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t. Streett/Rabin games are an adequate model of strong fairness in rea
tive systems.We show here some results about their sto
hasti
 version. We extend the known lower boundin memory for the pure winning strategies of the Streett player to randomized strategies. Wealso propose algorithms 
omputing the almost sure winning regions of both players in sto
hasti
Streett/Rabin games. The Rabin algorithm also yields dire
tly a pure memoryless almost-surewinning strategy.1 Introdu
tionProblems of 
ontrol related to distributed resour
es often use the 
on
ept of fairness. It isunderlying in 
lassi
al frameworks su
h as mutual ex
lusion. In this situation, agents ask fora

ess to a 
riti
al se
tion, and then wait for their turn until the s
heduler grants them a

ess.This is weak fairness: a request needs to be ful�lled only if it is 
ontinuously enabled.This notion of fairness is ill-adapted to online resour
es where both 
lients and providers aremultiple: at any time, a 
lient may 
hoose another provider and drop his request. For example, arouting program 
onfronted with an overloaded node will just 
hange the path for its pa
kages.Su
h abandoned requests need not to be addressed, yet a good 
ontroller must ensure thateveryone gets a fair amount of the resour
e. The problem is then to distinguish, in �nite time, aslow system from an unfair one. Strong fairness, or Streett 
ondition, 
orresponds to this kindof spe
i�
ation: a system is strongly fair if ea
h request that is repeatedly enabled is eventuallyful�lled. Requests that are enabled only �nitely often 
an be ignored. The 
omplementary
ondition is 
alled a Rabin 
ondition. Thus, a Streett/Rabin game is played between an Streettplayer and a Rabin player.De
iding if a state is winning for the Rabin player is a NP-
omplete problem [EJ88℄. The NPmembership 
omes from the existen
e of memoryless winning strategies for the Rabin player,and the NP-hardness is proven through a redu
tion from 3-SAT. By 
ontrast, the Streett playermay need memory to win. In [DJW97℄, the authors 
ompute the exa
t memory requirementsfor all Muller games. In the 
ase of Streett games, their result shows that winning strategiesmay need up to k!1 memory states, on a game of exponential size. In [Hor05℄, we presenteda family of games of polynomial size where winning strategies had to use at least k! memorystates.Several algorithms were proposed for Streett games. The �rst one was a redu
tion to paritygames via indi
es of appearan
e re
ords [BLV96℄. Later on, [Zie98℄ presented an algorithm forthe more general Muller games, and [KV98℄ a redu
tion to the emptyness problem for weakalternating automata. In [Hor05℄, we presented a spe
ialized version of the algorithm of [Zie98℄for Streett games whi
h 
an also be seen as an on-the-�y version of [KV98℄. Finally, a rankalgorithm inspired by the one in [Jur00℄ for parity games was presented in [PP06℄.
⋆ Work supported by the EU-TMR network GAMES.1 In all the paper, k, n and m are the numbers of pairs, states and transitions in the game we 
onsider.



This paper shows a fa
torial memory lower bound and a re
ursive algorithm for the qualita-tive solution of sto
hasti
 Streett games, thus extending the results of [Hor05℄ to the sto
hasti
setting. In general, the lower bounds on memory of [DJW97℄ 
annot be applied in the 
aseof randomized strategies (see [CDH04℄). And in the family of [Hor05℄, there is a randomizedmemoryless almost-sure winning strategy. In [CDH05℄, Chatterjee et al. showed that there arepure memoryless almost-sure winning strategies in sto
hasti
 Rabin games, while the Streettplayer needs no more than k! memory. We present here a family of games where even random-ized almost-sure winning strategies have to use at least k! memory, providing a lower boundthat mat
hes the upper bound of [CDH05℄. In the same paper, the authors also presenteda redu
tion from sto
hasti
 Streett games to non sto
hasti
 ones, that allows to use the al-gorithms for non-sto
hasti
 games at small 
ost. The algorithm we present here extends theone of [Hor05℄ at no 
ost, and yields an alternative proof that pure memoryless strategies areenough for almost-sure winning strategies in sto
hasti
 Rabin games. However, using the al-gorithm of [PP06℄ in addition to the redu
tion of [CDH05℄ is still faster, albeit more expensivein spa
e than our approa
h.2 De�nitions 23An in�nite 21

2
-player2 game G is a triplet (V = VA ∪ VE, E,Win) 
onsisting of a �nite graph

(V,E) and a winning 
ondition Win ⊆ V ω. A token is assumed to be in one of the states ofV. It 
an only move along the edges. The set of states V is partitionedinto Eve's states (VE , denoted by 
ir
les), Adam's states (VA,denoted by squares), and randomized states (VR, denotedby diamonds). The owner of the state 
ontaining the token
hooses the next state. If the state is randomized, the nextstate is 
hosen randomly3 among its su

essors, with equalprobabilities. An in�nite play ρ = q1, q2, . . . is a sequen
eof states visited by the token, respe
ting the edge relation:
(qi, qi+1) ∈ E for all i > 0. We 
onsider only in�nite plays,and we assume that every state has at least one su

essor. Aplay in Win ⊆ V ω is winning for Eve. Otherwise, it is winningfor Adam.

123
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67 8Fig. 1. A game graphDe�nition 1. A subgame of a game G = (V,E,Win) is a game de�ned on a subset X of Vsu
h that ea
h state in X has a su

essor in X, and ea
h randomized state in X has all itssu

essors in X. The edges and the winning set are restri
tions of E and Win to X2 and Xω.A basi
 Streett 
ondition is a pair of set of states (Q,R) ⊆ V 2. The set Q 
an be seen as arequest, and the set R as the desired response. A Streett winning 
ondition is a 
onjun
tionof basi
 
onditions (Qi, Ri)i=1,...,k. In su
h a game, Eve - the Streett player - wins if for ea
hpair i, either the request set Qi is visited only �nitely often, or the response set Ri is visitedin�nitely often. Conversely, Adam - the Rabin player - wins if the token visits in�nitely oftenone of the sets Qi while the 
orresponding set Ri is visited only �nitely often. A Streett gamewith k basi
 
onditions is 
alled a Streett game of degree k.2 The "half" player represents the randomized states.3 We de
ided here to 
onsider only equal probabilities for ea
h su

essor. This hypothesis 
ould be looseneda lot, if one would want to investigate it. All our results depend only on the validity of property 3.2



In this se
tion, we introdu
e several notions about sto
hasti
 games. See [Tho95,Zie98℄ formore details on non-sto
hasti
 games, and [DA97,CJH03℄ for sto
hasti
 ones.A randomized strategy for a player P is a fun
tion σ from V ∗VP to 2V \ {∅} respe
tingthe edge relation: for all q′ ∈ σ(wq) we have (q, q′) ∈ E. Informally, if P uses the strategy
σ, then whenever he has to play after a pre�x w, he 
hooses randomly4 a su

essor in σ(w).A play ρ = q1, q2, . . . is 
onsistent with a strategy σ for P if for all i with qi ∈ VP we have
qi+1 ∈ σ(q1 · · · qi). A strategy is 
alled pure (non-randomized) if |σ(w)| = 1 for all w ∈ V ∗VP .It is memoryless if the next move depends only on the 
urrent position of the token, that is,for all w, w′ and q, σ(wq) = σ(w′q). A strategy uses a memory of size m if it 
an be realizedby a 
ontrol automaton with m states: at ea
h step, the next game state and memory statedepend only on their previous values. A strategy σ for player P is almost surely winning if forany 
ounter-strategy π of the other player, the probability that a play 
onsistent with both σand π belongs to WinP is one. In the rest of the paper, whenever we use the quali�er winning,we mean almost surely winning. The winning region of a player P in a game G, denoted by
WP (G), is the set of states from where he has a winning strategy. We do not 
onsider here theproblem of optimal strategies, whi
h would involve 
omputing probabilities of winning thatare neither zero nor one: our only 
on
ern here is about almost-sure winning.For a game G and a �nite-memory strategy σ for player P , we 
all G restri
ted to σfor player P the 11

2
-player game de�ned naturally by repla
ing the states belonging to P byrandomized states whose possible su

essors are the ones pres
ribed by σ. In addition, thememory of σ is simulated by having multiple 
opies of ea
h state, one for ea
h memory value.Clearly, the proje
ted paths of the restri
ted game are paths in the original game.De�nition 2. An end-
omponent K of a game graph is a strongly 
onne
ted set of states su
hthat ea
h su

essor of a randomized state in K also belongs to K.Property 3. [DA97℄ For any strategies σ, π of Eve and Adam, the probability over the plays
onsistent with σ and π that the set of states visited in�nitely often is an end-
omponent isone.An end 
omponent is 
onsistent with a �nite memory strategy σ for player P if it is anend-
omponent of G restri
ted to σ for player P . In Muller games, where the winner dependsonly on the set of states visited in�nitely often, we de�ne the winner of an end 
omponent

K: it is the winner of a play that visits in�nitely often ea
h state in K, and only these. Inthe spe
ial 
ase of Streett/Rabin games, an end 
omponent is winning for Eve if for ea
happearing request, a mat
hing response appears. Otherwise, it is winning for Adam.For strategies with �nite memory on Muller games, an interesting (and non-trivial) 
orol-lary to Property 3 is that a strategy is winning if and only if ea
h 
onsistent end-
omponentis winning [DA97℄.The attra
tor of W for player P in the game G, denoted AttrGP (W ), is the set of stateswhere P 
an ensure that the token has a positive probability to rea
h the set W . It is 
omputedindu
tively as usual: W0 = W and Wn+1 is the union of Wn, {q ∈ VP ∪VR | ∃q′ ∈ Wn, (q, q′) ∈
E} and {q ∈ V \(VP ∪VR) | ∀q′ ∈ Wn, (q, q′) ∈ E}. The attra
tor strategy for player P 
onsistsin always going from a state of Wn to a state in Wn−1, thus getting 
loser to W . It is pure andmemoryless. The following property is a dire
t 
onsequen
e of the de�nition of attra
tors:4 More 
omplex strategies 
ould be 
onsidered, but they are not needed for almost-sure winning.3



Property 4. An end-
omponent 
onsistent with the attra
tor strategy to W for player P 
on-tains either a state of W or no state of AttrP (W ).A trap is a set from whi
h one of the players 
annot es
ape: A set T ⊆ V is a trap forplayer P if ea
h state of T belonging to the other player has a su

essor in T , and ea
h otherstate (in VP or VR) has all its su

essors in T . Noti
e that the 
omplement of an attra
tor isa trap for the same player, and that a trap is always a subgame.Remark 5. While the attra
tor is a weak notion (the token may es
ape the attra
tor withoutvisiting the desired target set, even if the attra
tor strategy is used), the trap is a strong one(the token will never leave a trap if the untrapped player does not allow it to do so).3 A memory lower bound for randomized strategies in Streett gamesIn [DJW97℄, the authors address the problem of memory in the more general 
ase of Mullergames. From their results, one 
an derive a family of Streett games where the kth representativeis of degree k and any winning strategy for Eve uses at least k! memory states. This game has
O(k2 · k!) states. In [Hor05℄, we present a family of quadrati
 size with the same properties.In [CDH04℄, the authors show that the lower bound on memory from [DJW97℄ does nothold for randomized strategies. They also show that 1-player and 11

2
-player Streett gamesadmit memoryless randomized winning strategies, while pure winning strategies need a mem-ory of size k. It is natural to ask whether something similar happens with 2-player Streettgames. Note that the family of [Hor05℄ does not answer this question, as it admits memorylessrandomized winning strategies.In this se
tion, we present a family of 2-player games, where the kth representative hasdegree k (and O(k2) states) and any winning randomized strategy for Eve uses at least k!memory. This mat
hes the upper bound of [CDH05℄, whi
h showed that Eve had winningstrategies with k! memory states, even in the 
ase of 21

2
-player games.Theorem 6. For any k, there is a 2-player Streett game G of degree k and size O(k2) su
hthat any winning randomized strategy for Eve uses at least k! di�erent memory states5.3.1 Presentation of the familyThe game graph Gk is presented in Figure 2. Note that we do not use randomized states. Itis a su

ession of basi
 loops:� In the initial state ℵ, Adam 
hooses two basi
 Streett 
onditions i and j, where i 6= j.� Eve must add a request to either i (by going to ij) or j (by going to ji).� Adam must answer to either i (by going to the state i) or j (by going to the state j).For ea
h Gk, there is a winning strategy σk for Eve that uses k! memory states:� The memory state is identi�ed with a permutation π ∈ Sk� In the state {i, j}, Eve moves to the state ij if i appears �rst in π, and to ji otherwise.� In the state i, Eve updates her memory by moving i at the beginning of π.To show that σk is winning, note that ea
h time a 
ondition i is requested, and does notimmediately get a response, it will get farther in π. As it will not go ba
k to the beginningunless it gets a response, we 
an 
on
lude that there 
an be at most k su

essive requests Qiwithout a response Ri. Thus σk is winning.5 A
tually, Adam 
an win with probability 1 against any strategy with less than k! memory.4
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kRequests: Qi = {ij | j ∈ {1, . . . , k}} Responses: Ri = {i}Fig. 2. Game Gk3.2 Proof of the lower boundProposition 7. Any winning strategy for Eve in Gk needs at least k! di�erent memory states.Let us �x for this se
tion a winning �nite-memory strategy σ for Eve, possibly randomized.The point now is to exhibit strategies for Adam against whi
h σ must behave in di�erent ways.For this we use the notion of high priority 
ondition.De�nition 8. A 
ondition i is a high priority 
ondition (HPC for short) for σ in the memorystate p if in every �nite play ρ that 1) is 
onsistent with σ, 2) starts in state ℵ with memorystate p and 3) ends with the request i, there is at least one o

urren
e of a response i.Intuitively, the above de�nition states that if i is an HPC, then regardless of what happensin Adam's states and random states, the token will not visit Qi before it had visited Ri. Noti
ethat there 
annot be two di�erent HPC i and j in the same memory state, as Eve has to moveto either ij or ji if Adam goes from ℵ to the state {i, j}.Proposition 9. For ea
h 
ondition i, there is a memory state p su
h that i is an HPC for σ.Proof. Consider Gσ
k , the game Gk restri
ted to σ. It is a 11

2
-player game, whose states areof the form (q, p) where q is a state of Gk and p a memory state of σk. The property The
ondition i is not an HPC for σ in the memory state p is equivalent to There is a path in Gσ

kfrom (ℵ, p) to a state in Qi that does not go through a state in Ri.Assume now by 
ontradi
tion that, for ea
h memory state p at the initial 
on�guration
ℵ, the 
ondition i is not an HPC. Consider Gσ

k restri
ted to Adam's strategy "Avoid Ri andotherwise, a
t randomly". It is a Markov 
hain where there is no edge leading to a state of
Ri. On the other hand, there is still a path to a state of Qi from every (ℵ, p). As the end-
omponents of a Markov 
hain are the bottom strongly 
onne
ted 
omponents (s

's without5



su

essors outside of itself), it follows that ea
h of these in
ludes a state of Qi, and no stateof Ri. Thus Adam wins with probability one, whi
h 
ontradi
ts the assumption that σ iswinning. ⊓⊔By Proposition 9, we know that there is a memory state in whi
h i is an HPC. Supposethat, on
e Eve goes to this memory state, Adam 
hooses never to go again to a state {i, j}.The token 
annot rea
h the state i, so i will remain an HPC. Meanwhile, Adam and Eve playin a subgame that is isomorphi
 to Gk−1, so Eve needs memory (k − 1)! for winning. As amemory state 
annot have two di�erent HPC's, Eve needs at least a total memory of size k!.4 AlgorithmsIn this se
tion, we des
ribe an algorithm whi
h 
omputes the winning region of Eve in 21

2
-player games. It is an adaptation of the algorithm for 2-player games presented in [Hor05℄.The solution for these games 
an also be a
hieved by using the redu
tion from sto
hasti
Streett games to non-sto
hasti
 ones presented in [CDH05℄, along with any algorithm solvingnon-sto
hasti
 Streett games ([BLV96℄, [Hor05℄, or [PP06℄). The 
ost of the redu
tion is small(from n states, m transitions and k basi
 
onditions to nk states, mk transitions and k+1 basi

onditions), but we show here that our algorithm of [Hor05℄ 
an be extended to sto
hasti
games at no extra 
ost at all.4.1 An algorithm for Streett gamesThe main idea of our algorithm is that Adam 
annot win if Eve 
an rea
h ea
h of the Ri fromanywhere with a positive probability. Let's note already that Adam may win while being inall the Ri attra
tors, if one of these attra
tors does not 
over the whole graph. Otherwise, Eve
an win by playing the attra
tor strategy to R1, then, on
e a state of R1 has been rea
hed,swit
hing to the attra
tor strategy to R2, and so on, restarting on
e ea
h Ri has been visited.The only end-
omponents that are 
onsistent with this strategy interse
t ea
h of the Ri (seeProperty 4). Thus Eve would win with probability one.From this, we 
on
lude that if Adam's winning region is non-empty, it must 
ontain a stateoutside of one of the Ri-attra
tors. Thus we 
an �rst ask that he 
hooses a 
ondition i andplays outside of the Ri-attra
tor. This de�nes a subgame, that we 
all H, whi
h is a trap forEve. In this subgame, Adam 
an win either by visiting in�nitely often Qi or by winning withrespe
t to the other 
onditions. Similarily, Eve may have a non-empty winning region in Honly if she has a winning state outside the H-attra
tor of Adam to Qi. This de�nes a se
ondsubgame K whi
h is a H-trap for Adam, and has no o

urren
e of Qi. We 
an thus 
omputethe winning region of Eve in K using the algorithm re
ursively. As K is a trap for Adam in

H, the winning region of Eve in K is in
luded in her winning region in H. We now removeit and its attra
tor, and repeat this pro
edure to obtain a de
reasing su

ession of traps forEve, removing at ea
h step a non-empty set of states winning for her in H. This de
reasingsequen
e 
an end either with the empty set or not. In the �rst 
ase, we have to 
he
k whathappens with the other 
onditions. In the se
ond 
ase, we 
laim that the �nal set is in thewinning region of Adam. Finally, if it ends in an empty set for ea
h 
ondition, we 
laim thatEve wins everywhere. The full pro
edure is formally written in Algorithm 1. For the sake of
larity, Figure 3 shows more visually the workings of the internal loop.6



Algorithm 1 Algorithm 
omputing the winning region of the Streett PlayerRequire: Algorithms to 
ompute attra
tors and remove sets of statesinput G, Winfor all i ∈ {1, 2, .., k} do
H ← G \AttrG

E(Ri)repeat
K ← H \AttrH

A (Qi)
L←WinStreett(K,Win \ {Qi, Ri})
H ← H \AttrH

E (L)until L = ∅if H 6= ∅ thenreturn WinStreett(G \ AttrG
A(H),W in)end ifend forreturn G

1. The subgame H has been set to G \ AttrG
E(Ri) in the mainloop. It is a trap for Eve.

2. The subgame K is set to H\AttrH
A (Qi). It is a trap for Adamin H , but not in G.3. The pair (Qi, Ri) does not appear in K. L is set to the win-ning region of Eve in K, 
omputed re
ursively.4. If L is not empty, AttrH

E (L) is removed from H for the nextiteration of the repeat loop (step 2).5. If both L and H are empty, the algorithm pro
eeds to thenext iteration of the for all loop.6. If L is empty, but H is not empty, the for all loop is broken,and the algorithm is 
alled re
ursively on G \ AttrG
A(H).

H

Ri

AttrG
E(Ri)

Ri
Qi ∩H

KAttrH
A (Qi)AttrE(Ri)AttrH

E (L))

L = WE(K)Ri

AttrE(Ri)

H

Fig. 3. First exe
ution of the repeat loop for the 
ondition i7



4.2 Corre
tnessThe validity of Algorithm 1 depends on the lemmas 10 and 11 below, whi
h state propertiesabout G when the internal loop ends. A representation of the two ending 
ases (dependingwhether H is empty or not) is given in Figure 4. For better readability, we indexed the namesof the sets with the number of the iteration of the loop in whi
h they were de�ned, andrepla
ed the symbol Attr by just A.
Ri

AE(Ri)

A
H0

E (L0) L0

L1
A

H1

E (L1)

Qi

A
H2

A (Qi)
K2

L2 = ∅

H2(a) H2 is winning for Adam
Ri

AE(Ri)

A
H0

E (L0) L0

L1
A

H1

E (L1)

L2

A
H2

E (L2)

L3

A
H3

E (L3)(b) Rea
hing an empty regionFig. 4. End of a run of the internal loopLemma 10. When the internal loop of Algorithm 1 ends, H is winning for Adam.Proof. If H is empty, the result is trivial. We 
an thus restri
t ourselves to the 
ase where His not empty, and G looks like Figure 4(a).Adam uses the attra
tor strategy in AttrA(Qi) and his winning strategy in the subgame
K. Note that Adam wins with probability 1 in K, sin
e L = ∅, (see Theorem 8 in [DAH00℄).Moreover, H is a trap for Eve, and Adam's strategy does not move out of it. Thus, theend-
omponents 
onsistent with it are in
luded in H. The 
ases to 
onsider now 
on
ern thepresen
e of a state of AttrA(Qi) in the end-
omponent: if there is one, Property 4 states thatthere must also be a state of Qi in the end-
omponent; if there is none, the end-
omponent isan end-
omponent of K, 
onsistent with Adam's winning strategy for this subgame.In both 
ases Adam wins with probability 1. ⊓⊔Lemma 11. If H is empty at the end of ea
h internal loop of Algorithm 1, Eve wins every-where.Proof. If H is empty at the end of the internal loop for 
ondition i, G looks like in Figure4(b). We suppose here that this is the 
ase for ea
h i.We now des
ribe a winning strategy σE for Eve in G. It uses a top-level memory of size kto swit
h between k substrategies σ1 . . . σk, ea
h of these using a memory of size (k− 1)!. Thestrategy σi is des
ribed below:� In the subgames L: the subgame strategy (memory (k − 1)!).8



� In the attra
tors AttrHE (L): the attra
tor strategy (memoryless).� In AttrE(Ri): the attra
tor strategy (memoryless).� In Ri: Eve updates her top-level memory to (i + 1) mod k and applies σi+1 mod k.There are two 
ases: Either the token goes in�nitely often in ea
h of the Ri, or Eve'stop-level memory is ultimately 
onstant (at a value i) after a �nite pre�x. In the �rst 
ase,she wins. In the se
ond 
ase, we 
onsider the end-
omponents 
onsistent with the strategy σi.We 
laim that ea
h of them is in
luded in one of the subgames L. Note that ea
h L is atrap for Adam in the 
urrent subgame H, and the token 
an es
ape from L only by going toan earlier H (de�ned earlier in the internal loop). Consider now the �rst H of the internalloop that interse
ts the end-
omponent. Property 4 says that the end-
omponent interse
tsthe asso
iated L. If the end-
omponent is not in
luded in this L, then by 
onnexity it shouldinterse
t an earlier H, whi
h 
ontradi
ts the minimality of H. Thus, Eve wins with the strategyof the subgame L. ⊓⊔4.3 Algorithm for the Streett �ghting manWe want now to 
ompute the almost-sure winning region of Adam. In the 
ourse of algorithm 1,we found some regions where Adam was winning with probability 1 (see lemma 10). However,it is not true that the 
omplement of Eve almost-sure winning region is winning for Adam(see �gure 5(a)). The reason is that the winning region we �nd are expanded through a weakattra
tor, that 
orrupts the remainder of the 
omputation. A natural idea would be to repla
eit with a strong attra
tor6, where the target set is rea
hed with probability 1. This doesn'twork either, as illustrates �gure 5(b): If a variant of Algorithm 1 with strong attra
tors startsby 
onsidering 
ondition 1, it will remove only the rightmost state as winning for Adam. Theremainder of the graph is now winning for Eve, though Adam 
an also win with probability 1in this region.
q1(a) Equal 
han
es to win

q2

r2

q1(b) Inadequa
y of the strong attra
torFig. 5. Motivation for Algorithm 2.Our solution is to add an external loop to algorithm 1:Algorithm 2 Algorithm 
omputing the winning region of the Rabin playerRequire: Algorithms to 
ompute attra
tors and remove sets of states, Algorithm 1input G, Winwhile WinStreett(G) 6= ∅ do
G← (G \ AttrE(WinStreett(G)))end whilereturn G6 The 
omputation of su
h an attra
tor 
an be done through the 
omputations of 2n weak attra
tors9



This algorithm works by removing almost-sure winning regions for Eve and the 
orre-sponding attra
tors. None of these regions is a likely 
andidate to an almost-sure winningregion of Adam. When it 
annot �nd a winning region for Eve, we 
laim that the remainder ofthe graph is winning for Adam. Indeed, in this 
ase, the 
omputation of Algorithm 1 yields agame graph only 
omposed of a su

ession of region winning for Adam and the 
orrespondingattra
tors (mu
h like Figure 4(b) without the leftmost region). By the argument we used forFigure 4(b), the token will eventually end in one of the subgames, and Adam will win withprobability one.Noti
e that the strategy of Adam in the attra
tor is memoryless, as is the one in thesubgames (des
ribed in the proof of lemma 10). This yields an alternative proof, without aredu
tion to a 2-player game, for the following theorem of [CDH05℄:Theorem 12. For any sto
hasti
 Streett/Rabin Game, if Adam has an almost-sure winningstrategy, then he also has an almost-sure winning strategy that is pure and memoryless.4.4 Time and spa
e 
omplexityAlgorithm 1 may have to 
all k di�erent runs of the internal loop to remove a single statein G, if it guesses wrong. With the same worst-
ase s
enario, the internal loop has to 
allan attra
tor and a re
ursive 
all to the algorithm to remove one state in Gi. The attra
tor
omputation being linear in the number of transitions m, we get the equation C(n, k) = k ·n ·
(O(m)+n ·C(n−1, k−1)) for a loop of the main algorithm. Thus C(n, k) = O(m ·n2k ·k!), andthe time 
omplexity needed to 
ompute all the states is O(m ·n2k ·k!). For the winning regionof the Rabin player, we need one more loop, yielding a total 
omplexity of O(m · n2k+1 · k!).Our algorithm uses memory in the form of variables. There are four variables in our version,and ea
h holds a subgame, whi
h 
an be represented as a set of states (size O(n)). As there areat most k nested versions of the algorithm running simultaneously, the spa
e needed by ouralgorithm is O(n ·k). One 
an improve this spa
e easily by noti
ing that ea
h time a subgameis de�ned, it is smaller than the subgames de�ned before. Thus we need only to rememberwhen a state was removed. This redu
es the spa
e 
omplexity to O(n · log k). Noti
e that thisallows only to 
ompute the winning regions. Re
ording the strategy takes O(n · k! · log n). It
an be done in the same time, though.The three algorithms we mentioned for Streett games ([BLV96℄, [Hor05℄ and [PP06℄) ea
hhave an advantage. The redu
tion to a parity game doesn't have a good upper bound intime, and uses a lot of memory. Yet, it 
ould still be the fastest if the parity problem werein P. The best upper bound in time is the algorithm of [PP06℄, with O(nk+1k!). Howeverit also uses a lot of spa
e: O(n · k · k! · log(n)). Our algorithm a
hieves a balan
e betweentime and spa
e 
omplexities. These three algorithms 
an be used along with the redu
tion of[CDH05℄, whi
h transforms a sto
hasti
 game of size (n,m, k) to a non-sto
hasti
 one of size
(nk,mk, k + 1). This paper allows us to 
ir
umvent the redu
tion when we use the algorithmof [Hor05℄, redu
ing the 
omplexity from km · (kn)2k+2 · (k + 1)! to m · n2k · k!. However, it isnot enough to 
hange the fa
t that even with the 
ost of the redu
tion, [PP06℄ is still faster,and the redu
tion 
ould still be even faster, should the parity games problem be in P.5 Con
lusionWe have extended several results from the non-sto
hasti
 Streett/Rabin games to the sto
has-ti
 setting: fa
torial lower bound on the memory for Streett games strategies, and a dire
t10



algorithm for determining the winning regions and strategies. We intend to extend these re-sults to in�nite game graphs (e.g. pushdowns graphs), and to extend them for Muller games.A
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