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t. Games are a 
lassi
al model in the synthesis of 
ontrollersin the open setting. In parti
ular, games of in�nite length 
an representsystems whi
h are not expe
ted to rea
h a 
orre
t state, but rather tohandle a 
ontinuous stream of events. Yet, even longer sequen
es of eventshave to be 
onsidered when in�nite sequen
es of events 
an o

ur in �nitetime � Zeno behaviours.In this paper, we extend two-player games to this setting by 
onsideringplays of ordinal length. Our two main results are determina
y of rea
h-ability games of length less than ωω on �nite arenas, and the PSPACE-
ompleteness of de
iding the winner in su
h a game.1 Introdu
tionGames are a 
lassi
al model for the synthesis of 
ontrollers in open set-tings, with numerous appli
ations. Although �nite games seems morenatural, there has been a huge interest for games of in�nite duration[GTW02℄. They have strong 
onne
tions with logi
 (e.g. parity gamesand µ-
al
ulus [EJ91℄), and provide useful models in e
onomy. In veri�-
ation, they are used to represent rea
tive systems whi
h must handle a
ontinuous stream of events [Tho95℄. However, some behaviours 
annot bedes
ribed by this model, when in�nite sequen
es of events happen in �nitetime. Su
h behaviours � Zeno behaviours � espe
ially need to be 
on-sidered in timed systems, when su

essive events 
an be arbitrarily 
lose.The 
lassi
al dis
rete-time framework used by Alur and Dill in their sem-inal paper [AD94℄ prevents su
h behaviours, while several papers aboutreal-time models limit their results to non-Zeno runs [AM99℄ or for
e theplayers to ensure that they 
an not happen [dAFH+03℄. Sin
e Bü
hi inthe 1960's, several extensions of automata to words of ordinal length havebeen proposed [BC01,BÉ02℄. Demri and Nowak propose in [DN05℄ an ex-tension of LTL to ordinals of length ωn. They also formalise a problemof open spe
i�
ation, where only the environment has the opportunity toplay more than ω moves, and whi
h was solved in [Ca
06℄.
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In this paper, we use the methods of [BC01℄ in order to de�ne gamearenas admitting plays of ordinal length. We show that these rea
habilitygames of ordinal length are determined, through a redu
tion to Mullergames. We also show that, for several natural ways of representing thetransitions, the problem is PSPACE-
omplete.Overview of the paper In Se
tion 2, we re
all the de�nitions of au-tomata on words of ordinal length and games of in�nite duration, andwe introdu
e our model of games of ordinal length. Se
tion 3 shows thedetermina
y of these games on �nite arenas, and Se
tion 4 
onsiders the
omplexity issues. Finally, Se
tion 5 summarises our results, and presentsseveral interesting perspe
tives for future work about these games.2 De�nitions2.1 Ordinals and automata on words of ordinal lengthWe 
onsider ordinals, i.e. totally ordered sets where any non-empty subsethas a least element. In parti
ular, every �nite ordered set is an ordinal, asis the set of natural numbers with the usual ordering (usually 
alled ω).One extends the usual operators + and · to ordinals: I + J is de�nedby I ⊎ J ordered in a way su
h that i < j if i ∈ I and j ∈ J ; I · J is theset I × J ordered lexi
ographi
ally.A 
ut of an ordinal J is a partition (K,L) of J su
h that ∀k ∈ K, l ∈
L, k < l. The set of 
uts of J is an ordinal, denoted by Ĵ . For an element
j of J , we de�ne the 
uts j− by ({i ∈ J | i < j}, {i ∈ J | i ≥ j}) and j+by ({i ∈ J | i ≤ j}, {i ∈ J | i > j}).Example 1. ω2 + 3 is obtained by adding 3 elements to ω2, whi
h aregreater than all others. We represent it below, with bullets for the elementsand verti
al lines for the 
uts:

∣
∣
∣

ω
︷ ︸︸ ︷

•| • | • | · · ·
∣
∣
∣

ω
︷ ︸︸ ︷

•| • | • · · ·
∣
∣
∣ · · · · · ·

︸ ︷︷ ︸

ω2

∣
∣
∣ •| • |•
︸ ︷︷ ︸

3

∣
∣
∣A word of ordinal length J over an alphabet Σ is a mapping from J to

Σ. Let ρ be su
h a word, and j an element of J . The pre�x of ρ of length
j denoted by ρ<j is de�ned as (ρi)i<j . The limit of ρ, denoted lim ρ, is theset: {a ∈ Σ | ∀j ∈ J, ∃i > j, ρi = a}.Bruyère and Carton de�ne in [BC01℄ an automaton A on these wordsas a tuple (Q,Σ, E ,T ,I,F). Q is a �nite set of states, Σ is a �nite al-phabet, E and T are respe
tively the su

essor and limit transition re-lations, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of2



�nal states. The su

essor transitions of E are usual transitions, of theform p
a
−→ q ∈ Q × Σ × Q. The limit transitions of T are of the form

P
lim
−−→ q ∈ P(Q) ×Q.A run of A on a word x = (xj)j∈J is a word ρ of length Ĵ on Q,verifying the following 
onditions:� if c is the initial 
ut, ρc ∈ I;� if j ∈ J , ρj−

xj
−→ ρj+ ∈ E ;� if c has no prede
essor, lim ρ<c

lim
−−→ ρc ∈ T ;� if c is the �nal 
ut, ρc ∈ F .Example 2. Figure 1 shows a simple automaton over the alphabet {a, b}.

{0} → 1

{2} → 0

{0, 1, 2} → 3
0 1 2 3a b a

aFig. 1. Automaton re
ognising (aωb⋆aω)ωFrom the results of Choueka in [Cho78℄, one 
an derive Theorem 3:Theorem 3. In an automaton with n states where the transitions are ofthe form P
lim
−−→ q /∈ P , there are no runs of length greater than ωn.2.2 In�nite gamesWe re
all here the usual 
on
epts related to in�nite duration games. Su
ha game G is played by two players 
alled Eve and Adam on an arena ofthe form (Q,E), whi
h is a dire
ted graph partitioned between Adam'sverti
es (QA, represented by 2) and Eve's verti
es (QE , represented by

#). The winning 
ondition W ⊆ Qω des
ribes the plays won by Eve. Werefer the reader to [Tho95℄ for more details on in�nite games.A play of G is a (�nite or in�nite) path in the arena. We assume thatevery state has at least one su

essor, so any �nite play 
an be prolongedinto an in�nite one. Prolonging a �nite play by one vertex is 
alled a movein the game. During the play, when the last vertex of the 
urrent pre�xis in QE, Eve 
hooses the next move, otherwise Adam does. Eve wins theplay if and only if it is in W.A strategy for Eve is a fun
tion σ : Q∗QE → Q su
h that for every �nitepre�x w ending in a state q ∈ QE , (q, σ(w)) ∈ E. A play ρ = ρ0ρ1ρ2 . . .3



is 
onsistent with a strategy σ (for Eve) if for every n su
h that ρn ∈
QE, ρn+1 = σ(ρ0ρ1 . . . ρn). A strategy σ is winning for Eve if every play
onsistent with σ is won by Eve. Strategies and winning strategies forAdam are de�ned likewise. A strategy with memory M for Eve is de�nedby a transdu
er (M,ν, µ) and an initial memory state Ω0 ∈ M . The twofun
tions ν : M ×Q → Q and µ : M ×Q →M respe
tively give the nextmove when the token is in QE, and update the memory.We use Muller games in our proofs. In these games, the winning 
on-dition is de�ned by a subset M of P(Q). Eve wins if the set of stateso

urring in�nitely often during the play belongs to M. For a play ρ, thisset is denoted by Inf(ρ) (Occ(ρ) denotes the set of states o

urring in ρ).When 
onsidering 
omplexity issues, the representation of the winning
ondition is important, as it dire
tly in�uen
es the input size. The moststraightforward is to list the elements of M � the expli
it representation.Other possibilities in
lude 
olouring, Zielonka trees and DAGs, win-set
onditions, and Emerson-Lei 
onditions. We will only de�ne Emerson-Lei
onditions here, and refer to [Zie98℄ and [HD05℄ for more details.Emerson-Lei games were introdu
ed in [EL85℄ and are equivalent, interms of expressive power, to the usual Muller games. The winning 
on-dition is de�ned by a Boolean formula ϕ using elements of Q as variables.The play ρ is winning for Eve if the truth assignment mapping every stateof Inf(ρ) to true and every other state to false satis�es ϕ.2.3 Games of ordinal lengthAs done in [BC01℄ for �nite automata, we extend the 
lassi
al modelof in�nite games to arenas admitting paths of ordinal length by addinglimit transitions. A rea
hability game of ordinal length is de�ned as atuple (Q,QE , QA, E , t,⊚,⊗). The spe
ial states ⊚ and ⊗ are the onlytwo states without su

essors. The fun
tion t maps P(Q) to Q ∪ {⊚,⊗}in a way su
h that t(P ) /∈ P . A play is a word ρ of ordinal length on
Q ∪ {⊚,⊗}. Every play that does not end in {⊚,⊗} 
an be prolongedthrough a move or a limit transition, and by Theorem 3, there are noplays of length greater or equal to ωω. Eve wins if the play ends in ⊚,while Adam wins when the token rea
hes ⊗. For te
hni
al reasons, wesuppose without loss of generality that our arenas are semi-alternating,i.e. that the su

essors of a state of Adam belong to Eve1. The notionof strategy is extended naturally, by 
onsidering ordinal pre�xes ratherthan �nite ones. Strategies with memory are extended likewise, with a1 This allows us to only de�ne t (and later o) on sets 
ontaining a state of Eve.4



memory transdu
er on ordinals. Noti
e that restri
ting plays to lengthssmaller than ωω makes sense in the veri�
ation problem: in�nite sequen
esrepresent events of very di�erent durations, and an in�nite hierar
hy ofin�nitesimality seems far-fet
hed.
α : {a}

lim
−−→ c

β : {a, b}
lim
−−→ d

γ : {a, b, c}
lim
−−→ ⊗

δ : {a, b, d}
lim
−−→ ⊗

θ : {a, b, c, d}
lim
−−→ ⊚

a

b
c d

Fig. 2. Game of ordinal length
3 Solving ordinal rea
hability gamesIn this se
tion, we 
onsider the problem of de
iding the winner in anordinal rea
hability game. Our result is formalised as Theorem 4, and thisse
tion will mainly be devoted to its proof.Theorem 4. Two player rea
hability games of ordinal length are deter-mined on �nite arenas.We prove this theorem through a redu
tion from an ordinal rea
h-ability game G to a Muller game G. This 
onstru
tion is des
ribed inSe
tion 3.1. Se
tion 3.2 gives the main steps of the proof of Lemmas 5and 6 by strategy translation.Lemma 5. If Eve wins in G from q ∈ Q, she also wins in G from q.Lemma 6. If Adam wins in G from q ∈ Q, he also wins in G from q.5



From these two Lemmas and Theorem 7, we derive Theorem 4.Theorem 7 ([Mar75℄). Muller games are determined.3.1 Redu
tion to Muller GamesWe des
ribe here a redu
tion from a rea
hability game of ordinal length Gto a Muller game G. The idea is to 
ompel the players to simulate the limittransitions, in su
h a way that an un
ooperative player will lose the play.In this regard, our approa
h is similar to the one by Chatterjee, de Alfaro,Jurdzinski and Henzinger in [CJH03℄ and [CdAH05℄, where they use parity
onditions in order to simulate randomness for qualitative winning regions.In both approa
hes, there is an identity between the winning regions ofthe original game and the redu
ed one, but not between the a
tual plays.The fundamental idea of this redu
tion is that a word of length lessthan ωω 
an be des
ribed by a �nite word with �short
uts� in lieu of limittransitions. These short
uts have to be taken in two steps, guaranteeingthat both players agree to take it. The �widget� we use is des
ribed inFigure 3: for ea
h set of states P 
ontaining a state of Eve2, we distinguishone state o(P ) in P ∩QE . In addition to its original su

essors, this statenow leads to a new state χ(P ), whi
h belongs to Adam. There, he 
aneither a

ept the transition, and pro
eed to t(P ), or refuse it, and go toanother 
lone of o(P ), 
alled ξ(o(P )). This 
lone only leads to the originalsu

essors of o(P ) inG, not to χ(P ). The de�nition of the Muller 
onditionguarantees that no one 
an blo
k the play without losing. It 
ontains allthe sets of the form P ∪ {χ(P )}, so if Adam repeatedly de
lines to takea legitimate proposition, he will lose. Formally, the redu
ed game G from
G = (Q,QE , QA, E ,T ,⊚,⊗) is de�ned by:

QE = QE ∪ {ξ(q) | q ∈ QE}

QA = QA ∪ {χ(P ) | P ∈ P(Q)}

E = E

∪{(o(P ), χ(P )) | P ∈ P(Q)}

∪{(χ(P ), t(P )) | P ∈ P(Q)}

∪{(χ(P ), ξ(o(P ))) | P ∈ P(Q)}

∪{(ξ(p), q) | (p, q) ∈ E}

∪{(⊚,⊚), (⊗,⊗)}

M = {P ∪ H | P ⊆ Q,H ∩Q = ∅, χ(P ) ∈ H}2 See Footnote 1 on page 4. 6



a

b

d

a

b

d

ξ(a)
β

{{a, b, β}} ⊆ MFig. 3. Widget for {a, b} lim
−−→ d

3.2 Strategy translation: from Muller to Ordinal Rea
habilityLemmas 5 and 6 are proved through a similar notion of strategy trans-lation: from a winning strategy3 in the redu
ed Muller game G we 
anderive a winning strategy in the ordinal game G. The memory states ofthis new strategy are plays of the Muller game that are 
onsistent withthe original strategy.The memory will evolve during the 
ourse of a play in G, movingalong the tree of all plays 
onsistent with the strategy. Su

essor transi-tions extend the 
urrent play, lengthening the memory. Limit transitionswill bran
h to another pre�x in the tree, under suitable assumptions. Anexemple of this whole pro
ess (for both players) is given in Figure 4.Su

essor transitions The su

essor transitions always lengthen thememory, and guarantee that it remains 
onsistent with the original strat-egy. The basi
 idea is to 
opy the 
urrent move in the memory. However,we have to be 
autious with the states of Eve: she must have the pos-sibility to 
hoose, either as proponent or opponent, to go to a state ofthe Muller game that does not belong to the original game. This 
ase istreated di�erently depending whether we 
onsider a strategy for Eve orfor Adam.3 It is not possible to translate a losing strategy with our te
hnique, not even to alosing one. 7
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ξ(d) ξ(d)
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α b a β

c a d

α b a β

c a d

b δ a θ

a ξ(d) ξ(d)

ν a a(b) For AdamFig. 4. Strategy translation from G to GEve: For a strategy σ of Eve, the problem arises when, in a state q ∈ Qwith memory Ω ∈ Q∗, σ(Ω · q) does not belong to Q, but is a new state
χ(P ). To deal with this 
ase, we add three moves to the memory insteadof one: µ(q,Ω) = Ω · q · χ(P ) · ξ(q). This is still a �nite play 
onsistentwith σ, so Eve 
an now send the token to the lo
ation σ(Ω ·q ·χ(P ) ·ξ(q)),whi
h is a su

essor of q in G by de�nition of ξ(q).Adam: In Adam's 
ase, the problem is not what the strategy 
an do �Adam's options in the states of Q are the same in G and in G � but howto interpret what Eve does. Supposing that she always keeps to states of Qis not 
orre
t, sin
e almost any strategy wins against su
h behaviors. Wewill thus 
onsider that Eve always 
hooses to propose transitions whenAdam refuses them: if the token is in state q ∈ QE and Eve sends thetoken to q′, we �rst look for a set P su
h that:8



� o(P ) = q (Eve 
an propose the transition)� τ(Ω · q · χ(P )) = ξ(P ) (Adam's strategy τ would refuse it)If we do not �nd one, the memory is simply updated to Ω · q. Otherwise,we denote by P the one su
h that χ(P ) did not o

ur in Ω for the longesttime, and update the memory to Ω ·q ·χ(P ) ·ξ(P ). Here also, the resultingmemory is still 
onsistent with τ .Limit transitions When the play goes through a limit transition, theidea is to go ba
k to a suitable short
ut in the past of the memory. Toexplain how we do it, we �rst �x some notations: we 
onsider a play ρ
onsistent with our new strategy, and a transition P
lim
−−→ q o

uring atposition j � i.e. lim ρ<j = P and ρj = q. Furthermore, we denote by

(Ωi)i<j the (trans�nite) sequen
e of memory states o

uring in the 
ourseof ρ<j.One �rst problem is that there is no last memory state before j fromwhi
h to work. Propositions 8 and 9 
ompensate for this:Proposition 8. The sequen
e (Ωi)i<j has a limit, denoted by Ω<j , whi
his an in�nite play in G 
onsistent with the original winning strategy.Proposition 9. lim ρ<j = Inf(Ω<j)With these two propositions, we 
an now update the memory. We haveto be 
areful when 
hoosing where to bran
h, in order to ensure that thememory still grows with respe
t to a possible higher order transition. Itis done by keeping one 
opy of the limit set in the resulting memory: Wedivide Ω<j in three fa
tors v, w, and ψ:� v 
ontains all o

urren
es of states in Q \ Inf(Ω<j);� w 
ontains an o

urren
e of ea
h state in Inf(Ω<j)∩Q. Furthermore,it must end at a suitable bran
hing point: for Eve, it means endingwith an o

uren
e of χ(P ); for Adam, it must end with an o

uren
eof o(P ), and be su
h that τ(v · w · χ(P )) = t(P );� ψ 
ontains the remainder of Ω<j .The fa
tor v · w remains as a pre�x of the new memory. Instead of
ψ, there is now an a

epted short
ut: v · w · t(P ) or v · w · χ(P ) · t(P ),depending on whether we are building a strategy for Eve or for Adam.This pro
ess is des
ribed in Figure 4.On
e the soundness of our 
onstru
tion is a

epted, it is not di�
ultto show that it produ
es winning strategies: a full play always ends in ⊚9



or in ⊗, and the 
urrent state is systemati
ally added to the memory. Asthis memory 
an only 
ontain plays 
onsistent with the original strategy,the �bad� state (⊗ if we build a strategy for Eve, ⊚ if it is for Adam)
annot o

ur in the memory. Thus, the �nal state of a play 
onsistentwith our new strategy is ne
essarily the �good� one. This 
ompletes theproof of Lemmas 5 and 6.4 ComplexityWe now 
onsider the 
omplexity of solving ordinal rea
hability games.As in Muller games, we need to spe
ify pre
isely how the transitions arerepresented. In the 
ase where transitions are represented as relevant sets,
olour sets, a Zielonka DAG or Boolean formulae, we get Theorem 10.Theorem 10. De
iding the winner in a rea
hability game of ordinal lengthwhose limit transitions are represented as relevant sets, 
olour sets, aZielonka DAG or Boolean formulae is PSPACE-
omplete.We will prove the membership part in Se
tion 4.1, and the hardnesspart in Se
tion 4.2. The 
omplexity in the 
ase of transitions representedexpli
itly, or as Zielonka Trees is left open.4.1 Redu
tion to Emerson-Lei gamesLemma 11. De
iding the winner in a rea
hability game of ordinal lengthwhose transitions are represented as Boolean formulae is PSPACE.Proposition 12. The redu
ed game G is equivalent to an Emerson-Leigame L of size polynomial in the size of G, if the transitions of G arerepresented as Boolean formulae.Proof. In order to get a polynomial redu
tion, we need to avoid the ex-ponential blow-up that o

urs when we add a state χ(P ) for ea
h set ofstates P . It 
an be done, by noti
ing that if two sets P and P ′ are su
hthat o(P ) = o(P ′) and t(P ) = t(P ′), χ(P ) and χ(P ′) have exa
tly thesame neighbours in G. In the de�nition of L, we 
an thus repla
e themboth by a single state κ(o(P ), t(P )). This limits the number of new statesto |Q|2 + |Q|.The winning 
ondition of L 
an now be des
ribed in Emerson-Leiformalism:
ϕ = ⊚ ∨

∨

q∈Q∪{⊚,⊗}

(

ϕq ∧
∨

p∈Q

κ(p, q)
)10



The size of formula ϕ is O(
∑

q∈Q∪{⊚,⊗}(|ϕq|+n)), whi
h is polynomial inthe size of G. This modi�ed redu
tion is still fair. ⊓⊔The last step of the proof is Theorem 13:Theorem 13 ([HD05℄). De
iding the winner in an Emerson-Lei gameis PSPACE-
omplete.Lemma 11 follows dire
tly from Property 12 and Theorem 13. Corol-lary 14 follows from the results of [HD05℄ about su

in
tness.Corollary 14. De
iding the winner in a rea
hability game of ordinal lengthwhose limit transitions are represented as relevant sets, 
olour sets, or aZielonka DAG is PSPACE.4.2 Hardness resultsThe hardness result also derives from Theorem 13. Indeed, any 
lassi
alMuller game (Q,QE ,QA,E,M) 
an be represented as the ordinal rea
h-ability game (Q,QE ,QA,E, t,⊚,⊗), with t(P ) = ⊚ for all P ∈ M and
t(P ) = ⊗ for all P /∈ M. The strategies and plays will be the same in bothgames. The only di�eren
e is that after ω moves in the rea
hability game,the token will take a limit transition to ⊚ or ⊗, depending on whetherthe in�nite play is winning for Eve or Adam in the Muller game. Thisredu
tion 
an be done for any representation of the Muller 
ondition.Lemma 15. In a rea
hability game of ordinal length whose limit tran-sitions are represented as relevant sets, 
olour sets, a Zielonka DAG orBoolean formulae, de
iding the winner is PSPACE-hard.5 Con
lusionWe have extended the 
lassi
al model of in�nite games to games of ordinallength. These games, that generalise all regular games, are determined,and the winner is de
idable through a redu
tion to Muller games. If thelimit transitions are represented as relevant sets, 
olour sets, a ZielonkaDAG or Boolean formulae, the problem is PSPACE-
omplete.We intend now to use this formalism in the 
ontext of timed games, fol-lowing for example the work of [JT07℄. Another perspe
tive 
on
erns theminimal quantity of memory that is ne
essary to de�ne winning strategiesin ordinal games. Finally, we would like to 
onsider less general games,where the transitions 
an be represented in a more 
ompa
t way � espe-
ially parity � and study the e�e
ts on 
omplexity and memory.11
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