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Abstract. Games are a classical model in the synthesis of controllers
in the open setting. In particular, games of infinite length can represent
systems which are not expected to reach a correct state, but rather to
handle a continuous stream of events. Yet, even longer sequences of events
have to be considered when infinite sequences of events can occur in finite
time Zeno behaviours.

In this paper, we extend two-player games to this setting by considering
plays of ordinal length. Our two main results are determinacy of reach-
ability games of length less than w® on finite arenas, and the PSPACE-
completeness of deciding the winner in such a game.

1 Introduction

Games are a classical model for the synthesis of controllers in open set-
tings, with numerous applications. Although finite games seems more
natural, there has been a huge interest for games of infinite duration
|[GTWO02|. They have strong connections with logic (e.g. parity games
and p-calculus [EJ91]), and provide useful models in economy. In verifi-
cation, they are used to represent reactive systems which must handle a
continuous stream of events [Tho95|. However, some behaviours cannot be
described by this model, when infinite sequences of events happen in finite
time. Such behaviours Zeno behaviours especially need to be con-
sidered in timed systems, when successive events can be arbitrarily close.
The classical discrete-time framework used by Alur and Dill in their sem-
inal paper [AD94| prevents such behaviours, while several papers about
real-time models limit their results to non-Zeno runs [AM99| or force the
players to ensure that they can not happen [dAFHT03|. Since Biichi in
the 1960’s, several extensions of automata to words of ordinal length have
been proposed [BC01,BE02]. Demri and Nowak propose in [DN05| an ex-
tension of LTL to ordinals of length w™. They also formalise a problem
of open specification, where only the environment has the opportunity to
play more than w moves, and which was solved in [Cac06].

* This paper was supported in part by the French ANR DOTS.



In this paper, we use the methods of [BCO1] in order to define game

arenas admitting plays of ordinal length. We show that these reachability
games of ordinal length are determined, through a reduction to Muller
games. We also show that, for several natural ways of representing the
transitions, the problem is PSPACE-complete.
Overview of the paper In Section 2, we recall the definitions of au-
tomata on words of ordinal length and games of infinite duration, and
we introduce our model of games of ordinal length. Section 3 shows the
determinacy of these games on finite arenas, and Section 4 considers the
complexity issues. Finally, Section 5 summarises our results, and presents
several interesting perspectives for future work about these games.

2 Definitions

2.1 Ordinals and automata on words of ordinal length

We consider ordinals, i.e. totally ordered sets where any non-empty subset
has a least element. In particular, every finite ordered set is an ordinal, as
is the set of natural numbers with the usual ordering (usually called w).

One extends the usual operators 4+ and - to ordinals: I + J is defined
by I W J ordered in a way such that ¢ < jif¢ € I and j € J; I -J is the
set I x J ordered lexicographically.

A cut of an ordinal J is a partition (K, L) of J such that Vk € K,[ €
L,k < I. The set of cuts of J is an ordinal, denoted by J. For an element
j of J, we define the cuts 7~ by {i € J|i < j},{i € J|i>j}) and 57
by ({i € J i< jhiied]|i> ).

Ezample 1. w? + 3 is obtained by adding 3 elements to w?, which are

greater than all others. We represent it below, with bullets for the elements
and vertical lines for the cuts:
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A word of ordinal length J over an alphabet X' is a mapping from J to
X, Let p be such a word, and j an element of J. The prefix of p of length
j denoted by p<; is defined as (p;)i<;. The limit of p, denoted lim p, is the
set: {a € X |Vje€J, Ji>jp =al

Bruyére and Carton define in [BC01| an automaton A on these words
as a tuple (Q,X,&,7,Z,F). Q is a finite set of states, X is a finite al-
phabet, £ and 7 are respectively the successor and limit transition re-
lations, Z C @ is the set of initial states, and F C @ is the set of



final states. The successor transitions of £ are usual transitions, of the
form p % g € Q x X x Q. The limit transitions of T are of the form
P ePQ) x Q. )

A run of A on a word x = (x;)jes is a word p of length J on @,
verifying the following conditions:

— if ¢ is the initial cut, p. € 7;

—ifj e, pj- L pir €&

— if ¢ has no predecessor, lim p Lim, pe €T
— if ¢ is the final cut, p. € F.

Ezample 2. Figure 1 shows a simple automaton over the alphabet {a,b}.

a b a
{0} —1
8 88 o &
{0,1,2} — 3

Fig. 1. Automaton recognising (a“b*a*)“

From the results of Choueka in [Cho78|, one can derive Theorem 3:

Theorem 3. In an automaton with n states where the transitions are of

the form P Lim, q ¢ P, there are no runs of length greater than w".

2.2 Infinite games

We recall here the usual concepts related to infinite duration games. Such
a game G is played by two players called Eve and Adam on an arena of
the form (Q,E), which is a directed graph partitioned between Adam’s
vertices (Q4, represented by O) and Eve’s vertices (Qg, represented by
O). The winning condition W C Q“ describes the plays won by Eve. We
refer the reader to [Tho95| for more details on infinite games.

A play of G is a (finite or infinite) path in the arena. We assume that
every state has at least one successor, so any finite play can be prolonged
into an infinite one. Prolonging a finite play by one vertex is called a move
in the game. During the play, when the last vertex of the current prefix
is in Qg, Eve chooses the next move, otherwise Adam does. Eve wins the
play if and only if it is in W.

A strategy for Eve is a function o : Q*Qpr — Q such that for every finite
prefix w ending in a state ¢ € Qp, (¢,0(w)) € E. A play p = pop1p2- ..



is consistent with a strategy o (for Eve) if for every n such that p, €
Qg, pnt1 = d(pop1 - .. pn). A strategy o is winning for Eve if every play
consistent with ¢ is won by Eve. Strategies and winning strategies for
Adam are defined likewise. A strategy with memory M for Eve is defined
by a transducer (M, v, u) and an initial memory state 29 € M. The two
functions v : M x Q — Q and p : M x Q — M respectively give the next
move when the token is in Q g, and update the memory.

We use Muller games in our proofs. In these games, the winning con-
dition is defined by a subset M of P(Q). Eve wins if the set of states
occurring infinitely often during the play belongs to M. For a play p, this
set is denoted by Inf(p) (Occ(p) denotes the set of states occurring in p).

When considering complexity issues, the representation of the winning
condition is important, as it directly influences the input size. The most
straightforward is to list the elements of Ml — the ezplicit representation.
Other possibilities include colouring, Zielonka trees and DAGs, win-set
conditions, and Emerson-Lei conditions. We will only define Emerson-Lei
conditions here, and refer to |Zie98] and [HD05| for more details.

Emerson-Lei games were introduced in [EL85] and are equivalent, in
terms of expressive power, to the usual Muller games. The winning con-
dition is defined by a Boolean formula ¢ using elements of QQ as variables.
The play p is winning for Eve if the truth assignment mapping every state
of Inf(p) to true and every other state to false satisfies .

2.3 Games of ordinal length

As done in [BCO1] for finite automata, we extend the classical model
of infinite games to arenas admitting paths of ordinal length by adding
limit transitions. A reachability game of ordinal length is defined as a
tuple (Q,QE,Q4a,&,t,©,®). The special states © and ® are the only
two states without successors. The function ¢t maps P(Q) to QU {®,®}
in a way such that ¢(P) ¢ P. A play is a word p of ordinal length on
Q U {®,®}. Every play that does not end in {®,®} can be prolonged
through a move or a limit transition, and by Theorem 3, there are no
plays of length greater or equal to w“. Eve wins if the play ends in @,
while Adam wins when the token reaches ®. For technical reasons, we
suppose without loss of generality that our arenas are semi-alternating,
i.e. that the successors of a state of Adam belong to Eve!. The notion
of strategy is extended naturally, by considering ordinal prefixes rather
than finite ones. Strategies with memory are extended likewise, with a

! This allows us to only define ¢ (and later o) on sets containing a state of Eve.



memory transducer on ordinals. Notice that restricting plays to lengths
smaller than w* makes sense in the verification problem: infinite sequences
represent events of very different durations, and an infinite hierarchy of
infinitesimality seems far-fetched.
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Fig. 2. Game of ordinal length

3 Solving ordinal reachability games

In this section, we consider the problem of deciding the winner in an
ordinal reachability game. Our result is formalised as Theorem 4, and this
section will mainly be devoted to its proof.

Theorem 4. Two player reachability games of ordinal length are deter-
mined on finite arenas.

We prove this theorem through a reduction from an ordinal reach-
ability game G to a Muller game G. This construction is described in
Section 3.1. Section 3.2 gives the main steps of the proof of Lemmas 5
and 6 by strategy translation.

Lemma 5. If Eve wins in G from q € Q, she also wins in G from q.

Lemma 6. If Adam wins in G from q € Q, he also wins in G from q.



From these two Lemmas and Theorem 7, we derive Theorem 4.

Theorem 7 ([Mar75]). Muller games are determined.

3.1 Reduction to Muller Games

We describe here a reduction from a reachability game of ordinal length G
to a Muller game G. The idea is to compel the players to simulate the limit
transitions, in such a way that an uncooperative player will lose the play.
In this regard, our approach is similar to the one by Chatterjee, de Alfaro,
Jurdzinski and Henzinger in [CJH03] and [CdAHO05|, where they use parity
conditions in order to simulate randomness for qualitative winning regions.
In both approaches, there is an identity between the winning regions of
the original game and the reduced one, but not between the actual plays.

The fundamental idea of this reduction is that a word of length less
than w* can be described by a finite word with “shortcuts” in lieu of limit
transitions. These shortcuts have to be taken in two steps, guaranteeing
that both players agree to take it. The “widget” we use is described in
Figure 3: for each set of states P containing a state of Eve?, we distinguish
one state o(P) in PN Qg. In addition to its original successors, this state
now leads to a new state x(P), which belongs to Adam. There, he can
either accept the transition, and proceed to ¢(P), or refuse it, and go to
another clone of o(P), called £(o(P)). This clone only leads to the original
successors of o( P) in G, not to x(P). The definition of the Muller condition
guarantees that no one can block the play without losing. It contains all
the sets of the form P U {x(P)}, so if Adam repeatedly declines to take
a legitimate proposition, he will lose. Formally, the reduced game G from
G=(Q,Qr,Qa,E,7T,0,R) is defined by:

Qe =QrU{¢(q) | qeQr}
Qa=Qau{x(P) | PeP@Q)}

E=¢&
U{(o(P), x(P)) | P € P(Q)}
U{(x(P),t(P)) | P € P(Q)}
U{(x(P),€(o(P))) | P € P(Q)}
U{(&(p),q) | (p,q) € &}
U{(®,0), (®,®)}
M={PUH|PCQHNQ =0,x(P) € H}

% See Footnote 1 on page 4.
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Fig. 3. Widget for {a,b} — d

3.2 Strategy translation: from Muller to Ordinal Reachability

Lemmas 5 and 6 are proved through a similar notion of strategy trans-
lation: from a winning strategy® in the reduced Muller game G we can
derive a winning strategy in the ordinal game G. The memory states of
this new strategy are plays of the Muller game that are consistent with
the original strategy.

The memory will evolve during the course of a play in G, moving
along the tree of all plays consistent with the strategy. Successor transi-
tions extend the current play, lengthening the memory. Limit transitions
will branch to another prefix in the tree, under suitable assumptions. An
exemple of this whole process (for both players) is given in Figure 4.

Successor transitions The successor transitions always lengthen the
memory, and guarantee that it remains consistent with the original strat-
egy. The basic idea is to copy the current move in the memory. However,
we have to be cautious with the states of Eve: she must have the pos-
sibility to choose, either as proponent or opponent, to go to a state of
the Muller game that does not belong to the original game. This case is
treated differently depending whether we consider a strategy for Eve or
for Adam.

% It is not possible to translate a losing strategy with our technique, not even to a
losing one.
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Fig. 4. Strategy translation from G to G

Eve: For a strategy o of Eve, the problem arises when, in a state ¢ € @
with memory 2 € Q*, ({2 - q) does not belong to @, but is a new state
X(P). To deal with this case, we add three moves to the memory instead
of one: u(q,$2) = 2-q- x(P)-&(q). This is still a finite play consistent
with o, so Eve can now send the token to the location o(£2-¢-x(P)-£(q)),
which is a successor of ¢ in G by definition of £(q).

Adam: In Adam’s case, the problem is not what the strategy can do
Adam’s options in the states of () are the same in G and in G — but how
to interpret what Eve does. Supposing that she always keeps to states of @
is not correct, since almost any strategy wins against such behaviors. We
will thus consider that Eve always chooses to propose transitions when
Adam refuses them: if the token is in state ¢ € Qg and Eve sends the
token to ¢/, we first look for a set P such that:



— o(P) = q (Eve can propose the transition)
— 7(2-q-x(P)) =&(P) (Adam’s strategy 7 would refuse it)

If we do not find one, the memory is simply updated to {2 - q. Otherwise,
we denote by P the one such that x(P) did not occur in (2 for the longest
time, and update the memory to 2-q-x(P)-&(P). Here also, the resulting
memory is still consistent with 7.

Limit transitions When the play goes through a limit transition, the
idea is to go back to a suitable shortcut in the past of the memory. To
explain how we do it, we first fix some notations: we consider a play p

consistent with our new strategy, and a transition P lim, q occuring at

position j i.e. limp; = P and p; = ¢. Furthermore, we denote by
(£2;)i<; the (transfinite) sequence of memory states occuring in the course
of p<j.

One first problem is that there is no last memory state before j from
which to work. Propositions 8 and 9 compensate for this:

Proposition 8. The sequence (§2;)i<; has a limit, denoted by {2 ;, which
1s an infinite play in G consistent with the original winning strateqy.

Proposition 9. lim p; = Inf(£2;)

With these two propositions, we can now update the memory. We have
to be careful when choosing where to branch, in order to ensure that the
memory still grows with respect to a possible higher order transition. It
is done by keeping one copy of the limit set in the resulting memory: We
divide {2.; in three factors v, w, and ¥:

— v contains all occurrences of states in @ \ Inf(£2-;);

— w contains an occurrence of each state in Inf(£2.;) N Q. Furthermore,
it must end at a suitable branching point: for Eve, it means ending
with an occurence of x(P); for Adam, it must end with an occurence
of o(P), and be such that 7(v-w - x(P)) = t(P);

— 1) contains the remainder of (2;.

The factor v - w remains as a prefix of the new memory. Instead of
1, there is now an accepted shortcut: v - w - ¢(P) or v-w - x(P) - t(P),
depending on whether we are building a strategy for Eve or for Adam.
This process is described in Figure 4.

Once the soundness of our construction is accepted, it is not difficult
to show that it produces winning strategies: a full play always ends in ©®



or in ®, and the current state is systematically added to the memory. As
this memory can only contain plays consistent with the original strategy,
the “bad” state (® if we build a strategy for Eve, ® if it is for Adam)
cannot occur in the memory. Thus, the final state of a play consistent
with our new strategy is necessarily the “good” one. This completes the
proof of Lemmas 5 and 6.

4 Complexity

We now consider the complexity of solving ordinal reachability games.
As in Muller games, we need to specify precisely how the transitions are
represented. In the case where transitions are represented as relevant sets,
colour sets, a Zielonka DAG or Boolean formulae, we get Theorem 10.

Theorem 10. Deciding the winner in a reachability game of ordinal length
whose limit transitions are represented as relevant sets, colour sets, a
Zielonka DAG or Boolean formulae is PSPACE-complete.

We will prove the membership part in Section 4.1, and the hardness
part in Section 4.2. The complexity in the case of transitions represented
explicitly, or as Zielonka Trees is left open.

4.1 Reduction to Emerson-Lei games

Lemma 11. Deciding the winner in a reachability game of ordinal length
whose transitions are represented as Boolean formulae is PSPACE.

Proposition 12. The reduced game G is equivalent to an Emerson-Lei
game L of size polynomial in the size of G, if the transitions of G are
represented as Boolean formulae.

Proof. In order to get a polynomial reduction, we need to avoid the ex-
ponential blow-up that occurs when we add a state x(P) for each set of
states P. It can be done, by noticing that if two sets P and P’ are such
that o(P) = o(P’) and t(P) = t(P’), x(P) and x(P’) have exactly the
same neighbours in G. In the definition of L, we can thus replace them
both by a single state k(o(P),t(P)). This limits the number of new states
to [Q* +1QI.

The winning condition of I can now be described in Emerson-Lei

formalism:
p=ov \/ (soqA\/H(p,q))
7€QU{E,®} peEQ

10



The size of formula ¢ is O(}_ cquie,e}(¥ql + 1)), which is polynomial in
the size of G. This modified reduction is still fair. O

The last step of the proof is Theorem 13:

Theorem 13 ([HDO5]). Deciding the winner in an Emerson-Lei game
15 PSPACE-complete.

Lemma 11 follows directly from Property 12 and Theorem 13. Corol-
lary 14 follows from the results of [HD05] about succinctness.

Corollary 14. Deciding the winner in a reachability game of ordinal length
whose limit transitions are represented as relevant sets, colour sets, or a
Zielonka DAG is PSPACE.

4.2 Hardness results

The hardness result also derives from Theorem 13. Indeed, any classical
Muller game (Q,Qpg,Q4,E, M) can be represented as the ordinal reach-
ability game (Q,Qg,Qa,E,t,0,®), with ¢(P) = © for all P € M and
t(P) = ® for all P ¢ M. The strategies and plays will be the same in both
games. The only difference is that after w moves in the reachability game,
the token will take a limit transition to ©® or ®, depending on whether
the infinite play is winning for Eve or Adam in the Muller game. This
reduction can be done for any representation of the Muller condition.

Lemma 15. In a reachability game of ordinal length whose limit tran-
sitions are represented as relevant sets, colour sets, a Zielonka DAG or
Boolean formulae, deciding the winner is PSPACE-hard.

5 Conclusion

We have extended the classical model of infinite games to games of ordinal
length. These games, that generalise all regular games, are determined,
and the winner is decidable through a reduction to Muller games. If the
limit transitions are represented as relevant sets, colour sets, a Zielonka
DAG or Boolean formulae, the problem is PSPACE-complete.

We intend now to use this formalism in the context of timed games, fol-
lowing for example the work of [JT07]. Another perspective concerns the
minimal quantity of memory that is necessary to define winning strategies
in ordinal games. Finally, we would like to consider less general games,
where the transitions can be represented in a more compact way — espe-
cially parity  and study the effects on complexity and memory.
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