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In this paper, we use the methods of [BC01℄ in order to de�ne gamearenas admitting plays of ordinal length. We show that these reahabilitygames of ordinal length are determined, through a redution to Mullergames. We also show that, for several natural ways of representing thetransitions, the problem is PSPACE-omplete.Overview of the paper In Setion 2, we reall the de�nitions of au-tomata on words of ordinal length and games of in�nite duration, andwe introdue our model of games of ordinal length. Setion 3 shows thedeterminay of these games on �nite arenas, and Setion 4 onsiders theomplexity issues. Finally, Setion 5 summarises our results, and presentsseveral interesting perspetives for future work about these games.2 De�nitions2.1 Ordinals and automata on words of ordinal lengthWe onsider ordinals, i.e. totally ordered sets where any non-empty subsethas a least element. In partiular, every �nite ordered set is an ordinal, asis the set of natural numbers with the usual ordering (usually alled ω).One extends the usual operators + and · to ordinals: I + J is de�nedby I ⊎ J ordered in a way suh that i < j if i ∈ I and j ∈ J ; I · J is theset I × J ordered lexiographially.A ut of an ordinal J is a partition (K,L) of J suh that ∀k ∈ K, l ∈
L, k < l. The set of uts of J is an ordinal, denoted by Ĵ . For an element
j of J , we de�ne the uts j− by ({i ∈ J | i < j}, {i ∈ J | i ≥ j}) and j+by ({i ∈ J | i ≤ j}, {i ∈ J | i > j}).Example 1. ω2 + 3 is obtained by adding 3 elements to ω2, whih aregreater than all others. We represent it below, with bullets for the elementsand vertial lines for the uts:
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Σ. Let ρ be suh a word, and j an element of J . The pre�x of ρ of length
j denoted by ρ<j is de�ned as (ρi)i<j . The limit of ρ, denoted lim ρ, is theset: {a ∈ Σ | ∀j ∈ J, ∃i > j, ρi = a}.Bruyère and Carton de�ne in [BC01℄ an automaton A on these wordsas a tuple (Q,Σ, E ,T ,I,F). Q is a �nite set of states, Σ is a �nite al-phabet, E and T are respetively the suessor and limit transition re-lations, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of2



�nal states. The suessor transitions of E are usual transitions, of theform p
a
−→ q ∈ Q × Σ × Q. The limit transitions of T are of the form

P
lim
−−→ q ∈ P(Q) ×Q.A run of A on a word x = (xj)j∈J is a word ρ of length Ĵ on Q,verifying the following onditions:� if c is the initial ut, ρc ∈ I;� if j ∈ J , ρj−

xj
−→ ρj+ ∈ E ;� if c has no predeessor, lim ρ<c

lim
−−→ ρc ∈ T ;� if c is the �nal ut, ρc ∈ F .Example 2. Figure 1 shows a simple automaton over the alphabet {a, b}.

{0} → 1

{2} → 0

{0, 1, 2} → 3
0 1 2 3a b a

aFig. 1. Automaton reognising (aωb⋆aω)ωFrom the results of Choueka in [Cho78℄, one an derive Theorem 3:Theorem 3. In an automaton with n states where the transitions are ofthe form P
lim
−−→ q /∈ P , there are no runs of length greater than ωn.2.2 In�nite gamesWe reall here the usual onepts related to in�nite duration games. Suha game G is played by two players alled Eve and Adam on an arena ofthe form (Q,E), whih is a direted graph partitioned between Adam'sverties (QA, represented by 2) and Eve's verties (QE , represented by

#). The winning ondition W ⊆ Qω desribes the plays won by Eve. Werefer the reader to [Tho95℄ for more details on in�nite games.A play of G is a (�nite or in�nite) path in the arena. We assume thatevery state has at least one suessor, so any �nite play an be prolongedinto an in�nite one. Prolonging a �nite play by one vertex is alled a movein the game. During the play, when the last vertex of the urrent pre�xis in QE, Eve hooses the next move, otherwise Adam does. Eve wins theplay if and only if it is in W.A strategy for Eve is a funtion σ : Q∗QE → Q suh that for every �nitepre�x w ending in a state q ∈ QE , (q, σ(w)) ∈ E. A play ρ = ρ0ρ1ρ2 . . .3



is onsistent with a strategy σ (for Eve) if for every n suh that ρn ∈
QE, ρn+1 = σ(ρ0ρ1 . . . ρn). A strategy σ is winning for Eve if every playonsistent with σ is won by Eve. Strategies and winning strategies forAdam are de�ned likewise. A strategy with memory M for Eve is de�nedby a transduer (M,ν, µ) and an initial memory state Ω0 ∈ M . The twofuntions ν : M ×Q → Q and µ : M ×Q →M respetively give the nextmove when the token is in QE, and update the memory.We use Muller games in our proofs. In these games, the winning on-dition is de�ned by a subset M of P(Q). Eve wins if the set of statesourring in�nitely often during the play belongs to M. For a play ρ, thisset is denoted by Inf(ρ) (Occ(ρ) denotes the set of states ourring in ρ).When onsidering omplexity issues, the representation of the winningondition is important, as it diretly in�uenes the input size. The moststraightforward is to list the elements of M � the expliit representation.Other possibilities inlude olouring, Zielonka trees and DAGs, win-setonditions, and Emerson-Lei onditions. We will only de�ne Emerson-Leionditions here, and refer to [Zie98℄ and [HD05℄ for more details.Emerson-Lei games were introdued in [EL85℄ and are equivalent, interms of expressive power, to the usual Muller games. The winning on-dition is de�ned by a Boolean formula ϕ using elements of Q as variables.The play ρ is winning for Eve if the truth assignment mapping every stateof Inf(ρ) to true and every other state to false satis�es ϕ.2.3 Games of ordinal lengthAs done in [BC01℄ for �nite automata, we extend the lassial modelof in�nite games to arenas admitting paths of ordinal length by addinglimit transitions. A reahability game of ordinal length is de�ned as atuple (Q,QE , QA, E , t,⊚,⊗). The speial states ⊚ and ⊗ are the onlytwo states without suessors. The funtion t maps P(Q) to Q ∪ {⊚,⊗}in a way suh that t(P ) /∈ P . A play is a word ρ of ordinal length on
Q ∪ {⊚,⊗}. Every play that does not end in {⊚,⊗} an be prolongedthrough a move or a limit transition, and by Theorem 3, there are noplays of length greater or equal to ωω. Eve wins if the play ends in ⊚,while Adam wins when the token reahes ⊗. For tehnial reasons, wesuppose without loss of generality that our arenas are semi-alternating,i.e. that the suessors of a state of Adam belong to Eve1. The notionof strategy is extended naturally, by onsidering ordinal pre�xes ratherthan �nite ones. Strategies with memory are extended likewise, with a1 This allows us to only de�ne t (and later o) on sets ontaining a state of Eve.4



memory transduer on ordinals. Notie that restriting plays to lengthssmaller than ωω makes sense in the veri�ation problem: in�nite sequenesrepresent events of very di�erent durations, and an in�nite hierarhy ofin�nitesimality seems far-fethed.
α : {a}

lim
−−→ c

β : {a, b}
lim
−−→ d

γ : {a, b, c}
lim
−−→ ⊗

δ : {a, b, d}
lim
−−→ ⊗

θ : {a, b, c, d}
lim
−−→ ⊚

a

b
c d

Fig. 2. Game of ordinal length
3 Solving ordinal reahability gamesIn this setion, we onsider the problem of deiding the winner in anordinal reahability game. Our result is formalised as Theorem 4, and thissetion will mainly be devoted to its proof.Theorem 4. Two player reahability games of ordinal length are deter-mined on �nite arenas.We prove this theorem through a redution from an ordinal reah-ability game G to a Muller game G. This onstrution is desribed inSetion 3.1. Setion 3.2 gives the main steps of the proof of Lemmas 5and 6 by strategy translation.Lemma 5. If Eve wins in G from q ∈ Q, she also wins in G from q.Lemma 6. If Adam wins in G from q ∈ Q, he also wins in G from q.5



From these two Lemmas and Theorem 7, we derive Theorem 4.Theorem 7 ([Mar75℄). Muller games are determined.3.1 Redution to Muller GamesWe desribe here a redution from a reahability game of ordinal length Gto a Muller game G. The idea is to ompel the players to simulate the limittransitions, in suh a way that an unooperative player will lose the play.In this regard, our approah is similar to the one by Chatterjee, de Alfaro,Jurdzinski and Henzinger in [CJH03℄ and [CdAH05℄, where they use parityonditions in order to simulate randomness for qualitative winning regions.In both approahes, there is an identity between the winning regions ofthe original game and the redued one, but not between the atual plays.The fundamental idea of this redution is that a word of length lessthan ωω an be desribed by a �nite word with �shortuts� in lieu of limittransitions. These shortuts have to be taken in two steps, guaranteeingthat both players agree to take it. The �widget� we use is desribed inFigure 3: for eah set of states P ontaining a state of Eve2, we distinguishone state o(P ) in P ∩QE . In addition to its original suessors, this statenow leads to a new state χ(P ), whih belongs to Adam. There, he aneither aept the transition, and proeed to t(P ), or refuse it, and go toanother lone of o(P ), alled ξ(o(P )). This lone only leads to the originalsuessors of o(P ) inG, not to χ(P ). The de�nition of the Muller onditionguarantees that no one an blok the play without losing. It ontains allthe sets of the form P ∪ {χ(P )}, so if Adam repeatedly delines to takea legitimate proposition, he will lose. Formally, the redued game G from
G = (Q,QE , QA, E ,T ,⊚,⊗) is de�ned by:

QE = QE ∪ {ξ(q) | q ∈ QE}

QA = QA ∪ {χ(P ) | P ∈ P(Q)}

E = E

∪{(o(P ), χ(P )) | P ∈ P(Q)}

∪{(χ(P ), t(P )) | P ∈ P(Q)}

∪{(χ(P ), ξ(o(P ))) | P ∈ P(Q)}

∪{(ξ(p), q) | (p, q) ∈ E}

∪{(⊚,⊚), (⊗,⊗)}

M = {P ∪ H | P ⊆ Q,H ∩Q = ∅, χ(P ) ∈ H}2 See Footnote 1 on page 4. 6
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{{a, b, β}} ⊆ MFig. 3. Widget for {a, b} lim
−−→ d

3.2 Strategy translation: from Muller to Ordinal ReahabilityLemmas 5 and 6 are proved through a similar notion of strategy trans-lation: from a winning strategy3 in the redued Muller game G we anderive a winning strategy in the ordinal game G. The memory states ofthis new strategy are plays of the Muller game that are onsistent withthe original strategy.The memory will evolve during the ourse of a play in G, movingalong the tree of all plays onsistent with the strategy. Suessor transi-tions extend the urrent play, lengthening the memory. Limit transitionswill branh to another pre�x in the tree, under suitable assumptions. Anexemple of this whole proess (for both players) is given in Figure 4.Suessor transitions The suessor transitions always lengthen thememory, and guarantee that it remains onsistent with the original strat-egy. The basi idea is to opy the urrent move in the memory. However,we have to be autious with the states of Eve: she must have the pos-sibility to hoose, either as proponent or opponent, to go to a state ofthe Muller game that does not belong to the original game. This ase istreated di�erently depending whether we onsider a strategy for Eve orfor Adam.3 It is not possible to translate a losing strategy with our tehnique, not even to alosing one. 7
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ν a a(b) For AdamFig. 4. Strategy translation from G to GEve: For a strategy σ of Eve, the problem arises when, in a state q ∈ Qwith memory Ω ∈ Q∗, σ(Ω · q) does not belong to Q, but is a new state
χ(P ). To deal with this ase, we add three moves to the memory insteadof one: µ(q,Ω) = Ω · q · χ(P ) · ξ(q). This is still a �nite play onsistentwith σ, so Eve an now send the token to the loation σ(Ω ·q ·χ(P ) ·ξ(q)),whih is a suessor of q in G by de�nition of ξ(q).Adam: In Adam's ase, the problem is not what the strategy an do �Adam's options in the states of Q are the same in G and in G � but howto interpret what Eve does. Supposing that she always keeps to states of Qis not orret, sine almost any strategy wins against suh behaviors. Wewill thus onsider that Eve always hooses to propose transitions whenAdam refuses them: if the token is in state q ∈ QE and Eve sends thetoken to q′, we �rst look for a set P suh that:8



� o(P ) = q (Eve an propose the transition)� τ(Ω · q · χ(P )) = ξ(P ) (Adam's strategy τ would refuse it)If we do not �nd one, the memory is simply updated to Ω · q. Otherwise,we denote by P the one suh that χ(P ) did not our in Ω for the longesttime, and update the memory to Ω ·q ·χ(P ) ·ξ(P ). Here also, the resultingmemory is still onsistent with τ .Limit transitions When the play goes through a limit transition, theidea is to go bak to a suitable shortut in the past of the memory. Toexplain how we do it, we �rst �x some notations: we onsider a play ρonsistent with our new strategy, and a transition P
lim
−−→ q ouring atposition j � i.e. lim ρ<j = P and ρj = q. Furthermore, we denote by

(Ωi)i<j the (trans�nite) sequene of memory states ouring in the ourseof ρ<j.One �rst problem is that there is no last memory state before j fromwhih to work. Propositions 8 and 9 ompensate for this:Proposition 8. The sequene (Ωi)i<j has a limit, denoted by Ω<j , whihis an in�nite play in G onsistent with the original winning strategy.Proposition 9. lim ρ<j = Inf(Ω<j)With these two propositions, we an now update the memory. We haveto be areful when hoosing where to branh, in order to ensure that thememory still grows with respet to a possible higher order transition. Itis done by keeping one opy of the limit set in the resulting memory: Wedivide Ω<j in three fators v, w, and ψ:� v ontains all ourrenes of states in Q \ Inf(Ω<j);� w ontains an ourrene of eah state in Inf(Ω<j)∩Q. Furthermore,it must end at a suitable branhing point: for Eve, it means endingwith an ourene of χ(P ); for Adam, it must end with an oureneof o(P ), and be suh that τ(v · w · χ(P )) = t(P );� ψ ontains the remainder of Ω<j .The fator v · w remains as a pre�x of the new memory. Instead of
ψ, there is now an aepted shortut: v · w · t(P ) or v · w · χ(P ) · t(P ),depending on whether we are building a strategy for Eve or for Adam.This proess is desribed in Figure 4.One the soundness of our onstrution is aepted, it is not di�ultto show that it produes winning strategies: a full play always ends in ⊚9



or in ⊗, and the urrent state is systematially added to the memory. Asthis memory an only ontain plays onsistent with the original strategy,the �bad� state (⊗ if we build a strategy for Eve, ⊚ if it is for Adam)annot our in the memory. Thus, the �nal state of a play onsistentwith our new strategy is neessarily the �good� one. This ompletes theproof of Lemmas 5 and 6.4 ComplexityWe now onsider the omplexity of solving ordinal reahability games.As in Muller games, we need to speify preisely how the transitions arerepresented. In the ase where transitions are represented as relevant sets,olour sets, a Zielonka DAG or Boolean formulae, we get Theorem 10.Theorem 10. Deiding the winner in a reahability game of ordinal lengthwhose limit transitions are represented as relevant sets, olour sets, aZielonka DAG or Boolean formulae is PSPACE-omplete.We will prove the membership part in Setion 4.1, and the hardnesspart in Setion 4.2. The omplexity in the ase of transitions representedexpliitly, or as Zielonka Trees is left open.4.1 Redution to Emerson-Lei gamesLemma 11. Deiding the winner in a reahability game of ordinal lengthwhose transitions are represented as Boolean formulae is PSPACE.Proposition 12. The redued game G is equivalent to an Emerson-Leigame L of size polynomial in the size of G, if the transitions of G arerepresented as Boolean formulae.Proof. In order to get a polynomial redution, we need to avoid the ex-ponential blow-up that ours when we add a state χ(P ) for eah set ofstates P . It an be done, by notiing that if two sets P and P ′ are suhthat o(P ) = o(P ′) and t(P ) = t(P ′), χ(P ) and χ(P ′) have exatly thesame neighbours in G. In the de�nition of L, we an thus replae themboth by a single state κ(o(P ), t(P )). This limits the number of new statesto |Q|2 + |Q|.The winning ondition of L an now be desribed in Emerson-Leiformalism:
ϕ = ⊚ ∨

∨

q∈Q∪{⊚,⊗}

(

ϕq ∧
∨

p∈Q

κ(p, q)
)10



The size of formula ϕ is O(
∑

q∈Q∪{⊚,⊗}(|ϕq|+n)), whih is polynomial inthe size of G. This modi�ed redution is still fair. ⊓⊔The last step of the proof is Theorem 13:Theorem 13 ([HD05℄). Deiding the winner in an Emerson-Lei gameis PSPACE-omplete.Lemma 11 follows diretly from Property 12 and Theorem 13. Corol-lary 14 follows from the results of [HD05℄ about suintness.Corollary 14. Deiding the winner in a reahability game of ordinal lengthwhose limit transitions are represented as relevant sets, olour sets, or aZielonka DAG is PSPACE.4.2 Hardness resultsThe hardness result also derives from Theorem 13. Indeed, any lassialMuller game (Q,QE ,QA,E,M) an be represented as the ordinal reah-ability game (Q,QE ,QA,E, t,⊚,⊗), with t(P ) = ⊚ for all P ∈ M and
t(P ) = ⊗ for all P /∈ M. The strategies and plays will be the same in bothgames. The only di�erene is that after ω moves in the reahability game,the token will take a limit transition to ⊚ or ⊗, depending on whetherthe in�nite play is winning for Eve or Adam in the Muller game. Thisredution an be done for any representation of the Muller ondition.Lemma 15. In a reahability game of ordinal length whose limit tran-sitions are represented as relevant sets, olour sets, a Zielonka DAG orBoolean formulae, deiding the winner is PSPACE-hard.5 ConlusionWe have extended the lassial model of in�nite games to games of ordinallength. These games, that generalise all regular games, are determined,and the winner is deidable through a redution to Muller games. If thelimit transitions are represented as relevant sets, olour sets, a ZielonkaDAG or Boolean formulae, the problem is PSPACE-omplete.We intend now to use this formalism in the ontext of timed games, fol-lowing for example the work of [JT07℄. Another perspetive onerns theminimal quantity of memory that is neessary to de�ne winning strategiesin ordinal games. Finally, we would like to onsider less general games,where the transitions an be represented in a more ompat way � espe-ially parity � and study the e�ets on omplexity and memory.11
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