As amemory state annot have two di�erent HPC's, Eve needs at least a total memory of size k!.4 AlgorithmsIn this setion, we desribe an algorithm whih omputes the winning region of Eve in 21

2
-player games. It is an adaptation of the algorithm for 2-player games presented in [Hor05℄.The solution for these games an also be ahieved by using the redution from stohastiStreett games to non-stohasti ones presented in [CDH05℄, along with any algorithm solvingnon-stohasti Streett games ([BLV96℄, [Hor05℄, or [PP06℄). The ost of the redution is small(from n states, m transitions and k basi onditions to nk states, mk transitions and k+1 basionditions), but we show here that our algorithm of [Hor05℄ an be extended to stohastigames at no extra ost at all.4.1 An algorithm for Streett gamesThe main idea of our algorithm is that Adam annot win if Eve an reah eah of the Ri fromanywhere with a positive probability. Let's note already that Adam may win while being inall the Ri attrators, if one of these attrators does not over the whole graph. Otherwise, Evean win by playing the attrator strategy to R1, then, one a state of R1 has been reahed,swithing to the attrator strategy to R2, and so on, restarting one eah Ri has been visited.The only end-omponents that are onsistent with this strategy interset eah of the Ri (seeProperty 4). Thus Eve would win with probability one.From this, we onlude that if Adam's winning region is non-empty, it must ontain a stateoutside of one of the Ri-attrators. Thus we an �rst ask that he hooses a ondition i andplays outside of the Ri-attrator. This de�nes a subgame, that we all H, whih is a trap forEve. In this subgame, Adam an win either by visiting in�nitely often Qi or by winning withrespet to the other onditions. Similarily, Eve may have a non-empty winning region in Honly if she has a winning state outside the H-attrator of Adam to Qi. This de�nes a seondsubgame K whih is a H-trap for Adam, and has no ourrene of Qi. We an thus omputethe winning region of Eve in K using the algorithm reursively. As K is a trap for Adam in

H, the winning region of Eve in K is inluded in her winning region in H. We now removeit and its attrator, and repeat this proedure to obtain a dereasing suession of traps forEve, removing at eah step a non-empty set of states winning for her in H. This dereasingsequene an end either with the empty set or not. In the �rst ase, we have to hek whathappens with the other onditions. In the seond ase, we laim that the �nal set is in thewinning region of Adam. Finally, if it ends in an empty set for eah ondition, we laim thatEve wins everywhere. The full proedure is formally written in Algorithm 1. For the sake oflarity, Figure 3 shows more visually the workings of the internal loop.6



Algorithm 1 Algorithm omputing the winning region of the Streett PlayerRequire: Algorithms to ompute attrators and remove sets of statesinput G, Winfor all i ∈ {1, 2, .., k} do
H ← G \AttrG

E(Ri)repeat
K ← H \AttrH

A (Qi)
L←WinStreett(K,Win \ {Qi, Ri})
H ← H \AttrH

E (L)until L = ∅if H 6= ∅ thenreturn WinStreett(G \ AttrG
A(H),W in)end ifend forreturn G

1. The subgame H has been set to G \ AttrG
E(Ri) in the mainloop. It is a trap for Eve.

2. The subgame K is set to H\AttrH
A (Qi). It is a trap for Adamin H , but not in G.3. The pair (Qi, Ri) does not appear in K. L is set to the win-ning region of Eve in K, omputed reursively.4. If L is not empty, AttrH

E (L) is removed from H for the nextiteration of the repeat loop (step 2).5. If both L and H are empty, the algorithm proeeds to thenext iteration of the for all loop.6. If L is empty, but H is not empty, the for all loop is broken,and the algorithm is alled reursively on G \ AttrG
A(H).
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Fig. 3. First exeution of the repeat loop for the ondition i7



4.2 CorretnessThe validity of Algorithm 1 depends on the lemmas 10 and 11 below, whih state propertiesabout G when the internal loop ends. A representation of the two ending ases (dependingwhether H is empty or not) is given in Figure 4. For better readability, we indexed the namesof the sets with the number of the iteration of the loop in whih they were de�ned, andreplaed the symbol Attr by just A.
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E (L3)(b) Reahing an empty regionFig. 4. End of a run of the internal loopLemma 10. When the internal loop of Algorithm 1 ends, H is winning for Adam.Proof. If H is empty, the result is trivial. We an thus restrit ourselves to the ase where His not empty, and G looks like Figure 4(a).Adam uses the attrator strategy in AttrA(Qi) and his winning strategy in the subgame
K. Note that Adam wins with probability 1 in K, sine L = ∅, (see Theorem 8 in [DAH00℄).Moreover, H is a trap for Eve, and Adam's strategy does not move out of it. Thus, theend-omponents onsistent with it are inluded in H. The ases to onsider now onern thepresene of a state of AttrA(Qi) in the end-omponent: if there is one, Property 4 states thatthere must also be a state of Qi in the end-omponent; if there is none, the end-omponent isan end-omponent of K, onsistent with Adam's winning strategy for this subgame.In both ases Adam wins with probability 1. ⊓⊔Lemma 11. If H is empty at the end of eah internal loop of Algorithm 1, Eve wins every-where.Proof. If H is empty at the end of the internal loop for ondition i, G looks like in Figure4(b). We suppose here that this is the ase for eah i.We now desribe a winning strategy σE for Eve in G. It uses a top-level memory of size kto swith between k substrategies σ1 . . . σk, eah of these using a memory of size (k− 1)!. Thestrategy σi is desribed below:� In the subgames L: the subgame strategy (memory (k − 1)!).8



� In the attrators AttrHE (L): the attrator strategy (memoryless).� In AttrE(Ri): the attrator strategy (memoryless).� In Ri: Eve updates her top-level memory to (i + 1) mod k and applies σi+1 mod k.There are two ases: Either the token goes in�nitely often in eah of the Ri, or Eve'stop-level memory is ultimately onstant (at a value i) after a �nite pre�x. In the �rst ase,she wins. In the seond ase, we onsider the end-omponents onsistent with the strategy σi.We laim that eah of them is inluded in one of the subgames L. Note that eah L is atrap for Adam in the urrent subgame H, and the token an esape from L only by going toan earlier H (de�ned earlier in the internal loop). Consider now the �rst H of the internalloop that intersets the end-omponent. Property 4 says that the end-omponent intersetsthe assoiated L. If the end-omponent is not inluded in this L, then by onnexity it shouldinterset an earlier H, whih ontradits the minimality of H. Thus, Eve wins with the strategyof the subgame L. ⊓⊔4.3 Algorithm for the Streett �ghting manWe want now to ompute the almost-sure winning region of Adam. In the ourse of algorithm 1,we found some regions where Adam was winning with probability 1 (see lemma 10). However,it is not true that the omplement of Eve almost-sure winning region is winning for Adam(see �gure 5(a)). The reason is that the winning region we �nd are expanded through a weakattrator, that orrupts the remainder of the omputation. A natural idea would be to replaeit with a strong attrator6, where the target set is reahed with probability 1. This doesn'twork either, as illustrates �gure 5(b): If a variant of Algorithm 1 with strong attrators startsby onsidering ondition 1, it will remove only the rightmost state as winning for Adam. Theremainder of the graph is now winning for Eve, though Adam an also win with probability 1in this region.
q1(a) Equal hanes to win
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q1(b) Inadequay of the strong attratorFig. 5. Motivation for Algorithm 2.Our solution is to add an external loop to algorithm 1:Algorithm 2 Algorithm omputing the winning region of the Rabin playerRequire: Algorithms to ompute attrators and remove sets of states, Algorithm 1input G, Winwhile WinStreett(G) 6= ∅ do
G← (G \ AttrE(WinStreett(G)))end whilereturn G6 The omputation of suh an attrator an be done through the omputations of 2n weak attrators9



This algorithm works by removing almost-sure winning regions for Eve and the orre-sponding attrators. None of these regions is a likely andidate to an almost-sure winningregion of Adam. When it annot �nd a winning region for Eve, we laim that the remainder ofthe graph is winning for Adam. Indeed, in this ase, the omputation of Algorithm 1 yields agame graph only omposed of a suession of region winning for Adam and the orrespondingattrators (muh like Figure 4(b) without the leftmost region). By the argument we used forFigure 4(b), the token will eventually end in one of the subgames, and Adam will win withprobability one.Notie that the strategy of Adam in the attrator is memoryless, as is the one in thesubgames (desribed in the proof of lemma 10). This yields an alternative proof, without aredution to a 2-player game, for the following theorem of [CDH05℄:Theorem 12. For any stohasti Streett/Rabin Game, if Adam has an almost-sure winningstrategy, then he also has an almost-sure winning strategy that is pure and memoryless.4.4 Time and spae omplexityAlgorithm 1 may have to all k di�erent runs of the internal loop to remove a single statein G, if it guesses wrong. With the same worst-ase senario, the internal loop has to allan attrator and a reursive all to the algorithm to remove one state in Gi. The attratoromputation being linear in the number of transitions m, we get the equation C(n, k) = k ·n ·
(O(m)+n ·C(n−1, k−1)) for a loop of the main algorithm. Thus C(n, k) = O(m ·n2k ·k!), andthe time omplexity needed to ompute all the states is O(m ·n2k ·k!). For the winning regionof the Rabin player, we need one more loop, yielding a total omplexity of O(m · n2k+1 · k!).Our algorithm uses memory in the form of variables. There are four variables in our version,and eah holds a subgame, whih an be represented as a set of states (size O(n)). As there areat most k nested versions of the algorithm running simultaneously, the spae needed by ouralgorithm is O(n ·k). One an improve this spae easily by notiing that eah time a subgameis de�ned, it is smaller than the subgames de�ned before. Thus we need only to rememberwhen a state was removed. This redues the spae omplexity to O(n · log k). Notie that thisallows only to ompute the winning regions. Reording the strategy takes O(n · k! · log n). Itan be done in the same time, though.The three algorithms we mentioned for Streett games ([BLV96℄, [Hor05℄ and [PP06℄) eahhave an advantage. The redution to a parity game doesn't have a good upper bound intime, and uses a lot of memory. Yet, it ould still be the fastest if the parity problem werein P. The best upper bound in time is the algorithm of [PP06℄, with O(nk+1k!). Howeverit also uses a lot of spae: O(n · k · k! · log(n)). Our algorithm ahieves a balane betweentime and spae omplexities. These three algorithms an be used along with the redution of[CDH05℄, whih transforms a stohasti game of size (n,m, k) to a non-stohasti one of size
(nk,mk, k + 1). This paper allows us to irumvent the redution when we use the algorithmof [Hor05℄, reduing the omplexity from km · (kn)2k+2 · (k + 1)! to m · n2k · k!. However, it isnot enough to hange the fat that even with the ost of the redution, [PP06℄ is still faster,and the redution ould still be even faster, should the parity games problem be in P.5 ConlusionWe have extended several results from the non-stohasti Streett/Rabin games to the stohas-ti setting: fatorial lower bound on the memory for Streett games strategies, and a diret10
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