
Finitary Winning in ω-Regular Games

KRISHNENDU CHATTERJEE

University of California, Santa Cruz

THOMAS A. HENZINGER

University of California, Berkeley, USA and EPFL, Switzerland

and

FLORIAN HORN

RWTH, Aachen, Germany and Liafa, Université Paris 7, France

Games on graphs with ω-regular objectives provide a model for the control and synthesis of reactive
systems. Every ω-regular objective can be decomposed into a safety part and a liveness part. The
liveness part ensures that something good happens “eventually.” Two main strengths of the
classical, infinite-limit formulation of liveness are robustness (independence from the granularity
of transitions) and simplicity (abstraction of complicated time bounds). However, the classical
liveness formulation suffers from the drawback that the time until something good happens may
be unbounded. A stronger formulation of liveness, so-called finitary liveness, overcomes this
drawback, while still retaining robustness and simplicity. Finitary liveness requires that there
exists an unknown, fixed bound b such that something good happens within b transitions. While

for one-shot liveness (reachability) objectives, classical and finitary liveness coincide, for repeated
liveness (Büchi) objectives, the finitary formulation is strictly stronger. In this work we study
games with finitary parity and Streett objectives. We prove the determinacy of these games,
present algorithms for solving these games, and characterize the memory requirements of winning
strategies. We show that finitary parity games can be solved in polynomial time, which is not
known for infinitary parity games. For finitary Streett games, we give an EXPTIME algorithm
and show that the problem is NP-hard. Our algorithms can be used, for example, for synthesizing
controllers that do not let the response time of a system increase without bound.

Categories and Subject Descriptors: F.4.1 [MATHEMATICAL LOGIC AND FORMAL

LANGUAGES]: Temporal logic

General Terms: Formal Verification, Temporal Logics, Games on Graphs

Additional Key Words and Phrases: Model Checking, ω-regular objectives, Finitary objectives

Authors’ addresses: Krishnendu Chatterjee, CE, University of California at Santa Cruz, USA.
Email: c krish@eecs.berkeley.edu. URL: http://www.eecs.berkeley.edu/~c_krish

Thomas A. Henzinger, EECS, University of California at Berkeley, USA and EPFL, Switzerland.
Email: tah@epfl.ch URL: http://www.mtc.epfl.ch/~tah

Florian Horn, RWTH, Aachen, Germany and Liafa, Université Paris 7, France Email:
horn@liafa.jussieu.fr

The paper is a combined and extended version of the papers [5; 12].

This research was supported in part by the AFOSR MURI grant F49620-00-1-0327, the NSF grants
CCR-0132780, CNS-0720884, and CCR-0225610, by the Swiss National Science Foundation, by
the COMBEST project of the European Union, and EU-TMR network Games.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 1529-3785/2008/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, August 2008, Pages 1–26.

1. INTRODUCTION

Games played on graphs are suitable models for multi-component systems: vertices
represent states; edges represent transitions; players represent components; and
objectives represent specifications. The specification of a component is typically
given as an ω-regular condition [16], and the resulting ω-regular games have been
used for solving control and verification problems (see, e.g., [3; 19; 20]).

Every ω-regular specification (indeed, every specification) can be decomposed
into a safety part and a liveness part [1]. The safety part ensures that the com-
ponent will not do anything “bad” (such as violate an invariant) within any finite
number of transitions. The liveness part ensures that the component will do some-
thing “good” (such as proceed, or respond, or terminate) within some finite number
of transitions. Liveness can be violated only in the limit, by infinite sequences of
transitions, as no bound is stipulated on when the “good” thing must happen. This
infinitary, classical formulation of liveness has both strengths and weaknesses. A
main strength is robustness, in particular, independence from the chosen granular-
ity of transitions. Another main strength is simplicity, allowing liveness to serve
as an abstraction for complicated safety conditions. For example, a component
may always respond in a number of transitions that depends, in some complicated
manner, on the exact size of the stimulus. Yet for correctness, we may be interested
only that the component will respond “eventually.” However, these strengths also
point to a weakness of the classical definition of liveness: it can be satisfied by
components that in practice are quite unsatisfactory because no bound can be put
on their response time. It is for this reason that alternative, stronger formulations
of liveness have been proposed. One of these is finitary liveness [2; 6]: finitary
liveness does not insist on response within a known bound b (i.e., every stimulus is
followed by a response within b transitions), but on response within some unknown
bound (i.e., there exists b such that every stimulus is followed by a response within
b transitions). Note that in the finitary case, the bound b may be arbitrarily large,
but the response time must not grow forever from one stimulus to the next. In this
way, finitary liveness still maintains the robustness (independence of step granular-
ity) and simplicity (abstraction of complicated safety) of traditional liveness, while
removing unsatisfactory implementations.

In this paper, we study graph games with finitary winning conditions. The moti-
vation is the same as for finitary liveness. Consider, for example, the synthesis of an
elevator controller as a strategy in a game where one player represents the environ-
ment (i.e., the pushing of call buttons on various floors, and the pushing of target
buttons inside the elevators), and the other player represents the elevator control
(i.e., the commands to move an elevator up or down, and the opening and closing
of elevator doors). Clearly, one objective of the controller is that whenever a call
button is pushed on a floor, then an elevator will eventually arrive, and whenever a
target button is pushed inside an elevator, then the elevator will eventually get to
the corresponding floor. Note that this objective is formulated in an infinitary way
(the key term is “eventually”). This is because, for robustness and simplicity, we do
not wish to specify for each state the exact number of transitions until the objec-
tive must be met. However, a truly unbounded implementation of elevator control
(where the response time grows from request to request, without bound) would

2

s1

1

s0

1

s2s3

0

Fig. 1. A simple game graph.

be utterly unsatisfactory. A finitary interpretation of the objective prohibits such
undesirable control strategies: there must exist a bound b such that the controller
meets every call request, and every target request, within b transitions.

We formalize finitary winning for the normal form of ω-regular objectives called
parity conditions [21; 9]. A parity objective assigns a non-negative integer priority
to every vertex, and the objective of player 1 is to make sure that the lowest priority
that repeats infinitely often is even. This is an infinitary objective, as player 1 can
win by ensuring that every odd priority that repeats infinitely often is followed by a
smaller even priority “eventually” (arbitrarily many transitions later). The finitary
parity objective, by contrast, insists that player 1 ensures that there exists a bound
b such that every odd priority that repeats infinitely often is followed by a smaller
even priority within b transitions. The finitary parity objective is stronger than the
classical parity objective, as is illustrated by the following example.

Example 1. Consider the game shown in Figure 1. The square-shaped states are
player 1 states, where player 1 chooses the successor state, and the diamond-shaped
states are player 2 states (we will follow this convention throughout this paper). The
priorities of states are shown next to each state in the figure. If player 1 follows a
memoryless strategy σ that chooses the successor s2 at state s0, this ensures that
against all strategies τ for player 2, the minimum priority of the states that are
visited infinitely often is even (either state s3 is visited infinitely often, or both
states s0 and s1 are visited finitely often). However, consider the strategy τw for
player 2: the strategy τw is played in rounds, and in round k ≥ 0, whenever player 1
chooses the successor s2 at state s0, player 2 stays in state s2 for k transitions, and
then goes to state s3 and proceeds to round k + 1. The strategy τw ensures that for
all strategies σ for player 1, either the minimum priority visited infinitely often is 1
(i.e., both states s0 and s1 are visited infinitely often and state s3 is visited finitely
often); or states of priority 1 are visited infinitely often, and the distances between
visits to states of priority 1 and subsequent visits to states of priority 0 increase
without bound (i.e., the limit of the distances is ∞). Hence it follows that in this
game, although player 1 can win for the parity objective, she cannot win for the
finitary parity objective.

We prove that games with finitary parity objectives are determined: for every
state either there is a player 1 strategy (a winning strategy for player 1) that ensures
that the finitary parity objective is satisfied against all player 2 strategies, or there
is a player 2 strategy (a winning strategy for player 2) that ensures that the finitary
parity objective is violated against all player 1 strategies. Similar to games with
infinitary parity objectives, we establish the existence of winning strategies that
are memoryless (independent of the history of the play) for player 1. However,
winning strategies for player 2 in general require infinite memory; this is in contrast

to infinitary parity objectives, where memoryless winning strategies exist also for
player 2 [8; 9]. Thus the analysis of finitary parity objectives is more involved.
For Büchi and its dual coBüchi conditions, the set of winning states for finitary
and infinitary conditions coincide. We present a polynomial-time algorithm that
computes the winning states of finitary parity games in time O(n2 · m) for game
graphs with n states and m edges. Again this is in contrast to classical, infinitary
parity games, for which no polynomial-time algorithm is known (the best known

algorithms have time complexity O(n⌊ d

2
⌋ · m) [13] or nO(

√
n) [14], where d is the

number of priorities).
In addition to finitary parity, we study finitary Streett objectives. Streett ob-

jectives require that if some stimuli are repeated infinitely often, then the corre-
sponding responses occur infinitely often. The finitary interpretation requires, in
addition, that there exists a bound b on all required response times (i.e., on the
number of transitions between stimulus and corresponding response). We present
an algorithm for games with finitary Streett objectives that computes the winning
sets in time O(n2 · m · d · 2d) for game graphs with n states, m edges, and fini-
tary Streett objectives with d pairs. Hence, the winning states can be decided in
EXPTIME. We also show that deciding if a given state is winning for player 1 is
NP-hard. For comparison, the decision problem for games with infinitary Streett
objectives is coNP-complete [8], and the winning states can be computed in time
O(nd ·d! ·m) [11]. For classical as well as finitary Streett games, finite-memory win-
ning strategies exist for player 1: for infinitary Streett objectives, winning strategies
require d! memory [7; 11]; for finitary Streett objectives, we show an upper bound

of d · 2d and a lower bound of 2⌊
d

2
⌋ for the memory requirement, for (finitary)

Streett objectives with d pairs. However, while in the classical case memoryless
winning strategies exist for player 2 [8], in the finitary case the winning strategies
for player 2 may require infinite memory.

We focus on finitary parity and Streett objectives. The finitary parity objec-
tives are a canonical form to express finitary versions of ω-regular objectives; they
subsume finitary reachability, finitary Büchi, and finitary co-Büchi objectives as
special cases. The Streett objectives capture liveness conditions that are of partic-
ular interest in system design, as they correspond to strong fairness (compassion)
constraints [16]. The finitary Streett objectives, therefore, give the finitary formu-
lation of strong fairness.

2. GAMES WITH ω-REGULAR OBJECTIVES

2.1 Game graphs

Game graphs. A game graph G = ((S, E), (S1, S2)) consists of a directed graph
(S, E) with a finite state space S and a set E of edges, and a partition (S1, S2) of
the state space S into two sets. The states in S1 are player 1 states, and the states
in S2 are player 2 states. For a state s ∈ S, we write E(s) = {t ∈ S | (s, t) ∈ E}
for the set of successor states of s. We assume that every state has at least one
out-going edge, i.e., E(s) is non-empty for all states s ∈ S.

Plays. A game is played by two players: player 1 and player 2, who form an infinite
path in the game graph by moving a token along edges. They start by placing the
token on an initial state, and then they take moves indefinitely in the following

way. If the token is on a state in S1, then player 1 moves the token along one of
the edges going out of the state. If the token is on a state in S2, then player 2 does
likewise. The result is an infinite path in the game graph; we refer to such infinite
paths as plays. Formally, a play is an infinite sequence 〈s0, s1, s2, . . .〉 of states such
that (sk, sk+1) ∈ E for all k ≥ 0. We write Π for the set of all plays.

Strategies. A strategy for a player is a recipe that specifies how to extend plays.
Formally, a strategy σ for player 1 is a function σ: S∗ · S1 → S that, given a
finite sequence of states (representing the history of the play so far) which ends in
a player 1 state, chooses the next state. The strategy must choose only available
successors, i.e., for all w ∈ S∗ and s ∈ S1, if σ(w · s) = t, then t ∈ E(s). The
strategies for player 2 are defined analogously. We write Σ and Γ for the sets of all
strategies for player 1 and player 2, respectively.

An equivalent definition of strategies is as follows. Let M be a set called memory.
A strategy with memory can be described as a pair of functions: (a) a memory-
update function σu: S × M → M that, given the memory and the current state,
updates the memory; and (b) a next-state function σn: S × M → S that, given
the memory and the current state, specifies the successor state. The strategy is
finite-memory if the memory M is finite and for a finite-memory strategy σ we
write |σ| to denote the size of its memory, i.e., |M |. The strategy is memoryless
if the memory M is a singleton set. The memoryless strategies do not depend on
the history of a play, but only on the current state. Each memoryless strategy for
player 1 can be specified as a function σ: S1 → S such that σ(s) ∈ E(s) for all
s ∈ S1, and analogously for memoryless player 2 strategies. Given a starting state
s ∈ S, a strategy σ ∈ Σ for player 1, and a strategy τ ∈ Γ for player 2, there is a
unique play, denoted π(s, σ, τ) = 〈s0, s1, s2, . . .〉, which is defined as follows: s0 = s

and for all k ≥ 0, if sk ∈ S1, then σ(s0, s1, . . . , sk) = sk+1, and if sk ∈ S2, then
τ(s0, s1, . . . , sk) = sk+1.

Counting strategies. We call an infinite memory strategy σ finite-memory count-
ing if there is a finite-memory strategy σ′ such that for all j ≥ 0 there exists k ≤ j

such that the following condition hold: for all w ∈ S∗ such that |w| = j and for all
s ∈ S1 we have σ(w ·s) = σ′(suffix(w, k) ·s), where for w ∈ S∗ of length j and k ≤ j

we denote by suffix(w, k) the suffix of w of length k. In other words, the strategy
σ repeatedly plays the finite-memory strategy σ′ in different segments of the play
and the switch of the strategy in different segments only depends on the length
of the play. We denote by count(|σ|) the size of the memory of the finite-memory
strategy σ′, i.e., count(|σ|) = |σ′|. We use similar notations for player 2 strategies.

2.2 Classical winning conditions

We first define the class of ω-regular objectives and the classical notion of winning.

Objectives. Objectives for the players in non-terminating games are specified
by providing the sets Φ, Ψ ⊆ Ω of winning plays for player 1 and player 2, re-
spectively. We consider zero-sum games, where the objectives of both players
are complementary, i.e., Ψ = Ω \ Φ. The class of ω-regular objectives [21] are
of special interest since they form a robust class of objectives for verification
and synthesis. The ω-regular objectives, and subclasses thereof, can be spec-
ified in the following forms. For a play π = 〈s0, s1, s2, . . .〉 ∈ Ω, we define

Inf(π) = {s ∈ S | sk = s for infinitely many k ≥ 0} to be the set of states that
occur infinitely often in π.

(1) Reachability and safety objectives. Given a set F ⊆ S of states, the reachability
objective Reach(F) requires that some state in F be visited, and dually, the
safety objective Safe(F) requires that only states in F be visited. Formally, the
sets of winning plays are Reach(F) = {〈s0, s1, s2, . . .〉 ∈ Π | ∃k ≥ 0. sk ∈ F}
and Safe(F) = {〈s0, s1, s2, . . .〉 ∈ Π | ∀k ≥ 0. sk ∈ F}.

(2) Büchi and co-Büchi objectives. Given a set F ⊆ S of states, the Büchi objective
Buchi(F) requires that some state in F be visited infinitely often, and dually,
the co-Büchi objective coBuchi(F) requires that only states in F be visited
infinitely often. Thus, the sets of winning plays are Buchi(F) = {π ∈ Π |
Inf(π) ∩ F 6= ∅} and coBuchi(F) = {π ∈ Π | Inf(π) ⊆ F}.

(3) Rabin and Streett objectives. Given a set P = {(E1, F1), . . . , (Ed, Fd)} of pairs
of sets of states (i.e, for all 1 ≤ j ≤ d, both Ej ⊆ S and Fj ⊆ S), the
Rabin objective Rabin(P) requires that for some pair 1 ≤ j ≤ d, all states in
Ej be visited finitely often, and some state in Fj be visited infinitely often.
Hence, the winning plays are Rabin(P) = {π ∈ Π | ∃1 ≤ j ≤ d. (Inf(π) ∩ Ej =
∅ and Inf(π)∩Fj 6= ∅)}. Dually, given P = {(E1, F1), . . . , (Ed, Fd)}, the Streett
objective Streett(P) requires that for all pairs 1 ≤ j ≤ d, if some state in Fj

is visited infinitely often, then some state in Ej be visited infinitely often, i.e.,
Streett(P) = {π ∈ Π | ∀1 ≤ j ≤ d. (Inf(π) ∩ Ej 6= ∅ or Inf(π) ∩ Fj = ∅)}.

(4) Parity objectives. Given a function p: S → {0, 1, 2, . . . , d− 1} that maps every
state to an integer priority, the parity objective Parity(p) requires that of the
states that are visited infinitely often, the least priority be even. Formally, the
set of winning plays is Parity(p) = {π ∈ Π | min{p(Inf(π))} is even}. The dual,
co-parity objective has the set coParity(p) = {π ∈ Π | min{p(Inf(π))} is odd}
of winning plays. Parity objectives are closed under complementation: given a
function p : S → {0, 1, . . . , d−1}, consider the function p+1 : S → {1, 2, . . . , d}
defined as p + 1(s) = p(s) + 1, for all s ∈ S, and then we have Parity(p + 1) =
coParity(p).

Every parity objective is both a Rabin objective and a Streett objective. Hence,
the parity objectives are closed under complementation. The Büchi and co-Büchi
objectives are special cases of parity objectives with two priorities, namely, p: S →
{0, 1} for Büchi objectives with F = p−1(0), and p: S → {1, 2} for co-Büchi
objectives with F = p−1(2). The reachability and safety objectives can be turned
into Büchi and co-Büchi objectives, respectively, on slightly modified game graphs.

Winning. Given an objective Φ ⊆ Π for player 1, a strategy σ ∈ Σ is a winning
strategy for player 1 from a set U ⊆ S of states if for all player 2 strategies τ ∈
Γ and all states s ∈ U , the play π(s, σ, τ) is winning, i.e., π(s, σ, τ) ∈ Φ. The
winning strategies for player 2 are defined analogously. A state s ∈ S is winning for
player 1 with respect to the objective Φ if player 1 has a winning strategy from {s}.
Formally, the set of winning states for player 1 with respect to the objective Φ is
W1(Φ) = {s ∈ S | ∃σ ∈ Σ. ∀τ ∈ Γ. π(s, σ, τ) ∈ Φ}. Analogously, the set of winning
states for player 2 with respect to an objective Ψ ⊆ Π is W2(Ψ) = {s ∈ S | ∃τ ∈
Γ. ∀σ ∈ Σ. π(s, σ, τ) ∈ Ψ}. We say that there exists a (memoryless; finite-memory)

winning strategy for player 1 with respect to the objective Φ if there exists such a
strategy from the set W1(Φ); and similarly for player 2.

Theorem 1 (Classical determinacy and strategy complexity). The
following assertions hold.

(1) [10] For all game graphs, all Rabin objectives Φ for player 1, and the comple-
mentary Streett objective Ψ = Π \Φ for player 2, we have W1(Φ) = S \W2(Ψ).

(2) [8] For all game graphs and all Rabin objectives for player 1, there exists a
memoryless winning strategy for player 1.

(3) [10] For all game graphs and all Streett objectives for player 2, there exists a
finite-memory winning strategy for player 2. However, in general no memory-
less winning strategy exists.

3. FINITARY WINNING CONDITIONS

We now define a stronger notion of winning, namely, finitary winning, in games
with parity and Streett objectives.

3.1 Finitary winning for parity objectives

For parity objectives, the finitary winning notion requires that for each visit to an
odd priority that is visited infinitely often, the distance to a stronger (i.e., lower)
even priority be bounded. To define the winning plays formally, we need the concept
of a distance sequence.

Distance sequences for parity objectives. Given a play π = 〈s0, s1, s2, . . .〉
and a priority function p: S → {0, 1, . . . , d − 1}, we define a sequence of distances
distk(π, p), for all k ≥ 0, as follows:

distk(π, p) =

{
0 if p(sk) is even;

inf{k′ − k | k′ ≥ k, p(sk′) is even and p(sk′) < p(sk)} if p(sk) is odd.

Intuitively, the distance for a position k in a play with an odd priority at position
k, denotes the shortest distance to a stronger even priority in the play. We assume
the standard convention that the infimum of the empty set is ∞.

Finitary parity objectives. The finitary parity objective finParity(p) for a pri-
ority function p requires that the sequence of distances for the positions with odd
priorities that occur infinitely often be bounded. This is equivalent to requiring
that the sequence of all distances be bounded in the limit, and captures the no-
tion that the “good” (even) priorities that appear infinitely often do not appear
infinitely rarely. Formally, the sets of winning plays for the finitary parity objective
and its complement are

finParity(p) = {π ∈ Π | lim sup
k→∞

distk(π, p) < ∞};

cofinParity(p) = {π ∈ Π | lim sup
k→∞

distk(π, p) = ∞}.

Observe that if a play π is winning for a co-parity objective, then the lim sup of the
distance sequence for π is ∞, that is, coParity(p) ⊆ cofinParity(p). However, if a

play π is winning for a (classical) parity objective, then the lim sup of the distance
sequence for π can be ∞ (as shown in Example 1), that is, finParity(p) (Parity(p).
Given a game graph G and a priority function p, solving the finitary parity game
requires computing the two winning sets W1(finParity(p)) and W2(cofinParity(p)).

Remark 1. Recall that Büchi and co-Büchi objectives correspond to parity ob-
jectives with two priorities. A finitary Büchi objective is in general a strict subset
of the corresponding classical Büchi objective; a finitary co-Büchi objective coin-
cides with the corresponding classical co-Büchi objective. However, it can be shown
that for parity objectives with two priorities, the classical winning sets and the
finitary winning sets are the same; that is, for all game graphs G and all pri-
ority functions p with two priorities, we have W1(finParity(p)) = W1(Parity(p))
and W2(cofinParity(p)) = W2(coParity(p)). Note that in Example 1, we have
s0 ∈ W1(Parity(p)) and s0 6∈ W1(finParity(p)). This shows that for priority func-
tions with three or more priorities, the winning set for a finitary parity objective can
be a strict subset of the winning set for the corresponding classical parity objective,
that is, W1(finParity(p)) (W1(Parity(p)).

3.2 Weak parity and bounded parity objectives

We now define weak parity objectives [15] and the bounded parity objectives. We
will later use the solution of weak parity objectives iteratively to solve games with
bounded parity objectives, and then use the solution of bounded parity objectives
iteratively to solve games with finitary parity objectives.

Weak parity objectives. In a weak parity objective the winner of a play is
decided by considering the minimum priority state that appears in the play: if
the minimum priority is even, then player 1 wins, and otherwise player 2 is the
winner. For a play π = 〈s0, s1, s2, . . .〉 ∈ Ω, we define Occur(π) = {s ∈ S |
sk = s for some k ≥ 0} to be the set of states that occur in π. For a priority function
p, the weak parity objective weakParity(p) and its complement coweakParity(p) are
defined as follows:

weakParity(p) = {π ∈ Π | min(p(Occur(π))) is even};
coweakParity(p) = {π ∈ Π | min(p(Occur(π))) is odd}.

Bounded parity objectives. The bounded parity objective requires the distance
sequence to be bounded, and its complement requires the distance sequence to be
unbounded. For a priority function p, the bounded parity objective bndParity(p)
and its complement cobndParity(p) are defined as follows:

bndParity(p) = {π ∈ Π | ∃j ∈ N. ∀k ≥ 0. distk(π, p) ≤ j}
= {π ∈ Π | sup{distk(π, p) | k ≥ 0} < ∞};

cobndParity(p) = {π ∈ Π | ∀j ∈ N. ∃k ≥ 0. distk(π, p) ≥ j}
= {π ∈ Π | sup{distk(π, p) | k ≥ 0} = ∞}.

Observe that finParity(p) requires that visit to a lower even priority within a
bounded distance applies only to odd priorities that appear infinitely often, whereas
for bndParity(p) the requirement applies to all odd priorities that appear in the
play.

Relationship between objectives. We already noted in Remark 1 that in general
we have

finParity(p) (Parity(p); W1(finParity(p)) (W1(Parity(p)).

Consider a play π such that π ∈ bndParity(p), then there exists a j ∈ N such that
for all k ≥ 0 we have distk(π, p) ≤ j, and hence lim supk→∞ distk(π, p) ≤ j. Hence
we have bndParity(p) ⊆ finParity(p). However, consider a play π such that the
priority sequence of π is 1 · 2ω, then we have π ∈ finParity(p), but dist0(π, p) = ∞,
and thus π 6∈ bndParity(p). Moreover, a graph with a starting state s0 with priority
1 and an edge to a state s1 such that s1 has a self-loop and priority 2, shows that
in general we have W1(bndParity(p)) (W1(finParity(p)). Thus we obtain the
following relationship:

bndParity(p) (finParity(p) (Parity(p);

W1(bndParity(p)) (W1(finParity(p)) (W1(Parity(p)).

Also observe that for a play π ∈ bndParity(p) the minimum priority that ap-
pears in π must be even, otherwise if the minimum priority is odd, then the posi-
tion where the minimum odd priority occurs will have distance ∞. Thus we have
bndParity(p) ⊆ weakParity(p). Consider a play π such that the priority sequence
of π is 0 · 1ω, then π ∈ weakParity(p), however, π 6∈ bndParity(p). Hence we have
the following relationship:

bndParity(p) (weakParity(p); W1(bndParity(p)) (W1(weakParity(p)).

The objective weakParity(p) is incomparable in terms of inclusion to finParity(p)
and Parity(p). Consider a play π with the priority sequence 1 · 2ω, then π ∈
finParity(p) and π ∈ Parity(p), however, π 6∈ weakParity(p). On the other hand,
consider a play π with the priority sequence 0·1ω, then π ∈ weakParity(p), however,
π 6∈ Parity(p) and π 6∈ finParity(p).

3.3 Finitary winning for Streett objectives

The notion of distance sequence for parity objectives has a natural extension to
Streett objectives.

Distance sequences for Streett objectives. Given a play π = 〈s0, s1, s2, . . .〉
and a set P = {(E1, F1), . . . , (Ed, Fd)} of Streett pairs of state sets, the d sequences
of distances dist j

k(π, P), for all k ≥ 0 and 1 ≤ j ≤ d, are defined as follows:

dist j
k(π, P) =

{
0 if sk 6∈ Fj ;

inf{k′ − k | k′ ≥ k, sk′ ∈ Ej} if sk ∈ Fj .

Let distk(π, P) = max{dist j
k(π, P) | 1 ≤ j ≤ d} for all k ≥ 0.

Finitary Streett objectives. The finitary Streett objective finStreett(P) for a
set P of Streett pairs requires that the distance sequence be bounded in the limit,
i.e., the winning plays are finStreett(P) = {π ∈ Π | lim supk→∞ distk(π, P) < ∞}.
We use the following notations for the complementary objective: cofinStreett(P) =
Π \ finStreett(P).

E1

s0s1 s2s3 s4s5 s6

s7 s8

Serv2

Serv2 Serv1

Serv1

Req1 Req2

Req2
Req1

s9 s10

St.

s11
Qu.

St.

Qu.
s12

E1 E2

F1 F2

F2 F1

E2

Fig. 2. A request-service game graph.

Example 2. Consider the game graph of Figure 2. Player 2 generates requests
of type Req1 and Req2; these are shown as labeled edges in the figure. Player 1
services a request of type Reqi by choosing an edge labeled Serv i, for i = 1, 2.
Whenever a request is received, further requests of the same type are disabled until
the request is serviced; then the requests of this type are enabled again. The state
s0 represents the case when there are no unserviced requests; the states s1 and
s2 represent the cases when there are unserviced requests of type Req1 and Req2,
respectively; and the states s7 and s8 represent the cases when there are unserviced
requests of both types, having arrived in either order. On arrival of a request of type
Reqi, a state in Fi is visited, and when a request of type Reqi is serviced, a state
in Ei is visited, for i = 1, 2. Hence F1 = {s1, s8}, F2 = {s2, s7}, E1 = {s5, s12},
and E2 = {s6, s11}. The Streett objective Streett(P) with P = {(E1, F1), (E2, F2)}
requires that if a request of type Reqi is received infinitely often, then it be serviced
infinitely often, for both i = 1, 2. The player 1 strategy s9 → s11 and s10 → s12 is a
stack strategy, which always services first the request type received last. The player
1 strategy s9 → s12 and s10 → s11 is a queue strategy, which always services first
the request type received first. Both the stack strategy and the queue strategy ensure
that the classical Streett objective Streett(P) is satisfied. However, for the stack
strategy, the number of transitions between the arrival of a request of type Reqi and
its service can be unbounded. Hence the stack strategy is not a winning strategy
for player 1 with respect to the finitary Streett objective finStreett(P). The queue
strategy, by contrast, ensures not only that every request that is received infinitely
often is serviced, but it also ensures that the number of transitions between the
arrival of a request and its service is at most 6. Thus the queue strategy is winning
for player 1 with respect to finStreett(P).

3.4 Weak Streett and bounded Streett objectives

We now define weak Streett objectives and bounded Streett objectives. We will
later use the solution of games with bounded Streett objectives to solve games with
finitary Streett objectives.

Weak Streett objectives. Similar to weak parity objectives, in weak Streett
objectives the winner is decided considering the set of states that appear in a play.

Given P = {(E1, F1), . . . , (Ed, Fd)}, the weak Streett objective weakStreett(P)
requires that for all pairs 1 ≤ j ≤ d, if some state in Fj is visited, then some state
in Ej be visited, i.e.,

weakStreett(P) = {π ∈ Π | ∀1 ≤ j ≤ d. (Occur(π)∩Ej 6= ∅ or Occur(π)∩Fj = ∅)}.

Bounded Streett objectives. Similar to bounded parity objectives the bounded
Streett objectives requires the distance sequence to be bounded. Formally, given
P = {(E1, F1), . . . , (Ed, Fd)}, the bounded Streett objective is defined as follows:

bndStreett(P) = {π ∈ Π | ∃j ∈ N. ∀k ≥ 0. distk(π, P) ≤ j}
= {π ∈ Π | sup{distk(π, P) | k ≥ 0} < ∞}.

We use the following notations for the complementary objective: cobndStreett(P) =
Π \ bndStreett(P).

4. FINITARY PARITY GAMES: DETERMINACY AND COMPLEXITY

We present an algorithm to solve games with finitary parity objectives. The correct-
ness argument for the algorithm also proves determinacy for finitary parity games.1

The algorithm is obtained by iteratively solving games with bounded parity objec-
tives, and the solution of bounded parity objectives is obtained by iteratively solving
games with weak parity objectives. We start with some preliminary notation and
facts that will be required for the analysis of the algorithm.

Closed sets. A set U ⊆ S of states is a closed set for player 2 if the following
two conditions hold: (a) for all states u ∈ (U ∩ S2), we have E(u) ⊆ U , i.e., all
successors of player 2 states in U are again in U ; and (b) for all u ∈ (U ∩ S1),
we have E(u) ∩ U 6= ∅, i.e., every player 1 state in U has a successor in U . The
closed sets for player 1 are defined analogously. Every closed set U for player ℓ, for
ℓ ∈ {1, 2}, induces a sub-game graph, denoted G ↾ U . For winning sets W1 and
W2, we write WG

1 and WG
2 to explicitly specify the game graph G.

Proposition 1. Consider a game graph G, and a closed set U for player 2. For
every objective Φ for player 1, we have W

G↾U
1 (Φ) ⊆ WG

1 (Φ).

Attractors. Given a game graph G, a set U ⊆ S of states, and a player ℓ ∈ {1, 2}, the
set Attrℓ(U, G) contains the states from which player ℓ has a strategy to reach a state
in U against all strategies of the other player; that is, Attrℓ(U, G) = WG

ℓ (Reach(U)).
The set Attr1(U, G) can be computed inductively as follows: let R0 = U ; let Ri+1 =
Ri ∪ {s ∈ S1 | E(s) ∩ Ri 6= ∅} ∪ {s ∈ S2 | E(s) ⊆ Ri} for all i ≥ 0; then
Attr1(U, G) =

⋃
i≥0 Ri. The inductive computation of Attr2(U, G) is analogous.

For all states s ∈ Attr1(U, G), define rank(s) = i if s ∈ Ri \ Ri−1, that is, rank(s)
denotes the least i ≥ 0 such that s is included in Ri. Define a memoryless strategy
σ ∈ Σ for player 1 as follows: for each state s ∈ (Attr1(U, G)∩S1) with rank(s) = i,
choose a successor σ(s) ∈ (Ri−1 ∩ E(s)) (such a successor exists by the inductive
definition). It follows that for all states s ∈ Attr1(U, G) and all strategies τ ∈ Γ for
player 2, the play π(s, σ, τ) reaches U in at most |Attr1(U, G)| transitions.

1The determinacy of games with finitary parity objectives can also be proved by reduction to
Borel objectives, using the determinacy of Borel games [17]; however, our proof is direct.

Proposition 2. For all game graphs G, all players ℓ ∈ {1, 2}, and all sets
U ⊆ S of states, the set S \ Attrℓ(U, G) is a closed set for player ℓ.

4.1 Solving games with weak parity objectives

We first informally describe an algorithm to solve games with weak parity objec-
tives; the formal description of the complete algorithm is available in [15] and a
detailed running time analysis is available in [4]. The algorithm takes as input a
game graph G and a priority function p, and proceeds as follows: first it computes
the player 1 attractor to the set p−1(0) of states with priority 0, and identifies the set
W0 = Attr1(p

−1(0), G) as a subset of WG
1 (weakParity(p)). Clearly in W0 player 1

can play a memoryless attractor strategy to reach p−1(0) and ensure to win. Then
S \W0 is a closed set for player 1 and induces a sub-game G1 = G ↾ (S \W0). Then
player 2 attractor is computed to the set p−1(1) in G1 (i.e., attractor to the set
of states with priority 1 in G1) and the set W1 = Attr2(p

−1(1) ∩ (S \ W0), G1) is
identified as a subset of WG

2 (coweakParity(p)). Since G1 is a closed set for player 1,
a memoryless attractor strategy for player 2 in W1 to reach p1−(1) ∩ (S \ W0) and
stay safe in G1 ensures that player 2 can satisfy coweakParity(p) in W1. The algo-
rithm then removes the set W1 from G1 and proceeds on the sub-game. Finally the
algorithm correctly obtains the set WG

1 (weakParity(p)) and WG
2 (coweakParity(p)).

In the set WG
1 (weakParity(p)) every odd priority state belongs to the attractor of a

smaller even priority, and in the set WG
2 (coweakParity(p)) every even priority state

belongs to the attractor of a smaller odd priority. The winning strategies of the
players in their respective winning sets can be obtained by composing memoryless
attractor strategies. We now summarize the results on games with weak parity
objectives.

Theorem 2 (Weak parity games[15; 4]). For all game graphs G =
((S, E), (S1, S2)) and all priority functions p the following assertions hold.

(1) (Determinacy). We have W1(weakParity(p)) = S \ W2(coweakParity(p)).

(2) (Strategy complexity). There exists a memoryless winning strategy for player 1
for objective weakParity(p) and there exists a memoryless winning strategy for
player 2 for objective coweakParity(p).

(3) (Time complexity). The sets W1(weakParity(p)) and W2(coweakParity(p)) can
be computed in O(m) time, where m = |E|.

4.2 Solving games with bounded parity objectives

In this section we will show how the solution of games with weak parity objectives
can be iteratively used to solve games with bounded parity objectives. We state
a key lemma that would directly lead to an algorithm (Algorithm 1) for bounded
parity objectives.

Lemma 1. For all game graphs G = ((S, E), (S1, S2)) and all priority functions
p the following assertions hold.

(1) We have Attr2(W2(coweakParity(p)), G) ⊆ W2(cobndParity(p)), i.e., the at-
tractor to the winning set with objective coweakParity(p) is a subset of the
winning set with the unbounded parity objective cobndParity(p). There is a

finite-memory winning strategy τ for player 2 for the objective cobndParity(p)
from the set Attr2(W2(coweakParity(p)), G) such that the following conditions
hold:

—|τ | = 2.
—for all strategies σ and for all s ∈ Attr2(W2(coweakParity(p)), G) there exists

k ≤ |S| such that for the play π(s, σ, τ) = 〈s0, s1, s2, . . .〉 we have (a) p(sk) is
odd and (b) for all j ≥ k if p(sj) is even, then p(sj) > p(sk).

(2) If S = W1(weakParity(p)), then S = W1(bndParity(p)) and a memoryless
winning strategy exists for player 1 for the objective bndParity(p).

Proof. We prove the two cases below.

(1) First observe that for a play π ∈ coweakParity(p), the smallest priority that
appears in π is odd, and let k be a position such that the smallest odd
priority appear at k. Then we have distk(π, p) = ∞ and thus we obtain
that π ∈ cobndParity(p), i.e., we have coweakParity(p) ⊆ cobndParity(p).
Thus we obtain that W2(coweakParity(p)) ⊆ W2(cobndParity(p)). For a play
π ∈ coweakParity(p), let k be a position such that the smallest odd priority
of π appear at k. Given a finite prefix w ∈ S∗, for the play w · π we have
dist |w|+k(w · π, p) = ∞, and it follows that we have

{w · π ∈ Π | w ∈ S∗, π ∈ coweakParity(p)} ⊆ cobndParity(p).

Hence we obtain that Attr2(W2(coweakParity(p)), G) ⊆ W2(cobndParity(p)).
A witness winning strategy τ for the objective cobndParity(p) for the
set Attr2(W2(coweakParity(p)), G) is as follows: (a) play a memoryless
attractor strategy to reach W2(coweakParity(p)) and (b) upon reaching
W2(coweakParity(p)) switch to a memoryless winning strategy for the objec-
tive coweakParity(p) (and such a memoryless winning strategy exists by Theo-
rem 2). Observe that the strategy τ switches between two memoryless strategies
and thus we have |τ | = 2. Moreover, the strategy τ ensures that for all starting
states s ∈ Attr2(W2(coweakParity(p)), G) and for all strategies σ ∈ Σ, a state
sk is reached within k ≤ |S| steps such that the priority at sk is odd and all
subsequent even priorities are greater than p(sk). Thus τ is the desired winning
strategy.

(2) If S = W1(weakParity(p)), then fix a memoryless winning strategy σ for
player 1 for the objective weakParity(p) (such a strategy exists by Theorem 2).
Then for all s ∈ S and all strategies τ for player 2, the following assertion hold
for the play π(s, σ, τ) = 〈s0, s1, s2, . . .〉: for k ≥ 0, if p(sk) is odd, then there
exists k < k′ ≤ k + |S| such that p(sk′) < p(sk) and p(sk′) is even. Otherwise,
there is a cycle C and a finite path w from sk to a state in C in the graph Gσ

such that for all states s′ in C and w, if p(s′) is even, then p(s′) > p(sk), where
Gσ is the graph obtained from G fixing the memoryless strategy σ for player 1.
Then a strategy for player 2, that executes the path w and then the cycle C

for ever in Gσ, contradicts the fact that sk ∈ W1(weakParity(p)) and σ is a
winning strategy for weakParity(p). Thus it follows that for all s ∈ S, for all
strategies τ ∈ Γ and for all k ≥ 0 we have distk(π(s, σ, τ), p) ≤ |S|. Hence we
have S = W1(bndParity(p)).

The desired result follows.

We now present an example to show that memory is need for winning strategies
for objectives cobndParity(p).

Example 3 (Memory required for cobndParity(p) objective). Consider
the game graph shown in Fig 1 and consider the sub-game graph induced by the
set {s0, s2, s3} of states. All player 1 states have only one edge and hence the
sub-game induced is effectively a one player game graph. We consider the objective
cobndParity(p) for player 2, for the priority function p as shown in the figure. Let
s2 be the starting state and we consider two memoryless strategies for player 2:

—for the memoryless strategy s2 → s2, the state s2 is always visited and hence the
strategy is not winning for objective cobndParity(p);

—for the memoryless strategy s2 → s3 the sequence of priority generated is (2·0·1)ω,
and the distance between priority 1 and priority 0 is always 2; hence the strategy
is also not winning for objective cobndParity(p).

However, consider the following strategy τ : the strategy initially chooses s2 →
s3 and after the play visits s0, then the strategy switches and chooses s2 → s2

forever. Hence the sequence of priority generated is 2 · 0 · 1 · 2ω, i.e., there is no
priority 0 state after the priority 1 is visited. Hence the strategy is winning for the
objective cobndParity(p). Thus in general winning strategies for cobndParity(p)
require memory.

Algorithm for bounded parity objectives. The algorithm for bounded parity
objectives is obtained as follows: the algorithm takes as input a game graph G and
priority function p and proceeds iteratively. We denote by Gi the game graph in
iteration i. In iteration i, the algorithm computes the set WGi

2 (coweakParity(p)),
identifies its player 2 attractor as a subset of the winning set W2 for player 2,
removes this set from the game graph, and proceeds to the next iteration. The
correctness of this step follows from part 1 of Lemma 1. In every iteration at least
one state is removed from the game graph and thus the algorithm proceeds for at
most |S| steps. Let the algorithm terminate after i iterations, then for the sub-

game graph Gi we have WGi

2 (coweakParity(p)) = ∅. Then by Theorem 2 we obtain

that all states s ∈ Gi satisfy that s ∈ WGi

1 (weakParity(p)), and then by part 2

of Lemma 1 it follows that all states s in Gi satisfy that s ∈ WGi

1 (bndParity(p)).
Since Gi is a closed set for player 2, by Proposition 1 we obtain that all states s in
Gi satisfy that s ∈ WG

1 (bndParity(p)). This proves correctness of the algorithm.
The algorithm runs for at most |S| iterations and by Theorem 2 each iteration can
be computed in O(|E|) time. This gives us the following theorem summarizing the
results on games with bounded parity objectives.

Theorem 3 (Bounded parity games). For all game graphs G =
((S, E), (S1, S2)) and all priority functions p the following assertions hold.

(1) (Determinacy). We have W1(bndParity(p)) = S \ W2(cobndParity(p)).

(2) (Strategy complexity). There exists a memoryless winning strategy σ for
player 1 for the objective bndParity(p) such that for all s ∈ W1(bndParity(p))

Algorithm 1 BoundedParity

Input: a game graph G and a priority function p.
Output: the sets W1 = W1(bndParity(p)) and W2 = W2(cobndParity(p)).

1. W1 = ∅; W2 = ∅; G0 = G; i = 0;
2. repeat

2.1 W2 := W2 ∪Attr2(W
Gi

2 (coweakParity(p)), Gi);
2.2 Gi+1 := Gi ↾ (S \ W2);
2.3 i := i + 1;

until WGi

2 (coweakParity(p)) = ∅;
3. return (S \ W2, W2).

and for all strategies τ for player 2 we have π(s, σ, τ) ∈ bndParity(p) ∩
Safe(W1(bndParity(p))). There exists a finite-memory winning strategy τ for
player 2 for the objective cobndParity(p), with |τ | = 2. In general no memory-
less winning strategy exists for player 2 for the objective cobndParity(p).

(3) (Time complexity). Algorithm 1 computes the sets W1(bndParity(p)) and
W2(cobndParity(p)) in O(n · m) time, where n = |S| and m = |E|.

4.3 Solving games with finitary parity objectives

In this section we will show how the solution of games with bounded parity objec-
tives can be iteratively used to solve games with finitary parity objectives. We state
a key lemma that would directly lead to an algorithm (Algorithm 2) for finitary
parity objectives.

Lemma 2. For all game graphs G = ((S, E), (S1, S2)) and all priority functions
p the following assertions hold.

(1) We have Attr1(W1(bndParity(p)), G) ⊆ W1(finParity(p)), i.e., the attractor
to the winning set with objective bndParity(p) is a subset of the winning set
with the finitary parity objective finParity(p). There is a memoryless winning
strategy σ for player 1 from the set Attr1(W1(bndParity(p)), G) for the objective
finParity(p).

(2) If S = W2(cobndParity(p)), then S = W2(cofinParity(p)) and an infinite mem-
ory winning strategy τ exists for player 2 for the objective cofinParity(p) such
that τ is finite-memory counting with count(|τ |) = 2.

Proof. We prove both the cases below.

(1) We have bndParity(p) ⊆ finParity(p), and since the finitary parity objective
requires the distance sequence to be ultimately bounded (i.e., bounded in the
limit), it follows that the objective finParity(p) is independent of all finite
prefixes of plays. Hence we have

{w · π ∈ Π | w ∈ S∗, π ∈ bndParity(p)} ⊆ finParity(p).

It follows that Attr1(W1(bndParity(p)), G) ⊆ W1(finParity(p)). A winning
strategy σ is defined as follows:

—a memoryless attractor strategy to reach W1(bndParity(p)); and
—a memoryless winning strategy for objective bndParity(p) in

W1(bndParity(p)) (such a memoryless strategy exists by Theorem 3).
Also observe that the memoryless winning strategy in W1(bndParity(p))
ensures that the set W1(bndParity(p)) is never left (i.e., it ensures
Safe(W1(bndParity(p)))) and thus is independent of the memoryless attractor
strategy defined for the set Attr1(W1(bndParity(p)), G) \ W1(bndParity(p)).
Hence σ is a memoryless winning strategy for player 1 for the objective
finParity(p) for the set Attr1(W1(bndParity(p)), G).

(2) If S = W2(cobndParity(p)), then we produce a desired winning strategy for
player 2 for the objective cofinParity(p). Since S = W2(cobndParity(p)), there
exists a finite-memory winning strategy τ for the objective cobndParity(p) from
S such that
—|τ | = 2;
—for all strategies σ and for all s ∈ S there exists k ≤ |S| such that for the

play π(s, σ, τ) = 〈s0, s1, s2, . . .〉 we have (a) p(sk) is odd and (b) for all j ≥ k

if p(sj) is even, then p(sj) > p(sk).
The existence of such a strategy τ follows from Lemma 1. The winning strategy
τ∗ is obtained from τ as follows:
Step 1. Set a counter c to 1.
Step 2. Play the strategy τ for n + c steps.
Step 3. Increment c.
Step 4. Reset the memory for τ and goto to step 2.
The strategy τ∗ goes through the loop (step 2—step 4) infinitely many times.
For all states s ∈ S and for all strategies σ for player 1, the strategy τ at
step 2 ensures that given a value c of the counter, there is a position k such
that priority of p(sk) is odd and for all k ≤ k′ ≤ k + c, if p(sk′) is even, then
p(sk′) > p(sk), i.e., distk′(π(s, σ, τ), p) ≥ c. Let us denote by cj the value of
the counter c at the j-th iteration of the loop. The strategy τ∗ ensures that for
all states s ∈ S, all strategies σ ∈ Σ and all j ≥ 0, there exists a k such that
distk(π(s, σ, τ∗), p) ≥ cj . Since limj→∞ cj = ∞, it follows that for all states
s ∈ S and all strategies σ ∈ Σ we have lim supk→∞ distk(π(s, σ, τ∗), p) = ∞,
i.e., π(s, σ, τ∗) ∈ cofinParity(p).

The desired result follows.

Algorithm for finitary parity objectives. The algorithm for finitary parity
objectives is obtained as follows: the algorithm takes as input a game graph G

and priority function p and proceeds iteratively. We denote by Gi the game graph
in iteration i. In iteration i, the algorithm computes the set WGi

1 (bndParity(p)),
identifies its player 1 attractor as a subset of the winning set W1 for player 1,
removes this set from the game graph, and proceeds to the next iteration. The
correctness of this step follows from part 1 of Lemma 2. In every iteration at least
one state is removed from the game graph and thus the algorithm proceeds for at
most |S| steps. Let the algorithm terminate after i iterations, then for the sub-game

graph Gi we have WGi

1 (bndParity(p)) = ∅. Then by Theorem 3 we obtain that all

states s ∈ Gi satisfy that s ∈ WGi

2 (cobndParity(p)), and then by part 2 of Lemma 2

Algorithm 2 FinitaryParity

Input: a game graph G and a priority function p.
Output: the sets W1 = W1(finParity(p)) and W2 = W2(cofinParity(p)).

1. W1 = ∅; W2 = ∅; G0 = G; i = 0;
2. repeat

2.1 W1 := W1 ∪Attr1(W
Gi

1 (bndParity(p)), Gi);
2.2 Gi+1 := Gi ↾ (S \ W1);
2.3 i := i + 1;

until WGi

1 (bndParity(p)) = ∅;
3. return (W1, S \ W1).

it follows that all states s in Gi satisfy that s ∈ WGi

2 (cofinParity(p)). Since Gi is a
closed set for player 1, by Proposition 1 (exchanging roles of player 1 and player 2)
we obtain that all states s in Gi satisfy that s ∈ WG

2 (cofinParity(p)). This proves
correctness of the algorithm. The algorithm runs for at most |S| iterations and by
Theorem 3 each iteration can be computed in O(|S| · |E|) time. This gives us the
following theorem summarizing the results on games with finitary parity objectives.

Theorem 4 (Finitary parity games). For all game graphs G =
((S, E), (S1, S2)) and all priority functions p the following assertions hold.

(1) (Determinacy). We have W1(finParity(p)) = S \ W2(cofinParity(p)).

(2) (Strategy complexity). There exists a memoryless winning strategy for player 1
for the objective finParity(p). There exists an infinite memory winning strategy
τ for player 2 for the objective cofinParity(p) such that τ is finite-memory
counting with count(|τ |) = 2. In general no finite-memory winning strategy
exists for player 2 for the objective cofinParity(p).

(3) (Time complexity). Algorithm 2 computes the sets W1(finParity(p)) and
W2(cofinParity(p)) in O(n2 · m) time, where n = |S| and m = |E|.

The existence of memoryless winning strategies for finitary parity objectives also
gives the following refined characterization of the winning set, which shows that
distances can be bounded by the size of the state space.

Corollary 1. For all game graphs with n states, and all priority functions p,
we have

W1(finParity(p)) = {s ∈ S | ∃σ ∈ Σ. ∀τ ∈ Γ. lim sup
k→∞

distk(π(s, σ, τ), p) ≤ ∞}

= {s ∈ S | ∃σ ∈ Σ. ∀τ ∈ Γ. lim sup
k→∞

distk(π(s, σ, τ), p) ≤ n}.

It follows from Theorem 4 that in games with finitary objectives the win-
ning strategies for player 2 for cofinParity(p) objectives require infinite memory.
The following result shows that if player 2 has finite-memory strategy to ensure
cofinParity(p), then the strategy also ensures coParity(p), i.e., whenever player 2
can ensure cofinParity(p) but not coParity(p), then infinite memory is required.

Proposition 3. For all game graphs G = ((S, E), (S1, S2)) and all priority
functions p, for a state s ∈ S, if there is a finite-memory strategy τ for player 2
such that against all player-1 strategies σ we have π(s, σ, τ) ∈ cofinParity(p), then
for all player-1 strategies σ we have π(s, σ, τ) ∈ coParity(p).

Proof. We first consider the case when there is a memoryless strategy τ such
that against all player 1 strategies σ we have π(s, σ, τ) ∈ cofinParity(p)). Then if
the strategy τ is fixed, then in the resulting graph Gτ , for all cycles C reachable from
s we must have min(p(C)) is odd. Otherwise, if there is a cycle C reachable from s

in Gτ such that min(p(C)) is even, then the strategy for player 1 to reach C from s

and then form an infinite path Cω forms a path π such that π ∈ finParity(p). This
would contradict that τ ensures cofinParity(p) against all player 1 strategies. Since
for all cycles C reachable from s in Gτ we have min(p(C)) is odd, it follows that for
all player 1 strategies σ we have π(s, σ, τ) ∈ coParity(p). Thus the result follows if
the witness strategy τ is memoryless. If the witness strategy τ is a finite-memory
strategy with memory M , then the above argument repeated in usual synchronous
product G × M of the game graph and the memory proves the desired result.

5. FINITARY STREETT GAMES: DETERMINACY AND COMPLEXITY

In this section we will study the complexity of finitary Streett games. We will first
consider bounded Streett games and similar to the case of finitary parity games we
will iteratively use the solution of bounded Streett games to solve finitary Streett
games.

5.1 Solving games with bounded Streett objectives

The solution of bounded Streett objectives to the solution of finitary Streett ob-
jectives will play the same role as the solution of bounded parity objectives to
the solution of finitary parity objectives. However, solving weak Streett games
iteratively to obtain solution of bounded Streett objectives is not known (unlike
the case of weak parity and bounded parity objectives). In [22] the authors studied
games with request-response specifications, and the solution for games with request-
response specifications yields a solution for games with bounded Streett objectives.
The result of [22] presented a solution for request-response games based on a reduc-
tion to games with Büchi objectives. The reduction incurs a blow-up by a factor
of d · 2d for a set of d Streett pairs. We now summarize the result on games with
bounded Streett objectives obtained from the results of [22] on request-response
games.

Theorem 5 (Bounded Streett games [22]). Given a game graph G =
((S, E), (S1, S2)) and a set P = {(E1, F1), . . . , (Ed, Fd)} of d Streett pairs, the fol-
lowing assertions hold.

(1) (Determinacy). We have W1(bndStreett(P)) = S \ W2(cobndStreett(P)).

(2) (Strategy complexity). There exists a finite-memory winning strategy σ for
player 1 for the objective bndStreett(P) such that the following conditions hold:
(a) |σ| = d · 2d;
(b) for all s ∈ W1(bndStreett(P)), for all strategies τ and for all k ≥ 0, we

have distk(π(s, σ, τ), P) ≤ |S| · d · 2d.

In general winning strategies for player 1 for the objective bndStreett(P) re-

quires ⌊d
3⌋ · 2

⌊ d

3
⌋ memory. There exists a finite-memory winning strategy τ for

player 2 for the objective cobndStreett(P) such that |τ | = d · 2d.

(3) (Time complexity). The sets W1(bndStreett(P)) and W2(cobndStreett(P))
can be computed in O(n · m · 4d · d2), where n = |S| and m = |E|.

5.2 Solving games with finitary Streett objectives

We now show that the solution of games with bounded Streett objectives can be
used iteratively to solve games with finitary Streett objectives. We now prove
the following lemma that would directly lead to an algorithm for finitary Streett
objectives. The role of Lemma 3 to obtain Algorithm 3 for finitary Streett games
is same as the role of Lemma 2 to obtain Algorithm 2 for finitary parity games.

Lemma 3. Given a game graphs G = ((S, E), (S1, S2)) and a set P =
{(E1, F1), . . . , (Ed, Fd)} of d Streett pairs, the following assertions hold.

(1) We have Attr1(W1(bndStreett(P)), G) ⊆ W1(finStreett(P)), i.e., the attractor
to the winning set with objective bndStreett(P) is a subset of the winning set
with the finitary Streett objective finStreett(P). There is a finite-memory win-
ning strategy σ for player 1 from the set Attr1(W1(bndStreett(P), G) for the
objective finStreett(P) such that |σ| = d · 2d.

(2) If S = W2(cobndStreett(P)), then S = W2(cofinStreett(P)) and an infinite-
memory winning strategy τ exists for player 2 for the objective cofinStreett(P)
such that τ is finite-memory counting with count(|τ |) = d · 2d.

Proof. We prove both the cases below.

(1) We have bndStreett(P) ⊆ finStreett(P), and since the finitary Streett objective
requires the distance sequence to be ultimately bounded (i.e., bounded in the
limit), it follows that the objective finStreett(P) is independent of all finite
prefixes of plays. Hence we have

{w · π ∈ Π | w ∈ S∗, π ∈ bndStreett(P)} ⊆ finStreett(P).

It follows that Attr1(W1(bndStreett(P)), G) ⊆ W1(finStreett(P)). A winning
strategy σ is defined as follows:
—a memoryless attractor strategy to reach W1(bndStreett(P)); and
—a finite-memory winning strategy for objective bndStreett(P) in

W1(bndStreett(P)) such that |σ| = d · 2d (such a strategy exists by
Theorem 5).

The winning strategy in W1(bndStreett(P)) ensures that the set
W1(bndStreett(P)) is never left (i.e., it ensures Safe(W1(bndParity(p))))
and thus is independent of the memoryless attractor strategy defined for
the set Attr1(W1(bndStreett(P)), G) \ W1(bndStreett(P)). Hence σ is a
finite-memory winning strategy for player 1 for the objective finStreett(P) for
the set Attr1(W1(bndStreett(P)), G), with |σ| = d · 2d.

(2) If S = W2(cobndStreett(P)), then we produce a desired winning strategy for
player 2 for the objective cofinStreett(P). Since S = W2(cobndParity(p)), there
exists a finite-memory winning strategy τ for the objective cobndParity(P) from

S. The existence of such a strategy τ follows from Theorem 5. The winning
strategy τ∗ is obtained from τ as follows:
Step 1. Set a counter c to 1.
Step 2. Play the strategy τ until there is a sequence such that there is a state
sk ∈ Fj and for all k < k′ ≤ k + c we have sk′ 6∈ Ej , for some 1 ≤ j ≤ d.
Step 3. Increment c.
Step 4. Reset the memory of τ and goto to step 2.
Given a strategy σ for player 1 and a state s ∈ S we first argue that the
strategy τ∗ goes through the loop (step 2—step 4) infinitely often. Consider
the play π(s, σ, τ∗) = 〈s0, s1, s2, . . .〉. Assume towards contradiction that the
play gets stuck in step 2 in iteration i, then let ℓ be the length of the play before
iteration i. Then the strategy σ′ that plays like σ but appending the prefix
〈s0, s1, . . . , sℓ−1〉 ensures that in the play π(sℓ, σ

′, τ) for all Fj states, there is a
Ej state with in i + 1 steps, i.e., π(sℓ, σ

′, τ) ∈ bndStreett(P), this contradicts
that τ is a winning strategy for cobndStreett(P). Hence, the strategy τ∗ goes
through the loop (step 2—step 4) infinitely many times, and then similar to
the proof of Lemma 2 we obtain that lim supk→∞ distk(π(s, σ, τ∗), P) = ∞,
i.e., π(s, σ, τ∗) ∈ cobndStreett(P). Moreover, given a value c for the counter,
the strategy τ (obtained from Theorem 5) can be played for |S| · d · 2d · (c + 1)
steps and the condition for step 2 can be satisfied. Hence a winning strategy
τ∗ exists for objective cobndStreett(P) such that count(|τ∗|) = d · 2d.

The desired result follows.

Example 4 (Lower bound on memory). We now present an example to
show that for finitary Streett objectives with 2d Streett pairs, winning strate-
gies in general require at least 2d memory. We consider a game graph G =
((S, E), (S1, S2)) with a set P of 2d Streett pairs as follows.

(1) State space. S = {sd, ŝd} ∪ {si, s
+
i , s−i , ŝi, ŝ

+
i , ŝ−i | 0 ≤ i ≤ d − 1}.

(2) State space partition. The state space partition into (S1, S2) is as follows:

S1 = {ŝi, ŝ
+
i , ŝ−i | 0 ≤ i ≤ d − 1} ∪ {ŝd};

S2 = {si, s
+
i , s−i | 0 ≤ i ≤ d − 1} ∪ {sd}.

(3) Edges. The set of edges are as follows:

E = {(s0, s0), (sd, ŝ0), (ŝd, s0)}

∪ {(si, s
+
i), (si, s

−
i) | 0 ≤ i ≤ d − 1} ∪ {(s+

i , si+1), (s
−
i , si+1) | 0 ≤ i ≤ d − 1}

∪ {(ŝi, ŝ
+
i), (ŝi, ŝ

−
i) | 0 ≤ i ≤ d − 1} ∪ {(ŝ+

i , ŝi+1), (ŝ
−
i , ŝi+1) | 0 ≤ i ≤ d − 1}.

(4) Streett pairs. The set P , that consists of 2d Streett pairs, is as follows:

P = {(E+
0 , F+

0), (E+
1 , F+

1), . . . , (E+
d−1, F

+
d−1), (E

−
0 , F−

0), (E−
1 , F−

1), . . . , (E−
d−1, F

−
d−1)}.

For 0 ≤ i ≤ d − 1 we have F+
i = {s+

i }, F
−
i = {s−i }; and E+

i = {ŝ+
i }, E

−
i =

{ŝ−i }.

The intuitive description of the game is as follows. For 0 ≤ i ≤ d − 1, at state si

player 2 can choose to go to s+
i or s−i and thus generate a state in either F+

i or

bs
−

d−1

s0

s
−

0

s1

s
−

1

s2

s
−

d−1

sd bs0
bs1

bs
+

0
bs
+

1

bsd

bs
+

d−1

bs2

bs
−

0
bs
−

1

s
+
0

s
+
1

s
+

d−1

Fig. 3. Game graph for lower bound on memory.

F−
i ; at state s0 there is a self-loop to ensure that player 2 also have the choice to

stay in s0. For 0 ≤ i ≤ d − 1 from states s+
i and s−i the next state is si+1, and the

next state of sd is ŝ0. For 0 ≤ i ≤ d − 1, at state ŝi player 1 can choose to go to
ŝ+

i or ŝ−i and thus generate a state in either E+
i or E−

i . For 0 ≤ i ≤ d − 1 from
states ŝ+

i and ŝ−i the next state is ŝi+1, and the next state of ŝd is s0. A pictorial
description of the game is shown in Fig 3.

Winning strategy. We consider the objective finStreett(P) and starting state s0,
and show that a winning strategy σ with |σ| = 2d exists. The strategy σ at state ŝi

chooses ŝα
i , if the last choice at state si is sα

i , for α ∈ {+,−}. In other words, the
strategy matches each choice of F+

j or F−
j of player 2 by a matching choice of E+

j

or E−
j . Thus player 1 can ensure that the distance sequence is bounded by 2d + 2,

and σ is a winning strategy. We now argue that winning strategies require at least
2d memory. A spoiling strategy τ for player 2 against strategies with memory less
than 2d is as follows. The strategy τ is played in rounds. With memory less than
2d player 1 cannot remember all sequences f0, f1, . . . , fd−1, where for 0 ≤ i ≤ d− 1
we have fi ∈ {F+

i , F−
i }. The strategy for player 2 in round j waits in state s0

(by the choice of self-loop) for j-steps, then start generating all 2d possible choices
of sequences f0, f1, . . . , fd−1, where for 0 ≤ i ≤ d − 1 we have fi ∈ {F+

i , F−
i }.

Whenever player 1 fails to match the sequence by a corresponding sequence of E+
i

and E−
i , then player 2 moves to round j + 1. With memory less than 2d player 1

cannot match every sequence, and hence limsup of the distance sequence is ∞, i.e.,
the finitary Streett objective is violated.

Algorithm for finitary Streett games. As we derived from Lemma 2 the algo-
rithm (Algorithm 2) for finitary parity games, from Lemma 3 we obtain Algorithm 3
for finitary Streett games. The correctness follows from Lemma 3 and the argu-
ments similar to correctness of Algorithm 2. We now summarize the results on
finitary Streett games in the following theorem.

Theorem 6 (Finitary Streett games). Given a game graph G =
((S, E), (S1, S2)) and a set P = {(E1, F1), . . . , (Ed, Fd)} of d Streett pairs,
the following assertions hold.

Algorithm 3 FinitaryStreett

Input: a game graph G and a set P = {(E1, F1), (E2, F2), . . . , (Ed, Fd)}
of d Streett pairs.

Output: the sets W1 = W1(finStreett(P)) and W2 = W2(cofinStreett(P)).

1. W1 = ∅; W2 = ∅; G0 = G; i = 0;
2. repeat

2.1 W1 := W1 ∪Attr1(W
Gi

1 (bndStreett(P)), Gi);
2.2 Gi+1 := Gi ↾ (S \ W1);
2.3 i := i + 1;

until WGi

1 (bndStreett(p)) = ∅;
3. return (W1, S \ W1).

(1) (Determinacy). We have W1(finStreett(P)) = S \ W2(cofinStreett(P)).

(2) (Strategy complexity). There exists a finite-memory winning strategy σ for
player 1 for the objective finStreett(P) such that |σ| = d · 2d. In general no
memoryless winning strategy exists for player 1 for the objective finStreett(P).
In general winning strategies for player 1 for the objective finStreett(P) require

2⌊
d

2
⌋ memory. There exists an infinite-memory winning strategy τ for player 2

for the objective cofinStreett(P) such that τ is finite-memory counting with
count(|τ |) = d · 2d. In general no finite-memory winning strategy exists for
player 2 for the objective cofinStreett(P).

(3) (Time complexity). Algorithm 3 computes the sets W1(finStreett(P)) and
W2(cofinStreett(P)) in O(n2 · m · d2 · 4d) time, where n = |S| and m = |E|.

The winning strategy for finitary Streett objectives with d Streett pairs requires
d · 2d memory, this is in contrast to classical Streett objectives that require d!
memory [7; 11], and weak Streett objectives that require 2d memory [18]. The
winning strategy for finitary Streett objectives is obtained by composing winning
strategies for bounded Streett objectives, that ensured that for every occurrence of
a state in Fj , a state in Ej appears with in n · d · 2d steps, where n is the number
of states and d is the number of Streett pairs. This gives us the following refined
characterization of the winning set.

Corollary 2. Given a game graph G = ((S, E), (S1, S2)) and a set P =
{(E1, F1), . . . , (Ed, Fd)} of d Streett pairs,

W1(finStreett(P)) = {s ∈ S | ∃σ ∈ Σ. ∀τ ∈ Γ. lim sup
k→∞

distk(π(s, σ, τ), P) ≤ ∞}

= {s ∈ S | ∃σ ∈ Σ. ∀τ ∈ Γ. lim sup
k→∞

distk(π(s, σ, τ), P) ≤ n · d · 2d};

where n = |S|.

It follows from Theorem 6 that whether a state lies in W1(finStreett(P)) can be
decided in EXPTIME. We now prove a lower bound for the problem.

Lower bound for finitary Streett games. We show that given a game graph
G and finitary Streett objective finStreett(P) the problem of deciding whether

s ∈ W1(finStreett(P)) is NP-hard. We present a reduction of the 3-SAT problem.
Let ϕ = C1 ∧ C2 . . . ∧ Cm be a 3-SAT formula with clauses C1, C2, . . . , Cm over
variables x1, x2, . . . , xn. For a clause Ci and a literal xj we write xj ∈ Ci if xj

appears in Ci, and similarly, we write ¬xj ∈ Ci if ¬xj appears in Ci. We construct
a game graph G = ((S, E), (S1, S2)) with a finitary Streett objective as follows.

(1) State space. The state space S is defined as follows:

S = {c0, c1, c2, . . . , cm, cm+1}

∪ {xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {¬xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {x̂i, x̂
+
i , x̂−

i | 1 ≤ i ≤ n} ∪ {x̂n+1}.

(2) State space partition. S2 = {c0} and S1 = S \ S2.

(3) Edges. The set E of edges is as follows:

E = {(c0, c0), (c0, c1), (cm+1, x̂1), (x̂n+1, c0)}

∪ {(ci, xi,j) | xj ∈ Ci, 1 ≤ i ≤ m} ∪ {(ci,¬xi,j) | ¬xj ∈ Ci, 1 ≤ i ≤ m}

∪ {(xi,j , ci+1) | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {(¬xi,j , ci+1) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {(x̂i, x̂
+
i) | 1 ≤ i ≤ n} ∪ {(x̂i, x̂

−
i) | 1 ≤ i ≤ n}

∪ {(x̂+
i , x̂i+1) | 1 ≤ i ≤ n} ∪ {(x̂−

i , x̂i+1) | 1 ≤ i ≤ n}

The intuitive interpretation of the edges are as follows. At state c0 player 2 can
either stay at c0 or else proceed to c1. For 1 ≤ i ≤ m, the state ci correspond
to the clause Ci and the successor of ci consists of states xi,j (resp. ¬xi,j)
such that xj (resp. ¬xj) appear in Ci (i.e., the choice of literals that makes Ci

true). For 1 ≤ i ≤ m, the successor state of states xi,j and ¬xi,j is the state
ci+1. From state cm+1 the next state is x̂1. For 1 ≤ i ≤ n, at state x̂i there is
a choice between x̂+

i (that will correspond to the choice of literal xi) and x̂−
i

(that will correspond to the choice of literal ¬xi). The next state for states x̂+
i

and x̂−
i is x̂i+1. From the state x̂n+1 the next state is c0.

(4) Streett pairs. The Streett pairs

P = {(E+
1 , F+

1), (E+
2 , F+

2), . . . , (E+
n , F+

n), (E−
1 , F−

1), (E−
2 , F−

2), . . . , (E−
n , F−

n)}

is described as follows:

F+
i = {xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}; F−

i = {¬xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

E+
i = {x̂+

i }; E−
i = {x̂−

i }

We will consider the game graph with c0 as the starting state and the objective
finStreett(P).

Satisfiability implies winning. If ϕ is satisfiable, then consider a satisfiable assign-
ment A, i.e., A assigns truth value true or false to every variable and satisfies every
clause of ϕ. For 1 ≤ i ≤ n, let us denote Choice(i) as follows:

Choice(i) =

{
xi if A(xi) = true;

¬xi if A(xi) = false.

A winning strategy σ for player 1 for finStreett(P) is as follows:

—For 1 ≤ i ≤ m, there exists 1 ≤ j ≤ n, such that Choice(j) ∈ Ci (since A satisfies
clause Ci). For 1 ≤ i ≤ m, and a state ci, pick a j such that Choice(j) ∈ Ci, the
strategy σ chooses the successor xi,j if Choice(j) = xj , else the successor ¬xi,j

is chosen.

—For 1 ≤ i ≤ n, for a state x̂i the strategy σ chooses the successor x̂+
i if Choice(i) =

xi and x̂−
i otherwise.

Since A is a satisfying assignment and a consistent assignment, it follows that
given the strategy σ, states in both F+

i and F−
i cannot be visited, for all 1 ≤ i ≤ n.

Moreover, if F+
i is visited then the choice at x̂i is x̂+

i , and if F−
i is visited then the

choice at x̂i is x̂−
i . It follows that (a) if a state in F+

i is visited, then a state in E+
i

is visited within 2n + 2m + 2 steps; and (b) if a state in F−
i is visited, then a state

in E−
i is visited within 2n + 2m + 2 steps. It follows that c0 ∈ W1(finStreett(P)),

i.e., if ϕ is satisfiable, then s ∈ W1(finStreett(P)).

Not satisfiable implies not winning. Suppose ϕ is not satisfiable, then for any
strategy σ for player 1 there must exist ci and ck such that the choice at ci is
xi,j and the choice at ck is ¬xi,j (this is because if ϕ is not satisfiable, to satisfy
all clauses inconsistent assignments must be chosen). That is both states in F+

j

and F−
j are visited. If the choice at x̂i is x̂+

i , then a state in E−
i is not visited,

and if the choice is x̂−
i , then a state in E+

i is not visited. A winning strategy for
player 2 for cofinStreett(P) is as follows: the strategy is played in rounds, and in
round i, player 2 stays in c0 for i steps, then move to c1 and proceed to round
i + 1. This shows that c0 6∈ W1(finStreett(P)), i.e., if ϕ is not satisfiable, then
c0 6∈ W1(finStreett(P)). This completes the reduction. A similar reduction works
for bounded Streett objectives on game graphs with S2 = ∅ (i.e., graphs where only
player 1 makes choices). The reduction is as above with the following modification:
remove the self-loop from c0, convert c0 to a player 1 state, remove the edge from
x̂n+1 to c0, and instead add a self-loop at x̂n+1. Then for the modified game graph
with S2 = ∅, we have ϕ is satisfiable iff the state c0 is winning for the bounded
Streett objective bndStreett(P). This gives us the following theorem.

Theorem 7 (Computational complexity). The following assertions hold.

(1) Given a game graph G = ((S, E), (S1, S2)), a state s ∈ S and a finitary Streett
objective finStreett(P) the decision problem of whether s ∈ W1(finStreett(P))
is NP-hard and can be decided in EXPTIME.

(2) Given a game graph G = ((S, E), (S1, S2)), a state s ∈ S and a bounded Streett
objective bndStreett(P) the decision problem of whether s ∈ W1(bndStreett(P))
is NP-hard and can be decided in EXPTIME. The decision problem is NP-hard
even for the special case of game graphs with S2 = ∅.

Similar to Proposition 3 we have the following result.

Proposition 4. Given a game graph G = ((S, E), (S1, S2)) and a set P =
{(E1, F1), . . . , (Ed, Fd)} of d Streett pairs, for a state s ∈ S, if there is a finite-
memory strategy τ for player 2 such that against all player-1 strategies σ we have
π(s, σ, τ) ∈ cofinStreett(p), then for all player-1 strategies σ we have π(s, σ, τ) ∈
cofinStreett(p).

We present a polynomial time algorithm for finitary parity objectives, whereas,
no polynomial time algorithm is known for parity objectives. However, in contrast,
solving finitary Streett objectives is not simpler as compared to Streett objectives:
e.g., game graphs with S2 = ∅ and Streett objectives can be solved in polynomial
time, whereas the above theorem shows that the problem is NP-hard for finitary
Streett objectives.

6. CONCLUSION

We studied games with finitary parity and Streett objectives: we proved determi-
nacy, presented algorithms to solve these games, and characterized the memory
requirements of winning strategies for both players. The algorithm for finitary par-
ity games has a polynomial time complexity. For finitary Streett games, we give
an EXPTIME algorithm and show that the problem of deciding whether a state is
winning for player 1 is NP-hard. The exact complexity of finitary Streett games
remains open. A polynomial-time reduction of finitary Streett objectives to weak
Streett objectives also remains open; such a reduction would imply that finitary
Streett games can be solved in PSPACE. The algorithm we presented for fini-
tary Streett games is a polynomial-time reduction of finitary Streett objectives to
bounded Streett objectives; thus an NP (resp. PSPACE) upper bound for bounded
Streett objectives would imply an NP (resp. PSPACE) upper bound for finitary
Streett objectives.

Acknowledgments. We thank anonymous reviewers for useful comments.

REFERENCES

B. Alpern and F.B. Schneider. Defining liveness. Information Processing Letters, 21:181–185,
1985.

R. Alur and T.A. Henzinger. Finitary fairness. In Proc. Logic in Computer Science, pages

52–61. IEEE Computer Society, 1994.

R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM, 49:672–
713, 2002.

K. Chatterjee. Linear Time Algorithm for Weak Parity Games Technical Report No.
UCB/EECS-2006-153. University of California at Berkeley, 2006.

K. Chatterjee and T.A. Henzinger. Finitary winning in ω-regular games. In Proc. of Tools

and Algorithms for the Construction and Analysis of Systems, pages 257–271, LNCS 3920,
Springer, 2006.

N. Dershowitz, D.N. Jayasimha, and S. Park. Bounded fairness. In Verification: Theory and

Practice, pages 304–317. LNCS 2772, Springer, 2003.

S. Dziembowski, M. Jurdziński and I. Walukiewicz. How much memory is needed to win infinite
games ? In Proc. Logic In Computer Science, pages 99–110, IEEE Computer Society, 1997.

E.A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In Proc.

Foundations of Computer Science, pages 328–337. IEEE Computer Society, 1988.

E.A. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In Proc. Foundations

of Computer Science, pages 368–377. IEEE Computer Society, 1991.

Y. Gurevich and L. Harrington. Trees, automata, and games. In Proc. Symp. Theory of

Computing, pages 60–65. ACM, 1982.

F. Horn. Streett games on finite graphs. Workshop on Games in Design and Verification, 2005.

F. Horn. Faster algorithms for finitary games. In Proc. of Tools and Algorithms for the

Construction and Analysis of Systems, LNCS 4424, Springer, 2007.

M. Jurdzinski. Small progress measures for solving parity games. In Symp. Theoretical Aspects

of Computer Science, pages 290–301. LNCS 1770, Springer, 2000.

M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for solving

parity games. In Proc. of ACM-SIAM Symposium on Discrete Algorithms, pages 117–123,
ACM/SIAM, 2006.

C. Löding and W. Thomas. Alternating automata and logics over infinite words. In Proc.

IFIP International Conference on Theoretical Computer Science, pages 521–535, LNCS 1872,
Springer, 2000.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifica-

tion. Springer, 1992.

D.A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.

J. Neumann, A. Szepietowski and I. Walukiewicz. Complexity of weak acceptance conditions
in tree automata. In Information Processing Letters, volume 84, p181–187, Elsevier, 2002.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. Principles of

Programming Languages, pages 179–190. ACM, 1989.

P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event processes.
SIAM J. Control and Optimization, 25:206–230, 1987.

W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages, volume 3,
pages 389–455. Springer, 1997.

N. Wallmeier, P. Hutten and W. Thomas. Symbolic synthesis of finite-state controllers for
request-response specifications. In Proc. Conference on Implementation and Application of

Automata, pages 11–22, LNCS 2759, Springer, 2003

Received April 2007; Accepted July 2008

