
Random Fruits on the Zielonka TreeFlorian HornLIAFA, Université Paris 7, Case 7014, 2 plae Jussieu, F-75251 Paris 5, FraneLehrstuhl für Informatik VII, RWTH, Ahornstraÿe 55, 52056 Aahen, Germanyhorn�liafa.jussieu.frAbstrat. Stohasti games are a natural model for the synthesis of ontrollers onfronted toadversarial and/or random ations. In partiular, ω-regular games of in�nite length an representreative systems whih are not expeted to reah a orret state, but rather to handle a ontinuousstream of events. One ritial resoure in suh appliations is the memory used by the ontroller.In this paper, we study the amount of memory that an be saved through the use of randomisationin strategies, and present mathing upper and lower bounds for stohasti Muller games.1 IntrodutionA stohasti game arena is a direted graph with three kinds of states: Eve's, Adam's andrandom states. A token irulates on this arena: when it is in one of Eve's states, she hoosesits next loation among the suessors of the urrent state; when it is in one of Adam's states,he hooses its next loation; and when it is in a random state, the next loation is hosenaording to a �xed probability distribution. The result of playing the game for ω moves isan in�nite path of the graph. A play is winning either for Eve or for Adam, and the �winnerproblem� onsists in determining whether one of the players has a winning strategy, from agiven initial state. Closely related problems onern the omputation of winning strategies, aswell as determining the nature of these strategies: pure or randomised, with �nite or in�nitememory. There has been a long history of using arenas without random states (2-player arenas)for modelling and synthesising reative proesses [BL69,PR89℄: Eve represents the ontroller,and Adam the environment. Stohasti (21

2
-player) arenas [Con92,deA97℄, with the addition ofrandom states, an also model unontrollable ations that happen aording to a random law,rather than by hoie of an atively hostile environment. The desired behaviour of the systemis traditionally represented as an ω-regular winning ondition, whih naturally expresses thetemporal spei�ations and fairness assumptions of transition systems [MP92℄. From this pointof view, the omplexity of the winning strategies is a entral question, sine they representpossible implementations of the ontrollers in the synthesis problem. In this paper, we fouson an important normal form of ω-regular onditions, namely Muller winning onditions (see[Tho95℄ for a survey).In the ase of 2-player Muller games, a fundamental determinay result of Bühi andLandweber ensures that, from any initial state, one of the players has a winning strategy[BL69℄. Gurevih and Harrington used the LAR (latest appearane reord) struture of M-Naughton to extend this result to strategies with memory fatorial in the size of the game[GH82℄. Zielonka re�nes the LAR onstrution into a tree, and derives from it an elegant algo-rithm to ompute winning regions in 2-player Muller games [Zie98℄. An insightful analysis ofthe Zielonka tree by Dziembowski, Jurdzinski, and Walukiewiz leads to optimal (and asym-metrial) memory bounds for non-randomised winning strategies in 2-player Muller games[DJW97℄. Chatterjee extends algorithm and bounds to the ase of non-randomised strategies



over 21

2
-player arenas [Cha07℄. However, the lower bound on memory does not hold for ran-domised strategies, even in non-stohasti arenas. In partiular, Chatterjee, de Alfaro, andHenzinger show that Eve only needs to onsider memoryless randomised strategies when theondition is upward-losed [CdAH04℄. Chatterjee extends this result in [Cha07℄, showing thatonditions with non-trivial upward-losed subsets admit randomised strategies with less mem-ory than non-randomised ones. Majumdar gives a global lower bound for all Muller onditionswith a �xed number of olours [Maj03℄, while we showed that in the ase of Streett games,the upper bound for non-randomised strategy is still valid for randomised ones [Hor07℄.Our ontributions. The memory bounds of [Cha07℄ are not tight in general, even in the aseof 2-player arenas. We give here mathing upper and lower bounds, for any Muller ondition.We ompute a number rF from the Zielonka Tree of a Muller ondition F , and we show that:� there is a randomised winning strategy with rF memory in every 21

2
-player game (AF ,F)(Theorem 9).� there is a 2-player game (AF ,F) where any randomised winning strategy for Eve has atleast rF memory states (Theorem 20).Furthermore, the witness arenas we build in the proof of Theorem 20 are notably smaller(exponentially smaller, in some ases) than the arenas built in [DJW97℄, even though theproblem of polynomial arenas remains open.Outline of the paper. Setion 2 realls the lassial notions in the area, while Setion 3presents former results on memory bounds and randomised strategies. The next two setionspresent our main results. In Setion 4, we introdue the number rF and show that it is anupper bound on the memory needed to win in any 21

2
-game (AF ,F). In Setion 5, we showthat this bound is tight. Finally, in Setion 6, we derive some onsequenes from our result:we haraterise the lass of Muller onditions that admit memoryless randomised strategies,and we show that for eah Muller ondition, at least one of the players annot improve itsmemory through randomisation.2 De�nitionsWe onsider turn-based stohasti two-player Muller games. We reall here several lassialnotions in the �eld, and refer the reader to [Tho95,deA97℄ for more details.Probability Distribution. For a �nite set A, a probability distribution on A is a funtion

α : A → [0, 1] suh that ∑

a∈A α(a) = 1. We denote the set of probability distributions on Aby D(A). Given a distribution α ∈ D(A), we denote by Supp(α) = {a ∈ A | α(a) > 0} thesupport of α.Arenas. A turn-based stohasti �nite arena (21

2
-player arena) A over a set of olours Consists of a direted �nite graph (S,T ), a partition (SE ,SA,SR) of S, a probabilisti transitionfuntion δ : SR → D(S) suh that t ∈ Supp(δ(s)) ⇔ (s, t) ∈ T , and a partial olouring funtion

χ : S ⇀ C.The states in SE (resp. SA, SR) are Eve's states (resp. Adam's states, random states), andare graphially represented as #'s (resp. 2, △) in �gures. The turn-based deterministi arenas(2-player arenas) are the speial ase of 21

2
-player arenas with SR = ∅.A set U ⊆ S of states is alled δ-losed if for every random state u ∈ U ∩SR, if (u, t) ∈ T ,then t ∈ U . It is live if for every non-random state u ∈ U ∩ (SE ∪ SA), there is a state t ∈ Usuh that (u, t) ∈ T . A subset U that is live and δ-losed indues a subarena of A, denoted by

A ↾ U . A set U ⊆ S that is not a subarena is alled a partial subarena.2



Plays and Strategies. An in�nite path, or play, over the arena A is an in�nite sequene
ρ = ρ0ρ1 . . . of states suh that (ρi, ρi+1) ∈ T for all i ∈ N. The set of ourring states is
Occ(ρ) = {s | ∃i ∈ N, ρi = s}, and the set of limit states is Inf(ρ) = {s | ∃∞i ∈ N, ρi = s}. Wewrite Ω for the set of all plays, and Ωs for the set of plays that start from the state s.A strategy with memory M for Eve on the arena A is a (possibly in�nite) transduer
σ = (M,σn, σu), where σn is the �next-move� funtion from (SE × M) to D(S) suh that
Supp(σn(s,m)) ⊆ T (s) and σu is the �memory-update� funtion, from (S × M) to D(M).Notie that both the move and the update are randomised: strategies whose memory is deter-ministi are a di�erent, less ompat, model. The strategies for Adam are de�ned likewise. Wedenote by Σ and T the set of all strategies for Eve and Adam, respetively. A strategy σ ispure if it does not use randomisation. It is �nite-memory if M is a �nite set, and memorylessif M is a singleton. Notie that strategies de�ned in the usual way as funtions from S∗ to San be de�ned as strategies with in�nite memory: the set of memory states is S∗, the memoryupdate is σu(s,w) 7→ ws, so the next-move an use the full pre�x as argument.One a starting state s ∈ S and strategies σ ∈ Σ and τ ∈ T are �xed, the outome of thegame is a random walk ρσ,τ

s for whih the probabilities of events are uniquely �xed (an eventis a measurable set of paths). For an event P ∈ Ω, we denote by Pσ,τ
s (P ) the probability thata play belongs to P if it starts from s and Eve and Adam follow the strategies σ and τ .A play is onsistent with σ if for eah position i suh that wi ∈ SE, Pσ,τ

w0
(ρi+1 = wi+1 |

ρ0 = w0 . . . ρi = wi) > 0. The set of plays onsistent with σ is denoted by Ωσ. Similar notionsan be de�ned for Adam's strategies.Traps and Attrators. The attrator of Eve to the set U , denoted AttrE(U), is the set ofstates where Eve an guarantee that the token reahes the set U with a positive probability.It is de�ned indutively by:
Attr0

E(U) = U

Attri+1

E (U) = Attri
E(U)

∪ {s ∈ SE ∪ SR,∃t ∈ Attri
E(U) | (s, t) ∈ T }

∪ {s ∈ SA | ∀t, (s, t) ∈ E ⇒ t ∈ Attri
E(U)}

AttrE(U) =
⋃

i>0
Attri

E(U)The orresponding attrator strategy to U for Eve is a pure and memoryless strategy aUsuh that for any state s ∈ SE ∩ (AttrE(U) \ U), s ∈ Attri+1

E (U) ⇒ aU (s) ∈ Attri
E(U).The dual notion of trap for Eve denotes a set from where Eve annot esape, unless Adamallows her to do so: a set U is a trap for Eve if and only if ∀s ∈ U∩(SE∪SR), (s, t) ∈ T ⇒ t ∈ Uand ∀s ∈ U ∩ SA,∃t ∈ U, (s, t) ∈ T . Notie that a trap is a �strong� notion � the token annever leave it if Adam does not allow it to do so, while an attrator is a �weak� one � thetoken an avoid the target even if Eve uses the attrator strategy. Notie also that a trap (foreither player) is always a subarena.Winning Conditions. A zero-sum boolean winning ondition (winning ondition) is a subset

Φ of Ω. Eve wins a play ρ if ρ ∈ Φ. Adam wins if ρ ∈ Ω \ Φ. We onsider ω-regular winningonditions formalised as Muller onditions. A Muller ondition is determined by a subset Fof the power set P(C) of olours. The plays winning for Eve for suh a ondition are the oneswhere the set of limit olours belongs to F :
ΦF = {ρ ∈ Ω|χ(Inf(ρ)) ∈ F}An example of Muller game is given in Figure 1(a). We use it throughout the paper to desribevarious notions and results. 3
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F = {{a, b}, {a, b, c}, {a, b, c, d}}(a) The game G = (A,F)
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a b(b) Zielonka Tree of FFig. 1. Reurring ExampleWinning Strategies. Given a winning ondition Φ and a state s ∈ S, a strategy σ ∈ Σ issure winning for Eve from s (resp. almost-sure winning, positive winning) if for every strategy
τ ∈ T , we have Ωσ,τ

s ⊆ Φ (resp. Pσ,τ
s (Φ) = 1, Pσ,τ

s (Φ) > 0). The pure winning region of Eve isthe set of states from where she has a pure winning strategy. The almost sure winning regionand the positive winning region, as well as all these notions for Adam are de�ned in a similarway.3 Former results in memory bounds and randomisation3.1 Pure strategiesThere has been intense researh sine the sixties on the non-stohasti setting, i.e. pure strate-gies and 2-player arenas. Bühi and Landweber showed the determinay of Muller games in[BL69℄. Gurevih and Harrington used the LAR (Latest Appearane Reord) of MNaughtonto prove their Forgetful Determinay theorem [GH82℄, whih shows that a memory of size |C|!is su�ient for any game that uses only olours from C, even when the arena is in�nite. Thisresult was later re�ned by Zielonka in [Zie98℄, using a representation of the Muller onditionsas trees:De�nition 1 (Zielonka Tree of a Muller ondition). The Zielonka Tree ZF ,C of a win-ning ondition F ⊆ P(C) is de�ned indutively as follows:1. If C /∈ F , then ZF ,C = ZF ,C, where F = P(C) \ F .2. If C ∈ F , then the root of ZF ,C is labelled with C. Let C1, C2, . . . , Ck be all the maximal setsin {U /∈ F | U ⊆ C}. Then we attah to the root, as its subtrees, the Zielonka trees of
F ↾ Ci, i.e. the ZF↾Ci,Ci

, for i = 1 . . . k.Hene, the Zielonka tree is a tree with nodes labelled by sets of olours. A node of ZF ,C is anEve node if it is labelled with a set from F , otherwise it is an Adam node.A later analysis of this onstrution by Dziembowski, Jurdzinski and Walukiewiz in[DJW97℄ led to an optimal and asymmetrial bound on the memory needed by the players tode�ne winning strategies: 4



De�nition 2 (Number mF of a Muller ondition). Let F ⊆ P(C) be a Muller ondition,and ZF1,C1
,ZF2,C2

, . . . ,ZFk,Ck
be the subtrees attahed to the root of the tree ZF ,C. We de�nethe number mF indutively as follows:

mF =



















1 if ZF ,C does not have any subtrees,
max{mF1

,mF2
, . . . ,mFk

} if C /∈ F (Adam node),
k

∑

i=1

mFi
if C ∈ F (Eve node).Theorem 3 ([DJW97℄). In any 2-player Muller game G with winning ondition F , Eve hasa pure strategy σG winning from every state in her winning region and with memory at most

mF . Furthermore, there is a 2-player arena AF suh that any strategy winning for Eve inevery state of her winning region has a memory of size at least mF .In [Cha07℄, Chatterjee showed that Theorem 3 an be extended to the setting of randomisedgames, still with pure strategies:Theorem 4 ([Cha07℄). For any 21

2
-player Muller game G with the winning ondition F ,Eve has a pure strategy σG almost surely winning from every state in her winning region andwith memory at most mF .3.2 Memory redution through randomisationRandomised strategies are more general than pure strategies. It is thus a legitimate questionto ask whether the lower bound of Theorem 3 still holds for randomised strategies. It turnsout that it is not the ase. In [CdAH04℄, a �rst result showed that upward-losed onditionsadmit memoryless randomised strategies, while they don't admit memoryless pure strategies:Theorem 5 ([CdAH04℄). For any 21

2
-player Muller game G with an upward-losed winningondition F , Eve has a randomised memoryless strategy σG winning from every state in herwinning region.This result was later extended in [Cha07℄, by removing the leaves attahed to a node ofthe Zielonka Tree representing an upward-losed subondition:De�nition 6 ([Cha07℄). Let F ⊆ P(C) be a Muller ondition, and ZF1,C1

,ZF2,C2
, . . . ,ZFk ,Ckbe the subtrees attahed to the root of the tree ZF ,C. We de�ne the number mU

F indutively asfollows:
mU

F =



























1 if ZF ,C does not have any subtrees,
1 if F is upward-losed,
max{mU

F1
,mU

F2
, . . . ,mU

Fk
} if C /∈ F (Adam node),

k
∑

i=1

mU
Fi

if C ∈ F (Eve node).Theorem 7 ([Cha07℄). For any 21

2
-player Muller game G with the winning ondition F ,Eve has a randomised strategy σG winning from every state in her winning region and withmemory at most mU

F . 5



4 Randomised Upper BoundThe upper bound of Theorem 7 is not tight for all onditions. For example, the number mU
Fof the ondition F in Figure 1(b) is three, while there is always a winning ondition with twomemory states. We present here yet another number for any Muller ondition F , denoted rF ,that we ompute from the Zielonka Tree:De�nition 8 (Number rF of a Muller ondition). Let F ⊆ P(C) be a Muller ondition,where the root has k+l hildren, l of them being leaves. We denote by ZF1,C1

,ZF2,C2
, · · · ,ZFk ,Ckthe non-leaves subtrees attahed to the root of ZF ,C. We de�ne rF indutively as follows:

rF =







































1 if ZF ,C does not have any subtrees,
max{1, rF1

, rF2
, . . . , rFk

} if C /∈ F (Adam node),
k

∑

i=1

rFi
if C ∈ F (Eve node) and l = 0,

k
∑

i=1

rFi
+ 1 if C ∈ F (Eve node) and l > 0.The �rst remark is that if ∅ ∈ F , rF is equal to mF : as the leaves belong to Eve, andthe fourth ase annot our. In the other ase, the intuition is that we merge leaves if theyare siblings. For example, the number rF for our reurring example is two: one for the leaveslabelled bcd and acd, and one for the leaves labelled a and b. The number mF is four (one foreah leaf), and mU
F

is three (one for the leaves labelled a and b, and one for eah other leaf).This setion will be devoted to the proof of Theorem 9:Theorem 9 (Randomised upper bound). If Eve has a winning strategy in the 2-1

2
playerMuller game (AF ,F), she has a winning strategy with memory rF .Let G = (F ,A) be a game de�ned on the set of olours C suh that Eve wins from anyinitial node. We desribe in the next three subsetions a reursive proedure to ompute awinning strategy for Eve with rF memory states in eah non-trivial ase in the de�nition of

rF . To this end, we �x a strategy τ ∈ T for Adam and an initial state s0 ∈ S. We use twolemmas � Lemmas 10 and 12 � that derive diretly from similar results in [DJW97℄ and[Cha07℄. The appliation of these priniples to the game G in Figure 1 builds a randomisedstrategy with two memory states left and right. In left, Eve sends the token to (տ or ւ) andin right, to (ր or ց). The memory swithes from right to left with probability one when thetoken visits a c, and from left to right with probability 1

2
at eah step.4.1 C is winning for AdamIn the ase where Adam wins the set C, the onstrution of σ relies on Lemma 10:Lemma 10. Let F ⊆ P(C) be a Muller winning ondition suh that C /∈ F , and A be a21

2
-player arena suh that Eve wins everywhere. There are subarenas A1 . . .An suh that:� i 6= j ⇒ Ai ∩Aj = ∅;� ∀i,Ai is a trap for Adam in the subarena A \ AttrE

(

∪i−1

j=1
Aj

);� ∀i, χ(Ai) is inluded in the label Ei of a hild of the root of ZF ,C, and Eve wins everywherein (Ai,F ↾ Ei); 6



� A = AttrE(∪n
j=1Aj).Let the subarenas Ai be the ones whose existene is proved in this lemma. We denote by

σi the winning strategy for Eve in Ai, and by ai the attrator strategy for Eve to Ai in thearena A\Attr(∪i−1

j=1
Aj). We identify the memory states of the σi, so their union has the sameardinal as the largest of them. For a state s, if i = min{j | s ∈ Attr

E
(∪j

k=1
Ak)}, we de�ne

σ(s,m) by:� if s ∈ Ai

• σu(s,m) = σu

i (s,m)
• σn(s,m) = σn

i (s,m)� if s ∈ AttrE(∪i
k=1

Ak) \ Ai

• σu(s,m) = m
• σn(s,m) = ai(s)By indution hypothesis over the number of olours, we an assume that the strategies σihave rFi

memory states. The strategy σ uses max{rFi
} memory states.Proposition 11. Pσ,τ

s0
(∃i, Inf(ρ) ⊆ Ai) = 1.Proof. The subarenas Ai are embedded traps, de�ned in suh a way that the token an esapean Ai only by going to the attrator of a smaller one. Eve has thus a positive probability ofreahing an Aj with j < i. Thus, if the token esapes one of the Ai in�nitely often, the tokenhas probability one to go to an Aj with j < i. By argument of minimality, after a �nite pre�x,the token will stay in one of the traps forever. ⊓⊔The strategy σi is winning from any state inAi. As Muller onditions are pre�x-independent,it follows from Proposition 11 that σ is also winning from any state in A.4.2 C is winning for Eve, and the root of ZF,C has no leaves among its hildren.In this ase, the onstrution relies on the following lemma:Lemma 12. Let F ⊆ P(C) be a Muller winning ondition suh that C ∈ F , A a 21

2
-playerarena oloured by C suh that Eve wins everywhere, and Ai the label of a hild of the root in

ZF ,C. Then, Eve wins everywhere on the subarena A \ AttrE(χ−1(C \ Ai)) with the ondition
F ↾ Ai.Eve has a strategy σi that is winning from eah state in A\AttrE(χ−1(C\Ai)). In this ase,the set of memory states of σ is M = ∪k

i=1(i × M i). The �next-move� and �memory-update�funtions σn and σu for a memory state m = (i,mi) are de�ned below:� if s ∈ χ−1(C \ Ai)
• σu(s,mi) = (i + 1,mi+1) where mi+1 is any state in M i+1

• if s ∈ SE, σn(s,mi) is any suessor of s in A� if s ∈ AttrE(χ−1(C \ Ai))
• σu(s,mi) = (i,mi)
• σn(s,mi) = ai(s)� if s ∈ A \ AttrE(χ−1(C \ Ai)) 7



• σu(s,mi) = (i, σu

i (s,mi))
• σn(s,mi) = σn

i (s,m
i)One again, we an assume that the memory Mi of the strategy σi is of size rF↾Ai

.Here, however, the memory set of σ is the disjoint union of the Mi's. Thus, σ uses mem-ory k
∑

i=1

{rF↾Ai
}.Proposition 13. Let uc be the event �the top-level memory of σ is ultimately onstant�. Then,

Pσ,τ
s0

(ρ ∈ ΦF | uc) = 1.Proof. We all i the value of the top-level memory at the limit. After a �nite pre�x, the tokenstops visiting χ−1(C \Ai). Thus, with probability one, it also stops visiting AttrE(χ−1(C \Ai)).From this point on, the token stays in the arena Ai, where Eve plays with the winning strategy
σi. Thus, Pσ,τ (ρ ∈ ΦF↾Ai

| uc) = 1, and, as ΦF↾Ai
⊆ ΦF , Proposition 13 follows.Proposition 14. If the top-level memory takes eah value in 1 . . . k in�nitely often, thensurely, ∀i ∈ 1 . . . k, χ(Inf(ρ)) * Ai.Proof. The update on the top-level memory follows a yle on 1 . . . k, leaving i only when thetoken visits χ−1(C \Ai). Thus, in order for the top-level memory to hange ontinuously, thetoken has to visit eah of the χ−1(C \ Ai) in�nitely often. Proposition 14 follows. ⊓⊔4.3 C is winning for Eve, and the root of ZF,C has at least one leaf in itshildren.As in the previous setion, the onstrution relies on Lemma 12. In fat, the onstrution forhildren whih are not leaves, labelled A1, . . . , Ak, is exatly the same. The di�erene is that weadd here a single memory state �0� that represents all the leaves (labelled A−1, . . . , A−l).The memory states are thus updated modulo k + 1, and not modulo k. The �next-move�funtion of σ when the top-level memory is 0 is an even distribution over all the suessors in

A of the urrent state. The �memory-update� funtion has probability 1

2
to stay into 0, and

1

2
to go to (1,m1), for some memory state m1 ∈ M1. Thus, σ uses memory ∑k

i=1
rFi

+ 1. Weprove now that σ is winning. The struture of the proof is the same as in the former setion,with some extra onsiderations for the memory state 0.Proposition 15. Let uc be the event �the top-level memory of σ is ultimately onstant anddi�erent from 0�. Then, Pσ,τ
s (ρ ∈ ΦF | uc) = 1.Proof. The proof is exatly the same as the one of Proposition 13. ⊓⊔Proposition 16. The event �the top-level memory is ultimately onstant and equal to 0� hasprobability 0.Proof. When the top-level memory is 0, the memory-update funtion has probability 1

2
ateah step to swith to 1. Proposition 16 follows. ⊓⊔Proposition 17 onsiders the ase where the top-level memory evolves ontinuously. Byde�nition of the memory update, this an happen only if all the memory states are visitedin�nitely often. 8



Proposition 17. Let ec be the event �the top-level memory takes eah value in 0 . . . k in�nitelyoften�. Then, ∀i ∈ −l . . . k, Pσ,τ
s (χ(Inf(ρ)) ⊆ Ci | ec) = 0.Proof. As in the proof of Proposition 14, from the fat that the memory is equal to eah ofthe i ∈ 1 . . . k in�nitely often, we an dedue that the token surely visits eah of the C \ Aiin�nitely often. We only need to show that, with probability one and for any j ∈ 1 . . . l, theset of limit states is not inluded in A−j . The Zielonka Trees of the onditions F ↾ A−j areleaves. This means that they are trivial onditions, where all the plays are winning for Adam.Consequently, in this ase, Lemma 12 guarantees that AttrE(χ−1(C \A−j)) is the whole arena.The de�nition of σ in the memory state (0) is to play legal moves at random. There is thusa positive probability that Eve will play aording to the attrator strategy aj long enoughto guarantee a positive probability that the token visits χ−1(C \ A−j). To be preise, for any

s ∈ S, this probability is greater than (2 · |S|)−|S|. Thus, with probability one, the token visitseah χ−1(C \ A−j) in�nitely often. Proposition 17 follows. ⊓⊔The initial ase, where the Zielonka tree is redued to a leaf, is trivial: the winner does notdepend on the play. Thus, Theorem 9 follows from the results of Setions 4.1, 4.2, and 4.3.5 Lower BoundIn this setion, we onsider lower bounds on memory, i.e. if we �x a Muller ondition F ona set of olours C, the minimal size of the memory set that is enough to de�ne randomisedwinning strategies for Eve on any arena oloured by the set C. In his thesis, Majumdar showedthe following theorem:Theorem 18 ([Maj03℄). For any set of olours C, there is a Muller game GC = (AC ,FC)suh that Eve wins, and every randomised almost-sure winning strategy for her in GC has amemory of size at least |C|
2

!.However, this is a general lower bound on all Muller onditions, while we aim to �ndspei� lower bounds for eah ondition. We showed, in [Hor07℄, that in the speial ase ofStreett Games, the lower bound on pure strategies of [DJW97℄ still holds for randomisedstrategies:Theorem 19 ([Hor07℄). For any k ∈ N, there is a Streett arena Ak of index k suh thatany randomised strategy winning for Eve in every state of her winning region has a memoryof size at least k!.We prove here that there is a lower bound for eah Muller ondition that mathes theupper bound of Theorem 9. This result is formalised as Theorem 20:Theorem 20. Let F be a Muller ondition on C. There is a 2-player arena AF over C suhthat Eve has a winning strategy, and any randomised winning strategy for Eve in (AF ,F) usesmemory at least rF .As the onstrution of the upper bound was based on the Zielonka tree, the lower boundis based on the Zielonka DAG :De�nition 21. The Zielonka DAG DF ,C of a winning ondition F ⊆ P(C) is derived from
ZF ,C by merging the nodes whih share the same label.Notie that the omputation of rF (De�nition 8) is as natural on the DAG as on the tree.9



5.1 Cropped DAGsThe relation between rF and the shape of DF ,C is asymmetrial: it depends diretly on thenumber of hildren of Eve's nodes, and not at all on the number of hildren of Adam's nodes.The notion of ropped DAG is the next logial step: a sub-DAG where Eve's nodes keep alltheir hildren, while eah node of Adam keeps only one hild:De�nition 22. A DAG E is a ropped DAG of a Zielonka DAG DF ,C if and only if� The nodes of E are a subset of the nodes of DF ,C. Furthermore, the owner and label of anode in E are its owner and label in DF ,C.� There is only one node without predeessor in E, whih we all the root of E. It is the rootof DF ,C, if it belongs to Eve; otherwise, it is one of its hildren.� The hildren of a node of Eve in E are exatly its hildren in DF ,C.� A node of Adam has exatly one hild in E, hosen among his hildren in DF ,C, providedthere is one. If it has no hildren in DF ,C, it has no hildren in E.A ropped DAG has the general form of a Zielonka DAG: the nodes belong to either Eveor Adam, and they are labelled by sets of states. We an thus ompute the number rE of aropped DAG E in a natural way. In fat, this number has a more intuitive meaning in thease of ropped DAGs: if the leaves belong to Eve, it is the number of branhes; if Adamowns the leaves, it is the number of branhes with the leaf removed. There is also a diret linkbetween the ropped DAGs of a Zielonka DAG DF ,C and the number rF : in a ropped DAG,there is one hild for eah internal node of Adam; in the reursive de�nition of rF , there is amaximum over the values of the hildren. Proposition 23 follows diretly:Proposition 23. Let F be a Muller ondition on C, and DF ,C be its Zielonka DAG. Then forany ropped DAG E of DF ,C, we have rE ≤ rF . Furthermore, there is a ropped DAG E∗ suhthat rE∗ = rF .5.2 From ropped DAGs to arenasFrom any ropped DAG E of DF ,C , we de�ne an arena AE whih follows roughly the strutureof E : the token starts from the root, goes towards the leaves, and then restarts from the root.In her nodes, Eve an hoose to whih hild she wants to go. Adam's hoies, on the otherhand, onsists in either stopping the urrent traversal or allowing it to proeed.We present �rst two �maros�, depending on a subset of C:� in Pick∗(C), Adam an visit any subset of olours in C;� in Pick(D), he must visit exatly one olour in D.Both are represented in Figure 2, and they are the only oasions where olours are visited in
AE : all the other states are olourless.Eve's states in the arena AE are in bijetion with the nodes of E . Likewise, eah outgoingtransition orresponds to a hild of the orresponding node. But the suessors of these statesare not themselves in bijetion with the nodes of Adam: if a single node of Adam A is thehild of two di�erent nodes of Eve E and F , we must use the onstrution of Figure 4 twie:one for E − A and one for F − A. In states orresponding to leaves, Eve has no deision totake; Adam an visit any olours in the label of the leaf (Pick∗ proedure). The token is thensent bak to the root. These ases are desribed in Figure 3.10
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E − A1 E − A2 E − A3(a) Node �E� E
Pick∗(E)root(b) Leaf �E�Fig. 3. Eve hooses where to go . . .Adam's options on a given node, on the other hand, do not involve the hoie of a hild: byDe�nition 22, Adam's nodes in E have but one hild. Instead, he an either stop the urrenttraversal, or, if the urrent node is not a leaf, allow it to proeed to its only hild.If he hooses to stop, Adam has to visit some oloured states before the token is sent bakto the root. The available hoies depend on the labels of both the urrent and the formernodes � whih is why there are as many opies of Adam's nodes in AE as they have parents in

E . If the parent is labelled by E, and the urrent node by A, the token goes through Pick∗(E)and Pick(E \A). Adam an thus hoose any number of olours in E, as long as he hooses atleast one outside of A.Notie that if Adam does not stop the traversal, the token is sent to the unique stateorresponding to the hild of the urrent node. This is why the size of these arenas are roughlyDAG-sized, instead of tree-sized.5.3 Winning strategy, branh strategies, passive strategyWe desribe a winning strategy σ for Eve in the game (AE ,F). Its memory states are thebranhes of E , and do not hange during a traversal. Her moves in the memory state b =
E1A1 . . . Eℓ(Aℓ) follow the branh b: in the state Ei, Eve hooses the suessor orrespondingto the transition Ei − Ai. Notie that Adam annot diverge from the branh, as his nodeshave at most one hild. When he hooses to stop the traversal, Eve updates her memory. Forexample, if he stops at the ith step, while Eve is in the memory state b = E1A1 . . . Eℓ(Aℓ),the update is done as follows:� If Ei has zero or one hild in E , the memory is unhanged;11
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Pick(E \ A)root(b) Edge �E� - �A� when �A� is a leafFig. 4. . . . and Adam hooses when to stop.� otherwise, the new memory branh has E1A1 . . . EiA as a pre�x, where A is the next hildof Ei, or the �rst one if Ai was the last.Proposition 24. The strategy σ is surely winning for Eve in the game (AE ,F).Proof. Let ρ be a play onsistent with σ. We denote by i the smallest integer suh that Adamstops in�nitely often a traversal at the ith step.After a �nite pre�x, the �rst 2i − 1 nodes in the memory branh are onstant, and wedenote them by E1A1E2 . . . Ei. From this point on, whatever Adam does, he an only hooseolours in Ei. Furthermore, eah time he hooses i, he must hoose a state outside of theurrent Ai, whih hanges afterwards to the next, in a irular way.So, in the end, Inf(ρ) ⊆ Ei, and, for any hild A of Ei in E , Inf(ρ) * A. Thus ρ is winningfor Eve. Proposition 24 follows.Obviously, Adam has no winning strategy in AE . However, we desribe the lass of branhstrategies for him, whose point is to punish any attempt of Eve to win with less than mF or
rF memory states. There is one suh strategy τb for eah branh b in E (whene the name),and the priniple is that τb stops the traversal as soon as Eve deviates from b:De�nition 25. The branh strategy τb for Adam in AE , orresponding to the branh b =
E1A1E2 . . . Eℓ(Aℓ) in E, is a positional strategy whose moves are desribed below.� In a state E −A suh that ∃i, E = Ei ∧A 6= Ai: stop the traversal and visit the olours of

Ai;� in a state E − A suh that ∃i, E = Ei ∧ A = Ai: send the token to Ei+1;� in the state Eℓ − Aℓ: visit Eℓ;� in the leaf Eℓ: visit Eℓ.Notie that no move is given for a state E − A suh that ∀i, E 6= Ei. The reason is thatthese states are not reahable from the root when Adam plays τb, so, in the limit, what hedoes in these states doesn't matter. Notie also that when Adam hooses to stop a traversalin a state Ei − A, he an visit exatly the olours of Ai: as A and Ai are maximal subsets of
Ei, there is at least one state in Ai \ A that he an pik in the Pick(Ei \ A) area.We informally desribe one last strategy for Adam: the passive strategy, in whih he neverstops a traversal before it reahes a leaf, and then plays at random in the Pick /Pick∗ part.12



5.4 Winning against branh strategiesWe de�ne the set of branhes of a memory state m as the branhes of E that have a positiveprobability to be traversed when Eve is in the memory state m and Adam plays with a passivestrategy.The notion of �branh of a memory state� arries to the ase of randomised strategies, butnot its uniity: even if Eve starts in the same memory state and Adam plays with a passivestrategy, the random deisions an lead to di�erent branhes. We onsider thus the set ofbranhes of a memory state m: they are the branhes that have a positive probability to betraversed when Eve is in the memory state m and Adam plays with a passive strategy.Proposition 26. Let σ = (M,σn, σu) be an almost-sure winning strategy for Eve in (AE ,F).Then σ has memory at least rE .Proof. The idea is that di�erent memory states are neessary to deal with the branh strate-gies. However, as we will see, a single memory state an sometimes deal with several branhstrategies.Let b = E1A1 . . . Eℓ(Aℓ) be a branh of E and τb be the orresponding branh strategy forAdam. Consider what happens if Eve plays σ and Adam plays τb. By de�nition of τb, the setof olours visited in a traversal of ρ is one of the Ai's, or Eℓ if and only if Eve plays along
b. So, as σ wins against τb, there is at least one memory state m suh that b is a branh of
m. However, there an be other branhes for m, as long as they lead to visits to Aℓ, and notanother Ai i.e.when the other branhes are siblings or nephews of b. Consequently, a memorystate m is suitable against τb if b is a branh of m and E1A1 . . . Eℓ is a pre�x of all the branhesof m.It follows that a single memory state an be suitable against two strategies τb and τb′orresponding to the branhes b = E1A1 . . . EℓAℓ and b′ = E′

1A
′
1 . . . E′

ℓ′A
′
ℓ′ only if they aresiblings, i.e.ℓ = ℓ′ and ∀i < ℓ,Ei = E′

iThere are rE equivalene lasses for this relation in E . Hene, there must be at least rEmemory states in M . Proposition 26 follows.By Proposition 23, there is a ropped DAG E of DF ,C suh that rE = rF . So, in general, Eveneeds randomised strategies with memory rF in order to win games whose winning onditionis F , whih ompletes the proof of Theorem 20.6 ConlusionsWe have provided a better and tight bound for the memory needed to de�ne almost surewinning randomised strategies. This allows us to haraterise the lass of games whih admitrandomised memoryless strategiesCorollary 27 (Randomised Memoryless Conditions). Eve an restrit herself to ran-domised memoryless strategies for a Muller ondition F if and only if her nodes in the ZielonkaTree ZF ,C annot have more than one hild, unless all these hildren are leaves.This yields a NP algorithm for the winning problem of suh games: randomised memorylessstrategy are polynomial witnesses; and solving 11

2
-player Muller games is Ptime [CdAH04℄.Another onsequene of our result is that for eah Muller ondition, at least one of the playersannot improve its memory through randomisation.13
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