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t. Sto
hasti
 games are a natural model for the synthesis of 
ontrollers 
onfronted toadversarial and/or random a
tions. In parti
ular, ω-regular games of in�nite length 
an representrea
tive systems whi
h are not expe
ted to rea
h a 
orre
t state, but rather to handle a 
ontinuousstream of events. One 
riti
al resour
e in su
h appli
ations is the memory used by the 
ontroller.In this paper, we study the amount of memory that 
an be saved through the use of randomisationin strategies, and present mat
hing upper and lower bounds for sto
hasti
 Muller games.1 Introdu
tionA sto
hasti
 game arena is a dire
ted graph with three kinds of states: Eve's, Adam's andrandom states. A token 
ir
ulates on this arena: when it is in one of Eve's states, she 
hoosesits next lo
ation among the su

essors of the 
urrent state; when it is in one of Adam's states,he 
hooses its next lo
ation; and when it is in a random state, the next lo
ation is 
hosena

ording to a �xed probability distribution. The result of playing the game for ω moves isan in�nite path of the graph. A play is winning either for Eve or for Adam, and the �winnerproblem� 
onsists in determining whether one of the players has a winning strategy, from agiven initial state. Closely related problems 
on
ern the 
omputation of winning strategies, aswell as determining the nature of these strategies: pure or randomised, with �nite or in�nitememory. There has been a long history of using arenas without random states (2-player arenas)for modelling and synthesising rea
tive pro
esses [BL69,PR89℄: Eve represents the 
ontroller,and Adam the environment. Sto
hasti
 (21

2
-player) arenas [Con92,deA97℄, with the addition ofrandom states, 
an also model un
ontrollable a
tions that happen a

ording to a random law,rather than by 
hoi
e of an a
tively hostile environment. The desired behaviour of the systemis traditionally represented as an ω-regular winning 
ondition, whi
h naturally expresses thetemporal spe
i�
ations and fairness assumptions of transition systems [MP92℄. From this pointof view, the 
omplexity of the winning strategies is a 
entral question, sin
e they representpossible implementations of the 
ontrollers in the synthesis problem. In this paper, we fo
uson an important normal form of ω-regular 
onditions, namely Muller winning 
onditions (see[Tho95℄ for a survey).In the 
ase of 2-player Muller games, a fundamental determina
y result of Bü
hi andLandweber ensures that, from any initial state, one of the players has a winning strategy[BL69℄. Gurevi
h and Harrington used the LAR (latest appearan
e re
ord) stru
ture of M
-Naughton to extend this result to strategies with memory fa
torial in the size of the game[GH82℄. Zielonka re�nes the LAR 
onstru
tion into a tree, and derives from it an elegant algo-rithm to 
ompute winning regions in 2-player Muller games [Zie98℄. An insightful analysis ofthe Zielonka tree by Dziembowski, Jurdzinski, and Walukiewi
z leads to optimal (and asym-metri
al) memory bounds for non-randomised winning strategies in 2-player Muller games[DJW97℄. Chatterjee extends algorithm and bounds to the 
ase of non-randomised strategies



over 21

2
-player arenas [Cha07℄. However, the lower bound on memory does not hold for ran-domised strategies, even in non-sto
hasti
 arenas. In parti
ular, Chatterjee, de Alfaro, andHenzinger show that Eve only needs to 
onsider memoryless randomised strategies when the
ondition is upward-
losed [CdAH04℄. Chatterjee extends this result in [Cha07℄, showing that
onditions with non-trivial upward-
losed subsets admit randomised strategies with less mem-ory than non-randomised ones. Majumdar gives a global lower bound for all Muller 
onditionswith a �xed number of 
olours [Maj03℄, while we showed that in the 
ase of Streett games,the upper bound for non-randomised strategy is still valid for randomised ones [Hor07℄.Our 
ontributions. The memory bounds of [Cha07℄ are not tight in general, even in the 
aseof 2-player arenas. We give here mat
hing upper and lower bounds, for any Muller 
ondition.We 
ompute a number rF from the Zielonka Tree of a Muller 
ondition F , and we show that:� there is a randomised winning strategy with rF memory in every 21

2
-player game (AF ,F)(Theorem 9).� there is a 2-player game (AF ,F) where any randomised winning strategy for Eve has atleast rF memory states (Theorem 20).Furthermore, the witness arenas we build in the proof of Theorem 20 are notably smaller(exponentially smaller, in some 
ases) than the arenas built in [DJW97℄, even though theproblem of polynomial arenas remains open.Outline of the paper. Se
tion 2 re
alls the 
lassi
al notions in the area, while Se
tion 3presents former results on memory bounds and randomised strategies. The next two se
tionspresent our main results. In Se
tion 4, we introdu
e the number rF and show that it is anupper bound on the memory needed to win in any 21

2
-game (AF ,F). In Se
tion 5, we showthat this bound is tight. Finally, in Se
tion 6, we derive some 
onsequen
es from our result:we 
hara
terise the 
lass of Muller 
onditions that admit memoryless randomised strategies,and we show that for ea
h Muller 
ondition, at least one of the players 
annot improve itsmemory through randomisation.2 De�nitionsWe 
onsider turn-based sto
hasti
 two-player Muller games. We re
all here several 
lassi
alnotions in the �eld, and refer the reader to [Tho95,deA97℄ for more details.Probability Distribution. For a �nite set A, a probability distribution on A is a fun
tion

α : A → [0, 1] su
h that ∑

a∈A α(a) = 1. We denote the set of probability distributions on Aby D(A). Given a distribution α ∈ D(A), we denote by Supp(α) = {a ∈ A | α(a) > 0} thesupport of α.Arenas. A turn-based sto
hasti
 �nite arena (21

2
-player arena) A over a set of 
olours C
onsists of a dire
ted �nite graph (S,T ), a partition (SE ,SA,SR) of S, a probabilisti
 transitionfun
tion δ : SR → D(S) su
h that t ∈ Supp(δ(s)) ⇔ (s, t) ∈ T , and a partial 
olouring fun
tion

χ : S ⇀ C.The states in SE (resp. SA, SR) are Eve's states (resp. Adam's states, random states), andare graphi
ally represented as #'s (resp. 2, △) in �gures. The turn-based deterministi
 arenas(2-player arenas) are the spe
ial 
ase of 21

2
-player arenas with SR = ∅.A set U ⊆ S of states is 
alled δ-
losed if for every random state u ∈ U ∩SR, if (u, t) ∈ T ,then t ∈ U . It is live if for every non-random state u ∈ U ∩ (SE ∪ SA), there is a state t ∈ Usu
h that (u, t) ∈ T . A subset U that is live and δ-
losed indu
es a subarena of A, denoted by

A ↾ U . A set U ⊆ S that is not a subarena is 
alled a partial subarena.2



Plays and Strategies. An in�nite path, or play, over the arena A is an in�nite sequen
e
ρ = ρ0ρ1 . . . of states su
h that (ρi, ρi+1) ∈ T for all i ∈ N. The set of o

urring states is
Occ(ρ) = {s | ∃i ∈ N, ρi = s}, and the set of limit states is Inf(ρ) = {s | ∃∞i ∈ N, ρi = s}. Wewrite Ω for the set of all plays, and Ωs for the set of plays that start from the state s.A strategy with memory M for Eve on the arena A is a (possibly in�nite) transdu
er
σ = (M,σn, σu), where σn is the �next-move� fun
tion from (SE × M) to D(S) su
h that
Supp(σn(s,m)) ⊆ T (s) and σu is the �memory-update� fun
tion, from (S × M) to D(M).Noti
e that both the move and the update are randomised: strategies whose memory is deter-ministi
 are a di�erent, less 
ompa
t, model. The strategies for Adam are de�ned likewise. Wedenote by Σ and T the set of all strategies for Eve and Adam, respe
tively. A strategy σ ispure if it does not use randomisation. It is �nite-memory if M is a �nite set, and memorylessif M is a singleton. Noti
e that strategies de�ned in the usual way as fun
tions from S∗ to S
an be de�ned as strategies with in�nite memory: the set of memory states is S∗, the memoryupdate is σu(s,w) 7→ ws, so the next-move 
an use the full pre�x as argument.On
e a starting state s ∈ S and strategies σ ∈ Σ and τ ∈ T are �xed, the out
ome of thegame is a random walk ρσ,τ

s for whi
h the probabilities of events are uniquely �xed (an eventis a measurable set of paths). For an event P ∈ Ω, we denote by Pσ,τ
s (P ) the probability thata play belongs to P if it starts from s and Eve and Adam follow the strategies σ and τ .A play is 
onsistent with σ if for ea
h position i su
h that wi ∈ SE, Pσ,τ

w0
(ρi+1 = wi+1 |

ρ0 = w0 . . . ρi = wi) > 0. The set of plays 
onsistent with σ is denoted by Ωσ. Similar notions
an be de�ned for Adam's strategies.Traps and Attra
tors. The attra
tor of Eve to the set U , denoted AttrE(U), is the set ofstates where Eve 
an guarantee that the token rea
hes the set U with a positive probability.It is de�ned indu
tively by:
Attr0

E(U) = U

Attri+1

E (U) = Attri
E(U)

∪ {s ∈ SE ∪ SR,∃t ∈ Attri
E(U) | (s, t) ∈ T }

∪ {s ∈ SA | ∀t, (s, t) ∈ E ⇒ t ∈ Attri
E(U)}

AttrE(U) =
⋃

i>0
Attri

E(U)The 
orresponding attra
tor strategy to U for Eve is a pure and memoryless strategy aUsu
h that for any state s ∈ SE ∩ (AttrE(U) \ U), s ∈ Attri+1

E (U) ⇒ aU (s) ∈ Attri
E(U).The dual notion of trap for Eve denotes a set from where Eve 
annot es
ape, unless Adamallows her to do so: a set U is a trap for Eve if and only if ∀s ∈ U∩(SE∪SR), (s, t) ∈ T ⇒ t ∈ Uand ∀s ∈ U ∩ SA,∃t ∈ U, (s, t) ∈ T . Noti
e that a trap is a �strong� notion � the token 
annever leave it if Adam does not allow it to do so, while an attra
tor is a �weak� one � thetoken 
an avoid the target even if Eve uses the attra
tor strategy. Noti
e also that a trap (foreither player) is always a subarena.Winning Conditions. A zero-sum boolean winning 
ondition (winning 
ondition) is a subset

Φ of Ω. Eve wins a play ρ if ρ ∈ Φ. Adam wins if ρ ∈ Ω \ Φ. We 
onsider ω-regular winning
onditions formalised as Muller 
onditions. A Muller 
ondition is determined by a subset Fof the power set P(C) of 
olours. The plays winning for Eve for su
h a 
ondition are the oneswhere the set of limit 
olours belongs to F :
ΦF = {ρ ∈ Ω|χ(Inf(ρ)) ∈ F}An example of Muller game is given in Figure 1(a). We use it throughout the paper to des
ribevarious notions and results. 3
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F = {{a, b}, {a, b, c}, {a, b, c, d}}(a) The game G = (A,F)

abcd

bcd acd abd

ab

a b(b) Zielonka Tree of FFig. 1. Re
urring ExampleWinning Strategies. Given a winning 
ondition Φ and a state s ∈ S, a strategy σ ∈ Σ issure winning for Eve from s (resp. almost-sure winning, positive winning) if for every strategy
τ ∈ T , we have Ωσ,τ

s ⊆ Φ (resp. Pσ,τ
s (Φ) = 1, Pσ,τ

s (Φ) > 0). The pure winning region of Eve isthe set of states from where she has a pure winning strategy. The almost sure winning regionand the positive winning region, as well as all these notions for Adam are de�ned in a similarway.3 Former results in memory bounds and randomisation3.1 Pure strategiesThere has been intense resear
h sin
e the sixties on the non-sto
hasti
 setting, i.e. pure strate-gies and 2-player arenas. Bü
hi and Landweber showed the determina
y of Muller games in[BL69℄. Gurevi
h and Harrington used the LAR (Latest Appearan
e Re
ord) of M
Naughtonto prove their Forgetful Determina
y theorem [GH82℄, whi
h shows that a memory of size |C|!is su�
ient for any game that uses only 
olours from C, even when the arena is in�nite. Thisresult was later re�ned by Zielonka in [Zie98℄, using a representation of the Muller 
onditionsas trees:De�nition 1 (Zielonka Tree of a Muller 
ondition). The Zielonka Tree ZF ,C of a win-ning 
ondition F ⊆ P(C) is de�ned indu
tively as follows:1. If C /∈ F , then ZF ,C = ZF ,C, where F = P(C) \ F .2. If C ∈ F , then the root of ZF ,C is labelled with C. Let C1, C2, . . . , Ck be all the maximal setsin {U /∈ F | U ⊆ C}. Then we atta
h to the root, as its subtrees, the Zielonka trees of
F ↾ Ci, i.e. the ZF↾Ci,Ci

, for i = 1 . . . k.Hen
e, the Zielonka tree is a tree with nodes labelled by sets of 
olours. A node of ZF ,C is anEve node if it is labelled with a set from F , otherwise it is an Adam node.A later analysis of this 
onstru
tion by Dziembowski, Jurdzinski and Walukiewi
z in[DJW97℄ led to an optimal and asymmetri
al bound on the memory needed by the players tode�ne winning strategies: 4



De�nition 2 (Number mF of a Muller 
ondition). Let F ⊆ P(C) be a Muller 
ondition,and ZF1,C1
,ZF2,C2

, . . . ,ZFk,Ck
be the subtrees atta
hed to the root of the tree ZF ,C. We de�nethe number mF indu
tively as follows:

mF =



















1 if ZF ,C does not have any subtrees,
max{mF1

,mF2
, . . . ,mFk

} if C /∈ F (Adam node),
k

∑

i=1

mFi
if C ∈ F (Eve node).Theorem 3 ([DJW97℄). In any 2-player Muller game G with winning 
ondition F , Eve hasa pure strategy σG winning from every state in her winning region and with memory at most

mF . Furthermore, there is a 2-player arena AF su
h that any strategy winning for Eve inevery state of her winning region has a memory of size at least mF .In [Cha07℄, Chatterjee showed that Theorem 3 
an be extended to the setting of randomisedgames, still with pure strategies:Theorem 4 ([Cha07℄). For any 21

2
-player Muller game G with the winning 
ondition F ,Eve has a pure strategy σG almost surely winning from every state in her winning region andwith memory at most mF .3.2 Memory redu
tion through randomisationRandomised strategies are more general than pure strategies. It is thus a legitimate questionto ask whether the lower bound of Theorem 3 still holds for randomised strategies. It turnsout that it is not the 
ase. In [CdAH04℄, a �rst result showed that upward-
losed 
onditionsadmit memoryless randomised strategies, while they don't admit memoryless pure strategies:Theorem 5 ([CdAH04℄). For any 21

2
-player Muller game G with an upward-
losed winning
ondition F , Eve has a randomised memoryless strategy σG winning from every state in herwinning region.This result was later extended in [Cha07℄, by removing the leaves atta
hed to a node ofthe Zielonka Tree representing an upward-
losed sub
ondition:De�nition 6 ([Cha07℄). Let F ⊆ P(C) be a Muller 
ondition, and ZF1,C1

,ZF2,C2
, . . . ,ZFk ,Ckbe the subtrees atta
hed to the root of the tree ZF ,C. We de�ne the number mU

F indu
tively asfollows:
mU

F =



























1 if ZF ,C does not have any subtrees,
1 if F is upward-
losed,
max{mU

F1
,mU

F2
, . . . ,mU

Fk
} if C /∈ F (Adam node),

k
∑

i=1

mU
Fi

if C ∈ F (Eve node).Theorem 7 ([Cha07℄). For any 21

2
-player Muller game G with the winning 
ondition F ,Eve has a randomised strategy σG winning from every state in her winning region and withmemory at most mU

F . 5



4 Randomised Upper BoundThe upper bound of Theorem 7 is not tight for all 
onditions. For example, the number mU
Fof the 
ondition F in Figure 1(b) is three, while there is always a winning 
ondition with twomemory states. We present here yet another number for any Muller 
ondition F , denoted rF ,that we 
ompute from the Zielonka Tree:De�nition 8 (Number rF of a Muller 
ondition). Let F ⊆ P(C) be a Muller 
ondition,where the root has k+l 
hildren, l of them being leaves. We denote by ZF1,C1

,ZF2,C2
, · · · ,ZFk ,Ckthe non-leaves subtrees atta
hed to the root of ZF ,C. We de�ne rF indu
tively as follows:

rF =







































1 if ZF ,C does not have any subtrees,
max{1, rF1

, rF2
, . . . , rFk

} if C /∈ F (Adam node),
k

∑

i=1

rFi
if C ∈ F (Eve node) and l = 0,

k
∑

i=1

rFi
+ 1 if C ∈ F (Eve node) and l > 0.The �rst remark is that if ∅ ∈ F , rF is equal to mF : as the leaves belong to Eve, andthe fourth 
ase 
annot o

ur. In the other 
ase, the intuition is that we merge leaves if theyare siblings. For example, the number rF for our re
urring example is two: one for the leaveslabelled bcd and acd, and one for the leaves labelled a and b. The number mF is four (one forea
h leaf), and mU
F

is three (one for the leaves labelled a and b, and one for ea
h other leaf).This se
tion will be devoted to the proof of Theorem 9:Theorem 9 (Randomised upper bound). If Eve has a winning strategy in the 2-1

2
playerMuller game (AF ,F), she has a winning strategy with memory rF .Let G = (F ,A) be a game de�ned on the set of 
olours C su
h that Eve wins from anyinitial node. We des
ribe in the next three subse
tions a re
ursive pro
edure to 
ompute awinning strategy for Eve with rF memory states in ea
h non-trivial 
ase in the de�nition of

rF . To this end, we �x a strategy τ ∈ T for Adam and an initial state s0 ∈ S. We use twolemmas � Lemmas 10 and 12 � that derive dire
tly from similar results in [DJW97℄ and[Cha07℄. The appli
ation of these prin
iples to the game G in Figure 1 builds a randomisedstrategy with two memory states left and right. In left, Eve sends the token to (տ or ւ) andin right, to (ր or ց). The memory swit
hes from right to left with probability one when thetoken visits a c, and from left to right with probability 1

2
at ea
h step.4.1 C is winning for AdamIn the 
ase where Adam wins the set C, the 
onstru
tion of σ relies on Lemma 10:Lemma 10. Let F ⊆ P(C) be a Muller winning 
ondition su
h that C /∈ F , and A be a21

2
-player arena su
h that Eve wins everywhere. There are subarenas A1 . . .An su
h that:� i 6= j ⇒ Ai ∩Aj = ∅;� ∀i,Ai is a trap for Adam in the subarena A \ AttrE

(

∪i−1

j=1
Aj

);� ∀i, χ(Ai) is in
luded in the label Ei of a 
hild of the root of ZF ,C, and Eve wins everywherein (Ai,F ↾ Ei); 6



� A = AttrE(∪n
j=1Aj).Let the subarenas Ai be the ones whose existen
e is proved in this lemma. We denote by

σi the winning strategy for Eve in Ai, and by ai the attra
tor strategy for Eve to Ai in thearena A\Attr(∪i−1

j=1
Aj). We identify the memory states of the σi, so their union has the same
ardinal as the largest of them. For a state s, if i = min{j | s ∈ Attr

E
(∪j

k=1
Ak)}, we de�ne

σ(s,m) by:� if s ∈ Ai

• σu(s,m) = σu

i (s,m)
• σn(s,m) = σn

i (s,m)� if s ∈ AttrE(∪i
k=1

Ak) \ Ai

• σu(s,m) = m
• σn(s,m) = ai(s)By indu
tion hypothesis over the number of 
olours, we 
an assume that the strategies σihave rFi

memory states. The strategy σ uses max{rFi
} memory states.Proposition 11. Pσ,τ

s0
(∃i, Inf(ρ) ⊆ Ai) = 1.Proof. The subarenas Ai are embedded traps, de�ned in su
h a way that the token 
an es
apean Ai only by going to the attra
tor of a smaller one. Eve has thus a positive probability ofrea
hing an Aj with j < i. Thus, if the token es
apes one of the Ai in�nitely often, the tokenhas probability one to go to an Aj with j < i. By argument of minimality, after a �nite pre�x,the token will stay in one of the traps forever. ⊓⊔The strategy σi is winning from any state inAi. As Muller 
onditions are pre�x-independent,it follows from Proposition 11 that σ is also winning from any state in A.4.2 C is winning for Eve, and the root of ZF,C has no leaves among its 
hildren.In this 
ase, the 
onstru
tion relies on the following lemma:Lemma 12. Let F ⊆ P(C) be a Muller winning 
ondition su
h that C ∈ F , A a 21

2
-playerarena 
oloured by C su
h that Eve wins everywhere, and Ai the label of a 
hild of the root in

ZF ,C. Then, Eve wins everywhere on the subarena A \ AttrE(χ−1(C \ Ai)) with the 
ondition
F ↾ Ai.Eve has a strategy σi that is winning from ea
h state in A\AttrE(χ−1(C\Ai)). In this 
ase,the set of memory states of σ is M = ∪k

i=1(i × M i). The �next-move� and �memory-update�fun
tions σn and σu for a memory state m = (i,mi) are de�ned below:� if s ∈ χ−1(C \ Ai)
• σu(s,mi) = (i + 1,mi+1) where mi+1 is any state in M i+1

• if s ∈ SE, σn(s,mi) is any su

essor of s in A� if s ∈ AttrE(χ−1(C \ Ai))
• σu(s,mi) = (i,mi)
• σn(s,mi) = ai(s)� if s ∈ A \ AttrE(χ−1(C \ Ai)) 7



• σu(s,mi) = (i, σu

i (s,mi))
• σn(s,mi) = σn

i (s,m
i)On
e again, we 
an assume that the memory Mi of the strategy σi is of size rF↾Ai

.Here, however, the memory set of σ is the disjoint union of the Mi's. Thus, σ uses mem-ory k
∑

i=1

{rF↾Ai
}.Proposition 13. Let uc be the event �the top-level memory of σ is ultimately 
onstant�. Then,

Pσ,τ
s0

(ρ ∈ ΦF | uc) = 1.Proof. We 
all i the value of the top-level memory at the limit. After a �nite pre�x, the tokenstops visiting χ−1(C \Ai). Thus, with probability one, it also stops visiting AttrE(χ−1(C \Ai)).From this point on, the token stays in the arena Ai, where Eve plays with the winning strategy
σi. Thus, Pσ,τ (ρ ∈ ΦF↾Ai

| uc) = 1, and, as ΦF↾Ai
⊆ ΦF , Proposition 13 follows.Proposition 14. If the top-level memory takes ea
h value in 1 . . . k in�nitely often, thensurely, ∀i ∈ 1 . . . k, χ(Inf(ρ)) * Ai.Proof. The update on the top-level memory follows a 
y
le on 1 . . . k, leaving i only when thetoken visits χ−1(C \Ai). Thus, in order for the top-level memory to 
hange 
ontinuously, thetoken has to visit ea
h of the χ−1(C \ Ai) in�nitely often. Proposition 14 follows. ⊓⊔4.3 C is winning for Eve, and the root of ZF,C has at least one leaf in its
hildren.As in the previous se
tion, the 
onstru
tion relies on Lemma 12. In fa
t, the 
onstru
tion for
hildren whi
h are not leaves, labelled A1, . . . , Ak, is exa
tly the same. The di�eren
e is that weadd here a single memory state �0� that represents all the leaves (labelled A−1, . . . , A−l).The memory states are thus updated modulo k + 1, and not modulo k. The �next-move�fun
tion of σ when the top-level memory is 0 is an even distribution over all the su

essors in

A of the 
urrent state. The �memory-update� fun
tion has probability 1

2
to stay into 0, and

1

2
to go to (1,m1), for some memory state m1 ∈ M1. Thus, σ uses memory ∑k

i=1
rFi

+ 1. Weprove now that σ is winning. The stru
ture of the proof is the same as in the former se
tion,with some extra 
onsiderations for the memory state 0.Proposition 15. Let uc be the event �the top-level memory of σ is ultimately 
onstant anddi�erent from 0�. Then, Pσ,τ
s (ρ ∈ ΦF | uc) = 1.Proof. The proof is exa
tly the same as the one of Proposition 13. ⊓⊔Proposition 16. The event �the top-level memory is ultimately 
onstant and equal to 0� hasprobability 0.Proof. When the top-level memory is 0, the memory-update fun
tion has probability 1

2
atea
h step to swit
h to 1. Proposition 16 follows. ⊓⊔Proposition 17 
onsiders the 
ase where the top-level memory evolves 
ontinuously. Byde�nition of the memory update, this 
an happen only if all the memory states are visitedin�nitely often. 8



Proposition 17. Let ec be the event �the top-level memory takes ea
h value in 0 . . . k in�nitelyoften�. Then, ∀i ∈ −l . . . k, Pσ,τ
s (χ(Inf(ρ)) ⊆ Ci | ec) = 0.Proof. As in the proof of Proposition 14, from the fa
t that the memory is equal to ea
h ofthe i ∈ 1 . . . k in�nitely often, we 
an dedu
e that the token surely visits ea
h of the C \ Aiin�nitely often. We only need to show that, with probability one and for any j ∈ 1 . . . l, theset of limit states is not in
luded in A−j . The Zielonka Trees of the 
onditions F ↾ A−j areleaves. This means that they are trivial 
onditions, where all the plays are winning for Adam.Consequently, in this 
ase, Lemma 12 guarantees that AttrE(χ−1(C \A−j)) is the whole arena.The de�nition of σ in the memory state (0) is to play legal moves at random. There is thusa positive probability that Eve will play a

ording to the attra
tor strategy aj long enoughto guarantee a positive probability that the token visits χ−1(C \ A−j). To be pre
ise, for any

s ∈ S, this probability is greater than (2 · |S|)−|S|. Thus, with probability one, the token visitsea
h χ−1(C \ A−j) in�nitely often. Proposition 17 follows. ⊓⊔The initial 
ase, where the Zielonka tree is redu
ed to a leaf, is trivial: the winner does notdepend on the play. Thus, Theorem 9 follows from the results of Se
tions 4.1, 4.2, and 4.3.5 Lower BoundIn this se
tion, we 
onsider lower bounds on memory, i.e. if we �x a Muller 
ondition F ona set of 
olours C, the minimal size of the memory set that is enough to de�ne randomisedwinning strategies for Eve on any arena 
oloured by the set C. In his thesis, Majumdar showedthe following theorem:Theorem 18 ([Maj03℄). For any set of 
olours C, there is a Muller game GC = (AC ,FC)su
h that Eve wins, and every randomised almost-sure winning strategy for her in GC has amemory of size at least |C|
2

!.However, this is a general lower bound on all Muller 
onditions, while we aim to �ndspe
i�
 lower bounds for ea
h 
ondition. We showed, in [Hor07℄, that in the spe
ial 
ase ofStreett Games, the lower bound on pure strategies of [DJW97℄ still holds for randomisedstrategies:Theorem 19 ([Hor07℄). For any k ∈ N, there is a Streett arena Ak of index k su
h thatany randomised strategy winning for Eve in every state of her winning region has a memoryof size at least k!.We prove here that there is a lower bound for ea
h Muller 
ondition that mat
hes theupper bound of Theorem 9. This result is formalised as Theorem 20:Theorem 20. Let F be a Muller 
ondition on C. There is a 2-player arena AF over C su
hthat Eve has a winning strategy, and any randomised winning strategy for Eve in (AF ,F) usesmemory at least rF .As the 
onstru
tion of the upper bound was based on the Zielonka tree, the lower boundis based on the Zielonka DAG :De�nition 21. The Zielonka DAG DF ,C of a winning 
ondition F ⊆ P(C) is derived from
ZF ,C by merging the nodes whi
h share the same label.Noti
e that the 
omputation of rF (De�nition 8) is as natural on the DAG as on the tree.9



5.1 Cropped DAGsThe relation between rF and the shape of DF ,C is asymmetri
al: it depends dire
tly on thenumber of 
hildren of Eve's nodes, and not at all on the number of 
hildren of Adam's nodes.The notion of 
ropped DAG is the next logi
al step: a sub-DAG where Eve's nodes keep alltheir 
hildren, while ea
h node of Adam keeps only one 
hild:De�nition 22. A DAG E is a 
ropped DAG of a Zielonka DAG DF ,C if and only if� The nodes of E are a subset of the nodes of DF ,C. Furthermore, the owner and label of anode in E are its owner and label in DF ,C.� There is only one node without prede
essor in E, whi
h we 
all the root of E. It is the rootof DF ,C, if it belongs to Eve; otherwise, it is one of its 
hildren.� The 
hildren of a node of Eve in E are exa
tly its 
hildren in DF ,C.� A node of Adam has exa
tly one 
hild in E, 
hosen among his 
hildren in DF ,C, providedthere is one. If it has no 
hildren in DF ,C, it has no 
hildren in E.A 
ropped DAG has the general form of a Zielonka DAG: the nodes belong to either Eveor Adam, and they are labelled by sets of states. We 
an thus 
ompute the number rE of a
ropped DAG E in a natural way. In fa
t, this number has a more intuitive meaning in the
ase of 
ropped DAGs: if the leaves belong to Eve, it is the number of bran
hes; if Adamowns the leaves, it is the number of bran
hes with the leaf removed. There is also a dire
t linkbetween the 
ropped DAGs of a Zielonka DAG DF ,C and the number rF : in a 
ropped DAG,there is one 
hild for ea
h internal node of Adam; in the re
ursive de�nition of rF , there is amaximum over the values of the 
hildren. Proposition 23 follows dire
tly:Proposition 23. Let F be a Muller 
ondition on C, and DF ,C be its Zielonka DAG. Then forany 
ropped DAG E of DF ,C, we have rE ≤ rF . Furthermore, there is a 
ropped DAG E∗ su
hthat rE∗ = rF .5.2 From 
ropped DAGs to arenasFrom any 
ropped DAG E of DF ,C , we de�ne an arena AE whi
h follows roughly the stru
tureof E : the token starts from the root, goes towards the leaves, and then restarts from the root.In her nodes, Eve 
an 
hoose to whi
h 
hild she wants to go. Adam's 
hoi
es, on the otherhand, 
onsists in either stopping the 
urrent traversal or allowing it to pro
eed.We present �rst two �ma
ros�, depending on a subset of C:� in Pick∗(C), Adam 
an visit any subset of 
olours in C;� in Pick(D), he must visit exa
tly one 
olour in D.Both are represented in Figure 2, and they are the only o

asions where 
olours are visited in
AE : all the other states are 
olourless.Eve's states in the arena AE are in bije
tion with the nodes of E . Likewise, ea
h outgoingtransition 
orresponds to a 
hild of the 
orresponding node. But the su

essors of these statesare not themselves in bije
tion with the nodes of Adam: if a single node of Adam A is the
hild of two di�erent nodes of Eve E and F , we must use the 
onstru
tion of Figure 4 twi
e:one for E − A and one for F − A. In states 
orresponding to leaves, Eve has no de
ision totake; Adam 
an visit any 
olours in the label of the leaf (Pick∗ pro
edure). The token is thensent ba
k to the root. These 
ases are des
ribed in Figure 3.10
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· · · · · ·

C = {c1 . . . ck}(a) Pick∗(C)

d1 di dk· · · · · ·

D = {d1 . . . dk}(b) Pick(D)Fig. 2. Pick∗(C) and Pick(D)
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A1 A2 Ai

E

E − A1 E − A2 E − A3(a) Node �E� E
Pick∗(E)root(b) Leaf �E�Fig. 3. Eve 
hooses where to go . . .Adam's options on a given node, on the other hand, do not involve the 
hoi
e of a 
hild: byDe�nition 22, Adam's nodes in E have but one 
hild. Instead, he 
an either stop the 
urrenttraversal, or, if the 
urrent node is not a leaf, allow it to pro
eed to its only 
hild.If he 
hooses to stop, Adam has to visit some 
oloured states before the token is sent ba
kto the root. The available 
hoi
es depend on the labels of both the 
urrent and the formernodes � whi
h is why there are as many 
opies of Adam's nodes in AE as they have parents in

E . If the parent is labelled by E, and the 
urrent node by A, the token goes through Pick∗(E)and Pick(E \A). Adam 
an thus 
hoose any number of 
olours in E, as long as he 
hooses atleast one outside of A.Noti
e that if Adam does not stop the traversal, the token is sent to the unique state
orresponding to the 
hild of the 
urrent node. This is why the size of these arenas are roughlyDAG-sized, instead of tree-sized.5.3 Winning strategy, bran
h strategies, passive strategyWe des
ribe a winning strategy σ for Eve in the game (AE ,F). Its memory states are thebran
hes of E , and do not 
hange during a traversal. Her moves in the memory state b =
E1A1 . . . Eℓ(Aℓ) follow the bran
h b: in the state Ei, Eve 
hooses the su

essor 
orrespondingto the transition Ei − Ai. Noti
e that Adam 
annot diverge from the bran
h, as his nodeshave at most one 
hild. When he 
hooses to stop the traversal, Eve updates her memory. Forexample, if he stops at the ith step, while Eve is in the memory state b = E1A1 . . . Eℓ(Aℓ),the update is done as follows:� If Ei has zero or one 
hild in E , the memory is un
hanged;11



E

A

E′

E

E − A

E′

Pick∗(E)

Pick(E \ A)root(a) Edge �E� - �A� when �A� is a node
E

A

Pick∗(E)

Pick(E \ A)root(b) Edge �E� - �A� when �A� is a leafFig. 4. . . . and Adam 
hooses when to stop.� otherwise, the new memory bran
h has E1A1 . . . EiA as a pre�x, where A is the next 
hildof Ei, or the �rst one if Ai was the last.Proposition 24. The strategy σ is surely winning for Eve in the game (AE ,F).Proof. Let ρ be a play 
onsistent with σ. We denote by i the smallest integer su
h that Adamstops in�nitely often a traversal at the ith step.After a �nite pre�x, the �rst 2i − 1 nodes in the memory bran
h are 
onstant, and wedenote them by E1A1E2 . . . Ei. From this point on, whatever Adam does, he 
an only 
hoose
olours in Ei. Furthermore, ea
h time he 
hooses i, he must 
hoose a state outside of the
urrent Ai, whi
h 
hanges afterwards to the next, in a 
ir
ular way.So, in the end, Inf(ρ) ⊆ Ei, and, for any 
hild A of Ei in E , Inf(ρ) * A. Thus ρ is winningfor Eve. Proposition 24 follows.Obviously, Adam has no winning strategy in AE . However, we des
ribe the 
lass of bran
hstrategies for him, whose point is to punish any attempt of Eve to win with less than mF or
rF memory states. There is one su
h strategy τb for ea
h bran
h b in E (when
e the name),and the prin
iple is that τb stops the traversal as soon as Eve deviates from b:De�nition 25. The bran
h strategy τb for Adam in AE , 
orresponding to the bran
h b =
E1A1E2 . . . Eℓ(Aℓ) in E, is a positional strategy whose moves are des
ribed below.� In a state E −A su
h that ∃i, E = Ei ∧A 6= Ai: stop the traversal and visit the 
olours of

Ai;� in a state E − A su
h that ∃i, E = Ei ∧ A = Ai: send the token to Ei+1;� in the state Eℓ − Aℓ: visit Eℓ;� in the leaf Eℓ: visit Eℓ.Noti
e that no move is given for a state E − A su
h that ∀i, E 6= Ei. The reason is thatthese states are not rea
hable from the root when Adam plays τb, so, in the limit, what hedoes in these states doesn't matter. Noti
e also that when Adam 
hooses to stop a traversalin a state Ei − A, he 
an visit exa
tly the 
olours of Ai: as A and Ai are maximal subsets of
Ei, there is at least one state in Ai \ A that he 
an pi
k in the Pick(Ei \ A) area.We informally des
ribe one last strategy for Adam: the passive strategy, in whi
h he neverstops a traversal before it rea
hes a leaf, and then plays at random in the Pick /Pick∗ part.12



5.4 Winning against bran
h strategiesWe de�ne the set of bran
hes of a memory state m as the bran
hes of E that have a positiveprobability to be traversed when Eve is in the memory state m and Adam plays with a passivestrategy.The notion of �bran
h of a memory state� 
arries to the 
ase of randomised strategies, butnot its uni
ity: even if Eve starts in the same memory state and Adam plays with a passivestrategy, the random de
isions 
an lead to di�erent bran
hes. We 
onsider thus the set ofbran
hes of a memory state m: they are the bran
hes that have a positive probability to betraversed when Eve is in the memory state m and Adam plays with a passive strategy.Proposition 26. Let σ = (M,σn, σu) be an almost-sure winning strategy for Eve in (AE ,F).Then σ has memory at least rE .Proof. The idea is that di�erent memory states are ne
essary to deal with the bran
h strate-gies. However, as we will see, a single memory state 
an sometimes deal with several bran
hstrategies.Let b = E1A1 . . . Eℓ(Aℓ) be a bran
h of E and τb be the 
orresponding bran
h strategy forAdam. Consider what happens if Eve plays σ and Adam plays τb. By de�nition of τb, the setof 
olours visited in a traversal of ρ is one of the Ai's, or Eℓ if and only if Eve plays along
b. So, as σ wins against τb, there is at least one memory state m su
h that b is a bran
h of
m. However, there 
an be other bran
hes for m, as long as they lead to visits to Aℓ, and notanother Ai i.e.when the other bran
hes are siblings or nephews of b. Consequently, a memorystate m is suitable against τb if b is a bran
h of m and E1A1 . . . Eℓ is a pre�x of all the bran
hesof m.It follows that a single memory state 
an be suitable against two strategies τb and τb′
orresponding to the bran
hes b = E1A1 . . . EℓAℓ and b′ = E′

1A
′
1 . . . E′

ℓ′A
′
ℓ′ only if they aresiblings, i.e.ℓ = ℓ′ and ∀i < ℓ,Ei = E′

iThere are rE equivalen
e 
lasses for this relation in E . Hen
e, there must be at least rEmemory states in M . Proposition 26 follows.By Proposition 23, there is a 
ropped DAG E of DF ,C su
h that rE = rF . So, in general, Eveneeds randomised strategies with memory rF in order to win games whose winning 
onditionis F , whi
h 
ompletes the proof of Theorem 20.6 Con
lusionsWe have provided a better and tight bound for the memory needed to de�ne almost surewinning randomised strategies. This allows us to 
hara
terise the 
lass of games whi
h admitrandomised memoryless strategiesCorollary 27 (Randomised Memoryless Conditions). Eve 
an restri
t herself to ran-domised memoryless strategies for a Muller 
ondition F if and only if her nodes in the ZielonkaTree ZF ,C 
annot have more than one 
hild, unless all these 
hildren are leaves.This yields a NP algorithm for the winning problem of su
h games: randomised memorylessstrategy are polynomial witnesses; and solving 11

2
-player Muller games is Ptime [CdAH04℄.Another 
onsequen
e of our result is that for ea
h Muller 
ondition, at least one of the players
annot improve its memory through randomisation.13



Corollary 28. For any Muller 
ondition F , the player who wins the plays where no 
olour isvisited in�nitely often needs as mu
h memory for randomised strategies as for pure strategies.A third 
ollateral result is the size of the witness arena in our proof of Theorem 20, whi
his roughly equivalent to the size of the Zielonka DAG. In [DJW97℄, the size of the arena wasroughly the size of the Zielonka tree, whi
h 
an be exponentially larger. However, the questionof memory bounds in arenas of polynomial size in the number of 
olours remains unanswered,ex
ept for some spe
ial 
ases (Majumdar's �global� lower bound [Maj03℄ and Streett games[Hor07℄).We intend now to 
onsider the 
ase of games whose winning 
ondition is a regular language,in order to get 
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