Random Fruits on the Zielonka Tree

Florian Horn

LIAFA, Université Paris 7, Case 7014, 2 place Jussieu, F-75251 Paris 5, France
Lehrstuhl fiir Informatik VII, RWTH, Ahornstrafe 55, 52056 Aachen, Germany

horn@liafa. jussieu.fr

Abstract. Stochastic games are a natural model for the synthesis of controllers confronted to
adversarial and/or random actions. In particular, w-regular games of infinite length can represent
reactive systems which are not expected to reach a correct state, but rather to handle a continuous
stream of events. One critical resource in such applications is the memory used by the controller.
In this paper, we study the amount of memory that can be saved through the use of randomisation
in strategies, and present matching upper and lower bounds for stochastic Muller games.

1 Introduction

A stochastic game arena is a directed graph with three kinds of states: Eve’s, Adam’s and
random states. A token circulates on this arena: when it is in one of Eve’s states, she chooses
its next location among the successors of the current state; when it is in one of Adam’s states,
he chooses its next location; and when it is in a random state, the next location is chosen
according to a fixed probability distribution. The result of playing the game for w moves is
an infinite path of the graph. A play is winning either for Eve or for Adam, and the “winner
problem” consists in determining whether one of the players has a winning strategy, from a
given initial state. Closely related problems concern the computation of winning strategies, as
well as determining the nature of these strategies: pure or randomised, with finite or infinite
memory. There has been a long history of using arenas without random states (2-player arenas)
for modelling and synthesising reactive processes [BL69,PR89|: Eve represents the controller,
and Adam the environment. Stochastic (2%—player) arenas |[Con92,deA97|, with the addition of
random states, can also model uncontrollable actions that happen according to a random law,
rather than by choice of an actively hostile environment. The desired behaviour of the system
is traditionally represented as an w-regular winning condition, which naturally expresses the
temporal specifications and fairness assumptions of transition systems [MP92|. From this point
of view, the complexity of the winning strategies is a central question, since they represent
possible implementations of the controllers in the synthesis problem. In this paper, we focus
on an important normal form of w-regular conditions, namely Muller winning conditions (see
[Tho95] for a survey).

In the case of 2-player Muller games, a fundamental determinacy result of Biichi and
Landweber ensures that, from any initial state, one of the players has a winning strategy
[BL69]. Gurevich and Harrington used the LAR (latest appearance record) structure of Mec-
Naughton to extend this result to strategies with memory factorial in the size of the game
[GH82|. Zielonka refines the LAR construction into a tree, and derives from it an elegant algo-
rithm to compute winning regions in 2-player Muller games [Zie98]. An insightful analysis of
the Zielonka tree by Dziembowski, Jurdzinski, and Walukiewicz leads to optimal (and asym-
metrical) memory bounds for non-randomised winning strategies in 2-player Muller games
[DJW97|. Chatterjee extends algorithm and bounds to the case of non-randomised strategies



over 2%—player arenas [Cha07|. However, the lower bound on memory does not hold for ran-
domised strategies, even in non-stochastic arenas. In particular, Chatterjee, de Alfaro, and
Henzinger show that Eve only needs to consider memoryless randomised strategies when the
condition is upward-closed [CdAHO04|. Chatterjee extends this result in [Cha07|, showing that
conditions with non-trivial upward-closed subsets admit randomised strategies with less mem-
ory than non-randomised ones. Majumdar gives a global lower bound for all Muller conditions
with a fixed number of colours [Maj03], while we showed that in the case of Streett games,
the upper bound for non-randomised strategy is still valid for randomised ones [Hor07].

Our contributions. The memory bounds of [Cha(7| are not tight in general, even in the case
of 2-player arenas. We give here matching upper and lower bounds, for any Muller condition.
We compute a number rg from the Zielonka Tree of a Muller condition F, and we show that:

— there is a randomised winning strategy with r= memory in every 2%—player game (Ar, F)
(Theorem 9).

— there is a 2-player game (Ag, F) where any randomised winning strategy for Eve has at
least rr memory states (Theorem 20).

Furthermore, the witness arenas we build in the proof of Theorem 20 are notably smaller
(exponentially smaller, in some cases) than the arenas built in [DJW97|, even though the
problem of polynomial arenas remains open.

Outline of the paper. Section 2 recalls the classical notions in the area, while Section 3
presents former results on memory bounds and randomised strategies. The next two sections
present our main results. In Section 4, we introduce the number rz and show that it is an
upper bound on the memory needed to win in any 2%—game (Ax,F). In Section 5, we show
that this bound is tight. Finally, in Section 6, we derive some consequences from our result:
we characterise the class of Muller conditions that admit memoryless randomised strategies,
and we show that for each Muller condition, at least one of the players cannot improve its
memory through randomisation.

2 Definitions

We consider turn-based stochastic two-player Muller games. We recall here several classical
notions in the field, and refer the reader to [Tho95,deA97| for more details.

Probability Distribution. For a finite set A, a probability distribution on A is a function
a: A —[0,1] such that ) ., a(a) = 1. We denote the set of probability distributions on A
by D(A). Given a distribution o € D(A), we denote by Supp(a) = {a € A | a(a) > 0} the
support of a.

Arenas. A turn-based stochastic finite arena (2%—player arena) A over a set of colours C
consists of a directed finite graph (S,7), a partition (Sg,Sa,Sg) of S, a probabilistic transition
function § : Sg — D(S) such that t € Supp(d(s)) < (s,t) € 7, and a partial colouring function
x:S—C.

The states in Sg (resp. Sa, Sg) are Eve’s states (resp. Adam’s states, random states), and
are graphically represented as O’s (resp. O, A) in figures. The turn-based deterministic arenas
(2-player arenas) are the special case of 2%—p1ayer arenas with Sg = ().

A set U C S of states is called d-closed if for every random state u € U NSk, if (u,t) € T,
then ¢t € U. It is live if for every non-random state u € U N (Sg U Sa), there is a state t € U
such that (u,t) € 7. A subset U that is live and d-closed induces a subarena of A, denoted by
ATU. Aset UC S that is not a subarena is called a partial subarena.



Plays and Strategies. An infinite path, or play, over the arena A is an infinite sequence
p = popi ... of states such that (p;, pi+1) € 7 for all i € N. The set of occurring states is
Occ(p) = {s | Fi € N, p; = s}, and the set of limit states is Inf(p) = {s | 3% € N, p; = s}. We
write {2 for the set of all plays, and {2, for the set of plays that start from the state s.

A strategy with memory M for Eve on the arena A is a (possibly infinite) transducer
o = (M,o",c%), where o™ is the “next-move” function from (Sg x M) to D(S) such that
Supp(c®(s,m)) C 7(s) and o is the “memory-update” function, from (S x M) to D(M).
Notice that both the move and the update are randomised: strategies whose memory is deter-
ministic are a different, less compact, model. The strategies for Adam are defined likewise. We
denote by X and T the set of all strategies for Eve and Adam, respectively. A strategy o is
pure if it does not use randomisation. It is finite-memory if M is a finite set, and memoryless
if M is a singleton. Notice that strategies defined in the usual way as functions from S§* to S
can be defined as strategies with infinite memory: the set of memory states is §*, the memory
update is 0%(s,w) — ws, so the next-move can use the full prefix as argument.

Once a starting state s € S and strategies o € X and 7 € T are fixed, the outcome of the
game is a random walk p3’" for which the probabilities of events are uniquely fixed (an event
is a measurable set of paths). For an event P € 2, we denote by P§'"(P) the probability that
a play belongs to P if it starts from s and Eve and Adam follow the strategies o and 7.

A play is consistent with o if for each position ¢ such that w; € Sg, Puy (pir1 = wis1 |
po = wp...p; =w;) > 0. The set of plays consistent with o is denoted by 2. Similar notions
can be defined for Adam’s strategies.

Traps and Attractors. The attractor of Eve to the set U, denoted Attrg(U), is the set of
states where Eve can guarantee that the token reaches the set U with a positive probability.
It is defined inductively by:

Attr(U) = U
Attt (U) = Attrl, (U)
U {s€SpUSk, 3t € Attr,(U) | (s,t) € T}
U {s€8a|Vt(s,t) € E=tec Attry(U)}
Attrp(U) = ;oo Attry(U)

The corresponding attractor strategy to U for Eve is a pure and memoryless strategy ag
such that for any state s € Sp N (Attrp(U) \ U), s € Attr' 1 (U) = ay(s) € Attriy ().

The dual notion of trap for Eve denotes a set from where Eve cannot escape, unless Adam

allows her to do so: a set U is a trap for Eve if and only if Vs € UN(SgUSR), (s,t) € T =t U
and Vs € UNS4,3t € U, (s,t) € T. Notice that a trap is a “strong” notion — the token can
never leave it if Adam does not allow it to do so, while an attractor is a “weak” one the
token can avoid the target even if Eve uses the attractor strategy. Notice also that a trap (for
either player) is always a subarena.
Winning Conditions. A zero-sum boolean winning condition (winning condition) is a subset
& of 2. Eve wins a play p if p € &. Adam wins if p € 2\ &. We consider w-regular winning
conditions formalised as Muller conditions. A Muller condition is determined by a subset F
of the power set P(C) of colours. The plays winning for Eve for such a condition are the ones
where the set of limit colours belongs to F:

Pr ={p € 2x(Inf(p) € F}

An example of Muller game is given in Figure 1(a). We use it throughout the paper to describe
various notions and results.



bed acd abd

F ={{a,b},{a,b,c},{a,b,c,d}}
(a) The game & = (4, F) (b) Zielonka Tree of Ff

Fig. 1. Recurring Example

Winning Strategies. Given a winning condition @ and a state s € S, a strategy o € X' is
sure winning for Eve from s (resp. almost-sure winning, positive winning) if for every strategy
7 €T, we have 277 C & (resp. Py () = 1, P97 (®) > 0). The pure winning region of Eve is
the set of states from where she has a pure winning strategy. The almost sure winning region
and the positive winning region, as well as all these notions for Adam are defined in a similar
way.

3 Former results in memory bounds and randomisation

3.1 Pure strategies

There has been intense research since the sixties on the non-stochastic setting, i.e. pure strate-
gies and 2-player arenas. Biichi and Landweber showed the determinacy of Muller games in
[BL69|. Gurevich and Harrington used the LAR (Latest Appearance Record) of McNaughton
to prove their Forgetful Determinacy theorem [GH82|, which shows that a memory of size |C|!
is sufficient for any game that uses only colours from C, even when the arena is infinite. This
result was later refined by Zielonka in [Zie98|, using a representation of the Muller conditions
as trees:

Definition 1 (Zielonka Tree of a Muller condition). The Zielonka Tree Zr ¢ of a win-
ning condition F C P(C) is defined inductively as follows:

1. IfC ¢ F, then Zrc = Zz ., where F=P(C)\F.

2. If C € F, then the root of ZF ¢ is labelled with C. Let C1,Ca,...,Cy be all the mazimal sets
in{U ¢ F | U C C}. Then we attach to the root, as its subtrees, the Zielonka trees of
F I Ci, ie. the Zric, c,, fori=1...k.

Hence, the Zielonka tree is a tree with nodes labelled by sets of colours. A node of ZFc is an
Eve node if it is labelled with a set from F, otherwise it is an Adam node.

A later analysis of this construction by Dziembowski, Jurdzinski and Walukiewicz in
[DJWI7]| led to an optimal and asymmetrical bound on the memory needed by the players to
define winning strategies:



Definition 2 (Number mx of a Muller condition). Let F C P(C) be a Muller condition,
and Zx, ¢,y Z2F,Cor- -+ 2F, . be the subtrees attached to the root of the tree Zxc. We define
the number mx inductively as follows:

1 if Zr,c does not have any subtrees,

max{mz,,mzr,,...,mgzg, } if C ¢ F (Adam node),
mg

={ &
Zmﬂ if C € F (Eve node).
i=1

Theorem 3 ([DIJWIT]). In any 2-player Muller game G with winning condition F, Eve has
a pure strateqy og winning from every state in her winning region and with memory at most
mg. Furthermore, there is a 2-player arena Ax such that any strategy winning for Eve in
every state of her winning region has a memory of size at least mx.

In [Cha07], Chatterjee showed that Theorem 3 can be extended to the setting of randomised
games, still with pure strategies:

Theorem 4 ([ChaO7]). For any 2%—player Muller game G with the winning condition F,
Eve has a pure strategy og almost surely winning from every state in her winning region and
with memory at most mr.

3.2 Memory reduction through randomisation

Randomised strategies are more general than pure strategies. It is thus a legitimate question
to ask whether the lower bound of Theorem 3 still holds for randomised strategies. It turns
out that it is not the case. In [CAAHO04|, a first result showed that upward-closed conditions
admit memoryless randomised strategies, while they don’t admit memoryless pure strategies:

Theorem 5 (|[CAdAHO04]). For any Qé—player Muller game G with an upward-closed winning
condition F, Eve has a randomised memoryless strateqy og winning from every state in her
wWINNINg Tegion.

This result was later extended in [Cha07], by removing the leaves attached to a node of
the Zielonka Tree representing an upward-closed subcondition:

Definition 6 (|Cha07]). Let F C P(C) be a Muller condition, and Zr, ¢, ZF, o, - - - s ZF, Ci
be the subtrees attached to the root of the tree Zz c. We define the number mJU_- iductively as
follows:

1 if Zr,c does not have any subtrees,
1 if F s upward-closed,
my = max{m%,mg-z, . ,ij:k} if C ¢ F (Adam node),
k
Zm% if C € F (Eve node).
i=1

Theorem 7 ([ChaO7]). For any 2%—player Muller game G with the winning condition F,
Eve has a randomised strategy og winning from every state in her winning region and with
memory at most m]U_-



4 Randomised Upper Bound

The upper bound of Theorem 7 is not tight for all conditions. For example, the number m%

of the condition F in Figure 1(b) is three, while there is always a winning condition with two
memory states. We present here yet another number for any Muller condition F, denoted 7,
that we compute from the Zielonka Tree:

Definition 8 (Number rr of a Muller condition). Let F C P(C) be a Muller condition,
where the root has k-+1 children, | of them being leaves. We denote by ZF, ¢\, 27,05 s Z2F,.,Ch
the non-leaves subtrees attached to the root of Zx c. We define v inductively as follows:

1 if Zr ¢ does not have any subtrees,
max{1l,rz,r75,...,r5} if C ¢ F (Adam node),
k
re = eri if C € F (Eve node) and | =0,
=1
Zk
Zry:i—i-l if C € F (Eve node) and 1 > 0.
i=1

The first remark is that if ) € F, rr is equal to mz: as the leaves belong to Eve, and
the fourth case cannot occur. In the other case, the intuition is that we merge leaves if they
are siblings. For example, the number r ¢ for our recurring example is two: one for the leaves
labelled bed and acd, and one for the leaves labelled a and b. The number m 4 is four (one for
each leaf), and mY is three (one for the leaves labelled a and b, and one for each other leaf).
This section will be devoted to the proof of Theorem 9:

Theorem 9 (Randomised upper bound). If Eve has a winning strateqy in the 2—% player
Muller game (Ag,F), she has a winning strategy with memory rr.

Let G = (F,A) be a game defined on the set of colours C such that Eve wins from any
initial node. We describe in the next three subsections a recursive procedure to compute a
winning strategy for Eve with 7r memory states in each non-trivial case in the definition of
rg. To this end, we fix a strategy 7 € T for Adam and an initial state sg € S. We use two
lemmas Lemmas 10 and 12 that derive directly from similar results in [DJW97| and
[Cha07]. The application of these principles to the game & in Figure 1 builds a randomised
strategy with two memory states left and right. In left, Eve sends the token to (\\ or /) and
in right, to (/" or \.). The memory switches from right to left with probability one when the
token visits a ¢, and from left to right with probability % at each step.

4.1 C is winning for Adam

In the case where Adam wins the set C, the construction of o relies on Lemma 10:

Lemma 10. Let F C P(C) be a Muller winning condition such that C ¢ F, and A be a
2% -player arena such that Eve wins everywhere. There are subarenas A; ... A, such that:

—i#£ji=>ANA =0;
— Vi, A; is a trap for Adam in the subarena A\ Attrg (U;;ﬁfh);

— Vi, x(A;) is included in the label E; of a child of the root of ZF ¢, and Eve wins everywhere



— A= Attrp(Ul_A)).

Let the subarenas A; be the ones whose existence is proved in this lemma. We denote by
o; the winning strategy for Eve in A;, and by a; the attractor strategy for Eve to A; in the
arena .A\Attr(U;;l Aj). We identify the memory states of the o;, so their union has the same

cardinal as the largest of them. For a state s, if i = min{j | s € Agtr(uizlAk)}, we define
o(s,m) by:

—ifse A,
e 0%(s,m) = o}(s,m)
e 0%(s,m) = oP(s,m)
—if s € Attrp(Ul_ Ag) \ A
e o%(s,m)=m
e 0%(s,m) = a;(s)

By induction hypothesis over the number of colours, we can assume that the strategies o;
have rz, memory states. The strategy o uses max{rfi} memory states.

Proposition 11. P57 (3i,Inf(p) C A;) = 1.

Proof. The subarenas A; are embedded traps, defined in such a way that the token can escape
an A; only by going to the attractor of a smaller one. Eve has thus a positive probability of
reaching an A; with j < 4. Thus, if the token escapes one of the A; infinitely often, the token
has probability one to go to an A; with j < i. By argument of minimality, after a finite prefix,
the token will stay in one of the traps forever. O

The strategy o; is winning from any state in A;. As Muller conditions are prefix-independent,
it follows from Proposition 11 that ¢ is also winning from any state in A.

4.2 C is winning for Eve, and the root of Zx ¢ has no leaves among its children.

In this case, the construction relies on the following lemma:

Lemma 12. Let F C P(C) be a Muller winning condition such that C € F, A a 24 -player
arena coloured by C such that Eve wins everywhere, and A; the label of a child of the root in
Zrc. Then, Eve wins everywhere on the subarena A\ Attrg(x~H(C\ A;)) with the condition
F 1A

Eve has a strategy o; that is winning from each state in A\ Attrg(x "1 (C\ 4;)). In this case,
the set of memory states of o is M = UF_, (i x M?). The “next-move” and “memory-update”
functions o® and o® for a memory state m = (i,m') are defined below:

—if se x HC\ 4)
e o%(s,m’) = (i + 1,m**) where m**! is any state in M**!
o if s € Sp, o™(s,m?) is any successor of s in A
—if s € Attrp(x " H(C\ 4;))
e o%(s,mt) = (i,m?)
e 0*(s,m") = a;(s)
—if se A\ Attrg(x 1 (C\ 4;))

+1



e o%(s,m') = (i,0%(s,m"))

e o%(s,m') = oP(s,m")

Once again, we can assume that the memory M; of the strategy o; is of size rra

it

Here, however, the memory set of ¢ is the disjoint union of the M;’s. Thus, o uses mem-
k

ory Z{T]-'I*Ai}.
i=1

Proposition 13. Let uc be the event “the top-level memory of o is ultimately constant”. Then,
Py (p € Pr | uc) = 1.

Proof. We call i the value of the top-level memory at the limit. After a finite prefix, the token
stops visiting x 1(C \ 4;). Thus, with probability one, it also stops visiting Attrg(x~*(C \ 4;)).
From this point on, the token stays in the arena A;, where Eve plays with the winning strategy
oi. Thus, P77 (p € Pria, | uc) =1, and, as Pr14, C Pr, Proposition 13 follows.

Proposition 14. If the top-level memory takes each wvalue in 1...k infinitely often, then
surely, Vi € 1... k, x(Inf(p)) € A;.

Proof. The update on the top-level memory follows a cycle on 1...k, leaving ¢ only when the
token visits x'(C \ A;). Thus, in order for the top-level memory to change continuously, the
token has to visit each of the y~1(C \ 4;) infinitely often. Proposition 14 follows. O

4.3 C is winning for Eve, and the root of Zx ¢ has at least one leaf in its
children.

As in the previous section, the construction relies on Lemma 12. In fact, the construction for
children which are not leaves, labelled Ay, ..., Ak, is exactly the same. The difference is that we
add here a single memory state 0  that represents all the leaves (labelled A_q,..., A_).
The memory states are thus updated modulo k£ + 1, and not modulo k. The °
function of o when the top-level memory is 0 is an even distribution over all the successors in
A of the current state. The “memory-update” function has probability % to stay into 0, and

‘next-move”

% to go to (1,my), for some memory state m; € M;. Thus, o uses memory Zle rr + 1. We
prove now that ¢ is winning. The structure of the proof is the same as in the former section,
with some extra considerations for the memory state 0.

Proposition 15. Let uc be the event “the top-level memory of o is ultimately constant and
different from 07. Then, P97 (p € Px | uc) = 1.

Proof. The proof is exactly the same as the one of Proposition 13. O

Proposition 16. The event “the top-level memory is ultimately constant and equal to 0” has
probability 0.

Proof. When the top-level memory is 0, the memory-update function has probability % at
each step to switch to 1. Proposition 16 follows. O

Proposition 17 considers the case where the top-level memory evolves continuously. By
definition of the memory update, this can happen only if all the memory states are visited
infinitely often.



Proposition 17. Let ec be the event “the top-level memory takes each value in 0. ..k infinitely
often”. Then, Vi € —L...k, P37 (x(Inf(p)) C C; | ec) = 0.

Proof. As in the proof of Proposition 14, from the fact that the memory is equal to each of
the ¢ € 1...k infinitely often, we can deduce that the token surely visits each of the C\ A;
infinitely often. We only need to show that, with probability one and for any j € 1...1[, the
set of limit states is not included in A_;. The Zielonka Trees of the conditions F | A_; are
leaves. This means that they are trivial conditions, where all the plays are winning for Adam.
Consequently, in this case, Lemma 12 guarantees that Attrg(x~1(C\ A_;)) is the whole arena.
The definition of o in the memory state (0) is to play legal moves at random. There is thus
a positive probability that Eve will play according to the attractor strategy a; long enough
to guarantee a positive probability that the token visits x~(C \ A_j). To be precise, for any
s € S, this probability is greater than (2-|S|)~1°l. Thus, with probability one, the token visits
each x71(C\ A_;) infinitely often. Proposition 17 follows. O

The initial case, where the Zielonka tree is reduced to a leaf, is trivial: the winner does not
depend on the play. Thus, Theorem 9 follows from the results of Sections 4.1, 4.2, and 4.3.

5 Lower Bound

In this section, we consider lower bounds on memory, 7.e. if we fix a Muller condition F on
a set of colours C, the minimal size of the memory set that is enough to define randomised
winning strategies for Eve on any arena coloured by the set C. In his thesis, Majumdar showed
the following theorem:

Theorem 18 ([Maj03]). For any set of colours C, there is a Muller game Ge = (Ac, Fe)
such that Eve wins, and every randomised almost-sure winning strateqy for her in Ge has a
memory of size at least %!.

However, this is a general lower bound on all Muller conditions, while we aim to find
specific lower bounds for each condition. We showed, in [Hor(07|, that in the special case of
Streett Games, the lower bound on pure strategies of [DJW97] still holds for randomised
strategies:

Theorem 19 ([Hor07]). For any k € N, there is a Streett arena Ay of index k such that
any randomised strategy winming for Eve in every state of her winning region has a memory
of size at least k!.

We prove here that there is a lower bound for each Muller condition that matches the
upper bound of Theorem 9. This result is formalised as Theorem 20:

Theorem 20. Let F be a Muller condition on C. There is a 2-player arena Ax over C such
that Eve has a winning strategy, and any randomised winning strategy for Eve in (Ax,F) uses
memory at least rr.

As the construction of the upper bound was based on the Zielonka tree, the lower bound
is based on the Zielonka DAG:

Definition 21. The Zielonka DAG Drc of a winning condition F C P(C) is derived from
Zrc by merging the nodes which share the same label.

Notice that the computation of 7z (Definition 8) is as natural on the DAG as on the tree.



5.1 Cropped DAGs

The relation between rz and the shape of Dr ¢ is asymmetrical: it depends directly on the
number of children of Eve’s nodes, and not at all on the number of children of Adam’s nodes.
The notion of cropped DAG is the next logical step: a sub-DAG where Eve’s nodes keep all
their children, while each node of Adam keeps only one child:

Definition 22. A DAG & is a cropped DAG of a Zielonka DAG Dg ¢ if and only if

— The nodes of € are a subset of the nodes of D c. Furthermore, the owner and label of a
node in € are its owner and label in Dy c.

— There is only one node without predecessor in £, which we call the root of €. It is the root
of Drc, if it belongs to Eve; otherwise, it is one of its children.

— The children of a node of Eve in £ are exactly its children in Drc.

— A node of Adam has exactly one child in &£, chosen among his children in Dr ¢, provided
there is one. If it has no children in Dgrc, it has no children in £.

A cropped DAG has the general form of a Zielonka DAG: the nodes belong to either Eve
or Adam, and they are labelled by sets of states. We can thus compute the number r¢ of a
cropped DAG € in a natural way. In fact, this number has a more intuitive meaning in the
case of cropped DAGs: if the leaves belong to Eve, it is the number of branches; if Adam
owns the leaves, it is the number of branches with the leaf removed. There is also a direct link
between the cropped DAGs of a Zielonka DAG Dr ¢ and the number r7: in a cropped DAG,
there is one child for each internal node of Adam; in the recursive definition of rg, there is a
maximum over the values of the children. Proposition 23 follows directly:

Proposition 23. Let F be a Muller condition on C, and Drc be its Zielonka DAG. Then for
any cropped DAG £ of Dy ¢, we have re < rr. Furthermore, there is a cropped DAG £* such
that re« = rg.

5.2 From cropped DAGs to arenas

From any cropped DAG & of Dx ¢, we define an arena A¢ which follows roughly the structure
of £: the token starts from the root, goes towards the leaves, and then restarts from the root.
In her nodes, Eve can choose to which child she wants to go. Adam’s choices, on the other
hand, consists in either stopping the current traversal or allowing it to proceed.

We present first two “macros”, depending on a subset of C:

— in Pick™(C), Adam can visit any subset of colours in C;
— in Pick(D), he must visit exactly one colour in D.

Both are represented in Figure 2, and they are the only occasions where colours are visited in
Ag: all the other states are colourless.

Eve’s states in the arena Ag are in bijection with the nodes of £. Likewise, each outgoing
transition corresponds to a child of the corresponding node. But the successors of these states
are not themselves in bijection with the nodes of Adam: if a single node of Adam A is the
child of two different nodes of Eve E and F', we must use the construction of Figure 4 twice:
one for E — A and one for F' — A. In states corresponding to leaves, Eve has no decision to
take; Adam can visit any colours in the label of the leaf (Pick* procedure). The token is then
sent back to the root. These cases are described in Figure 3.

10



D ={d:...dy}
(b) Pick(D)

Fig. 2. Pick"(C) and Pick(D)

Al Az AZ E— Al E— Az E— Ag root

(a) Node “E” (b) Leaf “E”

Fig. 3. Eve chooses where to go ...

Adam’s options on a given node, on the other hand, do not involve the choice of a child: by
Definition 22, Adam’s nodes in € have but one child. Instead, he can either stop the current
traversal, or, if the current node is not a leaf, allow it to proceed to its only child.

If he chooses to stop, Adam has to visit some coloured states before the token is sent back
to the root. The available choices depend on the labels of both the current and the former
nodes  which is why there are as many copies of Adam’s nodes in Ag as they have parents in
E. If the parent is labelled by E, and the current node by A, the token goes through Pick*(E)
and Pick(E \ A). Adam can thus choose any number of colours in E, as long as he chooses at
least one outside of A.

Notice that if Adam does not stop the traversal, the token is sent to the unique state
corresponding to the child of the current node. This is why the size of these arenas are roughly
DAG-sized, instead of tree-sized.

5.3 Winning strategy, branch strategies, passive strategy

We describe a winning strategy o for Eve in the game (Ag, F). Its memory states are the
branches of £, and do not change during a traversal. Her moves in the memory state b =
Eq Ay ... Ei(Ay) follow the branch b: in the state E;, Eve chooses the successor corresponding
to the transition E; — A;. Notice that Adam cannot diverge from the branch, as his nodes
have at most one child. When he chooses to stop the traversal, Eve updates her memory. For
example, if he stops at the ith step, while Eve is in the memory state b = E1A; ... Ey(Ay)
the update is done as follows:

Y

— If E; has zero or one child in &£, the memory is unchanged;

11



_— =T

' Pick(E \ A),
@ root

/
(a) Edge “E” - «I* when “A” is a node (b) Edge “E” - “A” when “A” is a leaf

Fig. 4. ...and Adam chooses when to stop.

— otherwise, the new memory branch has F1A; ... E; A as a prefix, where A is the next child
of E;, or the first one if A; was the last.

Proposition 24. The strategy o is surely winning for Eve in the game (Ag, F).

Proof. Let p be a play consistent with 0. We denote by ¢ the smallest integer such that Adam
stops infinitely often a traversal at the ith step.

After a finite prefix, the first 2¢ — 1 nodes in the memory branch are constant, and we
denote them by E1A;FEs ... E;. From this point on, whatever Adam does, he can only choose
colours in F;. Furthermore, each time he chooses ¢, he must choose a state outside of the
current A;, which changes afterwards to the next, in a circular way.

So, in the end, Inf(p) C E;, and, for any child A of E; in &, Inf(p) ¢ A. Thus p is winning
for Eve. Proposition 24 follows.

Obviously, Adam has no winning strategy in Ag. However, we describe the class of branch
strategies for him, whose point is to punish any attempt of Eve to win with less than mz or
rF memory states. There is one such strategy 7, for each branch b in £ (whence the name),
and the principle is that 7, stops the traversal as soon as Eve deviates from b:

Definition 25. The branch strateqy m, for Adam in Ag, corresponding to the branch b =
E1A1Es ... El(Ap) in &, is a positional strategy whose moves are described below.

— In a state B — A such that 3i, E = E; N A # A;: stop the traversal and visit the colours of
Ai;

— in a state E — A such that 3i, E = E; N A = A;: send the token to E;iq;

— in the state By — Ay: visit Ep;

— in the leaf Ey: visit Ey.

Notice that no move is given for a state £ — A such that Vi, E # F;. The reason is that
these states are not reachable from the root when Adam plays 75, so, in the limit, what he
does in these states doesn’t matter. Notice also that when Adam chooses to stop a traversal
in a state F; — A, he can visit exactly the colours of A;: as A and A; are maximal subsets of
E;, there is at least one state in A; \ A that he can pick in the Pick(E; \ A) area.

We informally describe one last strategy for Adam: the passive strategy, in which he never
stops a traversal before it reaches a leaf, and then plays at random in the Pick / Pick™ part.

12



5.4 Winning against branch strategies

We define the set of branches of a memory state m as the branches of £ that have a positive
probability to be traversed when Eve is in the memory state m and Adam plays with a passive
strategy.

The notion of “branch of a memory state” carries to the case of randomised strategies, but
not its unicity: even if Eve starts in the same memory state and Adam plays with a passive
strategy, the random decisions can lead to different branches. We consider thus the set of
branches of a memory state m: they are the branches that have a positive probability to be
traversed when Eve is in the memory state m and Adam plays with a passive strategy.

Proposition 26. Let 0 = (M, 0", 0") be an almost-sure winning strateqy for Eve in (Ag,F).
Then o has memory at least re.

Proof. The idea is that different memory states are necessary to deal with the branch strate-
gies. However, as we will see, a single memory state can sometimes deal with several branch
strategies.

Let b= E1A; ... Ei(Ay) be a branch of £ and 73, be the corresponding branch strategy for
Adam. Consider what happens if Eve plays ¢ and Adam plays 7,. By definition of 7, the set
of colours visited in a traversal of p is one of the A;’s, or Ey if and only if Eve plays along
b. So, as o wins against 73, there is at least one memory state m such that b is a branch of
m. However, there can be other branches for m, as long as they lead to visits to Ay, and not
another A; i.e.when the other branches are siblings or nephews of b. Consequently, a memory
state m is suitable against 7, if b is a branch of m and F1A; ... Ey is a prefix of all the branches
of m.

It follows that a single memory state can be suitable against two strategies 7, and 7y
corresponding to the branches b = E1 Ay ... E¢A; and b = E}A| ... E} A}, only if they are
siblings, i.e. = ¢ and Vi < {, E; = E!

There are rg equivalence classes for this relation in €. Hence, there must be at least r¢
memory states in M. Proposition 26 follows.

By Proposition 23, there is a cropped DAG & of D ¢ such that rg = rr. So, in general, Eve
needs randomised strategies with memory 7z in order to win games whose winning condition
is F, which completes the proof of Theorem 20.

6 Conclusions

We have provided a better and tight bound for the memory needed to define almost sure
winning randomised strategies. This allows us to characterise the class of games which admit
randomised memoryless strategies

Corollary 27 (Randomised Memoryless Conditions). Eve can restrict herself to ran-
domised memoryless strategies for a Muller condition F if and only if her nodes in the Zielonka
Tree Zg c cannot have more than one child, unless all these children are leaves.

This yields a NP algorithm for the winning problem of such games: randomised memoryless
strategy are polynomial witnesses; and solving 1%—p1ayer Muller games is PTiME [CAAHO04].
Another consequence of our result is that for each Muller condition, at least one of the players
cannot improve its memory through randomisation.

13



Corollary 28. For any Muller condition F, the player who wins the plays where no colour is
visited infinitely often needs as much memory for randomised strategies as for pure strategies.

A third collateral result is the size of the witness arena in our proof of Theorem 20, which
is roughly equivalent to the size of the Zielonka DAG. In [DJW97], the size of the arena was
roughly the size of the Zielonka tree, which can be exponentially larger. However, the question
of memory bounds in arenas of polynomial size in the number of colours remains unanswered,
except for some special cases (Majumdar’s “global” lower bound [Maj03] and Streett games
[Hor07]).

We intend now to consider the case of games whose winning condition is a regular language,
in order to get cheaper alternatives to the use of the Muller normal form.

References

[BL69] J. Richard Biichi and Lawrence H. Landweber. Solving sequential conditions by finite-state strate-
gies. Transactions of the American Mathematical Society, 138:295-311, 1969.

[CAAHO04] Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. Trading memory for random-
ness. In Proceedings of the 1st International Conference on Quantitative Evaluation of Systems,
QEST’04, pages 206-217, 2004.

[Cha07] Krishnendu Chatterjee. Optimal strategy synthesis in stochastic muller games. In Proceedings of
the 10th International Conference on Foundations of Software Science and Computation Structures,
FOSSACS’07, pages 138-152; 2007.

[Con92] Anne Condon. The complexity of stochastic games. Information and Computation, 96:203 224,
1992.

[deA97]  Luca de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford University, 1997.

[DJW97]| Stefan Dziembowski, Marcin Jurdzinski, and Igor Walukiewicz. How much memory is needed to
win infinite games? In Proceedings of the 12th Symposium on Logic in Computer Science, LICS’97,
pages 99-110, 1997.

[GH82]  Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Proceedings of the 14th Annual
ACM Symposium on Theory of Computing, STOC’82, pages 60-65, 1982.

[Hor07]  Florian Horn. Dicing on the Streett. Information Processing Letters, 104(1):1-9, 2007.

[Maj03] Rupak Majumdar. Symbolic Algorithms for Verification and Control. PhD thesis, Berkeley Univer-
sity, 2003

[MP92]  Zohar Manna and Amir Pnueli. The temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer, 1992.

[PRR9] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Proceedings of the 16th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 179-190,
1989.

[Tho95] Wolfgang Thomas. On the synthesis of strategies in infinite games. In Proceedings of the 24th
International Symposium on Theoretical Aspects of Computer Science, STACS’07, pages 1-13, 1995.

[Zie98| Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata on
infinite trees. Theoretical Computer Science, 200(1-2):135-183, 1998.

14



