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Abstra
tGames are a 
lassi
al tool for the synthesis of 
ontrollers in rea
tive systems.In this setting, a game is de�ned by: an arena, whi
h is a graph modellingthe system and its evolution; and a winning 
ondition, whi
h models thespe
i�
ation that the 
ontroller must ensure. In ea
h state, the outgoingtransition is 
hosen either by the 
ontroller (Eve), an hostile environment(Adam), or a sto
hasti
 law (Random). This pro
ess is repeated for anin�nite number of times, generating an in�nite play whose winner dependson the winning 
ondition.Our �rst obje
t of study is the fundamental 
ase of rea
hability games.We present a new e�e
tive approa
h to the 
omputation of the values, basedon permutations of random states. In terms of 
omplexity, the resulting�permutation algorithm� is orthogonal to the 
lassi
al, strategy-based algo-rithms: it is exponential in the number of random states, but not in thenumber of 
ontrolled states. We also present an improvement heuristi
 forthis algorithm, inspired by the �strategy improvement� algorithm.We turn next to the very general 
lass of pre�x-independent games. Weprove the existen
e of optimal strategies in these games. We also show thatour permutation algorithm 
an be extended into a �meta-algorithm�, turningany qualitative algorithm into a quantitative algorithm.We study then the 
omplexity of optimal strategies for Muller games,fo
using on the amount of memory that 
an be saved through the use ofrandomised strategies. Using the Zielonka tree, we show tight bounds onthe ne
essary and su�
ient memory needed to de�ne randomised optimalstrategies for any given Muller 
ondition. We also propose a polynomialalgorithm for the winner problem in expli
it Muller games. The results ofthe former 
hapter yield immediately NP and 
o-NP algorithms for the valuesproblem.Lastly, we 
onsider the �nitary versions of parity and Streett games,where the regular 
onditions are supplemented by universal bounds on delays.We propose a polynomial algorithm for the winner problem on �nitary paritygames. For �nitary Streett games, a redu
tion to Request-Response gamesprovides an EXPTIME algorithm for qualitative problems, and we show thatthe problem is PSPACE-hard.
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Chapter 1Prequel�Pleased to meet you�Hope you guess my name�But what's puzzling you�Is the nature of my game� Sympathy for the DevilThe Rolling StonesAfter short introdu
tory remarks on the development of Game Theory inComputer S
ien
e in Se
tion 1.1, we des
ribe in Se
tion 1.2 the game modelunderlying the whole thesis, namely 21
2
-player simple graph games on �nitearenas with boolean winning 
ondition, as well as the main problems on su
hgames. Se
tion 1.3 reviews our main 
ontributions.1.1 Ba
kgroundGame Theory is a very versatile paradigm, whose appli
ations range frombiology [Smi82℄ to philosophy [Kav86℄ via e
onomi
s [Cou38℄. This mat
hesthe pervasiveness of games in general in human history: there has never beena so
iety without games, at least sin
e bibli
al times when the 
ontemporariesof Abraham played the royal game of Ur [Fin07℄.It is no surprise, then, that game theory found many appli
ations in
omputer s
ien
e: arti�
ial intelligen
e [GMW87℄, logi
 [Bla92℄, semanti
sof programming languages [Chr03℄, et
. The model of graph games, whi
hwe use throughout this work, is quite straightforward: two players 
alled1



CHAPTER 1. PREQUEL 2Eve and Adam move alternatively a token between the di�erent positions ofa board, with a set of rules whi
h des
ribe the legal moves and de
ide thewinner. There is the fa
t that plays usually go on forever. Well, it 
ould notbe that simple, 
ould it?Automata. In the sixties, the problems of veri�
ation and synthesis ofdigital 
ir
uits [Chu62℄ led to the introdu
tion of automata over in�nitewords [Bü
62℄ and in�nite graph games [M
N65℄. The �rst solution toChur
h's synthesis problem, by Bü
hi and Landweber, 
ame from a gameapproa
h [BL69℄. Rabin qui
kly followed suit, and provided a solution basedon tree automata [Rab69℄.Automata theory and graph games remain 
losely linked: two playergames 
an be seen as alternating automata over a one-letter alphabet, whilethe emptiness of non-deterministi
 tree automata (on a �nite alphabet) 
anbe redu
ed to the problem of de
iding the winner of a two-player game.Furthermore, the existen
e of strategies with �nite memory 
an be used to
omplement automata: for example, Gurevi
h and Harrington used the latestappearan
e re
ords stru
ture for Muller games �already mentioned by Bu
hiand M
Naughton in unpublished manus
ripts� to get a simpler proof ofRabin's theorem [GH82℄.The nature of the players strategies, espe
ially with respe
t to memory,re
eived a lot of attention in the following years, with notably the positionaldetermina
y of parity games [Mos91, EJ91℄, the index of appearan
e re
ordsstru
ture for Rabin/Streett games [BLV96℄, and the split tree [Zie98℄, whoseanalysis provided tight bounds in memory for all Muller 
onditions [DJW97℄.To this day, graph games are one of the most popular and e�
ient ap-proa
hes to automata problems: see for example [EWS01℄ on simulationrelations, and [CL08℄ on the (restri
ted) star-height problem over trees.Model 
he
king. In the early eighties, the 
omplexity of program veri�-
ation outgrew the possibilities of hand-
onstru
ted proofs in Floyd-Hoarestyle logi
 [OG76℄. This led to the introdu
tion of model 
he
king by Clarkeand Emerson [CE81℄, and independently by Queille and Sifakis [QS82℄, inorder to 
he
k whether a program meets a spe
i�
ation without having tobuild an expli
it proof. The idea is to represent the evolution of a programas a �nite Kripke stru
ture, and the spe
i�
ation as a formula of proposi-tional temporal logi
. The resulting �model-
he
king problem� asks whether



CHAPTER 1. PREQUEL 3a Kripke stru
ture M is a model for a logi
al formula ϕ. A more 
ompleteexposition of the history of model 
he
king 
an be found in [Cla08℄.Model 
he
king was qui
kly extended into a veri�
ation tool for any realsystems, through a step of modelling: the system is represented as a Kripkestru
ture, and the spe
i�
ation as a logi
al formula. The point of model
he
king is then to either guarantee the good behaviour of the system, or pro-vide examples of faulty behaviours. The multipli
ity of possible situations ledto many variations of this problem: models may be �nite [VW86, M
M93℄, in-�nite [BJNT00, BFLP03, Mor08℄, sto
hasti
 [Var85, CY95, BCHG+97℄, asyn-
hronous [Maz75, GMSZ02℄ or timed [BKH99, BBBM08℄, while the spe
i�-
ation 
an be written in several di�erent logi
s: temporal [Pnu77, EL85℄, �x-point [Mos91, EJ91℄, monadi
 se
ond order [MP92, Kla97℄, data [BDM+06℄.Graph games provide very natural and robust 
lasses of models for opensystems, where the agent (represented by Eve) must intera
t with an un-
ontrollable environment (represented by Adam) [PR89℄. A strategy forEve is then a 
ontroller for the system, while a strategy for Adam is a
ounter-example for the satis�ability of the spe
i�
ation. Here also, theframework had to undergo a great deal of generalisation to a

ount for allthe possible situations: to 
ite but a few, let us mention sto
hasti
 transi-tions [dA97℄, 
on
urrent moves [dAHK98, dAH00℄, timed [dAFH+03℄ and hy-brid [BBJ+08℄ systems, pushdown arenas [Wal96, Ser05, CHM+08℄, quantita-tive rewards [FGK08℄, and multiple players [MW03, GLZ04, MTY05, GU08℄.Classi
al game theory. Another 
onsequen
e of the sto
hasti
 and 
on-
urrent extensions was the reuni�
ation of games in 
omputer s
ien
e andgames as studied in mathemati
al e
onomi
s. These latter games evolvedfrom one-step matrix games, where the out
ome depends on a single andsimultaneous 
hoi
e of a
tions by the players. Borel introdu
ed the notion ofmixed strategy in these games [Bor21℄, and von Neumann proved the exis-ten
e of optimal strategies �the well known �min-max theorem�� [vNM44℄,whi
h was extended to the setting of multiplayer games with the notion ofNash equilibrium [Nas50℄.In the early �fties, Shapley introdu
ed sto
hasti
 graph games [Sha53℄to a

ount for situation where the evolution of the play, and not only theimmediate payo�s, depend on the 
hoi
es of the players. A sto
hasti
 gameis a (�nite) set of matrix games, and a play is a series of moves, instead of asingle round. Furthermore, the out
ome of a move determines whether and



CHAPTER 1. PREQUEL 4where the play pro
eeds for the next move. The reward of a play is the sumof the elementary payo�s �whi
h is �nite with probability one, sin
e thereis a positive probability to stop in ea
h state. An alternative and slightlydi�erent view of this reward is the dis
ounted payo�: the game never stops,but the rewards at ea
h step are a�e
ted by 
umulative dis
ount fa
torswhi
h guarantee that the reward of a play 
onverges. Several other payo�fun
tions were 
onsidered �e.g. mean payo� [Gil57℄, limsup [MS96℄, andrea
hability [Con93℄� for other behaviours or situations.The 
ross-breeding of the two traditions has been fruitful: the strategyimprovement algorithm [HK66℄, in parti
ular, has been extended to paritygames in a dis
rete fashion [VJ00℄, while 
omputer s
ien
e te
hniques pro-vided new insights on 
lassi
al games problems [FPT04, Rou05, GZ07℄.The study of graph games is a thriving topi
 in 
omputer s
ien
e, aswitnesses the wealth of re
ent theses on the subje
t [Maj03, Ser05, Gim06,Cha07d℄. The present work is to be my own tessella in this vast and ever-expanding mosai
.1.2 De�nitions1.2.1 PlayingOur model of games is the graph games, introdu
ed by Zermelo in [Zer13℄and extended by Shapley in [Sha53℄: an arena is a dire
ted graph, where atoken moves from state to state along the transitions. This model has knownenough variants to prompt the authors of [CJH03℄ to propose a systemati

lassi�
ation: the variation we 
onsider are in�nite 21
2
-player games on simple�nite arenas. Before we pro
eed with the formal de�nitions, let us reviewthe meaning of these terms, as well as the alternatives.�In�nite�: Our games never end: a full play is a sequen
e indexed by non-negative integers, and the winning 
onditions are de�ned on in�nite plays.Noti
e that while a play may go on forever in a real game, e.g. in Go withoutthe �superko� rule, this is usually not the intended form of a play. In�nitegames subsume �nite games, but there is an even more general model, inwhi
h the plays are indexed by ordinals [CH08b, CH08a, RS08℄.



CHAPTER 1. PREQUEL 5�21
2
-player�: There are three agents: Eve, Adam and Random. An exam-ple of �real� 21

2
-player game is Ba
kgammon: the three agents are White,Bla
k, and the di
es. This also provides natural names for games where oneor more agents are absent:

• 2-player games�deterministi
 games� if there are no random moves,e.g. Go;
• 11

2
-player games�Markov de
ision pro
esses� if either Eve or Adam
annot move, e.g. Spider solitaire;

• 1-player games�non-deterministi
 transition systems� if only Eve oronly Adam 
an move, e.g. Sokoban;
• 1

2
-player games�Markov 
hains� if there are only random moves e.g.Progress Quest.

• 0-player games�deterministi
 transition systems� if all the positionshave only one su

essor, e.g. Conway's game of life.It is also possible to 
onsider games with three or more players, but theiranalysis depends on many assumptions about allian
es, king-maker situa-tions, and so on.�Simple�: Ea
h state belongs either to Eve, Adam, or Random, and theowner of the 
urrent state de
ides on his own whi
h transition is to be taken.Furthermore, both Eve and Adam know the exa
t position of the token atall times. This is in 
ontrast with 
on
urrent games � e.g. Janken � andpartial-information games � e.g. Poker.�on �nite arenas� Throughout this work, we only 
onsider games playedon �nite arenas. The alternative, of 
ourse, is to a

ept in�nite �but �nitelyrepresentable� arenas. Noti
e that there are real games with in�nite arenas,e.g. Monopoly.Arenas and PlaysNotation 1.1 A probability distribution γ over a �nite set X is a fun
tionfrom X to [0, 1] su
h that∑x∈X γ(x) = 1. The set of probability distributionsover X is denoted by D(X).



CHAPTER 1. PREQUEL 6Formally, we de�ne a 21
2
-player arena A over a set of 
olours C as a tuple

(Q,QE ,QA,QR, T , δ, χ), where:
• Q is a �nite set whose elements are the states of A;
• QE , QA, and QR partition Q between Eve's states (graphi
ally repre-sented as #'s), Adam's states (2's), and random states (△'s);
• T ⊆ Q×Q is the set of transitions of A, and there are no dead-ends:
∀q ∈ Q, ∃s ∈ Q, (q, s) ∈ T ;
• δ : Q → D(Q) is the random law on the su

essors of a state of QR,and δ(r)(q) > 0⇐⇒ (r, q) ∈ T ;
• χ is a partial 
olouring fun
tion, mapping the states to the 
olours C.Notation 1.2 In the whole thesis, whenever we 
all an arena A, we impli
-itly mean that A = (Q,QE ,QA,QR, T , δ, χ). Likewise, the arena A is equalto (Q,QE,QA,QR,T, Æ, �), and A to (Q,QE ,QA,QR,T, d, X).A play ρ of A is a ��nite or in�nite� path in the graph (Q, T ): asequen
e of states su
h that ∀i < |ρ| − 1, (ρi, ρi+1) ∈ T . The set of playsstarting in a state q is denoted Ωq. The fun
tions Occ (on �nite or in�niteplays) and Inf (on in�nite plays) denote, respe
tively, the sets of o

urringand limit states:

Occ(ρ) = {q ∈ Q | ∃i, ρi = q} ;

Inf(ρ) = {q ∈ Q | ∃∞i, ρi = q} .Strategies and measuresStrategies are the �re
ipes� Adam and Eve use when it is their turn to play.We de�ne most of the 
on
epts from Eve's point of view. Similar notions al-ways exist for Adam, and their de�nition is straightforward. A (randomised)strategy σ for Eve is a fun
tion from the �nite pre�xes ending in a state ofEve to distributions of probabilities over the legal states:
σ : Q∗QE → D(Q) ;

∀w ∈ Q∗, ∀q ∈ QE , ∀s ∈ Q, σ(wq)(s) > 0⇒ (q, s) ∈ T .



CHAPTER 1. PREQUEL 7A strategy is pure if it does not use randomisation:
∀w, ∀q, σ(w)(q) = 0 ∨ σ(w)(q) = 1 .A pure strategy 
an thus be seen as a fun
tion from the pre�xes to thestates, and we often write σ(w) for �the unique state q su
h that σ(w)(q) = 1�.A play ρ is 
onsistent with σ if and only if ∀i < |ρ|, ρi−1 ∈ QE ⇒

σ(ρ0...i−1)(ρi) > 0. The set of plays 
onsistent with σ (resp. τ ; σ and τ)is denoted by Ωσ (resp. Ωτ ; Ωσ,τ ). On
e an initial state q and two strategies
σ and τ have been �xed, Ωσ,τ

q 
an naturally be made into a measurable spa
e
(Ωσ,τ

q ,O), where O is the σ-�eld generated by the 
ones {Ow | w ∈ Q∗}:
ρ ∈ Ow if and only if w is a pre�x of ρ. The probability measure Pσ,τ

q isre
ursively de�ned by:
∀r ∈ Q,Pσ,τ

q (Or) =

{

1 if r = q ,
0 if r 6= q ;

∀w ∈ Q∗, (r, s) ∈ Q2,Pσ,τ
q (Owrs) =







Pσ,τ
q (Owr) · σ(wr)(s) if r ∈ QE ,Pσ,τ
q (Owr) · τ(wr)(s) if r ∈ QA ,Pσ,τ
q (Owr) · δ(r)(s) if r ∈ QR .Carathéodory's extension theorem allows us to extend Pσ,τ

q to the Borel setsof (Ωσ,τ
q ,O). When we deal with events, we indi�erently use ρ ∈ Γ and ρ |= Γ,

Γ ∪∆ and Γ ∨∆, et 
etera.Sub-arenas and end-
omponentsThe restri
tion of an arena A to a subset X of Q, denoted by A|X is asub-arena of A if and only if:
• ∀q ∈ X ∩ (QE ∪ QA), ∃s ∈ X, (q, s) ∈ T ;
• ∀q ∈ X ∩QR, ∀s ∈ Q, (q, s) ∈ T ⇒ s ∈ X.The end-
omponents of A [CY95, dA97℄ are the supports of the strongly
onne
ted subarenas of A. Lemma 1.3 is 
entral in many a proof aboutsto
hasti
 games:Lemma 1.3 ([dA97℄) For any initial state q and strategies σ, τ for Eve andAdam, the limit of the ensuing play is an end-
omponent with probability one.



CHAPTER 1. PREQUEL 8Strategies with memoryStrategies 
an also be de�ned as strategies with memory, for a given set ofmemory states M . A strategy σ with memory M is then a fun
tion from
Q ×M to D(Q ×M). Alternatively, a pure strategy with memory M 
anbe des
ribed as two separate fun
tions: a �next-move fun
tion� σn : (QE ×
M)→ Q and a �memory-update� fun
tion σu : (Q×M)→M . Randomisedfun
tions σu and σn 
an also be used to de�ne randomised strategies, but itis not possible to represent all the randomised strategies with memory M inthis way: there may be a 
orrelation between the moves and the updates.There is a last, intermediate, model of strategies with memory: a semi-randomised strategy σ with memory M is de�ned by a randomised �next-move fun
tion� σn : (QE×M)→ D(Q) and a pure �memory-update� fun
tion
σu : (Q×M)→M . However, these strategies are less 
ompa
t than generalrandomised strategies with memory.Noti
e that any pure (resp. randomised) strategy 
an be represented as apure (resp. semi-randomised) strategy with memory Q∗. However, the pointis often to get strategies with �nite memory, or positional strategies, wherethe memory is redu
ed to a singleton.In parti
ular, a strategy σ with �nite memory M 
an be used to des
ribethe restri
tion of A to σ, denoted by Aσ. If σ is pure or semi-randomised,we get the following 11

2
-player arena:

• Qσ = Q×M ;
• Qσ

A = QA ×M ;
• Qσ

R = (QR ∪ QE)×M ;
• T σ = ∪{((q, m), (r, n) | q ∈ QA and n = σu(q, m)}
T σ = ∪ {((q, m), (r, n) | (q, m) ∈ Qσ

R and δ(q, m)(r, n) > 0}

• δσ(q, m)(s, n) =

{

δ(q)(s) if q ∈ QR and n = σu(q, m)
σn(q, m)(s) if q ∈ QE and n = σu(q, m)The problem with general randomised strategies is that Adam gets too mu
hinformation: he is not supposed to know the 
urrent memory state of Eve.The good notion for a game restri
ted to a general randomised strategy wouldbe a 11

2
-player game with partial information, but its analysis is outside ofthe s
ope of this thesis.



CHAPTER 1. PREQUEL 9Attra
tors and trapsFor any subset X of Q, we de�ne the events Reach(X) = {ρ | ∃i, ρi ∈ X}and Reach∞ X = {ρ | ∃∞i, ρi ∈ X}, and the attra
tor of Eve to X in A
AttrE(X,A) as ∪i>0X

i:
X0 = X

X i+1 = X i ∪ {q ∈ (QE ∪ QR) | ∃s ∈ X i, (q, s) ∈ T }

X i ∪ {q ∈ QA | ∀s ∈ Q, (q, s) ∈ T ⇒ s ∈ X i}An attra
tor strategy of Eve to X is a pure and positional strategy −→aE(X)su
h that ∀q ∈ ∪i>1X
i, q ∈ X i ⇒ −→aE(X)(q) ∈ X i−1. Propositions 1.4 and 1.5follow dire
tly from the de�nition of an attra
tor and Lemma 1.3:Proposition 1.4 For any state q in AttrE(X,A), there is a real number

η > 0 su
h that for any strategy τ of Adam, we have:P−→aE(X),τ
q (Reach(X)) > ηProposition 1.5 For any state q in Q, for any strategy τ of Adam, we have:P−→aE(X),τ

q (Reach∞(X) | Reach∞(AttrE(X,A))) = 1An interesting remark is that the positional randomised strategy uniA,whi
h 
hooses any legal su

essor in A with a uniform distribution, a
ts asan universal attra
tor strategy for any subset X of A [CdAH04℄: Proposi-tions 1.4 and 1.5 still hold if we repla
e aX by uniA.The dual notion of a trap X for Eve denotes a region from whi
h Eve
annot es
ape:
• ∀q ∈ X ∩ (QE ∪ QR), ∀s ∈ Q, (q, s) ∈ T ⇒ s ∈ X;
• ∀q ∈ X ∩QA, ∃s ∈ X, (q, s) ∈ T .A strategy τ su
h that ∀w ∈ Q∗, ∀q ∈ X ∩ QA, τ(wq)(X) = 1 is a trappingstrategy of Adam in X.Proposition 1.6 For any subset X of Q, Q\AttrE(X,A) is a trap for Evein A.Proposition 1.7 If X is a trap for Eve in A, A|X is a subarena of A.Proposition 1.8 Let X be a trap for Eve in A, and σ be a strategy for Evein A|X. For any state q in X and strategy τ for Adam in A, the probabilitymeasure Pσ,τ

q is the same in A|X and in A.



CHAPTER 1. PREQUEL 101.2.2 WinningConditionsA winning 
ondition W on C is a Borel subset of C∞. A play ρ in an arena
A on C is winning for Eve in the game (A, C) if χ(ρ) ∈ W, and winning forAdam otherwise.A regular 
ondition is a ω-regular language of C∞. However, there isa tradition of using the 
lassi
al a

eptan
e 
onditions of regular automatadire
tly on the play, as ifA itself was an alternating automaton on a singletonalphabet. The resulting parity, Rabin, Streett, and Muller games are usedin veri�
ation, logi
, and automata [GTW02℄:
• a parity arena A (resp. parity arena of rank k) is an arena on N (resp.
{0, . . . , k− 1}), and the winner of a play ρ in the 
orresponding paritygame depends on the smallest 
olour in the limit of ρ:

ρ ∈ Parity ⇐⇒ min χ(Inf(ρ)) is even
• a Rabin arena A of rank k is an arena on {−k, . . . ,−1, 1, . . . , k}. Anintuitive interpretation of the Rabin 
ondition of rank k is to 
onsiderthe negative integers as a
tivators and the positive ones as inhibitors:a play ρ is winning for Eve if at least one a
tivator −i in Inf(ρ) is notmat
hed by the 
orresponding inhibitor i:

ρ ∈ Rabin(k)⇐⇒ ∃ 1 ≤ i ≤ k,−i ∈ χ(Inf(ρ)) ∧ i /∈ χ(Inf(ρ))

• a Streett arena A of rank k is an arena on {−k, . . . ,−1, 1, . . . , k}. Anintuitive interpretation of the Streett 
ondition of rank k is to 
onsiderthe negative integers as requests and the positive ones as responses: aplay ρ is winning for Eve if ea
h request −i in Inf(ρ) is mat
hed by the
orresponding response i:
ρ ∈ Streett(k)⇐⇒ ∀ 1 ≤ i ≤ k,−i ∈ χ(Inf(ρ))⇒ i ∈ χ(Inf(ρ))

• a Muller 
ondition F on C is a subset of P(C). The winner of a play ρin the 
orresponding Muller game on C depends dire
tly on its limit:
ρ ∈ Muller(F , C)⇐⇒ χ(Inf(ρ)) ∈ F .



CHAPTER 1. PREQUEL 11In a game G = (A,W), the value of a state q under the strategies σ and
τ , denoted vσ,τ (q), is the measure of W under Pσ,τ

q . The value of a strategy
σ for Eve is the in�mum of the {σ, τ}-values:

vσ(q) = inf
τ

vσ,τ (q) .Likewise, the value of a strategy τ for Adam is de�ned as a supremum:
vτ (q) = sup

σ

vσ,τ (q) .RegionsDe Alfaro and Henzinger de�ne in [dAH00℄ several qualitative notions ofwinning strategies and winning regions, depending on the 
han
es Eve getsto win:Sure / Heroi
: A strategy σ for Eve is surely winning (or sure) from astate q if and only if for any strategy τ for Adam, any play starting in q and
onsistent with σ and τ is winning for Eve. Dually, a strategy σ for Eve isheroi
ally winning (or heroi
) from a state q if and only if for any strategy
τ for Adam, there is a play ρ starting in q, 
onsistent with σ and τ , andwinning for Eve. The 
orresponding sure and heroi
 regions are de�ned asfollows:

WinW ,∀
E (A) = {q | ∃σ, ∀ρ ∈ Ωσ

q , ρ ⊢ W} ;

WinW ,∃
E (A) = {q | ∃σ, ∀τ, ∃ρ ∈ Ωσ,τ

q su
h that ρ ⊢ W} .Almost-sure / Positive: A strategy σ for Eve is almost-surely winning(or almost-sure) from a state q if and only if for any strategy τ for Adam, theprobability that the ensuing play is winning for Eve is one. Dually, a strategy
σ for Eve is positively winning (or positive) from a state q if and only if forany strategy τ for Adam, the probability that the ensuing play is winning forEve is positive. The 
orresponding almost-sure region and positive regionsare de�ned as follows:

WinW ,1
E (A) = {q | ∃σ, ∀τ,Pσ,τ

q (W) = 1} ;

WinW , >0

E (A) = {q | ∃σ, ∀τ,Pσ,τ
q (W) > 0} .



CHAPTER 1. PREQUEL 12Limit-one / Bounded: The bounded region of Eve is the set of states withpositive value, and dually, the limit-one region of Eve is the set of states withvalue one:
WinW ,∼1

E (A) = {q | ∀η < 1, ∃σ, ∀τ, vσ,τ (q) ≥ η} ;

WinW ,≫0

E (A) = {q | ∃η > 0, ∃σ, ∀τ, vσ,τ (q) ≥ η} .These six notions of winning 
an also be de�ned for Adam in a straight-forward way. By 
onvention, we want the �rst supers
ript to 
orrespond tothe winning 
ondition of the game, in whi
h Adam is the opponent. Forexample, the almost-sure region of Adam in the game G = (A,W) is denoted
WinW ,1

A (A) and refers to the region where Adam 
an guarantee ¬W withprobability one.The two following propositions are dire
t 
onsequen
es of the de�nitions:Proposition 1.9 Let G = (A,W) be a 21
2
-player games. We have:

WinW ,∀
E (A) ⊆ WinW ,1

E (A) ⊆ WinW ,∼1

E (A)

⊇
WinW ,∃

E (A) ⊇ WinW , >0

E (A) ⊇ WinW ,≫0

E (A) .Proposition 1.10 Let G = (A,W) be a 21
2
-player games. We have:

WinW ,∀
E (A) ∩ WinW ,∃

A (A) = ∅

WinW ,1
E (A) ∩ WinW , >0

A (A) = ∅

WinW ,∼1

E (A) ∩ WinW ,≫0

A (A) = ∅1.3 Usual problems and 
ontributions1.3.1 ProblemsDetermina
y and existen
e of valuesA natural question is whether the disjun
tions of Proposition 1.10 partitionQor not. The sure determina
y of 2-player Borel1 games [Mar75℄, transposedto 21
2
-player games by repla
ing the random states with states of Adam,yields WinW ,∀

E (A) ∪WinW ,∃
A (A) = Q for any game G = (A,W). In the 
ase1The existen
e of non-determined 2-player games relies on the axiom of 
hoi
e.



CHAPTER 1. PREQUEL 13of 21
2
-player games, the quantitative determina
y of Bla
kwell games [Mar98℄states that the value of a state q 
an indi�erently be de�ned as the supremumof the σ-values, or the in�mum of the τ -values:

v(q) = sup
σ

inf
τ

vσ,τ (q) = inf
τ

sup
σ

vσ,τ (q) .It follows immediately that WinW ,∼1

E (A)∪WinW ,≫0

A (A) = Q. However, thereis no su
h general answer to the problem of �qualitative determina
y�:
WinW ,1

E (A) ∪WinW , >0

A (A)
?
= Q .Qualitative and quantitative problemsIn [CJH03℄, the authors also 
lassify the di�erent problems on games:

• Qualitative problems depend on the winning regions of the players �for all six notions of �winning�. A �qualitative-
omplete� problem on agame G = (A,W) 
onsists in de
iding, for any given state q, player P ,and notion of winning ?, whether q belongs to WinW ,?
P (A).

• Quantitative problems on the other hand, depend on the values ofthe states �and thus are interesting only in 21
2
-player games. A�quantitative-
omplete� problem 
onsists in 
omputing the value v(q)of any given state q.The de
idability and 
omplexity of qualitative and quantitative problemsgenerate a major part of the arti
les in graph games theory.Complexity of the winning strategiesAnother question ponders the nature of the winning strategies, in terms ofrandomisation and memory. This is espe
ially useful from a veri�
ation pointof view, as the strategies represent possible implementations of 
ontrollers,whose 
ost is often more 
riti
al than the spe
i�
ation 
osts. In automatatheory, the existen
e of positional strategies for spe
i�
 winning 
onditionhas been an invaluable tool for several problems.



CHAPTER 1. PREQUEL 141.3.2 ContributionsSolving rea
hability gamesWe present two new algorithms 
omputing optimal strategies in 21
2
-playerrea
hability games. They are based on the existen
e of optimal permuta-tion strategies, a sub-
lass of positional strategies derived from permutationsof the random states. As our algorithms never 
onsider the same permu-tation twi
e, their worst-
ase 
omplexity mostly depends on the number ofsu
h permutations, making the solution of 21

2
-player rea
hability games �xed-parameter tra
table, when the parameter is the number of random states:this is orthogonal to the 
omplexity of the strategy-based algorithms, whi
hrather depends on the number of player's states.The �rst algorithm, the permutation-enumeration algorithm is a simpleexhaustive sear
h. Its 
omplexity is thus exponential, but it avoids the useof linear programming. The se
ond one, the permutation-improvement algo-rithm, emulates the heuristi
 of the 
lassi
al strategy improvement algorithm[HK66℄ in order to avoid an exhaustive sear
h.Another asset of our algorithms is that they do not rely on the expensivestopping hypothesis [Con92℄: this allows us, in the next 
hapter, to extendthem to the mu
h broader 
ase of pre�x-independent games.Pre�x-independent winning 
onditionsIn pre�x-independent games, the winner of a play depends only on its limit,and not on �nite pre�xes. We show that in these games, the positive andbounded regions, as well as the limit-one and almost-sure regions, are equal.We prove then their optimal determina
y, and provide an algorithm 
om-puting the values of any pre�x-independent game with |QR|! 
alls to a qual-itative algorithm. Alternatively, a single non-deterministi
 guess 
an repla
ethe multiple iterations. It follows from our proof of 
orre
tness that optimalstrategies are no more 
omplex than almost-sure strategies.This generalises and extends several results on the winning regions of reg-ular [dAHK98, dAH00℄ and pre�x-independent games [Cha07a℄. The 
om-plexity of our general algorithm is better or on a par with the 
omplexity ofseveral known algorithms for spe
ial 
ases [CJH04, CdAH05, CHH08℄.



CHAPTER 1. PREQUEL 15Muller gamesWe present a polynomial algorithm for the qualitative problems of expli
itMuller games. It follows then from our results of the former 
hapter that thequantitative problems of expli
it Muller games belongs in NP and 
o-NP. Theonly algorithm previously known for these games was the all-purpose PSPACEalgorithm for Muller games [M
N93, NRY96℄.Our next a
hievement is the 
omputation of tights bounds in memory foroptimal randomised strategies in Muller games. The 
omparison with similarresults for pure strategies [DJW97℄ allows us to as
ertain the di�eren
esbetween the two models of strategies in this aspe
t.Former results on randomised strategies provided upper bounds for ran-domised games [CdAH04, Cha07b℄, but to the best of the author's knowledge,no lower bounds.Finitary gamesFinitary 
onditions [AH98℄ supplement regular 
onditions with bounds onthe time spent between a �bad� event and a subsequent �good� event whi
h
ompensate for it. Chatterjee and Henzinger studied 2-player games with�nitary parity and Streett 
onditions and proposed algorithms 
omputingthe winning regions of the players [CH06a℄.We extend this study to the 
ase of 21
2
-player games and provide fasteralgorithms for both kinds of games. In parti
ular, we have shown that thequalitative �nitary parity games 
an be solved in polynomial time �herealso, the results of Chapter 3 yield dire
tly NP and 
o-NP algorithms forquantitative problems. We also show that �nitary Streett games 
an beredu
ed in polynomial time to Request-Response games [WHT03℄.



Chapter 2Rea
hability games�Consisten
y is the last refuge of the unimaginative.� Os
ar WildeOne of the simplest, and yet most useful, winning 
onditions is the rea
h-ability 
ondition: there is a distinguished target state in the arena, denotedby ⊚, and Eve's obje
tive is to ensure that the token rea
hes it at some pointduring the play.In this 
hapter, we 
onsider the problems of 
omputing the values andoptimal strategies in su
h games. Figure 2.1 presents an example of 21
2
-player rea
hability game, that we use throughout the 
hapter to demonstratenotions and intuitions.Se
tion 2.1 introdu
es some general 
on
epts on 21

2
-player rea
habilitygames, as well as the strategy improvement algorithm. We present in Se
-tion 2.2 a new approa
h to the 
omputation of values and optimal strategies,based on permutations over the random states. Se
tion 2.3 exposes then animprovement heuristi
 for this �permutation algorithm�.2.1 First notionsThis se
tion is devoted to the fundamental notions that we use throughtoutthe 
hapter in order to deal with the values of 21

2
-player rea
hability games.It in
ludes a large part of the state of the art in the domain, whi
h 
an alsobe found in a more detailled way in the survey of Condon [Con93℄.16
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a b c d.4.6 .3.1.4 .1.1 .2.8 .2.6 .2

Figure 2.1: A 21
2
-player rea
hability gameHowever, there is a lot more work on 21

2
-player rea
hability games (see,for example, [Hal07℄ on the use of randomised algorithms) that we don'tdes
ribe here, be
ause it bears too few relations with our own results.We �rst des
ribe two spe
ial 
lass of rea
hability games (2.1.1), and thenpresent some fundamental results about the values (2.1.2). A des
ription ofthe strategy improvement algorithm 
on
ludes the se
tion (2.1.3).2.1.1 Normalised and stopping gamesQualitative problems are easy to solve on 21

2
-player rea
hability games, andderive dire
tly from the notion of attra
tor:

Win
Reach(⊚), >0

E (A) = Win
Reach(⊚),≫0

E (A) = AttrE({⊚},A)

Win
Reach(⊚),∼1

A (A) = Win
Reach(⊚),1
A (A) = Q \Win

Reach(⊚), >0

E (A)

Win
Reach(⊚),∼1

E (A) = Win
Reach(⊚),1
E (A) = Q \ AttrA(Win

Reach(⊚),1
A (A), (A))

Win
Reach(⊚), >0

A (A) = Win
Reach(⊚),≫0

A (A) = Q \Win
Reach(⊚),1
E (A)The 
lass of normalised games is the 
lass of games where the thesequalitative questions have trivial answer: apart from the sink ⊗ and thetarget ⊚, no state has value zero or one. This 
lass is mainly of aestheti
signi�
an
e, as it simpli�es the proofs of algorithms and theorems whi
hwould still be 
orre
t, mutatis mutandis, on general 21

2
-player rea
hability



CHAPTER 2. REACHABILITY GAMES 18games. However, there are some 
ases where normalised games are a mu
h
heaper alternative to stopping games.De�nition 2.1 A 21
2
-player rea
hability game G = (A, Reach(⊚)) is nor-malised if and only if the only state with value one is the target ⊚, and thereis only one state with value zero, whi
h we denote by ⊗.It is easy to transform any 21

2
-player rea
hability game G = (A, Reach(⊚))into a normalised game G = (A, Reach(⊚)):

• the region Win
Reach(⊚),1
E (A) is merged into a single state, whi
h is thetarget of G;

• the region Win
Reach(⊚),1
A (A) is merged into a single state, whi
h is thesink of G.This transformation is represented on Figure 2.2.

Win
Reach(⊚),1
A

Win
Reach(⊚),1
E(a) Original game G (b) Normalised game GFigure 2.2: Rea
hability game normalisationThere is another in
entive to use normalised games: as the redu
tion isvery 
heap (linear), and the resulting game is smaller in general than theoriginal one, it is a good idea in pra
ti
e to normalise a game before runningany quantitative algorithm on it.



CHAPTER 2. REACHABILITY GAMES 192.1.1.1 Stopping gamesThe stopping hypothesis is less benign, as stopping games really have strongerproperties, inherited from the original model of Shapley: in the games of[Sha53℄, the token has a positive probability to stop in ea
h visited state.As a result, the plays are �nite with probability one. In our model, we 
allstopping games the games whi
h share this property:De�nition 2.2 A 21
2
-player rea
hability game is stopping if and only if, forany strategies σ of Eve and τ of Adam, the probability that the token even-tually rea
hes ⊗ or ⊚ is one:

∀σ, τ, q,Pσ,τ
q (Reach(⊗) ∨ Reach(⊚)) = 1The point of these games is that they are symmetri
: avoiding ⊗ andrea
hing ⊚ amount to the same thing, whi
h is not the 
ase in general. Asa 
onsequen
e, the following intuitive properties of ea
h player's strategieshold for both in stopping games.Proposition 2.3 Let G = (A, Reach(⊚)) be a 21

2
-player rea
hability gameand τ be a positional strategy for Adam su
h that:

∀q ∈ QA,v(τ(q)) = v(q) .Then τ is optimal. This is not true in general for Eve's strategies.Proposition 2.4 Let G = (A, Reach(⊚)) be a 21
2
-player rea
hability gameand σ and τ be positional strategies for Eve and Adam su
h that:

∀q ∈ QE , vσ,τ (σ(q)) = max{vσ,τ (s) | (q, s) ∈ T } .Then σ is an optimal 
ounter-strategy to τ . This is not true in general forAdam's strategies.Condon showed in [Con92℄ the existen
e of a polynomial redu
tion whi
hpreserves optimal strategies and threshold regions:Proposition 2.5 ([Con92℄) Let G = (A, Reach(⊚)) be a 21
2
-player rea
ha-bility game. There is a stopping rea
hability game G = (A, Reach(⊚)) su
hthat:

• QE = QE, QA = QA, and QR ⊃ QR;
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• to ea
h transition in T (q) 
orresponds a transition in T(q);
• the size of G is quadrati
 in the size of G;
• ∀q ∈ Q,v(q) > 1

2
⇐⇒ v(q) > 1

2
;

• if σ (resp. τ) is an optimal strategy for Eve (resp. Adam) in G, thenit is also optimal in G.Figure 2.3 shows the idea of the redu
tion: in ea
h transition, there is asmall probability η that the token goes dire
tly to the sink ⊗ instead of itsintended destination. For an small enough η, the optimal strategies of theredu
ed game are also optimal in the original game (the 
onverse is not truein general). However, the binary representation of a suitable η is linear inthe size of G, so the redu
tion involves a quadrati
 blow-up in size.

(a) Originalgame G
1− η

η

(b) Stopping game GFigure 2.3: Redu
tion to stopping gamesRemark 2.6 In [Con92℄, Condon 
onsiders games where the random stateshave only two su

essors, with equal probabilities. Thus, her redu
tion in-volves several su

essive random states instead of one, but it still involves aquadrati
 blow-up.Using Proposition 2.5, it is possible to 
onsider only stopping games, andderive general theorems about 21
2
-player rea
hability games. However, in this
hapter, we try to minimise the use of this option. Our reasons are twofold.First, altough polynomial, the redu
tion of Figure 2.3 is quite expensive in



CHAPTER 2. REACHABILITY GAMES 21pra
ti
e as the pre
ision grows; it is even not 
lear that it 
an be adaptedif the expe
ted pre
ision is not known beforehand, or the probabilities arenot rational. Se
ond, the redu
tion to stopping games is not very intuitive,espe
ially when it 
omes to a generalisation for in�nite games, as we do inChapter 3.2.1.2 Equations and Positional strategiesA simple te
hnique of strategy translation yields the following system of equa-tions on the values of a game G = (A, Reach(⊚)):
∀q ∈ QE ,v(q) = max

s∈E(q)
(v(s))

∀q ∈ QA,v(q) = min
s∈E(q)

(v(s))

∀q ∈ QR,v(q) =
∑

s∈E(q)

δ(q)(s) · v(s) (2.1)
v(⊚) = 1

v(⊗) = 0In the 
ase of stopping games (but not in general games), there is onlyone solution to this system:Proposition 2.7 In a stopping 21
2
-player rea
hability game, the values arethe only solution to (2.1). Furthermore, if the whole transition fun
tion isdes
ribed by rationals on n bits, the values are rationals whi
h 
an be writtenon 2n bits.This proposition suggests immediately an algorithm 
omputing the valuesof a stopping 21

2
-player rea
hability game: 
he
k exhaustively (or guess non-deterministi
ally) the values of the game, and 
he
k that they are a solutionto (2.1). The two following theorems, about the 
omplexity of the valueproblems, are a dire
t 
onsequen
e:Theorem 2.8 Quantitative de
ision problems about 21

2
-player rea
habilitygames belong to NP and 
o-NP.Theorem 2.9 Let G = (A, Reach(⊚)) be a 21

2
-player rea
hability game. Thevalues of G 
an be 
omputed in time O(42·(|T |+|δ|)).



CHAPTER 2. REACHABILITY GAMES 22Another fundamental result whi
h follows immediately from (2.1) is theexisten
e of positional values in 21
2
-player rea
hability games:Theorem 2.10 In a 21

2
-player rea
hability game, both players have posi-tional optimal strategies.Proof. In a stopping 21

2
-player rea
hability game, a positional strategy su
hthat:

• ∀q ∈ QE ,v(σ(q)) = v(q) if σ is a strategy for Eve, or
• ∀q ∈ QA,v(τ(q)) = v(q) if τ is a strategy for Adam.is optimal. By Proposition 2.5, there are also positional strategies in general

21
2
-player rea
hability games. �This allow us to 
onsider only positional strategies, whi
h are mu
h easierto handle. So, in the remainder of this 
hapter, whenever we mention a�strategy�, we mean a positional strategy.The values of a pair of strategies σ and τ are solutions to the followingsystem of equations:

∀q ∈ VE, vσ,τ (q) = vσ,τ (σ(q))

∀q ∈ VA, vσ,τ (q) = vσ,τ (τ(q))

∀q ∈ VR, vσ,τ (q) =
∑

s∈E(q)

δ(q)(s) · vσ,τ (s) (2.2)
vσ,τ (⊚) = 1

vσ,τ (⊗) = 0On
e again, the solution to (2.2) is not ne
essarily unique, unless thegame is stopping. A useful property of positional strategies is that optimalstrategies 
an be 
hara
terised by a notion of stability :De�nition 2.11 Two strategies σ and τ are 
o-stable if and only if:
• ∀q ∈ QE , vσ,τ (σ(q)) = max{vσ,τ (s) | (q, s) ∈ T }

• ∀q ∈ QA, vσ,τ (τ(q)) = min{vσ,τ (s) | (q, s) ∈ T }



CHAPTER 2. REACHABILITY GAMES 23Proposition 2.12 Let G = (A, Reach(⊚)) be a 21
2
-player stopping rea
ha-bility game, and σ and τ be two strategies for Eve and Adam. Then, (i) and(ii) are equivalent:(i) σ and τ are 
o-stable(ii) σ is an optimal strategy for Eve, and τ is an optimal strategy for Adam.Proof. Proposition 2.12 follows dire
tly from Proposition 2.7, as two strate-gies σ and τ are 
o-stable if and only if vσ,τ is a solution to (2.1). �We 
an thus sear
h exhaustively for optimal strategies, instead of sear
h-ing dire
tly the optimal values. The 
omplexity of the resulting algorithm� Algorithm 2.1 � is mu
h better: O(|Q||Q|).Input: a game G = (A, Reach(⊚))Output: optimal strategies for both playersforall σ ∈ Σ do1 forall τ ∈ T do2 if σ and τ are 
o-stable then3 return σ, τ4 end5 end6 end7 Algorithm 2.1: Strategy enumeration for rea
hability gamesRemark 2.13 Proposition 2.12 does not hold when the game is not stoppinggames, so Algorithm 2.1 
an return in
orre
t results in this 
ase . For thissame reason, the strategy algorithms of the next se
tions usually suppose thatthe input games are stopping. We show, however, that a 
areful adaptationallows us to 
an
el this hypothesis.2.1.3 Strategy improvementIn pra
ti
e, one never uses Algorithm 2.1. The two stati
 forall loops 
an berepla
ed by more e�
ient dynami
 strategy improvement s
hemes [HK66℄.



CHAPTER 2. REACHABILITY GAMES 24The idea is to use the values of a strategy in order to 
ompute a better one,unless the 
urrent strategy is already optimal.We 
onsider �rst the 
ase of 11
2
-player games where QE = ∅1. Strategyimprovement algorithms for 11

2
-player games are �rst mentioned in [How60℄.Noti
e that, in 11

2
-player games, normalised implies stopping:Proposition 2.14 Let G be a normalised 11

2
-player game. Then G is stop-ping.Proof. As G is normalised, the attra
tor of Eve to the target ⊚ is Q \ {⊗}.Eve has only one strategy whi
h is thus the attra
tor strategy to ⊚. So,by Proposition 1.5, ∀τ, q,Pτ

q (Reach(⊗) ∨ Reach(⊚)) = 1. Proposition 2.14follows. �At the 
ore of the strategy improvement algorithm is the 
on
ept ofswit
hing an unstable strategy:De�nition 2.15 Let G = (A, Reach(⊚)) be a 11
2
-player game su
h that

QE = ∅, and τ be a strategy for Adam. The swit
hed strategy of τ is thestrategy θ de�ned as:
• if ∀s ∈ T (q), vτ (s) ≥ vτ (τ(q)), then θ(q) = τ(q);
• otherwise, θ(q) is 
hosen su
h that ∀s ∈ T (q), vτ (s) ≥ vτ (θ(q)).The algorithm, 
omputing Adam's optimal strategy and des
ribed as Al-gorithm 2.2, 
onsists in repeatedly swit
hing the 
urrent strategy, until it isstable.Input: A 11

2
-player safety game GOutput: Optimal strategy for Adamrepeat1 swit
h τ2 until τ is stable3 return τ,v4Algorithm 2.2: Strategy Improvement for 11

2
-player safety gamesCorre
tness is ensured by Proposition 2.12, and termination by Proposi-tion 2.16:1The 
on
epts work mostly in the same way when QA = ∅, albeit with di�erent proofs.



CHAPTER 2. REACHABILITY GAMES 25Proposition 2.16 Let G be a normalised 11
2
-player safety game, and τ bea strategy for Adam. Then, either τ is stable, or the strategy θ obtained byswit
hing τ is su
h that vθ < vτ .The notion of swit
hing strategies des
ribed in De�nition 2.15 needs to beadapted in order to be used in 21

2
-player games. In this 
ontext,one swit
hesa strategy with respe
t to another :De�nition 2.17 Let G = (A, Reach(⊚)) be a 21

2
-player rea
hability game,and σ and τ be strategies for Eve and Adam. The swit
hed strategy of σ withrespe
t to τ is the strategy ς is de�ned as:

• if ∀s ∈ T (q), vσ,τ (s) ≤ vσ,τ (σ(q)), then ς(q) = σ(q);
• otherwise, ς(q) is 
hosen su
h that ∀s ∈ T (q), vσ,τ (s) ≤ vσ,τ (ς(q)).The swit
hed strategy of τ with respe
t to σ is de�ned symmetri
ally. It
orresponds to the swit
hed strategy of τ in the 11

2
-player safety game Gσ.In Algorithm 2.3, improving a strategy σ, 
onsists in 
omputing an op-timal 
ounter-strategy τ , and then swit
hing σ with respe
t to τ . The runstops only when the strategies are 
o-stable.Input: The game GOutput: Optimal strategies and values
hoose σ as an attra
tor strategy of Eve to ⊚1 repeat2 
ompute an optimal 
ounter-strategy τ to σ3 swit
h σ with respe
t to τ4 until σ and τ are 
o-stable5 return σ, τ6Algorithm 2.3: Strategy Improvement for 21

2
-player rea
habilitygamesAgain, the impossibility of an in�nite run is proved through a notion ofprogress:Proposition 2.18 Let G = (A, Reach(⊚)) be a 21

2
-player rea
hability game,

σ be a positional attra
tor strategy to ⊚ for Eve, τ be an optimal 
ounter-strategy to σ, and ς be the swit
hed strategy of σ with respe
t to τ . Then,either σ and τ are optimal, or, for any strategy θ, vς,θ > vσ,τ .



CHAPTER 2. REACHABILITY GAMES 26There are two remarks to be made about Algorithm 2.3. The �rst one isthat we 
an remove the stopping hypothesis of [Con93℄ by using normalisedgames. There is no stopping hypothesis in Proposition 2.18. By Proposi-tion 2.14, normalisation is enough for the improvement of Adam's strategy.However, it is not true in general that if G is normalised, then Gσ is also nor-malised �while su
h a property holds for stopping games. If σ is an attra
torstrategy to ⊚, though, then Gσ is normalised. Proposition 2.18 guaranteesthat σ remains an attra
tor strategy to ⊚ for the whole run. The se
ondremark 
onsists in pre
isions about the improvement steps of both players:
• The improvement of Eve's strategy in line 4 
onsists in a single swit
h-ing. It is not the 
omputation of an optimal 
ounter-strategy to Adam's
urrent strategy, nor should it be, as it leads to in�nite loops.
• Symmetri
ally, it is not enough to swit
h Adam's strategy only on
einstead of 
omputing an optimal 
ounter-strategy in line 3. This alsoleads to in�nite runs.These two examples, as well as several other unsound variations [Mar07℄ ofAlgorithm 2.3, are presented in [Con93℄.In terms of theoreti
al 
omplexity, Algorithms 2.2 and 2.3 do not faremu
h better than Algorithm 2.1. Progress ensures that any given pair ofstrategy 
annot be 
onsidered more than on
e, and no more. However, inpra
ti
e, both algorithms run very fast, to the point that they are widely
onje
tured to be polynomial:Conje
ture 2.19 Algorithm 2.2 runs in polynomial time on any normalised

11
2
-player safety game.Conje
ture 2.20 Algorithm 2.3 runs in polynomial time on any normalised

21
2
-player rea
hability game game.Note that the strategy improvement algorithm for 2-player parity gamesdes
ribed in [VJ00℄, whi
h is derived from Algorithm 2.3, runs in polynomialtime on 1-player games [Jur07℄. However, even if Conje
ture 2.19 does nothold, one 
an get a better 
omplexity for Algorithm 2.3 by using linear pro-gramming in line 3 instead of Algorithm 2.2. As Derman showed in [Der62℄the optimal values of a 11

2
-player safety game are the solution of the linearprogram presented in Algorithm 2.4.



CHAPTER 2. REACHABILITY GAMES 27Input: a game G = (A, Reach(⊚)) su
h that QE = ∅Output: Valuesminimize ∑q∈Q v(q) subje
t to the 
onstraints:1
v(q) ≤ v(s) if q ∈ QA and s ∈ T (q)2
v(q) =

∑

s∈T (q) δ(q)(s) · v(q) if q ∈ QR3
v(q) ≥ 0 if q ∈ Q4
v(⊗) = 05
v(⊚) = 16 return v7 Algorithm 2.4: Linear programming for 11

2
-player gamesLinear programs 
an be solved in polynomial time [Kha79, Ren88℄, re-sulting in an overall 
omplexity for Algorithm 2.3 that is exponential only in

QE or QA instead of both.2.2 Permutation AlgorithmIn a joint work with Hugo Gimbert [GH08, GH09℄, we propose a new algo-rithm 
omputing the values of 21
2
-player rea
hability games. Its prin
iple isto 
he
k exhaustively a spe
ial set of pairs of strategies, among whi
h thereis at least one pair of optimal strategies.The underlying intuition is that the only meaningful events in a play arethe visits to random states. Between two visits, the players strive to imposewhi
h state will be visited next, and the result of their intera
tion 
an easilybe predi
ted. In parti
ular:

• only the next random state matters, not the 
urrent one;
• there is no reason that Eve and Adam should ever agree on a 
hoi
e.Two o

uren
es of su
h situations, ex
erpted from the game of Figure 2.1,are illustrated on Figure 2.4.In Figure 2.4(a), Eve 
an 
hoose between the two random states (refusingto 
hoose is not 
onsistent with the rea
hability obje
tive). Why should she
hoose b in one state and c in the other ? The two strategies �always go to

b� and �always go to c� are the only relevant ones.
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b c.1.3.4 .1.1 .2.8
(a) Self 
onsisten
y

a b.4.4.6 .3.1 .1.1(b) Consisten
y between Eve and AdamFigure 2.4: Case for Consisten
yIn Figure 2.4(b), we 
onsider relationships between the two players' strate-gies. From their respe
tive states # and 2, Eve and Adam 
an send the tokento either a or b. Why should they 
hoose the same state ? Here, only the
ases where Eve prefers one and Adam the other are relevant.These intuitions �in
luding, but not limited to, the two 
ases of Fig-ure 2.4� are realized by pairs of strategies 
orresponding to a permutationof the random states. We de�ne permutation-based strategies and regions(2.2.1), as well as the notions of liveness and self-
onsisten
y (2.2.2). Ouralgorithm is an exhausitve sear
h for a live and self-
onsistent permuation:there is always su
h a permutation, and the 
orresponding strategies are opti-mal (2.2.3). We study then its 
omplexity, and present a 
lass of rea
habilitygames where the values 
an be 
omputed in polynomial time (2.2.4).2.2.1 Strategies and regionsIn order to e�e
t our intuitions [Mun07℄, we introdu
e several permutation-based 
on
epts. First, whenever we mention a permutation π, we mean apermutation over the k random states, su
h that {π1, . . . , πk} = QR. Su
h apermutation represents a �preferen
e order� over the random states: if Eveis given a 
hoi
e between two random states πi and πj with i > j, thenher �π-strategy� sends the token to πi. Symmetri
aly, in the same situation,Adam's π-strategy sends the token to πj. For this reason, the target andsink states 
an often be 
onsidered as random states in permutation-based
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1 2 3 4 50

Figure 2.5: The single-reward game derived from Figure 2.1
on
epts, with the impli
it assumption that they are respe
tively the greatestand lowest states: πk+1 = ⊚ and π0 = ⊗.A intuitive way to understand the permutation-based 
on
epts is to 
on-sider a 2-player game, where the game stops after a �nite number of stepsand Adam pays a reward to Eve at the end:1. if the token rea
hes a state πi, Adam pays i 
oins;2. if there is a loop in the path, Adam has nothing to pay.The π-regions are the value regions of this game, and the π-strategies are the
orresponding optimal strategies. For example, if we use the permutation
π = abcd in the game of Figure 2.1, we get the game, regions, and strategiesrepresented in Figure 2.5.In order to formalise these 
on
epts, we de�ne an �attra
tor-like� deter-ministi
 
onstru
tion: the deterministi
 attra
tor for Eve to a region X inthe arena A, denoted DetE(X,A) is the set of states from where Eve 
anensure that the token will (1) rea
h X (2) not 
ross a random state before itrea
hes X:De�nition 2.21 The deterministi
 attra
tor of Eve to the set X, denoted
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DetE(X,A) is 
omputed re
ursively:

X0 = X

X i+1 = X i ∪ {q ∈ QE | ∃s ∈ X i, (q, s) ∈ T }

X i ∪ {q ∈ QA | ∀s ∈ Q, (q, s) ∈ T ⇒ s ∈ X i}A random state belongs to DetE(X,A) if and only if it belongs to X. Thedual notion of deterministi
 trap for Eve is a region from whi
h Eve 
annotes
ape, ex
ept through a random state.The π-regions are de�ned as embedded deterministi
 attra
tors to therandom states, ordered by π: Wπ[k + 1] = {⊚}, ∀1 ≤ i ≤ k, Wπ[i] =
DetE({πi, πi+1, . . . , πk},A) \ Wπ[i + 1], and Wπ[0] = {⊗}. The π-regions
onstitutes a partition of the states, so we denote by π(q) the unique integer
i su
h that q ∈ Wπ[i] �in parti
ular, π(πi) = i. The 
omputation of the
π-regions of the game G) is des
ribed as Pro
edure Regions(G, π).Input: A 21

2
-player rea
hability game G and a permutation πOutput: The π-regions of G

W [k + 1]← {⊚}1
W [0]← {⊗}2 for (i = 1, i ≤ k, i + +) do3

W [i]← DetE({πi, . . . , πk} ∪ {⊚},A) \W [i + 1]4 end5 return W6 Pro
edure Regions(G, π)The π-strategies are the natural attra
ting and trapping strategies fol-lowing from De�nition 2.21, whi
h enfor
e Propositions 2.22 and 2.23:Proposition 2.22 If the token starts in a state of Wπ[i] and Eve plays σπ,then the token surely rea
hes a random state, and the �rst random state πjthat the token rea
hes is su
h that j ≥ i.Proposition 2.23 If the token starts in a state of Wπ[i], Adam plays τπ,and the token rea
hes a random state, then the �rst random state πj that thetoken rea
hes is su
h that j ≤ i.A 
onsequen
e of Propositions 2.22 and 2.23 is Proposition 2.24:
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2
-player rea
hability gameand π be a permutation. For any state q ∈Wπ[i], we have:

v(q) ≥ min{v(πj) | j ≥ i}

v(q) ≤ max{v(πj) | j ≤ i}Proof. Proposition 2.24 follows from a te
hnique of �strategy translation�similar to the one used in the proof of (2.1): both Eve and Adam 
an playtheir π-strategy until the token rea
hes a random state, and then revert toan (ε-)optimal strategy. Propositions 2.22 and 2.23 yield then the desiredinequations. �2.2.2 Evaluating a PermutationOur �rst step in order to evaluate a permutation π is to 
ompute its valuesfrom the π-strategies σπ and τπ: vπ = vσπ ,τπ
. We denote by vπ[i] the valueof the i-th random state in π: vπ[i] = vπ(πi). It follows immediately fromPropositions 2.22 and 2.23 that all the states in the same region share thesame π-value: π(q) = i ⇒ vπ(q) = vπ[i]. We 
an also interpret these valuesusing a �
ompa
ted� 1

2
-player rea
hability game Gπ with k + 2 states:

• Q = {0, . . . , k + 1}

• d(i)(⊗) = δ(πi)(⊗)

• d(i)(⊚) = δ(πi)(⊚)

• d(i)(j) = δ(πi)(Wπ[j])This amounts to merging ea
h region Wπ[i] into a single state i. Figure 2.6shows the game resulting from our running example, as a graph (2.6(a)) andas a matrix (2.6(b)).This interpretation is used in Pro
edure Values(G, π, W) to 
ompute the
π-values, using a primitive MarkovChainSolver.In the game of Figure 2.6 with the permutation π = abcd, we get vπ(a) =
vπ(b) = .4 and vπ(c) = vπ(d) = .7. As we will see, the permutation π isself-
onsistent (De�nition 2.26) and live (De�nition 2.27), thus for ea
h i,
vπ[i] is the value of all the states in Wπ in the original game (Lemma 2.33).The notion of self-
onsisten
y is our equivalent to the notion of stability:in strategy-based algorithms, a �good� strategy for Eve sends the token to
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a

b

c

d

.6.4
.3 .4 .1.1.1

1.2 .6.2
(a) Graph Representation

⊗ a b c d ⊚

⊗ 1 0 0 0 0 0
a 0 .6 .4 0 0 0
b .3 .4 0 .1 .1 .1
c 0 0 0 0 1 0
d 0 0 .2 .6 .2 0
⊚ 0 0 0 0 0 1(b) Matrix RepresentationFigure 2.6: The �
ompa
ted� game GπInput: A rea
hability game G, a permutation π, and a partition WOutput: The π-valuesfor (i = 1, i ≤ k, i + +) do1 for (j = 0, j ≤ k + 1, j + +) do2

mc[i][j]← δ(πi)(W [j])3 end4 end5
v ←MarkovChainSolver(mc)6 return v7 Pro
edure Values(G, π, W)the su

essor with the highest value 
omputed from the 
andidate strategy ; inpermutation-based algorithms, a �good� permutation is 
onsistent with thepreorder of the values 
omputed from the 
andidate permutation. We �rstde�ne 
onsisten
y in the general 
ase of independent permutation and valuesfor the random states.De�nition 2.25 A permutation π is 
onsistent with a set of values v if andonly if for any two states πi and πj in QR, i < j ⇒ v(πi) ≤ v(πj).De�nition 2.26 A permutation π is self-
onsistent if and only if it is 
on-sistent with vπ: for any two states πi and πj in QR, i < j ⇒ vπ[i] ≤ vπ[j].
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tor of values vOutput: The 
onsisten
y of π and v
onsistent ← true1 for (i = 1, i ≤ k, i + +) do2 
onsistent ← 
onsistent ∧ (v[i] ≤ v[i + 1])3 end4 return 
onsistent5 Pro
edure Consistent(π, v)It 
an be shown that the values of a self-
onsistent permutation are solu-tion to (2.1). This would be enough to get an algorithm for stopping games,as we will show that there is always a self-
onsistent permutation. How-ever, the stopping redu
tion 
omes with a pri
e, and we 
an avoid it with a
heaper logi
al 
ondition: the notion of liveness 
aptures the intuitive fa
tthat a random state πi with a positive value always has a positive probabilityto immediately go to a better region (from Eve's point of view).De�nition 2.27 A permutation π over the set QR is live if and only if forany state πi ∈ QR, δ(πi)(∪
k+1
j>i Wπ[j]) > 0.Input: A rea
hability game G, a permutation π, and a partition WOutput: The liveness of π in Glive← true1 for (i = 1, i ≤ k, i + +) do2 live← live ∧ (δ(πi)(∪j>iW [j]) > 0)3 end4 return live5 Pro
edure Live(G, π, W)One 
ould think that this notion is already 
aptured by self-
onsisten
y,as it is a �bad idea� for Eve to send the token to a random state that doesnot verify the internal property. However, the 
hoi
e of the permutation alsoe�e
ts Adam's strategy: if he wrongly 
hooses to avoid a state, all the valuesmay grow, with the possible side-e�e
t to hide the initial mistake. We give anexample of this pro
ess in Figure 2.7, whi
h zooms on a detail of Figure 2.1.Eve's strategy in # should be to send the token to b, as Adam 
ouldotherwise trap the play in {a, #, 2}. However, let us 
onsider the unlive
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a b c.4.6 .3.1.4 .1.1 .2.8

Figure 2.7: Liveness does not follow from self-
onsisten
ypermutation µ = bcad: Adam sends the token from 2 to c to avoid a; Evesends the token from # to 2 to rea
h either a or c. We have thus vµ(a) =
vµ(c). A
tually, vµ(b) ≤ vµ(a) = vµ(c) ≤ vµ(d), so µ is self-
onsistent, but the
µ-values are not the 
orre
t ones. Formally, the point of liveness is expressedby Proposition 2.28.Proposition 2.28 Let G = (A, Reach(⊚)) be a 21

2
-player rea
hability gameand π be a live permutation. Then, for any strategy τ for Adam,Pσπ ,τ

q (Reach(⊚) ∨ Reach(⊗)) = 1 .Proof. By Lemma 1.3, the limit of a play ρ is an end-
omponent with prob-ability one. Let X be an end-
omponent of Gσπ,τ . We denote the integer
i = max{j|X ∩Wπ[j] 6= ∅} by i. There are three 
ases:
i = 0: As G is normalised, X = {⊗}.
1 ≤ i ≤ k: By Proposition 2.22 and by de�nition of i, πi belongs to X.By liveness of π, δ(πi)(∪

k+1
j=i+1Wπ[j]) > 0. As X is an end-
omponent,there is a j > i su
h that Wπ[j] ∩ X 6= ∅, in 
ontradi
tion with thede�nition of i.

i = k + 1: As X is strongly 
onne
ted, X = {⊚}.Proposition 2.28 follows. �In a sense, liveness is a 
ounterpart for the stopping property, with Propo-sition 2.28 used in the proofs in lieu of the 
hara
teristi
s of stopping games.Noti
e that liveness is not a �weaker� property: there are stopping gameswith unlive permutations (see for example Figure 2.8 on page 42).
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tnessOur algorithm, des
ribed as Algorithm 2.9, 
onsists then in an exhaustivesear
h for a live and self-
onsistent permutation.Input: A rea
hability game GOutput: A partition of Q and the 
orresponding valuesforall π ∈ Sk do1
W ← Regions(G, π)2
v ← Values(G, π, W)3 self← Consistent(π, v)4 live← Live(G, π, W)5 if (live ∧ self) then6 return (W, v)7 end8 end9 Algorithm 2.9: Permutation algorithm for rea
hability gamesThe remainder of this se
tion is dedi
ated to the proof of its 
orre
tness:Theorem 2.29 Let G = (A, Reach(⊚)) be a 21

2
-player rea
hability game. Arun of Algorithm 2.9 on G terminates and returns the values of the states.Proof. The proof of Theorem 2.29 
onsists of two parts, whi
h are provenseparately:

• There is a live and self-
onsistent permutation (Lemma 2.30).
• If a permutation π is live and self-
onsistent, then vπ are the optimalvalues for the regions Wπ (Lemma 2.33).

�Lemma 2.30 Let G = (A, Reach(⊚)) be a 21
2
-player rea
hability game. Atleast one permutation is live and self-
onsistent in G.Proof. The proof of Lemma 2.30 is itself in two parts: �rst, we show thatthere is a live permutation 
onsistent with the values of the game (Proposi-tion 2.31); then we show that su
h a permutation is self-
onsistent (Propo-sition 2.32). �
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onsistent with the values of
G.Proof. The permutation is 
hosen starting from πk, and going down to π1.At ea
h step, the state πi is 
hosen so that:
• v(πi) = max{v(q) | q ∈ Q \ ∪j>iWπ[i]}

• δ(πi)(∪j>iWπ[i]) > 0The existen
e of a suitable random state is proved by 
ontradi
tion: as
Q \ ∪j>iWπ[i] is a deterministi
 trap for Eve, a trapping strategy for Adamensures that the token 
an enter ∪j>iWπ[i] only through a random transi-tion. Thus, a (non-positional) strategy for Adam whi
h 
onsists in playingthe trapping strategy until the token enters ∪j>iWπ[i] and then swit
h to anoptimal strategy bounds the probability of rea
hing ⊚ to max{v(r) | r ∈
QR \ {πi+1, . . . , πk} ∧ δ(r)(∪j>iWπ[i]) > 0}} �Proposition 2.32 Let G = (A, Reach(⊚)) be a 21

2
-player rea
hability game,and π be a live permutation 
onsistent with the optimal values v of G. Then

vπ is self-
onsistent.Proof. Quite naturally, we prove that π is self-
onsistent by showing thatthe π-values are the optimal values. The key arguments is that the expe
ted(optimal) value after n moves is 
onstant, when the initial state is �xed andthe players play the π-strategies. We �x an initial state q ∈ Q, and we de�ne
e : N→ [0, 1] by e(n) =

∑

s∈Q v(s) · Pσπ,τπ
q (ρn = s). We have:

• ∀s ∈ QE ,v(s) = v(σπ(s)) �by Proposition 2.24
• ∀s ∈ QA,v(s) = v(τπ(s)) �by Proposition 2.24
• ∀r ∈ QR,v(r) =

∑

s∈Q δ(r)(s) · v(t) �by (2.1)Thus, for all n ∈ N, e(n) = e(n+1), and so v(q) = e(0) = e(n) =
∑

s∈Q v(s) ·Pσπ ,τπ
q (ρn = s). As π is live, Proposition 2.28 yields Pσπ ,τπ

q (Reach(⊚) ∨
Reach(⊗)) = 1. It follows that v(q) = Pσπ ,τπ

q (Reach(⊚)) = vπ(q). By hy-pothesis, π is 
onsistent with v. It follows that π is self-
onsistent, whi
h
ompletes the proof of Proposition 2.32. �



CHAPTER 2. REACHABILITY GAMES 37Lemma 2.33 Let G = (A, Reach(⊚)) be a 21
2
-player rea
hability game, and

π be a live and self-
onsistent permutation. Then, the π-strategies are opti-mal.Proof. The proof is 
lose to the one of Proposition 2.32. We �x an initialstate q and two positional strategies σ and τ for Eve and Adam, and wede�ne the fun
tions f and g by: f(n) =
∑

s∈Q vπ(s) · Pσπ ,τ
q (ρn = s) and

g(n) =
∑

s∈Q vπ(s) · Pσ,τπ
q (ρn = s). We have:

• ∀s ∈ QE , vπ(s) = vπ(σπ(s)) �by (2.2)
• ∀s ∈ QA, vπ(s) = vπ(τπ(s)) �by (2.2)
• ∀s ∈ QE , vπ(s) ≥ vπ(σ(s)) �by self-
onsisten
y of π.
• ∀s ∈ QA, vπ(s) ≤ vπ(τ(s)) �by self-
onsisten
y of π.
• ∀r ∈ QR, vπ(r) =

∑

s∈Q δ(r)(s) · vπ(t) �by (2.2)It follows that ∀n ∈ N, f(n) ≤ f(n + 1) and g(n) ≥ g(n + 1). Weget immediately vπ(q) = g(0) ≥ limn→∞ g(n) ≥ Pσ,τπ
q (Reach(⊚)). As πis live, Proposition 2.28 yields Pσπ ,τ

q (Reach(⊚) ∨ Reach(⊗)) = 1, and thus
vπ(q) = f(0) ≤ limn→∞ f(n) = Pσπ ,τ

q (Reach(⊚)).Thus, σπ and τπ are 
o-optimal, and Lemma 2.33 follows. �2.2.4 Complexity analysisTheorem 2.34 The values and optimal strategies of a normalised rea
habil-ity game G = (A, Reach(⊚)) are 
omputable in time O(|QR|! · (|T | · log |Q|+
|δ|)), where |δ| is the maximal bit-length of a transition probability in δ.Proof. In the worst 
ase, Algorithm 2.9 enumerates all the |QR|! permutationsof QR. For ea
h permutation π, the algorithm 
omputes the π-regions and
π-strategies (in time O(|T | · log |Q|), see [Cha06℄). It 
omputes then thevalues of the resulting 1

2
-player rea
hability game (in time O(|Q3

R| · |δ|), see[Dix82℄). The tests for liveness and self-
onsisten
y 
an then be performedin time O(|QR|). Theorem 2.34 follows. �The number of iterations is similar to what we get with strategy-basedalgorithms, but it depends on di�erent �gures (QR in our algorithm, QE



CHAPTER 2. REACHABILITY GAMES 38and the outdegree of Eve's states in the strategy improvement). This dif-feren
e is interesting when dealing with unbalan
ed arenas. For example,Corollary 2.35 presents an extreme 
ase where our algorithm is polynomial:Corollary 2.35 For ea
h k, the values and optimal strategies of a normal-ized rea
hability game G = (A, Reach(⊚)) su
h that |QR| ≤ k are 
omputablein time O(|Q| · |T |+ |δ|), where |δ| is the maximal bit-length of a transitionprobability in δ.The advantage of our algorithm is the simpli
ity of the internal loop: in
omplexity terms, it is mu
h simpler to solve rea
hability games on 1
2
-playerarenas than on 11

2
-player ones; we will see in Chapter 3 that this simpli
ityalso allows us to adapt our algorithm to a very general 
lass of winning
onditions.2.3 Heuristi
s for permutation algorithmsThe theoreti
al bounds on the number of loops in the permutation algorithmand the strategy improvement algorithm are di�erent, yet similar. However,an important asset of the strategy improvement is its e�
ien
y in pra
ti
e.Although there is no proof for Conje
ture 2.20, the study of pra
ti
al 
asessuggests that the number of iterations is linear in the number of states.The aim of this se
tion is to 
onsider similar heuristi
s in the updateof permutations. We �rst des
ribe a very natural heuristi
 (2.3.1), whi
hworks only for 11

2
-player games (2.3.2). We present then a �mixed� heuris-ti
, using both our permutation te
hniques and the improvement step ofAlgorithm 2.3 (2.3.3). The resulting algorithm is 
orre
t for all 21

2
-playerrea
hability games.2.3.1 Value-based improvementWe �rst 
onsider a very simple heuristi
: in ea
h iteration, the new permuta-tion is 
onsistent with the values of the former one. The resulting algorithmis des
ribed as Algorithm 2.10.Noti
e that at line 2, we require that the 
hosen permutation is live, aswell as 
onsistent with the former values. This avoids getting stu
k in aself-
onsistent unlive permutation, like the one presented in Figure 2.7. Theuntil 
ondition of line 4 
an thus only be met by a live and self-
onsistent



CHAPTER 2. REACHABILITY GAMES 39Input: a game G = (A, Reach(⊚))Output: the values of Grepeat1 
hoose π live and 
onsistent with v2
v ← vπ3 until π is 
onsistent with v4 return v5 Algorithm 2.10: Value-based permutation improvementpermutation, so Algorithm 2.10 returns only 
orre
t results. In the 
ase of

11
2
-player games, su
h a 
hoi
e is always possible:Lemma 2.36 Let G = (A, Reach(⊚)) be a 11

2
-player rea
hability game and

π be a live permutation. There is a live permutation µ 
onsistent with vπ.Proof. By appli
ation of Lemma 2.30 to the 1
2
-player game G = Gσπ , we
an de�ne a live and self-
onsistent permutation µ in G. As G is a 1

2
-playergame, its values do not depend on any strategies, so �self-
onsisten
y in G�translates dire
tly as �
onsisten
y with vπ�. The interpretation of the livenessproperty is a little more involved. It guarantees that:

∀i ∈ 1 . . . k, δ(µi)

(

⋃

j>i

Wµ[j]

)

> 0 .However, in general, Wµ[j] 6= Wµ[j]. Rather, we have Wµ[j] = Wπ[π(µj)].And, as G is an 11
2
-player game, we get Wπ[π(µj)] ⊆ DetE(µj,A). So:

⋃

j>i

Wµ[j] =
⋃

j>i

Wπ[π(µj)] ⊆
⋃

j>i

DetE(µj,A) =
⋃

j>i

Wµ[j]Thus µ is live in the game G, and Lemma 2.36 follows. �We need then to show that Algorithm 2.10 
annot have an endless run.Again in the 
ase of 11
2
-player games, Lemma 2.38 shows that the values
omputed through a run are growing, ensuring that ea
h permutation is
onsidered at most on
e. We �rst need to establish Proposition 2.37:Proposition 2.37 Let G = (A, Reach(⊚)) be a 11

2
-player rea
hability game,

π be a live permutation and µ be a live permutation 
onsistent with vπ. Then,for any state q ∈ Q, vπ(q) ≤ vπ(µµ(q)).
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2
-player game, µ(q) is equal to max{i | q ∈ DetE(µi,A)}.Sin
e q ∈ DetE(ππ(q),A), it follows that µ(q) ≥ µ(ππ(q)). By 
onsisten
y of

µ and vπ, we get vπ(µµ(q)) ≥ vπ(µµ(ππ(q))) = vπ(q). Proposition 2.37 follows.
�Lemma 2.38 Let G = (A, Reach(⊚)) be a 11

2
-player rea
hability game, πbe a live permutation and µ be a live permutation 
onsistent with vπ. Then

vπ ≤ vµProof. For a given initial state q, we de�ne the fun
tion f by:
f(n) =

∑

s∈Q
vπ(µµ(s)) · Pσµ

q (ρn = s) .If s is a state of Eve, the de�nition of σµ yields vπ(µµ(s)) = vπ(µµ(σµ(s))). If ris a random state, the situation is more 
omplex:
vπ(µµ(r)) = vπ(r) �as r is a random state

=
∑

s∈Q δ(r)(s)vπ(s) �by (2.2)
≤

∑

s∈Q δ(r)(s)vπ[µµ(s)] �by Proposition 2.37We get:
vπ(q) ≤ vπ(µµ(q)) = f(0) ≤ lim

n→∞
f(n) ≤ Pσµ

q (Reach(⊚)) = vµ(q)Lemma 2.38 follows. �Lemmas 2.36 and 2.38 yield Theorem 2.39:Theorem 2.39 Let G = (A, Reach(⊚)) be a 11
2
-player rea
hability game.Algorithm 2.10 terminates, and returns 
orre
t values and regions.Proof. Lemma 2.36 guarantees that the update pro
ess is sound. Lemma 2.33ensures that Algorithm 2.10 returns only 
orre
t values. Lemma 2.38 showsthat the values are growing. Noti
e that the inequality is not stri
t: thevalues of two su

essive permutations 
an be equal. In this 
ase, though, thelater is self-
onsistent, so Algorithm 2.9 terminates. Theorem 2.39 follows.

� We have no proof that the worst 
ase 
omplexity of this algorithm isa
tually better than the 
omplexity of Algorithm 2.2. However, we 
onje
turethat it is a
tually polynomial:
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ture 2.40 There is a polynomial P su
h that a run of Algorithm 2.10on a 11
2
-player game with n states exe
utes at most P (n) loops.This 
onje
ture is a
tually equivalent to the 
lassi
al 
onje
ture for thestrategy improvement algorithm:Proposition 2.41 Conje
tures 2.19 and 2.40 are equivalent.Proof. We prove this equivalen
e by showing that if either 
onje
ture doesnot hold, then the other does not hold. In both 
ases, the proof relies on atransformation of a 
ounter-witness game G = (A, Reach(⊚)) into anothergame G:

¬2.19 ⇒ ¬2.40: G is a 
opy of G, ex
ept that ea
h transition q → s isrepla
ed by q ↔ r → s, where r is a new random state with equal
han
es to send the token to q and s. The strategies (and their val-ues) are the same in both games, but in G all of them are permutationstrategies. Likewise, the strategy improvement of Algorithm 2.2 
orre-sponds to the permutation improvement of Algorithm 2.10. Thus, anyrun of Algorithm 2.2 on the game G is mat
hed step-by-step with a runof Algorithm 2.10 on the game G.
¬2.40 ⇒ ¬2.19: G is a 
opy of G with �short
ut� transitions: wheneverthe player 
an make two su

essive moves in G, e.g. q → r → s with

q, r ∈ QA, there is a dire
t transition q → s in G. The values of thepermutations are the same in both games. Furthermore, if π 
an betransformed in µ in a run of Algorithm 2.10 on G, then any π-strategy
an be transformed into a µ-strategy in a run of Algorithm 2.2 on G.Thus, any run of Algorithm 2.10 on the game G is mat
hed step-by-stepwith a run of Algorithm 2.2 on the game G.Proposition 2.41 follows. �We have shown the 
orre
tness of Algorithm 2.10 for 11
2
-player gameswith states of Eve. The straightforward adaptation for 11

2
-player games withstates of Adam (11

2
-player safety games) works just as well, and the proofsrequire only minor modi�
ations.



CHAPTER 2. REACHABILITY GAMES 422.3.2 Value-based improvement and 21
2-player gamesThe simple heuristi
 of Algorithm 2.10 does not work in the 
ase of 21

2
-player games. The �rst problem is that Lemma 2.36 does not hold anymore,as witnessed by Figure 2.8.

a b

c

.2
.2

.6

.2
.8

.5

.3 .2

Figure 2.8: Unlive valuesIn this game, a permutation is live if and only it ranks a lower than b.But, if we start from the live permutation π = cab, a problem arises: Evesends the token from # to b, and Adam sends it from 2 to c. The resultingvalues are vπ(a) = .4, vπ(b) = .2, and vπ(c) = .6. These values are totallyordered, and the only 
onsistent permutation is µ = bac, whi
h is not live.This problem 
ould be 
ir
umvented by ba
ktra
king to the 
ase of stop-ping games, as self-
onsisten
y guarantees optimality in this 
ase. This allowus to lift the liveness restri
tion in line 2, while guaranteeing the 
orre
tnessof the result. This works 
orre
tly in the game of Figure 2.8 �whi
h is stop-ping: as µ is unlive, it is not self-
onsistent. Indeed, the 
orresponding valuesare vµ(a) = 0, vµ(b) = .2, and vµ(c) = .54. The only permutation 
onsistentwith vµ is κ = abc, whi
h is self-
onsistent: vκ(a) = .16, vκ(b) = .2, and
vκ(c) = .6.However, our proof of Lemma 2.38 
annot be adapted, as it relies on anotion of �progress� whi
h does not make sense in 21

2
-player games. Otherinvariants 
ould (and have) been 
onsidered, but to no avail: on
e again, wefound a 
ounter-example, presented in Figure 2.9, where Algorithm 2.10 getsstu
k in an in�nite 
y
le.The game of Figure 2.9 is stopping: as long as the token has not rea
hedone of the �nal states, it is bound to visit again one of the random states;
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a b c

.09 .01

.9

.5.5
.09.01

.9

Figure 2.9: In�nite runand ea
h of these states has a positive probability to send the token to the�nal states. Thus, the token rea
hes a �nal state with probability one.In this game, the only self-
onsistent permutation is π = abc. The 
orre-sponding strategies are # → b and 2 → #, and the values are vπ(a) = .46,
vπ(2) = vπ(#) = vπ(b) = .5, and vπ(c) = .54But, if we 
onsider a run where the permutation µ = acb is 
hosen at the�rst visit to line 2, we get stu
k in an in�nite run:
• The µ-strategies send the token from# to b and from2 to c. The result-ing values are vµ(a) = .82, vµ(#) = vµ(b) = .5, and vµ(2) = vµ(c) = .9.When the repeat loop ends, and the modi�ed Algorithm 2.10 goesba
k to line 2, its only 
hoi
e is κ = bac.
• The κ-strategies send the token from # to a and from 2 to #. Theresulting values are vκ(2) = vκ(#) = vκ(a) = .1, vκ(b) = .5, and

vκ(c) = .18. When the repeat loop ends, and the modi�ed Algo-rithm 2.10 goes ba
k to line 2, its only 
hoi
e is µ = acb.The algorithm os
illates endlessly between µ and κ, leading to an in�niterun. This prohibits any straightforward adaptation of Algorithm 2.10 to
21

2
-player games.2.3.3 Mixed improvementIn order to get a working permutation-improvement algorithm for the gen-eral 
ase of 21

2
-player games, we need to 
onsider an asymmetri
 improvement



CHAPTER 2. REACHABILITY GAMES 44step, alike to the one used in the strategy improvement algorithm. The ideais that only Eve uses her π-strategy from (2.2.1), whereas Adam plays an op-timal 
ounter-strategy to σπ: instead of using the π-values vπ = vσπ,τπ
, we usevπ = vσπ

. Apart from this, Algorithm 2.11 works exa
tly as Algorithm 2.10Input: a game G = (A, Reach(⊚))Output: the values of Grepeat1 
hoose π live and 
onsistent with v2
v← vσπ

3 until π is 
onsistent with v4 return v5 Algorithm 2.11: Mixed permuation improvementNoti
e that at the end of the 
omputation, π is 
onsistent with vπ, whi
his not self-
onsisten
y in the sense of De�nition 2.26. We need thus to proveanew that the values returned by Algorithm 2.11 are 
orre
t, although theproof is almost identi
al to the proof of Lemma 2.33.Lemma 2.42 Let G = (A, Reach(⊚)) be a 21
2
-player rea
hability game and

π be a live permutation su
h that π is 
onsistent with vπ. Then vπ are thevalues of G.Proof. As Eve 
an ensure vπ by playing σπ, we just need to show thatAdam 
an 
on�ne the probability of Reach(⊚) to vπ. In general an optimal
ounter-strategy to σπ is not satisfying in that respe
t. However, we 
an usethe π-strategy τπ of Adam, just as in the proof of Lemma 2.33. We �x aninitial state q and a positional strategy σ for Eve, and we de�ne the fun
tion
f by: f(n) =

∑

s∈Q vπ(s) · Pσ,τπ
q (ρn = s). We have:

• ∀s ∈ QA,vπ(s) = vπ(τπ(s)) �by 
onsisten
y of π and vπ

• ∀s ∈ QE ,vπ(s) ≥ vπ(σ(s)) �by 
onsisten
y of π and vπ

• ∀r ∈ QR,vπ(r) =
∑

s∈Q δ(r)(s) · vπ(t)It follows that f is in
reasing, so:vπ(q) = f(0) ≥ lim
n→∞

f(n) ≥ Pσ,τπ

q (Reach(⊚)) .
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onsequen
e of using this notion of π-values is that the loop'sinner 
omplexity is mu
h higher: we need to 
ompute the values of a 11
2
-player rea
hability game, instead of a 1

2
-player rea
hability game. This 
anbe done by any 11

2
-player game algorithm: strategy improvement, linearprogramming, or value-based permutation improvement (Algorithms 2.2, 2.4,and 2.10).The remainder of the proof of 
orre
tness for Algorithm 2.11 is very 
loseto the proof of Algorithm 2.10, with some extra 
omplexity to a

ount for thepresen
e of Adam's states. For starters, the soundness of line 2, is resolvedby Lemma 2.43:Lemma 2.43 Let G = (A, Reach(⊚)) be a 21

2
-player rea
hability game and

π be a live permutation. There is a live permutation µ 
onsistent with vπ.Proof. By appli
ation of Lemma 2.30 to the 11
2
-player game G = Gσπ , we 
ande�ne a live and self-
onsistent permutation µ in G. By Lemma 2.33, µ is
onsistent with vπ. The liveness of µ in G guarantees that:

∀i ∈ 1 . . . k, δ(µi)

(

⋃

j>i

Wµ[j]

)

> 0 .By de�nition of the µ-regions in G, ∪j>iWµ[j] is equal to DetE(∪j>i{µj},A
σπ),whi
h is a subset of DetE(∪j>i{µj},A) = ∪j>iWµ[j]. Thus µ is live in G, andLemma 2.43 follows. �The absen
e of 
y
les is proved through a notion of progress:We need then to show that Algorithm 2.10 
annot have an endless run.Again in the 
ase of 11

2
-player games, Lemma 2.38 shows that the values
omputed through a run are growing, ensuring that ea
h permutation is
onsidered at most on
e. We �rst need to establish Proposition 2.44:Proposition 2.44 Let G = (A, Reach(⊚)) be a rea
hability game, π be alive permutation and µ be a live permutation 
onsistent with vπ. Then, forany state q ∈ Q, vπ(q) ≤ vπ(µµ(q)).Proof. By de�nition, we have �(q) = max{i | q ∈ DetE(∪j≥i{µj},A

σπ)},while µ(q) = max{i | q ∈ DetE(∪j≥i{µj},A)}. Thus, �(q) ≤ µ(q). As µ is
onsistent with vσπ
, we get:

vσπ
(µµ(q)) ≥ vσπ

(µ�(q)) = vσπ ,�µ
(q) ≥ vσπ

(q) .



CHAPTER 2. REACHABILITY GAMES 46Proposition 2.44 follows. �Lemma 2.45 Let G = (A, Reach(⊚)) be a rea
hability game, π be a livepermutation and µ be a live permutation 
onsistent with vσπ
. Then vσπ

≤ vσµProof. We �x an initial state q and a strategy τ for Adam, and we de�ne thefun
tion f by f(n) =
∑

s∈Q vσπ
(µµ(s)) · Pσµ,τ

q (ρn = s). For a state s of Eve,we have by de�nition µ(s) = µ(σµ(s)), so vσπ
(µµ(s)) = vσπ

(µµ(σµ(s))). For astate of Adam, we have µ(s) ≤ µ(τ(s)), so the 
onsisten
y of µ and vσπ
yields

vσπ
(µµ(s)) ≤ vσπ

(µµ(τ(s))). For a random random state r, the argument is:
vσπ

(µµ(r)) = vσπ
(r) �as r is a random state

=
∑

s∈Q δ(r)(s)vσπ
(s) �by (2.1)

≤
∑

s∈Q δ(r)(s)vσπ
(µµ(s)) �by Proposition 2.44We get:

vσπ
(q) ≤ vσπ

(µµ(q)) = f(0) ≤ lim
n→∞

f(n) ≤ Pσµ,τ
q (Reach(⊚)) = vσµ,τ (q) .As τ is an arbitrary strategy of Adam, we 
an 
on
lude that vσπ

(q) ≤ vσµ
(q),and Lemma 2.45 follows. �Lemmas 2.43 and 2.45 yield the 
orre
tness of Algorithm 2.11:Theorem 2.46 Algorithm 2.11 terminates and returns the values of its in-put.Proof. Lemma 2.43 guarantees that the update pro
ess is sound. Lemma 2.42ensures that Algorithm 2.11 returns only 
orre
t values. Lemma 2.45 showsthat the values are growing, so there are no in�nite runs. Theorem 2.46follows. �We also 
onje
ture that Algorithm 2.11 is polynomial:Conje
ture 2.47 Algorithm 2.11 runs in polynomial time in the size of itsinput.However, we were only able to establish that this 
onje
ture is strongerthan its equivalent for strategy improvement:Proposition 2.48 If Conje
ture 2.47 holds, then Conje
ture 2.20 holds.Proof. This side of the proof of Proposition 2.41 works just as well in the
ase of 21

2
-player games. �



CHAPTER 2. REACHABILITY GAMES 472.4 AfterwordWe proposed a new approa
h to the quantitative solution of 21
2
-player rea
h-ability games. Our motivation in doing so is twofold.

• First, the 
omplexity we get is orthogonal with the usual strategy-basedapproa
h: permutation algorithms are �xed-parameter tra
table whenthe parameter is the number of random states in the game, whereas the
omplexity of strategy-improvement algorithms depends on the numberof possible strategies for either player.
• Se
ond, the removal of the stopping hypothesis makes our approa
hmu
h more �exible, as we demonstrate in Chapter 3 by extending apermutation algorithm for all pre�x-independent games.An intriguing question, en route to the huge endeavour of �nding a poly-nomial algorithm 
omputing the values of 21

2
-player rea
hability games, iswhether our permutation-improvement algorithm is (strongly) polynomialon 11

2
-player games.



Chapter 3Pre�x-independent 
onditions�Those who do not remember the past are 
ondemned to repeat it.�The Life of ReasonGeorge SantayanaAfter our 
onsiderations on the most spe
i�
 
ase of rea
hability games,we take the opposite dire
tion in this 
hapter, and ponder the very general
ase of games with pre�x-independent winning 
onditions. A 
ondition ispre�x-independent if adding a �nite pre�x to a play does not 
hange thewinner. In the even more general 
ase of pre�x-
losed 
onditions, adding a�nite pre�x may 
hange a play winning for Adam into one winning for Eve,but not the other way round.One of the main motivation for studying pre�x-independent 
onditions isthat they subsume parity 
onditions. So, even though not all regular 
ondi-tions are pre�x-independent, our results have dire
t 
onsequen
es for regulargames. On a veri�
ation point of view, pre�x-independen
e 
orresponds to
ases where lo
al glit
hes are tolerated in the beginning of a run, as long asthe spe
i�
ation is met in the limit, in the spirit of self-stabilising proto
ols.Finally, one of the most popular payo� fun
tions in e
onomi
 games, themean-payo� fun
tion, is also pre�x-independent.In Se
tion 3.1, we study the relations between the di�erent winning re-gions in pre�x-independent games, while Se
tion 3.2 uses them from an al-gorithmi
 point of view. Se
tion 3.3 takes on the quantitative problems, andshows that many results of Chapter 2 
arry over to pre�x-independent games.48



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 493.1 Winning regionsIn this se
tion, we 
ontemplate the qualitative problems of pre�x-independentgames from an abstra
t point of view, and look for relations between the dif-ferent qualitative regions. These relations 
an be sorted in three 
ategories:Loose in
lusions: Our �rst question is whether the three �weak� re-gions (heroi
, positive, and bounded) and the three �strong� regions (limit-one, almost-sure, and sure) really are di�erent for pre�x-independent games.In safety games, the �strong� regions are equal [dAHK98℄; in regular games,the limit-sure and almost-sure regions are equal, but not the sure region[dAH00℄.Existential and universal properties: A se
ond type of propertiesrelates the emptiness or 
ompleteness of two di�erent regions for the sameplayer. For example, the universal and existential bounded-limit propertiesof pre�x-independent games [Cha07a℄1 are:
WinW ,≫0

E (A) = Q =⇒WinW ,∼1

E (A) = Q

WinW ,∼1

E (A) = ∅ =⇒WinW ,≫0

E (A) = ∅Determina
y: Last but not least, determina
y properties state thatfrom any state of the game, either Eve or Adam has a winning strategy� for dual notions of winning. In 2-player games, there is not mu
h todo beyond the pure determina
y of Borel games by Martin [Mar75℄. Hisquantitative determina
y of 21
2
-player games[Mar98℄, however, is not whollysatisfying: the regions WinW ,≥.5

E (A) and WinW ,≥.5
A (A) 
over the whole graph,but they are not disjoint.We �rst dis
uss the evolution of values and σ-values in pre�x-independentgames (3.1.1). This prompts us to de�ne reset strategies, a 
onstru
tionwhi
h builds 
onditional almost-sure strategies (3.1.2). In parti
ular, we usethem to prove: that positive and bounded regions, limit-one and almost-sure regions, are equal in pre�x-independent games; universal and existentialpositive-almost properties for pre�x-independent games; and the qualitativedetermina
y of pre�x-independent games (3.1.3).1It is 
alled a positive-limit property in the paper, but depends on the existen
e of astate with positive value: this is a �bounded� state, a

ording to [dAH00℄'s taxonomy.



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 503.1.1 Values and σ-valuesIn pre�x-independent games, as in rea
hability games, the value of a pre�xis the value of its last state. We 
an thus use strategy translations to derivethe value of a state from its owner and the value of its su

essors:
∀q ∈ QE ,v(q) = max{v(s) | (q, s) ∈ T }

∀q ∈ QA,v(q) = min{v(s) | (q, s) ∈ T } (3.1)
∀q ∈ QR,v(q) =

∑

(q,s)∈T
δ(q)(s) · v(s)However, there is no �target state�, whose value is �xed to one, nor anotion of �stopping games�, with a unique solution to (3.1). This system isthus insu�
ient to the task of 
omputing the values. Still, it yields Proposi-tion 3.1:Proposition 3.1 Let A be an arena, and W a pre�x-
losed winning 
ondi-tion. The region WinW ,∼1

A (A) � the region with value 0 � is a trap for Eve,and the WinW ,∼1

E (A) � the region with value 1 � is a trap for Adam.If pure and positional strategies were su�
ient for pre�x-independentgames, we 
ould use similar equations for the values of the strategies. Asthis is not the 
ase, we have to satisfy ourselves with in�nite systems on the
σ-values of the pre�xes 
onsistent with a pure2 strategy σ:De�nition 3.2 The σ-value of a �nite play w 
onsistent with a pure strategy
σ for Eve is the in�mum of the {σ, τ}-values under the assumptions that wis a pre�x of the ensuing play:

vσ(w) = inf
τ
Pσ,τ

w0
(W | ρ0 = w0, ρ1 = w1, . . .) .We 
an derive an in�nite system of equations on the σ-values:2Most of the results on σ-values and reset strategies 
ould be adapted for semi-randomised strategies � with some extra 
aution. However, they are useless for strategieswith random memory.



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 51if q ∈ QE , vσ(wq) = vσ(wq · σ(wq))if q ∈ QA, vσ(wq) = min{vσ(wqs) | (q, s) ∈ T } (3.2)if q ∈ QR, vσ(wq) =
∑

(q,s)∈T
δ(q)(s) · vσ(wqs)Using σ-values, we 
an give an edu
ated opinion on the out
ome on theplay. In parti
ular, for any positive real number η < 1, we de�ne:

Lη = {ρ ∈ Ωσ | ∃i, vσ(ρ0 . . . ρi) ≤ η} .Proposition 3.3 Let q be a state of Q, τ be a strategy for Adam, and η <
ν ≤ vσ(q) be two positive real numbers. We have:Pσ,τ

q (Lη) ≤
1− ν

1− η
.Proof. For any �nite play u su
h that vσ(u) ≤ η, we de�ne a strategy τu su
hthat vσ,τu

(u) ≤ η. Consider now the strategy θ, de�ned by:
• if for any pre�x u of x, vσ(u) > η, θ(x) = τ(x);
• if u is the shortest pre�x of x su
h that v(u) ≤ η, θ(x) = τu(x).It is 
lear that Pσ,τ

q (Lη) = Pσ,θ
q (Lη), and that Pσ,θ

q (W | Lη) ≤ η. As Pσ,θ
q (W) ≥

ν, we get:
ν ≤ η · Pσ,τ

q (Lη) + (1− Pσ,τ
q (Lη)) .Proposition 3.3 follows. �Proposition 3.4 Let q be a state of Q, τ be a strategy for Adam, and η bea positive real number. We have:Pσ,τ

q (W | ¬Lη) = 1 .Proof. For any integer n, we de�ne the fun
tion ϕn, from Ωσ,τ
q to [0, 1] by

ϕn(ρ) = vσ,τ (ρ0 . . . ρn). By Levy's law [Dur96℄,Pσ,τ
q ( lim

n→∞
Eσ,τ

q ϕn = 1W) = 1 .Now, if ρ 2 Lη, we get,
∀n, ϕn(ρ) = vσ,τ (ρ0 . . . ρn) ≥ vσ(ρ0 . . . ρn ≥ η ,so limn→∞ ϕn(ρ) 6= 0, Pσ,τ

q (W | ¬Lη) = 1, and Proposition 3.4 follows. �



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 523.1.2 Reset strategiesThis suggests a way to improve a pure strategy with a �reset� pro
edure fora given η: if the value of the pre�x drops below η, while the value of the
urrent state is stri
tly greater than η, it is a better idea to forget the pastand restart with a 
lean slate.De�nition 3.5 The reset strategy of σ with respe
t to η, denoted by σ↓η, isa strategy with memory, whose memory states are plays of A 
onsistent with
σ. Its memory-update and next-move fun
tion are de�ned as follows:

σn
↓η(w, q) =

{

σ(q) if vσ(wq) ≤ η ∧ vσ(q) > η
σ(wq) otherwise

σu
↓η(w, q) =

{

q if vσ(wq) ≤ η ∧ vσ(q) > η
wq otherwiseWe de�ne some shorthand notation to simplify the manipulation of reset-related events:

Ri
η = {ρ ∈ Ωσ↓η | there are i resets in ρ} ,

R∞
η =

⋂

i∈NRi
η .Proposition 3.6 Let q be a state of Q and τ be a strategy for Adam. Wehave: Pσ↓η ,τ

q (R∞
η ) = 0 .Proof. Let ν = min{vσ(s) | s ∈ Q∧ vσ(s) > η}. The key observation is that:

∀i,Pσ↓η ,τ
q (Ri+1

η | Ri
η) ≤

1− ν

1− η
. (3.3)Indeed, after the ith reset, the token is in a state whose σ-value is greaterthan η (and thus greater or equal than ν), and Eve plays σ as if the playjust started. Thus, by Proposition 3.3, the probability that the σ-value ofthe �nite play in memory will ever drop below η is at most 1−ν

1−η
, and (3.3)follows. This 
ompletes the proof of Proposition 3.6.

�



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 53Proposition 3.7 Let q be a state of Q, and τ be a strategy for Adam. Wehave: Pσ↓η ,τ
q (W | ∃i, ∀j ≥ i, vσ(ρj) > η) = 1 .Proof. By Proposition 3.6, Pσ↓η ,τ

q (R∞
η ) = 0, so we 
an3 
onsider only theplays with a �nite number of resets. Let us 
onsider the ��nal� memoryafter the play: it is a play 
onsistent with σ whi
h does not verify Lη. ByProposition 3.4 it is winning for Eve with probability one, and Proposition 3.7follows from the fa
t that W is pre�x-independent.

�3.1.3 LinksWe 
an now use reset strategies in order to expose several links between thedi�erent notions of winning for pre�x-independent games. Our �rst result isthat, in pre�x-independent games, there is no need to distinguish betweenpositive and bounded regions, nor between limit-one and almost-sure regions:Theorem 3.8 Let A be an arena, and W a pre�x-independent winning 
on-dition. We have:
WinW ,∼1

E (A) = WinW ,1
E (A)

WinW , >0

E (A) = WinW ,≫0

E (A)Proof. Let us start with the proof of WinW ,∼1

E (A) = WinW ,1
E (A). We 
hoosea real number η su
h that ∀q /∈WinW ,∼1

E (A), v(q) < η < 1 and a strategy σsu
h that ∀q ∈ WinW ,∼1

E (A), vσ(q) > η. The proof 
onsists then in showingthat σ↓η is almost-sure in WinW ,∼1

E (A). By Proposition 3.1, neither Adamnor Random 
an leave WinW ,∼1

E (A), and by De�nition 3.5, Eve does not:she 
ould leave only if the value of the pre�x was below η, and she wouldsooner reset her memory. So, for any play ρ starting in WinW ,∼1

E (A) and
onsistent with σ↓η, ∀i, vσ(ρi) > η, and by Proposition 3.7, Pσ↓η ,τ
q (W) = 1.The se
ond equation, WinW , >0

E (A) = WinW ,≫0

E (A) follows from the �rstapplied to Adam, as ¬W also is pre�x-independent:
WinW ,≫0

E (A) = Q \WinW ,∼1

A (A) = Q \WinW ,1
A (A) ⊇WinW , >0

E (A)3Yes we 
an!
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�Theorem 3.8 does not hold for games with 
ontext-free 
onditions, in�nitearenas, or 
on
urrent moves: in ea
h of the three games of Figure 3.1, thevalue of the initial state is 1, yet Eve has no almost-sure strategy.

a b b
W = anbn⊚(a) Context-free 
ondition

1|1

0|0

0|1

1|0

W = Reach ⊚(b) Con
urrent moves
· · · · · ·

.2 .8 .2 .8 .2 .8
W = Avoid⊗(
) In�nite arenaFigure 3.1: Limit-one is not almost-sureOur se
ond result is the positive-almost property of pre�x-independentgames.Theorem 3.9 (Positive-almost property) Let A be an arena, and W apre�x-independent winning 
ondition. We have:

WinW , >0

E (A) = Q =⇒ WinW ,1
E = Q

WinW , >0

E (A) 6= ∅ =⇒ WinW ,1
E 6= ∅
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E (A) = Q ⇒ WinW ,≫0

E (A) = Q. As Q is�nite, we 
an 
hoose a real number ν su
h that ∀q ∈ Q, ν < v(q), and astrategy σ su
h that ∀q ∈ Q, vσ(q) > ν. Let η be a real number su
h that
η < ν. For any play ρ of A, ∀i, vσ(ρi) > η, so Proposition 3.7 yields thealmost sureness of σ↓η.The se
ond equation follows from the �rst and Theorem 3.8 to Adam:

WinW , >0

E (A) 6= ∅ =⇒ WinW ,1
A (A) 6= Q

=⇒ WinW , >0

A (A) 6= Q

=⇒ WinW ,≫0

A (A) 6= Q

=⇒ WinW ,∼1

E (A) 6= ∅

=⇒ WinW ,1
E (A) 6= ∅This 
on
ludes the proof of Theorem 3.9. �Although the formal prof is out of the s
ope of this work, Proposition 3.7and a large part of the proof of Theorem 3.9 hold in the more general 
ase of
on
urrent pre�x-
losed games. Theorem 3.8 does not, so the proof 
annot befully translated. Indeed, the games of Figure 3.1 are also 
ounter-examplesfor Theorem 3.9. Still, we 
ould derive a universal bounded-almost propertyand an existential positive-limit property for these games:Claim 3.10 Let A be a 
on
urrent arena, and W a pre�x-
losed winning
ondition. We have:

WinW ,≫0

E (A) = Q =⇒ WinW ,1
E (A) = Q

WinW , >0

A (A) 6= ∅ =⇒ WinW ,∼1

A (A) 6= ∅Last, but not least of our tripty
h is Theorem 3.11, whi
h extends quan-titative determina
y for pre�x-independent games:Theorem 3.11 (Qualitative determina
y) Let G = (A,W) be a pre�x-independent 21
2
-player game. We have:

WinW , >0

E (A) ∪WinW ,1
A (A) = Q

WinW ,1
E (A) ∪WinW , >0

A (A) = Q
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tly from Theorem 3.8 and the quantitativedetermina
y of Borel games. �By 
ontrast with Theorem 3.8, we were not able to �nd 
ounter-examplesfor natural extensions of Theorem 3.11. In parti
ular, the three games ofFigure 3.1 are qualitatively determined, and the qualitative determina
y ofall Bla
kwell games is still an open problem.3.2 Fix-points algorithmsWe 
onsider now the problems from an algorithmi
 point of view, and showhow we 
an use some algorithms as re
ursive pro
edures in others. We 
on-sider �rst pre�x-
losed games, and introdu
e the notion of partial algorithm,whi
h uni�es some 
lassi
al proof te
hniques used as mu
h in pure games[Zie98, JPZ06, Hor07b℄ as in sto
hasti
 games [CdAH04, Hor07a℄ (3.2.1).In pre�x-independent games, almost-sure algorithms are partial algorithms,whi
h yields several results on the 
omplexity of almost-sure and positiveproblems, as well as almost-sure and positive strategies.3.2.1 Partial algorithmsIn pre�x-
losed games, if Eve has a positive strategy from one state, herattra
tor to this state also belongs to her positive region. This is very use-full from an algorithmi
 point of view, sin
e the remainder of the arena isa stri
tly smaller sub-arena, whi
h allows re
ursive 
omputations. Partialalgorithms are ora
les tailored spe
ially to take advantage of this:De�nition 3.12 A partial algorithm of Eve for a pre�x-independent 
ondi-tion W over C takes as argument an arena over C, and returns a region Xsu
h that:
• X ⊆WinW , >0

E (A);
• X = ∅ ⇐⇒WinW , >0

E (A) = ∅.Algorithm 3.1 uses a partial algorithm for W-games as a parameter, andtakes a W-game as input. It returns the positive region of Eve, and thealmost-sure region of Adam.



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 57Parameter: A partial algorithm partial for W-gamesInput: A game G = (A,W)Output: (WinW , >0

E (A), WinW ,1
A (A))

WE = ∅;1
B = A;2 while partial(B,W) 6= ∅ do3

WE ←WE ∪AttrE(partial(B),B);4
B ← B \ AttrE(partial(B),B);5 end6 return (WE ,B)7 Algorithm 3.1: Fix-point algorithmWe 
an de�ne a positive strategy σ for Eve based on a run of Algo-rithm 3.2: in the ith iteration, we denote the region WinW ,1

E (B) by Xi,an almost-sure strategy for Eve from Xi in (B,W) by σi, and the region
AttrE(Xi,B) \Xi by Yi. The strategy σ uses a top-level memory whi
h tellswhat is the lowest (i.e. earliest) i for whi
h the token has already visited Xi,and plays a

ording to σi, unless
• either the token is in a region Yj with j < i: Eve plays her attra
torto Xj ∪∪ℓ<j(Xℓ ∪ Yℓ) and resets � at ea
h step � her memory to theinitial memory state of σi;
• or the token is in a region Xj with j < i: Eve swit
hes her top-levelmemory to j (and starts playing a

ording to σj).Noti
e that partial algorithms 
an also be used in 2-player games, to
ompute the (sure) regions of the players. In terms of 
omplexity, the Algo-rithm 3.1 requires only the 
omputation of |Q| attra
tors and partial algo-rithms:Lemma 3.13 Let W be a pre�x-
losed winning 
ondition on C. If there isa partial algorithm of Eve for W-games whose time 
omplexity on an arena

A on C is t(A) then Algorithm 3.1 
omputes the positive winning region ofEve (and thus the almost-sure region of Adam) in time |Q| · (|T |+ t(A)).
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hing algorithmIn pre�x-independent games almost-sure algorithms are partial algorithms:it is 
lear that the almost-sure region of Eve is a subset of her positive region,and by the positive-almost property (Theorem 3.9, page 54), the former isempty if and only if the latter is. The �xpoint algorithm transforms thenany almost-sure algorithm into a positive algorithm. Noti
e that ¬W ispre�x-independent, so we 
an also transform a positive algorithm into analmost-sure algorithm: hen
e the name �swit
hing algorithm�.Parameter: An algorithm 
omputing (WinW,1
E , WinW, >0

A )Input: A game G = (A,W)Output: (WinW , >0

E (A), WinW ,1
A (A))

WE = ∅;1
B = A;2 while WinW ,1

E (B) 6= ∅ do3
WE ←WE ∪AttrE(WinW ,1

E (B),B);4
B ← B \ AttrE(WinW ,1

E (B),B);5 end6 return (WE ,B)7 Algorithm 3.2: Swit
hing algorithmTheorem 3.14 follows dire
tly from Lemma 3.13:Theorem 3.14 Let W be a pre�x-independent winning 
ondition on C. If,for any arena A on C, we 
an 
ompute WinW ,1
E (A) (and WinW , >0

A (A)) intime t(A), then we 
an 
ompute WinW , >0

E (A) (and WinW ,1
A (A)) in time |Q| ·

(|T |+ t(A)).Another 
onsequen
e of the swit
hing algorithm is that positive strategiesrequire no more memory than almost-sure strategies. We de�ne �rst the
on
ept of residually almost-sure strategies:De�nition 3.15 A strategy with memory is said to be residually almost sureif and only if for any state q and memory state m, vσ(q, m) = 1.Lemma 3.16 In any pre�x-independent game G, if there is a pure (resp.semi-randomised, resp. randomised) almost-sure strategy with memory Υ,



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 59there is a pure (resp. semi-randomised, resp. randomised) residually almost-sure strategy with memory Υ.Proof. Let σ be a almost-sure strategy with memory. We build the residuallyalmost-sure strategy ς on the same memory states. For any state q andmemory state m, we have:
• if there is a state q0 and a strategy τ su
h that Pσ,τ

q0
(Reach(q, m)) > 0,

ς(q, m) = σ(q, m);
• otherwise, ς(q, m) = σ(q, m0).If σ is pure or semi-randomised, it is 
lear for any state q and memory state m,

(q, m) is rea
hable implies vσ(q, m) = 1, as Adam 
ould monitor the memoryand start playing a 
ounter-strategy when the value drops below one. If σ isa strategy with random memory, all he 
ould do would be to try a pre�x andguess Eve's memory, but this is enough to guarantee a positive probabilityof winning. Noti
e that this 
onstru
tion 
ould be done for bounded pureand semi-randomised strategies, but not for bounded strategies with randommemory. �Residually almost-sure strategies 
an then be used as 
omponents for apositive strategy on WinW , >0

E (A):Theorem 3.17 If there are almost-sure strategies with memory at most Υ,there are bounded strategies with memory at most Υ.Proof. By 
ontrast with the pre�x-
losed 
ase, there is no need to rememberthe smallest i su
h that Xi has been visited: the 
omposition of residuallyalmost-sure and attra
tor strategies is solely spatial:
• if q belongs to Xi, σ(q, m) = σi(q, m);
• if q belongs to Yi, σ(q, m) = (−→aE(Xi ∪

⋃

ℓ<j(Xℓ ∪ Yℓ))(q), m).
�3.3 Values and optimal strategiesThe values of pre�x-independent games G = (A,W) are usually 
omputedby hybrid algorithms, whi
h merge a qualitative algorithm forW-games with
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hability games. For example, one 
an guessthe values of the states, and use a qualitative algorithm to 
he
k ne
essaryand su�
ient 
onditions on the value regions: see [CdAH05℄ for Rabin andStreett games, [Cha07
℄ for Muller games, and [CHH08℄ for �nitary games.It is also possible to adapt the strategy improvement algorithm when one ofthe players has positional strategies: see [CJH04℄ for parity, and [CH06b℄ forRabin games. Finally, the problem of pre�x-independent 11
2
-player games
an be solved by 
omputing �rst the almost-sure region, and then the valuesof the rea
hability game to this region [Cha07a℄.We use our permutation algorithm as an universal 
onverter: from analmost-sure algorithm for W-games, we derive a meta-algorithm 
omputingthe values. As a matter of fa
t, the resulting algorithm is ex
eedingly 
loseto the permutation algorithm for rea
hability games. The only di�eren
e isin the 
omputation of the regions: instead of using deterministi
 attra
tors,Pro
edure Metaregion(G, π) 
omputes almost-sure winning regions. Apartfrom that, Algorithm 3.3 is a 
arbon 
opy of Algorithm 2.9.Input: A pre�x-independent game GOutput: A partition of Q and the 
orresponding valuesforall π ∈ Sk do1

W ← Metaregions(G, π)2
v ← Values(G, π, W)3 self← Consistent(π, v)4 live← Live(G, π, W)5 if (live ∧ self) then6 return (W, v)7 end8 end9Algorithm 3.3: Permutation Algorithm for pre�x-independent gamesAll the π-
on
epts of Se
tion 2.2 
an be adapted for pre�x-independent
onditions, most of the time with only minute di�eren
es. However, the in-tuitions behind these 
on
epts are gone: regions 
an be empty, π-values maybe di�erent from the values of the π-strategies, and so forth. So, althoughregions, strategies, and values are de�ned for any permutation (3.3.1), theydo not make mu
h sense in general. On the other hand, the key properties oflive and/or self-
onsistent permutations still hold mutatis mutandis (3.3.2).
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orre
tness of Algorithm 3.3, and study its 
om-plexity (3.3.3). A dire
t 
onsequen
e is that optimal strategies need exa
tlyas mu
h memory as almost-sure strategies (3.3.4).3.3.1 π-
on
epts for pre�x independent 
onditionsAs in the 
ase of 21
2
-player rea
hability games, our �rst step is to normalisethe games we 
onsider, by merging all the states of WinW ,1

A (A) into the sinkstate ⊗, and all the states of WinW ,1
E (A) into the target state ⊚. The winning
onditionW is modi�ed a

ordingly: Reach ⊚ =⇒W and Reach⊗ =⇒ ¬W.The de�nition of the π-regions is also 
lose to the 
ase of rea
habilitygames:

• Wπ[k + 1] = {⊚}

• Wπ[i] = Win
W∨Reach(∪j≥i{πj}),1
E (A) \ ∪j>iWπ[j]

• Wπ[0] = {⊗}Input: A pre�x-independent game G and a permutation πOutput: The π-regions of G
W [k + 1]← {⊚}1
W [0]← {⊗}2 for (i = 1, i ≤ k, i + +) do3

W [i]←Win
W∨Reach(∪j≥i{πj}),1
E (A) \ ∪j>iWπ[j]4 end5 return W6 Pro
edure Metaregions(G, π)However, we need to 
ompute an almost-sure region, in lieu of a deter-ministi
 attra
tor: a random state πi may thus belong to a region Wπ[j] with

i < j (but not i > j). In this 
ase, the region Wπ[i] is empty.Eve's π-strategy σπ is a spatial 
ombination of residually almost-surestrategies: in Wπ[i], she plays a residually almost-sure strategy with respe
tto the obje
tive W ∨ Reach(∪j≥i{πj}).Adam's π-strategy τπ is a spatial 
ombination of reset strategies: in Wπ[i],he plays a bounded strategy of value η with respe
t to the obje
tive W ∨
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Reach(∪j≥i{πj})), whi
h is reset when the value of the pre�x drops below η

2
.By Proposition 3.7, if any region is visited in�nitely often, Adam wins withprobability one, and Proposition 3.18 follows:Proposition 3.18 Let π be a permutation, and τπ be the 
orresponding π-strategy for Adam. For any initial state q and strategy σ of Eve, we have:Pσ,τπ

q (¬W ∨Reach ⊚) = 1The ve
tor of π-values for the states of QR is 
omputed from the 1
2
-playerrea
hability game Gπ de�ned as follows:

• Q = QR ∪ {⊗} ∪ {⊚}

• d(πi)(⊗) = δ(πi)(⊗)

• d(πi)(⊚) = δ(πi)(⊚)

• d(πi)(πj) = δ(πi)(Wπ[j])For any 1 ≤ i ≤ k, vπ[i] is the value of πi in Gπ. The asso
iated valuesfor the states are de�ned by: q ∈ Wπ[i] ⇒ vπ(q) = vπ[i]. Noti
e that if
πi ∈ Wπ[j], vπ(πi) = vπ[j], and not ne
essarily vπ(πi) = vπ[i]. By 
ontrastwith the 
ase of rea
hability game, it is not true in general that vπ = vσπ ,τπ

.3.3.2 Liveness and self-
onsisten
yThe notions of (self-)
onsisten
y and liveness need no tinkering from rea
ha-bility: De�nitions 3.19, 3.21, and 3.23 are 
arbon 
opies of De�nitions 2.27,2.25, and 2.26. In the same way, we prove equivalents of the key properties:Propositions 3.20 and 3.22 repla
e Propositions 2.28 and 2.31. An extraproposition, Proposition 3.24, deals with displa
ed random states.De�nition 3.19 A permutation π over the set QR is live if and only if forany 1 ≤ i ≤ k, δ(πi)(∪j>iWπ[j]) > 0.Proposition 3.20 Let π be a live permutation, and σπ be the 
orresponding
π-strategy for Eve. For any strategy τ of Adam, we have:Pσπ ,τ

q (W ∨ Reach⊗) = 1



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 63Proof. Let q be a state of Q, τ be a strategy for Adam, and Stuck(i) be theevent �Inf(ρ)∩Wπ[i] 6= ∅∧ Inf(ρ)∩{πi, . . . , πk} = ∅�. By de�nition of σπ, forany 1 ≤ i ≤ k, we have Pσπ,τ
q (Stuck(i)∧¬W) = 0. By the liveness property,for any 1 ≤ i ≤ k, we have Pσπ ,τ

q (πi ∈ Inf(ρ) ∧ Inf(ρ) ∩ ∪j>iWπ[j] = ∅) = 0.Proposition 3.20 follows. �De�nition 3.21 A permutation π is 
onsistent with a set of values v if andonly if for any two states πi and πj in QR, i < j ⇒ v(πi) ≤ v(πj).Proposition 3.22 There is a live permutation 
onsistent with the values of
G.Proof. The permutation is 
hosen starting from πk, and going down to π1.At ea
h step, the state πi is 
hosen among the ones su
h that:
• v(πi) = max{v(q) | q ∈ QR \ {πi+1, . . . , πk}}

• δ(πi)(∪j>iWπ[i]) > 0There is always su
h a state: otherwise, the set X of states whose value ismaximal in Q \ ∪j>iWπ[j] would be a trap for Adam, and the states of Xhave value 1, in 
ontradi
tion with the �normalised� hypothesis. �De�nition 3.23 A permutation π is self-
onsistent if and only if it is 
on-sistent with vπ: for any two states πi and πj in QR, i < j ⇒ vπ[i] ≤ vπ[j].Proposition 3.24 Let π be a self-
onsistent permutation, and i and j betwo integers su
h that i < j and πi ∈ Wπ[j]. Then for all ℓ su
h that
δ(πi)(Wπ[ℓ]) > 0, vπ[i] = vπ[j] = vπ[ℓ].Proof. As πi ∈ Wπ[j], δ(πi)(Wπ[ℓ]) > 0 ⇒ ℓ ≥ j. By self-
onsisten
y,
ℓ ≥ j ⇒ vπ[ℓ] ≥ vπ[j], so vπ[i] ≥ vπ[j]. But, again by self-
onsisten
y,
vπ[i] ≤ vπ[j]. So vπ[i] = vπ[j], and, δ(πi)(Wπ[ℓ]) > 0 ⇒ vπ[i] = vπ[ℓ].Proposition 3.24 follows. �3.3.3 Corre
tness of Algorithm 3.3Now that all the pie
es are there, we 
an pro
eed to the main theorem:



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 64Theorem 3.25 Let G = (A,W) be a pre�x-independent game. A run ofAlgorithm 3.3 on G terminates and returns the values of the states.Proof. Theorem 3.25 is proved as Theorem 2.29, by two independent lemmas:
• there is a live and self-
onsistent permutation (Lemma 3.26);
• if a permutation π is live and self-
onsistent, then vπ are the optimalvalues for the regions Wπ (Lemma 3.27).

�Lemma 3.26 There is a live and self-
onsistent permutation.Proof. The �rst part of this proof was to show that there is a live permutation
π 
onsistent with the values of the game (Proposition 3.22). The point isnow to prove that the π-values are the values of G. These values are 
onstantover the π-regions:

q ∈WinW∨Reach X,1
E (A)⇒ v(q) ≥ min{v(q) | q ∈ X}

q /∈WinW∨Reach X,1
E (A)⇒ v(q) ≤ max{v(r) | r ∈ QR \X}Thus, the relations between the values of the π-regions whi
h follow from(3.1) are exa
tly the relations between the values of the states in Gπ. So

v = vπ, and Lemma 3.26 follows. �Lemma 3.27 If π is a live and self-
onsistent permutation, then the π-strategies are optimal and vπ = v.Proof. We �x an initial state q and prove independently that vσπ
(q) ≥ vπ(q)and vτπ

(q) ≤ vπ(q). Let τ be a strategy for Adam. We de�ne an �expe
ted
π-value� fun
tion f by f(n) =

∑

s∈Q vπ(s) · Pσπ ,τ
q (ρn = s). This fun
tion iswaxing:

• a move of Eve 
onsistent with σπ remains in the same π-region;
• a move of Adam sends the token to a state with greater or equal π-value(self-
onsisten
y);
• the value of a random state πi su
h that πi ∈Wπ[i] is the average valueof its su

essors;
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• a random state πi su
h that πi ∈Wπ[j] and i < j sends the token to astate with equal π-value (Proposition 3.24).Thus, f(n) ≤ f(n + 1). Furthermore, as f(n) ≤ 1 − Pσπ ,τ

q (ρn = ⊗), weget lim f(n) ≤ 1 − Pσπ ,τ
q (Reach⊗). By Proposition 3.20, Pσ,τπ

q (Reach⊗) =
1− vσπ ,τ(q), so vπ(q) = f(0) ≤ limn→∞ f(n) ≤ vσπ ,τ (q). As τ is an arbitrarystrategy for Adam, we get vσπ

≥ vπ.Likewise, for a strategy σ for Eve, we de�ne the fun
tion g by g(n) =
∑

s∈Q vπ(s) · Pσ,τπ
q (ρn = s). This fun
tion is waning:

• a move of Eve sends the token to a state with lower or equal π-value(self-
onsisten
y);
• a move of Adam 
onsistent with τπ remains in the same π-region;
• the value of a random state πi su
h that πi ∈Wπ[i] is the average valueof its su

essors;
• a random state πi su
h that πi ∈Wπ[j] and i < j sends the token to astate with equal π-value (Proposition 3.24).Thus, g(n) ≥ g(n + 1). Furthermore, as g(n) ≥ Pσ,τπ

q (ρn = ⊚), we get
lim g(n) ≥ Pσ,τπ

q (Reach ⊚). By Proposition 3.18, Pσ,τπ
q (Reach ⊚) = vσ,τπ

(q),so vπ(q) = g(0) ≥ limn→∞ g(n) ≥ vσ,τπ
(q). As σ is an arbitrary strategy forEve, we get vτπ

≤ vπ.It follows that vσπ
= vτπ

= vπ, so σπ and τπ are optimal strategies, and
vπ = v. This 
on
ludes the proof of Lemma 3.27. �Theorems 3.28 and 3.29 are dire
t 
onsequen
es of Theorem 3.25:Theorem 3.28 Let G be a pre�x-independent game. If there is an algorithm
omputing the almost-sure region of Eve in time t(G), then Algorithm 3.3
omputes the values of G in time |QR + 1|! · (|δ|+ t(G)).Proof. In Pro
edure Metaregions, the time-
onsuming operations are the
omputation of the almost-sure regions (in time t(G)) and the 
omputationof the attra
tor (in time |δ|). Ea
h is done |sr| times in ea
h 
all, andin the worst 
ase, Algorithm 3.3 
alls Pro
edure Metaregions |QR|! times.Theorem 3.28 follows. �
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lass of pre�x-independent winning 
onditions.If the qualitative problems of W-games belong to the 
omplexity 
lass K, thenthe quantitative problems belong to the 
lasses NPK and 
o-NPK.Proof. There is a non-deterministi
 variant of Algorithm 3.3 whi
h guessesthe 
orre
t permutation instead of sear
hing for it. The veri�
ation 
an thenbe done in polynomial time with |QR| 
alls to a K-ora
le. �3.3.4 Optimal strategiesOne of the assets of Algorithm 3.3 is that we 
an derive optimal strategiesfrom a live and self-
onsistent permutation, so Theorem 3.30 follows fromLemma 3.27:Theorem 3.30 Pre�x-independent games are optimally determined.Furthermore, the strategy σπ is de�ned as a spatial 
omposition of resid-ually almost-sure strategies, and does not use more memory than its 
ompo-nents:Theorem 3.31 Let W be a pre�x-independent winning 
ondition. If Evehas pure (resp. semi-randomised, randomised) qualitative strategies with �-nite memory Υ, she has pure (resp. semi-randomised, randomised) optimalstrategies with �nite memory Υ.Noti
e that Theorem 3.31 does not hold without the hypothesis thatW ispre�x-independent, even for regular winning 
onditions: a 
ounter-exampleis the weak parity game of Figure 3.2.1
2 3.5.5

Figure 3.2: Optimal strategies require memory in weak parity games



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 67In this game, the value of the initial state is .5: if Eve sends the tokenon
e to the left, and then always to the right, the lowest o

urring 
olourhas equal 
han
es to be 1 or 2. However, this value 
annot be a
hieved bymeans of a positional strategy:
• if Eve has a positive probability to send the token to the left, the lowesto

urring 
olour is almost surely 1;
• if Eve never sends the token to the right, the lowest o

urring 
olouris surely 3.There are positional almost-sure winning strategies for both players in 21

2
-player weak parity games [GZ05℄. Optimal strategies for weak parity gameswith d 
olours may require up to d − 1 memory states, even in 11

2
-playergames.3.4 Valedi
tionWe showed that pre�x-independent games are optimally determined, andprovided a general algorithm 
omputing the values of any pre�x-independentgames with a single non-deterministi
 guess and a qualitative algorithm.The determina
y result is very sensitive to ea
h of our hypotheses, asdemonstrated by Figure 3.1. However, the quantitative determina
y of Borelgames may still be extended, by the qualitative determina
y to begin with,and by similar questions for arbitrary values.



Chapter 4Muller Games�You 
an't have a strategy against telepaths: you have to a
t randomly. Youhave to not know what you're going to do next. You have to shut your eyesand run blindly. The problem is: how 
an you randomise your strategy, yetmove purposefully towards your goal?� Solar LotteryPhilip K. Di
kWith this 
hapter, we go ba
k to the origins of in�nite games: Chur
h'soriginal synthesis problem amounts to solving Muller games. Muller gamessubsume the other 
lassi
al normal forms of regular games su
h as parity,Rabin, and Streett games.The Muller 
ondition is pre�x-independent, so they provide us with anappli
ation of the results of Chapter 3.We apply our results on pre�x-independent 
onditions to the setting ofMuller games, where the winner depends only on the states that are visitedin�nitely often. They subsumes other 
lassi
al normal forms of regular gamessu
h as parity, Rabin, and Streett gamesThe qualitative problems of Muller games 
an usually1 be solved in poly-nomial spa
e [M
N93, NRY96℄. However, this 
omplexity is not ne
essarilytight, depending on how the winning 
ondition is represented. As in Chap-ter 2, we present in Figure 4.1 an example of Muller game to demonstrateseveral interesting notions.1As long as de
iding the winner of a limit set is in PSPACE.68
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F = {{a, b, c, d}, {a, b, c}, {a, b}, {b, c, d, e}, {b, c, e}, {b, d, e}, {c, d, e}, {e}}Figure 4.1: Muller game example: the game G = (A,F)We �rst present, in Se
tion 4.1, a polynomial algorithm for the qualita-tive problems of expli
it Muller games. Se
tion 4.2 des
ribes the notion ofZielonka tree of a 
oloured Muller 
ondition, and shows how to use it to de-�ne a redu
tion to parity 
onditions. This tree is again 
entral in Se
tion 4.3,whi
h de�nes a re
ursive PSPACE algorithm for 21
2
-player Muller games. Theanalysis of this algorithm also provide upper bounds in memory for pure aswell as randomised strategies. We use then the Zielonka DAG in Se
tion 4.4to show that these bounds are tight.4.1 Expli
it gamesOur �rst result about Muller games is a polynomial algorithm 
omputingthe winning regions of expli
it Muller games. The expli
it representation ofa Muller 
ondition F 
onsists simply in the sequen
e F1 · · ·Fℓ of all the setsin F . Noti
e that this de�nition pre
ludes the use of a (non-trivial) 
olouringfun
tion: the winner problem of 
oloured Muller games, whi
h we study inthe next se
tions, is PSPACE-
omplete.We introdu
e the notions of semi-alternation and sensibleness for expli
itMuller games, and show that any expli
it game 
an be translated in poly-nomial time into a semi-alternating and sensible game (4.1.1). We use thenthese notions to des
ribe a polynomial algorithm for expli
it Muller games(4.1.2).



CHAPTER 4. MULLER GAMES 704.1.1 Normal formWe �rst de�ne three properties of expli
it Muller games. A game is:1. semi-alternating if there is no transition between two states of Adam(but there 
an be one between two states of Eve);2. sensible if ea
h set in F is an end-
omponent of A;3. ordered for in
lusion if i < j ⇒ Fi + Fj.Our algorithm for expli
it Muller games, Algorithm 4.1, relies on the fa
tthat its input satis�es these three properties. However, this does not restri
tthe generality of our result, sin
e any expli
it Muller game 
an be transformedin polynomial time into an equivalent semi-alternating, sensible, and orderedgame of polynomial size. The semi-alternation transformation 
onsists inrepla
ing ea
h state q ∈ QA of Adam by a pair of states r ∈ QE , s ∈ QA,as in Figure 4.2. Ea
h set 
ontaining q in the winning 
ondition is modi�eda

ordingly: F ← (λq.(r, s))F . This is where the 
lassi
al alternation trans-formation fails: adding a state to ea
h transition leads to an exponentialblow-up in the size of the winning 
ondition.
q

(a) Original arena
r s

(b) Semi-alternating arenaFigure 4.2: Semi-alternating arena 
onstru
tionA game 
an be made sensible by removing from F all the sets that arenot end-
omponents of A: by Lemma 1.3, whatever the strategies of Eve andAdam, the limit of the play is an end-
omponent with probability one. Thismodi�
ation is thus transparent with respe
t to sto
hasti
 
on
epts �thesure and heroi
 regions do 
hange, however. Finally, ordering the sets forin
lusion 
an be done in quadrati
 time.



CHAPTER 4. MULLER GAMES 71The games of the form (A, {Q}), where Eve wins if and only if the tokenvisits all the states in�nitely often, play an important part in our solution toexpli
it Muller games. These games, whi
h have also been studied in routingproblems [DK00, IK02℄, are easy to solve and there is always only one winnerin the whole game:Proposition 4.1 Let A be a 21
2
-player arena, and G be the expli
it Mullergame (A, {Q}). Either, for any state q ∈ Q, Eve's attra
tor to q is equal to

Q, and Eve wins almost-surely everywhere in G, or there is a state q ∈ Qsu
h that AttrE({q},A) 6= Q, and Adam wins surely everywhere in G.Proof. In the �rst 
ase, Eve 
an win almost-surely by playing the uniformstrategy uniA: in�nite visits to all the states of Q ensues [CdAH04℄. Inthe se
ond 
ase, Adam 
an win surely with any trapping strategy out of
AttrE({q},A): if the token ever gets out of AttrE({q},A), it never goesba
k. �Following Proposition 4.1, we say that �Eve wins (A, {Q})� if she winsalmost-surely from any state of Q, and that �Adam wins (A, {Q})� if he winssurely from any states of Q. This 
ould be misleading if we were to 
onsiderthe sure region of Eve or the heroi
 region of Adam, but we do not.4.1.2 AlgorithmOur algorithm takes as input a semi-alternating, sensible 21

2
-player expli
itMuller game whose winning 
ondition is ordered for in
lusion; it returns thepositive region of Eve and the almost-sure region of Adam. Ea
h set in F is
onsidered at most on
e, starting with the (smallest) set F1. At ea
h step,the operation of a set Fi modi�es the arena and the winning 
ondition in oneof the following ways:If Adam wins (A|Fi

, {Fi}), Fi is removed from F .If Eve wins (A|Fi
, {Fi}), and Fi is a trap for Adam in A, Eve'sattra
tor to Fi in A, AttrE(Fi,A), is removed from A (and added to thewinning region of Eve), and all the sets interse
ting AttrE(Fi,A) are removedfrom F .If Eve wins (A|Fi

, {Fi}), and Fi is not a trap for Adam in A, a newstate Fi, des
ribed in Figure 4.3, is added to A with the following attributes:
• Fi is a state of Adam;
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• the prede
essors of Fi are all the states of Eve in Fi;
• the su

essors of Fi are the su

essors outside Fi of the states of Adamin Fi.Furthermore, the state Fi is added to all the supersets of Fi in F , and Fiitself is removed from F .

ab

c

M = {{a, b}, {a, b, c}}(a) Before
ab

c{a,b}
M = {{a, b, c, {a,b}}}(b) AfterFigure 4.3: Removal of a set in an expli
it Muller 
onditionThe important 
ase, from an intuitive point of view, is the last one: it
orresponds to a �threat� of Eve to win by visiting exa
tly the states of Fi.Adam has to answer by getting out, but he 
an 
hoose his exit from any ofhis states. Noti
e that it would not do to simply repla
e the whole region Fiby the state Fi: as in Figure 4.3, Adam may be able to avoid a state of Fi ina larger arena, even if he is in
apable of doing so in A|Fi

.As only one state is added ea
h step, the number of states in the game isbounded by |A|+ |F|. The whole pro
edure is des
ribed as Algorithm 4.1.In the proof of 
orre
tness, we use typewriter fonts to denote the mod-i�ed arena and 
ondition, and calligraph fonts to denote the original game.Furthermore, we denote by F|Fi
the interse
tion of F and P(Fi), i.e. thesets of F that are also subsets of Fi. We 
an now pro
eed to the three mainlemmas:
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it Muller game (A,F)Output: WinF , >0

E (A) and WinF ,1
A (A)

A = (Q, QE, QA, QR, T, p)← A = (Q,QE ,QA,QR, T , p);1
F← F ;2
WE ← ∅;3 while F 6= ∅ do4

Fi ← pop(F);5 if Eve wins (A|Fi
, {Fi}) then6 if Fi is a trap for Adam in A then7 remove AttrE(Fi, A) from A and add it to WE ;8 remove all the sets interse
ting AttrE(Fi, A) from F;9 else10 add a state Fi to QA;11 add transitions from Fi ∩ QE to Fi;12 add transitions from Fi to T(Fi ∩ QA) \ Fi;13 add Fi to all the supersets of Fi in F;14 end15 end16 end17 return WE ∩ Q, Q ∩ Q18Algorithm 4.1: Polynomial algorithm for expli
it Muller gamesLemma 4.2 If, in the 
ourse of a run of Algorithm 4.1, the game (A|Fi

, {Fi})is winning for Eve at line 6, then Eve wins almost-surely everywhere in thegame (A|Fi
,F|Fi

).Proof. Let H1, . . . ,Hk = Fi be the sets of F|Fi
su
h that (A|Hj , {Hj}) waswinning for Eve in the run of Algorithm 4.1. Noti
e that Fi itself is one ofthese states, say Hk. The σj's denote her 
orresponding almost-sure strate-gies. We build a strategy σ for Eve in A|Fi

, whose memory states are sta
ksof pairs (Hj , ρj). At any time, ρj is a play of A|Hj whi
h 
an be extended bythe 
urrent state q. The initial memory state is (Hk, ε), and the operation of
σ when the memory state is (Hj, w) and the 
urrent state is q is des
ribedbelow:1. If q /∈ Hj, the top pair is removed, and the pro
edure restarts at step1 with the new memory. Noti
e that it may involve further pops if qstill does not belong to the top set.



CHAPTER 4. MULLER GAMES 742. If q is a state of Eve, and σj(wq) is a new state Hh, the memory ismodi�ed as follows: w be
omes wqHh, and a new pair (Hh, ε) is pushedat the top of the sta
k. The pro
edure restarts at step 2. with the newmemory. Noti
e that it may involve further pushes if σh(q) is also anew state.3. The new memory state is (Hj , wq); if q belongs to Eve, she plays σj(wq).We 
laim that σ is almost-sure for Eve in the game (A|Fi
,F|Fi

). Let ρ be aplay 
onsistent with σ, and Hj the highest set that is never unsta
ked. Wedenote by ρj the (in�nite) limit of the �play� part. As ρj is 
onsistent with
σj, Inf(ρj) = Hj with probability one. Furthermore, Inf(ρ) ⊇ Inf(ρj)∩Q and
Inf(ρ) ⊆ Hj . So, Inf(ρ) = Hj with probability one, and Lemma 4.2 follows.
� For Adam, the problem is a little more 
omplex: we need two lemmas,whose proofs are mutually re
ursive:Lemma 4.3 If, in the 
ourse of a run of Algorithm 4.1, the game (A|Fi

, {Fi})is winning for Adam at line 6, then Adam wins surely everywhere in the game
(A|Fi

,F|Fi
).Lemma 4.4 If, in the 
ourse of a a run of Algorithm 4.1, the game (A|Fi

, {Fi})is winning for Eve at line 6, then Adam wins surely everywhere in the game
(A|Fi

,F|Fi
\ {Fi}).Proof. We start with the (simpler) proof of Lemma 4.4. Let H1, . . . ,Hk bethe maximal sets, with respe
t to in
lusion, of F|Fi

. There is a sure strategy
τ j for Adam in ea
h Hj: if Adam won (A|Hj , {Hj}), it is a winning strategy forthe game (A|Hj ,F|Hj) (re
ursive use of Lemma 4.3); if Eve won (A|Hj , {Hj}),it is a strategy for the game (A|Hj ,F|Hj \ Hj) (re
ursive use of Lemma 4.4).The strategy τ for Adam in (A|Fi

, {F|Fi
}) uses k top-level memory states toswit
h between the {τ j}1≤j≤k. Adam remains in a top-level memory state jonly as long as the token is in Hj . As soon as it gets out, he updates it to (j

mod k) + 1. His a
tions when the top-level memory state is j are des
ribedbelow:
• if he won (A|Hj , {Hj}), he plays τ j ;
• if Eve won (A|Hj , {Hj}), he plays τ j unless he 
an get out of Hj .
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laim that τ is surely winning for Adam in (A|Fi
,F|Fi

). Any play ρ
onsistent with τ falls in exa
tly one of the three following 
ategories:
• The top-level memory of τ is not ultimately 
onstant; thus Inf(ρ) isnot in
luded in any of the Hj 's, and ρ is winning for Adam.
• The top-level memory of τ is ultimately 
onstant at j, and (A|Hj , {Hj})was winning for Adam; ρ is ultimately a play of A|Hj 
onsistent with

τ j , so ρ is winning for Adam.
• the top-level memory of τ is ultimately 
onstant at j, and (A|Hj , {Hj})was winning for Eve; ρ is ultimately a play of A|Hj 
onsistent with τ j ,so Eve 
an win only by visiting all the states of Hj . But Hj is nota trap for Adam, and the de�nition of τ implies that Adam leaves assoon as possible. So, at least one of the states of Hj was not visited,and ρ is winning for Adam.This 
ompletes the proof of Lemma 4.4. The proof of Lemma 4.3 is moreinvolved, due to the ne
essity to avoid at least one of the states of Fi. ByProposition 4.1 there is a state q in Fi su
h that X = AttrE({q}, A|Fi

) is notequal to A|Fi
. It follows from the de�nition of A|Fi

that neither Fi ∩ X nor
Fi \X is empty. Adam's strategy is then exa
tly the same than in the proofof Lemma 4.4, with the provision that Adam never moves from Fi \X to X:this guarantees that the token 
annot visit in�nitely often all the states of
Fi, and 
ompletes the proof of Lemma 4.3. �The 
orre
tness of Algorithm 4.1 follows from Lemmas 4.2, 4.3, and 4.4:the �rst one guarantees that the states in WE∩Q are winning for Eve, and thelast one that the states remaining at the end of Algorithm 4.1 are winningfor Adam.About 
omplexity, there are at most |F| loops in a run, and the mosttime-
onsuming operation is to 
ompute the winner of the games (A|Fi

, {Fi}),whi
h are quadrati
 in |A| ≤ (|A| + |F|). Thus, the worst-
ase time 
om-plexity of Algorithm 4.1 is O(|F| · (|A| + |F|)2), whi
h 
ompletes the proofof Theorem 4.5:Theorem 4.5 The winner problem of expli
it 21
2
-player Muller games be-longs to PTIME.We 
an use Theorem 3.29 to dire
tly derive a 
omplexity 
lass for thequantitative problems of expli
it games:
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it 21
2
-player Muller games belongsto NP and 
o-NP.Noti
e that these 
omplexity results depend on the fa
t that there isno 
olouring fun
tion: even in the very restri
ted 
ase of the win-set repre-sentation [M
N93℄, where the only di�eren
e is the introdu
tion of a set ofirrelevant states, the winner problem be
omes PSPACE-hard [HD05℄.4.2 Solution through redu
tionsA �rst approa
h to the solution of 21

2
-player Muller games uses su

essiveredu
tions from the well-studied problem of 2-player parity2 games (4.2.1).It is possible to redu
e the qualitative solution of 21

2
-player parity games tothis problem (4.2.2), and Muller 
onditions to parity 
onditions (4.2.3).4.2.1 Solving 2-player parity gamesThe 
omplexity of 2-player parity games is one of the 
entral questions ingame theory. One of the motivation is the link between these games andlogi
s: there is a polynomial redu
tion from µ-
al
ulus to 2-player paritygames, and vi
e versa. Another one is that parity games admit positionalstrategies (under some hypothesis, they are even the only games to admitpure and positional strategies [CN06℄).Theorem 4.7 ([EJ91℄, [Mos91℄) In a 2-player parity game, both playershave positional winning strategies.An immediate 
onsequen
e is that parity game 
an be solved with NP or
o-NP algorithm, by guessing a strategy for one or the other player.Theorem 4.8 The problem of the winner in 2-player parity games belongsto NP and to 
o-NP.It is even possible to adapt the strategy improvement for 21

2
-player rea
h-ability games, in a dis
rete fashion [VJ00℄. The resulting algorithm is poly-nomial for 1-player games, and 
onje
tured to be also polynomial for 2-playergames. It is also possible to solve parity games with a re
ursive algorithm2�Priority� would be a mu
h better name.
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ribe in Se
tion 4.3. Other approa
hes introdu
ed smallprogress measure [Jur00℄ (later extended to Rabin and Streett games in[PP06℄), or mixed these with a round of exhaustive exploration of smallsubarenas [JPZ06, S
h07℄.4.2.2 21
2-player parity games to 2-player parity gamesIt is possible to redu
e qualitative problems for 21

2
-player Muller games to thewinner problem of 2-player games: see [JKH02℄ for Bü
hi and 
o-Bü
hi 
on-ditions, [CJH03℄ for parity 
onditions, and [CdAH05℄ for Rabin and Streett
onditions. The prin
iple is to repla
e the random states with a gadget whereAdam and Eve �barter� for the right to 
hoose the next state. For example,Figure 4.4 presents the redu
tion of [CJH03℄ for parity games.

0

· · ·

1

· · ·

2

· · ·

· · ·

2i-1
· · ·

2i

· · ·

· · ·

k

· · ·Figure 4.4: Parity gadget: from 21
2
-player to 2-playerEa
h visit to a random state is repla
ed by this �gadget�, where Adam
hooses �rst a rank i, and Eve 
an:

• either visit to a 2i− 1 priority and de
ide the next state;
• or visit to a 2i priority and let Adam de
ide the next state.This redu
tion is polynomial, and preserves the winning region (Eve'swinning region 
orresponds to her almost-sure region, and Adam's region tohis positive region). Furthermore, the positional strategies of the redu
edgame translate as positional strategies in the original game. Theorem 4.9and 4.10 follow:
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2
-player parity game, both player have positional strate-gies.Theorem 4.10 The qualitative problems of 21

2
-player parity games are inNP ∩ 
o-NP4.2.3 Muller 
onditions to parity 
onditionsMuller 
onditions 
an be translated as parity 
onditions by adding infor-mation to the states. The �rst data stru
ture 
onsidered to this e�e
t wasthe Latest Appearan
e Re
ords (LAR) of M
Naughton, whi
h were used byGurevi
h and Harrington as memory for winning strategies in Muller games[GH82℄. Thomas use them in [Tho95℄ to redu
e Muller games to paritygames. However, the size of the LAR stru
ture is totally insensitive to thea
tual winning 
ondition. Zielonka's insightful 
onstru
tion [Zie98℄ repre-sents a Muller 
ondition by a split tree whose nodes are labelled by sets of
olours, fo
using on the alternation between the sets winning for Eve andthose winning for Adam:De�nition 4.11 (Zielonka tree [Zie98℄) The Zielonka tree of a Muller
ondition F over C, denoted ZF ,C, is the rooted tree with the following prop-erties:

• ea
h node is labelled by a set of 
olours, and two di�erent siblings havedi�erent labels; if the label of a node is winning for Eve, the node be-longs to Eve, otherwise it belongs to Adam;
• the root of ZF ,C is labelled by C;
• if n is a node labelled by C ⊆ C, and C1, . . . , Ch are the maximal subsetsof C su
h that C ∈ F < Ci ∈ F , then the 
hildren of n are labelled bythe Ci's.Hunter and Dawar derive a DAG from this tree (the Zielonka DAG), byidentifying the nodes with the same labels [HD05℄.The Zielonka tree and DAG of F, from Figure 4.1, are represented inFigure 4.5(a).Dziembowski, Jurdzi«ski, andWalukiewi
z presented in [DJW97℄ a redu
-tion from Muller games to parity games using the bran
hes of the Zielonkatree as data stru
ture. Their 
onstru
tion builds a parity game G from a
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abcde

abcd

bcdacdabd

ab

a b

bcde

bcd be ce

e e

∅ ∅(a) ZF,C

abcde

abcd

bcdacdabd

ab

a b

bcde

be ce

e

∅(b) DF,CFigure 4.5: Zielonka representations of FMuller game G = (A,F). The states of G are pairs (q, b), with q a state of
A, and b a bran
h of ZF ,C. The support of q and b is the lowest node where
χ(q) appears. The 
olour of a state (q, b) is the depth of the support of q and
b in ZF ,C. There is a transition from (q, b) to (q′, b′) if and only if there is atransition from q to q′ in G, and b′ goes through the next 
hild of the supportof q and b. A transition, taken from the translation of G, is represented inFigure 4.6.A play ρ is winning in G if and only if its proje
tion on Q is winning in
G. The size of G is polynomial in the size of the game if the 
ondition isrepresented by its Zielonka tree, so the 
omplexity of these games is in NP ∩
o-NP :Theorem 4.12 The qualitative problems of 21

2
-player Muller games whosewinning 
ondition are represented by their Zielonka tree belong to NP and
o-NP.Furthermore, if we de�ne ℓF as the number of bran
hes of the Zielonkatree:De�nition 4.13 (Number ℓ of a Muller 
ondition) Let F be a Muller
ondition on C, and C1 · · · Ck be the maximal subsets of C su
h that C ∈ F <

Ci ∈ F . We denote by Fi the Muller 
ondition F|Ci
, and we de�ne the number
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abcde 1

abcd

bcdacdabd

ab

a b

bcde

bcd be ce

e e

∅ ∅(a) χ(q) = a

abcde

abcd

bcdacdabd

ab 4
a b

bcde

bcd be ce

e e

∅ ∅(b) χ(q′) = bFigure 4.6: Coloration and transitions of the generalized LAR redu
tion
ℓF indu
tively as follows:

ℓF =











1 if ZF ,C does not have any subtrees,
k
∑

i=1

lFi
if C ∈ F otherwise.

7

4

112

2

1 1

3

1 1 1

1 1

1 1Figure 4.7: Computation of ℓFBoth players have winning strategies with memory ℓF : by keeping the
urrent bran
h of in memory, a player 
an determine where the token wouldbe in G, and play a

ordingly.Theorem 4.14 Let F be a Muller 
ondition over C, A be an arena on C,



CHAPTER 4. MULLER GAMES 81and q be a state of Q. If either player has a winning strategy from q, theyhave a pure winning strategy with memory ℓF .4.3 Re
ursive algorithmHowever, the Zielonka tree is not more su

in
t than any of the representa-tions we presented, and the redu
tion uses thus an exponential spa
e in these
ases. However, it is possible to simulate this redu
tion on the �y, in spa
epolynomial in the size of the arena. This approa
h is re
ursive, and has beenimplemented �rst by Dziembowski, Jurdzi«ski, and Walukiewi
z for 2-playerMuller games (and in�nite arenas) in [DJW97℄. The spe
ial 
ase of 2-playerStreett games was studied in [Hor05℄, and extended to 21
2
-player games in[Hor07a℄. Chatterjee later extended the extension to 21

2
-player Muller gamesin [Cha07
℄.The re
ursive 
alls of this re
ursive algorithm 
orresponds to the stru
-ture of the Zielonka tree: the �nal solution is the one we get at the root,and solving a node require to solve its 
hildren. However, we do not needto remember the stru
ture of the tree, and 
omputing the 
hildren of a nodein the Zielonka tree 
an be done in polynomial spa
e regardless of the repre-sentation of the Muller 
ondition, as long as de
iding the winner of a set of
olours 
an be done in PSPACE.As Muller 
onditions are pre�x-independent, we use the results of Chap-ter 3, to des
ribe only a partial algorithm. The role of the players in thisalgorithm depends on who wins if all the 
olours are visited: if it is Eve, we
ompute a subset of Adam's positive region; if it is Adam, we 
ompute asubset of Eve's winning region. In order to get the a
tual regions, we use the�x-point algorithm, and the swit
hing algorithm if needed.The study of the Zielonka tree ZF ,C of a Muller 
ondition F on C enablesus to de�ne two asymmetri
 numbers mF and rF , whi
h are tight bounds forthe memory needed in F -games (Theorems 4.16 and 4.18).De�nition 4.15 (Number m of a Muller 
ondition) Let F be a Muller
ondition on C, and C1 . . . Ck be the maximal subsets of C su
h that C ∈ F <

Ci ∈ F . We denote by Fi the Muller 
ondition F|Ci
, and we de�ne the number

mF indu
tively as follows:
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mF =



















1 if ZF ,C does not have any subtrees,
max{1, mF1 , mF2 , . . . , mFk

} if C /∈ F (Adam node),
k
∑

i=1

mFi
if C ∈ F (Eve node).Theorem 4.16 ([DJW97, Cha07
℄) Let F be a Muller 
ondition over C.In any A on C, if Eve has a winning strategy in the game (A,F), she hasa pure winning strategy with memory mF . Furthermore, there is a 2-playerarena AF where Eve has a winning strategy in the game (AF ,F), and noneof her pure strategies with memory less than mF is winning.De�nition 4.17 (Number r of a Muller 
ondition) Let F be a Muller
ondition on C su
h that the root of the Zielonka tree ZF ,C has ℓ leaf and knon-leaf 
hildren. We denote by C1 . . . Ck the labels of the non-leave 
hildren,and by Fi the Muller 
ondition F|Ci

. The number rF is de�ned indu
tively asfollows:
rF =







































1 if ZF ,C does not have any subtrees,
max{1, rF1 , rF2, . . . , rFk

} if C /∈ F (Adam node),
k
∑

i=1

rFi
if C ∈ F (Eve node) and ℓ = 0,

k
∑

i=1

rFi
+ 1 if C ∈ F (Eve node) and ℓ ≥ 1.Theorem 4.18 ([Hor09℄) Let F be a Muller 
ondition over C. In any A on

C, if Eve has a winning strategy in the game (A,F), she has a randomisedwinning strategy with memory rF . Furthermore, there is a 2-player arena
AF where Eve has a winning strategy in the game (AF ,F), and none of herrandomised strategies with memory less than rF is winning.In the remainder of this 
hapter, we prove simultaneously Theorems 4.16and 4.18. The study of the re
ursive algorithm of this se
tion provide theupper bounds, while the lower bounds are proved in Se
tion 4.4.All the des
riptions and properties of this se
tion refer to a generi
 game
G = (A,F) over the set of 
olours C. In order to simplify senten
es, wesuppose that the root of ZF ,C belongs to Eve. The 
ase where Adam ownsthe root works exa
tly in the same way, ex
hanging the roles of Eve andAdam.
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1 1 1

1 1

1 1(a) mF

3

2

111

1

1 1

3

1 1 1

1 1

1 1(b) rFFigure 4.8: Computation of mF and rF4.3.1 Partial algorithmThe partial algorithm itself is re
ursive: it involves the solution of sub-games,in the sense that the arena is a sub-arena of A, and the winning 
ondition
orresponds to a subtree of ZF ,C. Let us start with some notations: wedenote by C1 . . . Cℓ the labels of the 
hildren of the root. For ea
h of them,
Fi is the restri
tion of F to Ci, and Di is the set C \ Ci. These notations aresummarised on Figure 4.9, whi
h represents the top of ZF ,C.

C

ZF1, C1 ZFi, Ci
ZFℓ, Cℓ

· · · · · ·Figure 4.9: Generi
 top of a Zielonka TreeIntuitively, in order to win, Adam must eventually stay 
lear of at leastone of the Di's, while winning with respe
t to the sub-
ondition Fi. Other-wise, Eve 
an win either in one of the sub-
onditions, or by visiting 
y
li
ally



CHAPTER 4. MULLER GAMES 84ea
h of the Di's. For ea
h i, the algorithm 
omputes Ai = A\AttrE(Di, ()A)and the Adam's almost-sure region in (Ai,Fi). If one of these regions is notempty, it is returned. Otherwise, the algorithm returns ∅. This algorithm isdes
ribed as Algorithm 4.2.Input: A Muller game G = (A,F) su
h that C ∈ FOutput: A (non-empty) subset of WinF , >0

A (A)forall i ∈ {1, .., ℓ} do1
Ai ← A \ AttrE(Di,A);2 if WinFi,1

A (Ai) 6= ∅ then3 return WinFi,1
A (Ai);4 end5 end6 return ∅7 Algorithm 4.2: Partial algorithm for Muller gamesNoti
e that in line 3, the re
ursive 
all 
omputes the almost-sure winningregion of Adam in (Ai,Fi). A
tually, we just need a partial algorithm forAdam with respe
t to Fi, but, as Adam wins the root of ZFi, Ci

, we 
annotuse dire
tly Algorithm 4.2. So, we use his almost-sure winning region, in thespirit of the swit
hing algorithm (Algorithm 3.2). In terms of 
omplexity, itmeans that we use a �x-point 
omputation in ea
h re
ursive 
all.4.3.2 Non-empty output: spatial 
ompositionWhen the output X of Algorithm 4.2 is non-empty, we have to show that itbelongs to the positive region of Adam. Let i be the last value of i in therun. X is thus the almost-sure region of Adam in (Ai,Fi). We 
laim that Xbelongs to Adam's almost-sure region in G. Let τi be an almost-sure strategyfor Adam from X in (Ai,Fi), and 
onsider what happens if a play of G startsin X and Adam plays τi:
• X is a trap for Eve in Ai, whi
h is itself a trap for her in A, so thetoken remains surely in X;
• τi is almost-sure for Adam in (Ai,Fi), so the set of 
olours visitedin�nitely often almost surely does not belong to Fi.
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tion of F to Ci, and χ(Ai) ⊆ Ci, it follows that the set of
olours visited in�nitely often almost-surely does not belong to F . So τi isalmost-sure for Adam from X in G, X belongs to his almost-sure region in G,and 
onsequently, to his positive region. Noti
e that, although X is almost-sure for Adam in G, the region returned by the �x-point is only positive,sin
e the iteration involves a positive attra
tor.Furthermore, as Adam has pure (randomised) strategies with memory atmost mFi
(rFi

) for ea
h 
ondition Fi, he has pure (randomised) strategieswith memory mF = max1≤i≤ℓ mFi
(rF = max1≤i≤ℓ rFi

) for F .4.3.3 Empty output: temporal 
ompositionWhen the output of Algorithm 4.2 is empty, we need to show that Eve winsalmost-surely everywhere in G. The �rst remark is that Eve wins positivelyeverywhere in ea
h game (Ai,Fi). By the positive-almost property, she alsowins almost-surely everywhere in ea
h game (Ai,Fi). For ea
h 1 ≤ i ≤ ℓ,let σi be an almost-sure strategy for Eve in (Ai,Fi). The strategy σ uses atop-level memory with values in 1 . . . ℓ to swit
h between these strategies. Ifthe top level memory is equal to i, Eve plays as follows:
• in Ai, play a

ording to σi;
• in AttrE(Di,A) \Di, play the attra
tor strategy to Di;
• in Di, move to any state of A and update the top-level memory to i

mod ℓ +1.Let ρ be a play 
onsistent with σ. It falls in exa
tly one of these three
ases:1. the top-level memory is not ultimately 
onstant;2. the top level memory is ultimately 
onstant at i, and Inf(ρ) ⊆ Ai;3. the top level memory is ultimately 
onstant at i, and Inf(ρ) * Ai.In the �rst 
ase, ea
h of the Di is visited in�nitely often, so Eve winssurely; in the se
ond 
ase, ρ is ultimately a play of (Ai,Fi) 
onsistent with
σi, so Eve wins almost surely; �nally, by Proposition 1.5, the last 
ase almostnever o

urs. Thus, σ is almost surely winning. Furthermore, if Eve has
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for ea
h 
ondition Fi, she has purestrategies with memory mF =

∑

1≤i≤ℓ mFi
for F .If some of the 
hildren are leaves, we 
an de�ne a randomised strat-egy with less memory. Indeed, if ZFi, Ci
is redu
ed to a leaf belonging toAdam, Eve 
annot win in (Ai,Fi), so her attra
tor to Di 
overs A en-tirely. Instead of de�ning a di�erent attra
tor strategy to ea
h of thesesets (whi
h is ne
essary in pure strategies), we 
an de�ne a generi
 strat-egy σ0, whi
h 
onsists in always 
hoosing the next state at random. Asea
h attra
tor 
overs the whole arena, there is always the o�-
han
e that the
hoi
es of Adam for
es the token to the desired set. This is the 
ore ideaof [CdAH04℄, whi
h shows that Eve has positional strategies for upward-
losed Muller 
onditions. If all the 
hildren are leaves, σ0 
an dire
tly re-pla
e σ, as Chatterjee showed in [Cha07b℄. When some 
hildren are leaves,and others are not, the problem is to de
ide when the memory should beupdated, as the strategy must guarantee that all the 
orresponding Di'sare visited in�nitely often. Our solution is to randomise this update: ea
htime Adam's top-level memory is 0, it has equal 
han
es to remain 0 andto be updated to 1. The probability that the token visits a Di is still posi-tive: Adam just needs to do the 
orre
t moves and to remain in the 
orre
tmemory state long enough. If the top-level memory is 0 in�nitely often,the probability that the all the Di's 
orresponding to a leaf are visited in-�nitely often is one. So, if Eve has randomised strategies with memory atmost rFi

for ea
h 
ondition Fi, she has randomised strategies with memory
rF =

∑

{rFi
| ZFi, Ci

is not a leaf}+ 1 if at least one of the ZFi, Ci
is a leaf.4.4 Lower bounds for Muller 
onditionsIn this se
tion, we prove the lower bounds in Theorems 4.16 and 4.18. We �rstde�ne a 
lass of sub-DAGs, the 
ropped DAGs of the Zielonka DAG, whi
hhave a strong relation with the numbers mF and rF (4.4.1), and then derivefrom them 2-player arenas whi
h follow roughly their stru
ture (4.4.2). Weshow that these arenas are winning for Eve, and de�ne �bran
h strategies� forAdam (4.4.3). Any pure strategy with less than mF states, and any randomstrategy with less than rF memory states fails against at least one of thebran
h strategies of Adam (4.4.4). Finally, we show that for many Muller
onditions, the bounds mF and rF still hold when the arena is polynomial inthe number of 
olours(4.4.5).



CHAPTER 4. MULLER GAMES 874.4.1 Cropped DAGsThe relation between the numbers mF and rF and the shape of DF, C isasymmetri
al: they depend dire
tly on the number of 
hildren of Eve's nodes,and not at all on the number of 
hildren of Adam's nodes. The notion of
ropped DAG is the next logi
al step: a sub-DAG where Eve's nodes keep alltheir 
hildren, while ea
h node of Adam keeps only one 
hild. De�nition 4.19formalises this idea:De�nition 4.19 A DAG E is a 
ropped DAG of a Zielonka DAG DF, C ifand only if
• The nodes of E are a subset of the nodes of DF, C. Furthermore, theowner and label of a node in E are its owner and label in DF, C.
• There is only one node without prede
essor in E , whi
h we 
all the rootof E . It is the root of DF, C, if it belongs to Eve; otherwise, it is one ofits 
hildren.
• The 
hildren of a node of Eve in E are exa
tly its 
hildren in DF, C.
• A node of Adam has exa
tly one 
hild in E , 
hosen among his 
hildrenin DF, C, providing there is one. If it has no 
hildren in DF, C, it has no
hildren in E .A 
ropped DAG has the general form of a Zielonka DAG: the nodes belongto either Eve or Adam, they are labelled by sets of states, and the label of a
hild is always a stri
t subset of the label of his parents. However, a 
roppedDAG is not ne
essarily the Zielonka DAG of a(nother) Muller 
ondition: inthe 
ase of `
ardinal parity with three 
olours� �Figure 4.10� a 
roppedDAG 
ontains at least two nodes on the �singleton� level, and ea
h nodelabelled with a doubleton has only one 
hild, while in a Zielonka DAG, asingleton node must have two parents.On the other hand, when it 
omes to 
omputing mF and rF , it is enoughto know who owns a state to de
ide whi
h 
ase of De�nitions 4.15 and 4.17is relevant. It is thus possible to de�ne the numbers mE and rE of a 
roppedDAG E in exa
tly the same way.In fa
t, these numbers have a more intuitive meaning in the 
ase of a
ropped DAG E : mE (and rE when the leaves belong to Eve) is the number
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abc

ab ac bc

a b c

∅(a) Zielonka DAG of 
ardinal par-ity 3

abc

ab ac bc

a b c

∅(b) 
ropped DAGFigure 4.10: Cropped DAGs are not Zielonka DAGsof bran
hes in E . When Adam owns the leaves, rE is the number of bran
hesin E without the leaves.There is also a dire
t link between the 
ropped DAGs of a Zielonka DAG
DF, C and the numbers mF and rF : in a 
ropped DAG, there is one 
hild forea
h internal node of Adam; in the re
ursive de�nition of mF and rF , there isa maximum over the values of the 
hildren. Proposition 4.20 follows dire
tly:Proposition 4.20 Let F be a Muller 
ondition over the set of 
olours C,and DF, C be its Zielonka DAG. Then for any 
ropped DAG E of DF, C, wehave mE ≤ mF and rE ≤ rF . Furthermore, there two 
ropped DAGs E ′ and
E∗ su
h that mE ′ = mF and rE∗ = rF .4.4.2 From 
ropped DAGs to arenasFrom any 
ropped DAG E of DF, C, we de�ne an arena AE whi
h followsroughly the stru
ture of E : the token starts from the root, goes towards theleaves, and then restarts from the root. In her nodes, Eve 
an 
hoose towhi
h 
hild she wants to go. Adam's 
hoi
es, on the other hand, 
onsists ineither stopping the 
urrent traversal or allowing it to pro
eed.We present �rst two �ma
ros�, depending on a subset of C. They arerepresented in Figure 4.11, and are the only o

asions where 
olours arevisited in AE : all the other states are 
olourless.
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• In Pick∗(C), Adam 
an visit any subset of 
olours in C;
• in Pick(D), he must visit exa
tly one 
olour in D.

c1 ci ck

· · · · · ·

C = {c1 . . . ck}(a) Pick∗(C)

d1 di dk· · · · · ·

D = {d1 . . . dk}(b) Pick(D)Figure 4.11: Pick∗(C) and Pick(D)Eve's states in the arenaAE are in bije
tion with the nodes of E . Likewise,ea
h outgoing transition 
orresponds to a 
hild of the 
orresponding node.But the su

essors of these states are not themselves in bije
tion with thenodes of Adam: if a single node of Adam A is the 
hild of two di�erentnodes of Eve E and F , we must use the 
onstru
tion of Figure 4.13 twi
e:one for E − A and one for F − A. In states 
orresponding to leaves, Evehas no de
ision to take; Adam 
an visit any 
olours in the label of the leaf(Pick∗ pro
edure). The token is then sent ba
k to the root. These 
ases aredes
ribed in Figure 4.12.
E

A1 A2 Ai

E

E − A1 E − A2 E −A3(a) Node �E�
E

Pick∗(E)root(b) Leaf �E�Figure 4.12: Eve 
hooses where to go . . .
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hoi
e of a 
hild: by De�nition 4.19, Adam's nodes in E have but one 
hild.Instead, he 
an either stop the 
urrent traversal, or, if the 
urrent node isnot a leaf, allow it to pro
eed to its only 
hild.If he 
hooses to stop, Adam has to visit some 
oloured states before thetoken is sent ba
k to the root. The available 
hoi
es depend on the labels ofboth the 
urrent and the former nodes � whi
h is why there are as many
opies of Adam's nodes in AE as they have parents in E . If the parent islabelled by E, and the 
urrent node by A, the token goes through Pick∗(E)and Pick(E \A). Adam 
an thus 
hoose any number of 
olours in E, as longas he 
hooses at least one outside of A.Noti
e that if Adam does not stop the traversal, the token is sent to theunique state 
orresponding to the 
hild of the 
urrent node. This is why thesize of these arenas are roughly DAG-sized, instead of tree-sized.
E

A

E ′

E

E −A

E ′

Pick∗(E)

Pick(E \ A)root(a) Edge �E� - �A� when �A� is a node
E

A

Pick∗(E)

Pick(E \ A)root(b) Edge �E� - �A� when �A� is a leafFigure 4.13: . . . and Adam 
hooses when to stop.4.4.3 Strategies in the DAG gameWe �rst des
ribe a winning strategy σ for Eve in the game (AE ,F). Itsmemory states are the bran
hes of E , and do not 
hange during a traversal.Her moves in the memory state b = E1A1 . . . Eℓ(Aℓ) follow the bran
h b:in the state Ei, Eve 
hooses the su

essor 
orresponding to the transition
Ei − Ai. Noti
e that Adam 
annot diverge from the bran
h, as his nodeshave at most one 
hild. When he 
hooses to stop the traversal, Eve updates



CHAPTER 4. MULLER GAMES 91her memory. If he stops at the ith step, while Eve is in the memory state
b = E1A1 . . . Eℓ(Aℓ). There are two 
ases:
• if Ei has zero or one 
hild in E , the memory is un
hanged;
• otherwise, the new memory bran
h has E1A1 . . . EiA as a pre�x, where

A is the next 
hild of Ei, or the �rst one if Ai was the last.Proposition 4.21 The strategy σ is surely winning for Eve in the game
(AE ,F).Proof. Let ρ be a play 
onsistent with σ. We denote by i the smallest integersu
h that Adam stops in�nitely often a traversal at the ith step.After a �nite pre�x, the �rst 2i− 1 nodes in the memory bran
h are 
on-stant, and we denote them by E1A1E2 . . . Ei. From this point on, whateverAdam does, he 
an only 
hoose 
olours in Ei. Furthermore, ea
h time he
hooses i, he must 
hoose a state outside of the 
urrent Ai, whi
h 
hangesafterwards to the next, in a 
ir
ular way.So, in the end, Inf(ρ) ⊆ Ei, and, for any 
hild A of Ei in E , Inf(ρ) * A.Thus ρ is winning for Eve. Proposition 4.21 follows. �Obviously, Adam has no winning strategy in AE . However, we des
ribethe 
lass of bran
h strategies for him, whose point is to punish any attemptof Eve to win with less than mF or rF memory states. There is one su
hstrategy τb for ea
h bran
h b in E (when
e the name), and the prin
iple isthat τb stops the traversal as soon as Eve deviates from b:De�nition 4.22 The bran
h strategy τb for Adam in AE, 
orresponding tothe bran
h b = E1A1E2 . . . Eℓ(Aℓ) in E , is a positional strategy whose movesare des
ribed below.
• In a state E −A su
h that ∃i, E = Ei ∧A 6= Ai: stop the traversal andvisit the 
olours of Ai;
• in a state E−A su
h that ∃i, E = Ei∧A = Ai: send the token to Ei+1;
• in the state Eℓ − Aℓ: visit Eℓ;
• in the leaf Eℓ: visit Eℓ.
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e that no move is given for a state E−A su
h that ∀i, E 6= Ei. Thereason is that these states are not rea
hable from the root when Adam plays
τb, so, in the limit, what he does in these states doesn't matter. Noti
e alsothat when Adam 
hooses to stop a traversal in a state Ei − A, he 
an visitexa
tly the 
olours of Ai: as A and Ai are maximal subsets of Ei, there is atleast one state in Ai \ A that he 
an pi
k in the Pick(Ei \ A) area.We informally des
ribe one last strategy for Adam: the passive strategy,in whi
h he never stops a traversal before it rea
hes a leaf, and then plays atrandom in the Pick / Pick∗ part.4.4.4 Winning against bran
h strategiesLet σ = (M, σn, σu) be a pure strategy for Eve. We de�ne the bran
h of amemory state m ∈M as the unique bran
h that the token follows if it startsin the root while Eve is in the memory state m and Adam plays a passivestrategy.Proposition 4.23 Let σ = (M, σn, σu) be a pure winning strategy for Evein (AE ,F). Then σ has memory at least mE .Proof. The prin
iple of the proof is that Eve needs a di�erent memory stateto deal with ea
h of the mE bran
h strategies of Adam.Let b = E1A1 . . . Eℓ(Aℓ) be a bran
h of E and τb be the 
orrespondingbran
h strategy for Adam. We 
onsider the unique play ρ 
onsistent with σand τb. By de�nition of τb, the set of 
olours visited in a traversal of ρ is oneof the Ai's, or Eℓ if and only if the bran
h of the 
urrent memory state is b.Suppose now that there is no memory state whose bran
h is b. As A1 ⊃
A2 ⊃ · · · ⊃ Aℓ−1(⊃ Aℓ), the set of 
olours visited in�nitely often in the playis one of the Ai's, and Adam wins. This is in 
ontradi
tion with the fa
t that
σ is winning. It follows that for ea
h bran
h b of E , there must be a memorystate in M whose bran
h is b. As there is only one bran
h per memory state,and there are mE bran
hes, it follows that there are at least mE memorystates in M . This 
on
ludes the proof of Proposition 4.23. �By Proposition 4.20, there is a 
ropped DAG E of DF, C su
h that mE =
mF . So, in general, Eve needs pure strategies with memory mF in order towin games whose winning 
ondition is F . As we saw in Se
tion 4.3 that shehas su
h strategies, it 
ompletes the proof of Theorem 4.16.
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h of a memory state� 
arries to the 
ase of randomisedstrategies, but not its uni
ity: even if Eve starts in the same memory stateand Adam plays with a passive strategy, the random de
isions 
an lead todi�erent bran
hes. We 
onsider thus the set of bran
hes of a memory state
m: they are the bran
hes that have a positive probability to be traversedwhen Eve is in the memory state m and Adam plays with a passive strategy.Proposition 4.24 Let σ = (M, σn, σu) be an almost-sure winning strategyfor Eve in (AE ,F). Then σ has memory at least rE .Proof. Again, the idea is that the memory states are ne
essary to deal withthe bran
h strategies. However, as we will see, a single memory state 
ansometimes deal with several bran
h strategies.Let b = E1A1 . . . Eℓ(Aℓ) be a bran
h of E and τb be the 
orrespondingbran
h strategy for Adam. Consider what happens if Eve plays σ and Adamplays τb. By de�nition of τb, the set of 
olours visited in a traversal of ρ isone of the Ai's, or Eℓ if and only if Eve plays along b. So, as σ wins against
τb, there is at least one memory state m su
h that b is a bran
h of m.Contrary to what happens in the pure 
ase, m 
an have other bran
hesthan b, as long as they lead to visits to Aℓ, and not another Ai i.e. when theother bran
hes are siblings or nephews to b. Consequently, a memory state
m is suitable against τb if
• b is a bran
h of m, and
• E1A1 . . . Eℓ is a pre�x of all the bran
hes of mIt follows that a single memory state 
an be suitable against two strate-gies τb and τb′ 
orresponding to the bran
hes b = E1A1 . . . EℓAℓ and b′ =

E ′
1A

′
1 . . . E ′

ℓ′A
′
ℓ′ only if they are siblings:

• ℓ = ℓ′

• ∀i < ℓ, Ei = E ′
iThere are rE equivalen
e 
lasses for this relation in E . Hen
e, there mustbe at least rE memory states in M . Proposition 4.24 follows. �By Proposition 4.20, there is a 
ropped DAG E of DF, C su
h that rE = rF .So, in general, Eve needs randomised strategies with memory rF in order to
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ondition is F . As we saw in Se
tion 4.3 that hehad su
h strategies, it 
ompletes the proof of Theorem 4.18.In their original proof for pure strategies, the authors of [DJW97℄ use
ropped trees, in lieu of our 
ropped DAG. Our result is thus a little better,sin
e Zielonka DAGs are more 
ompa
t than Zielonka trees. For example,in a �mat
hing priority� winning 
ondition of rank k, the size of the tree is
O(2k), while the DAG is of size O(k).4.4.5 Arenas of polynomial sizeIn general, the size of a 
ropped DAG is exponential in the number of 
olours.The question of whether the mF and rF bounds hold when the arenas are ofpolynomial size is still open. It does in several spe
ial 
ases: for example, thearenas for the �
ardinal-guessing 
ondition�, used in [DJW97℄ and [Maj03℄ toprove global lower bounds for pure and random strategies are polynomial. Italso holds for mat
hing priority, Streett, mat
hing 
onjun
tion, and 
ardinalparity. In ea
h 
ase, there is a witness arena of polynomial size where theplays 
onsists in a su

ession of basi
 loops with parameters, whi
h are 
hosenby Adam:Mat
hing priority: The parameter is a rank i. Eve must 
hoose whethershe visits +i or −i (Figure 4.14(a)). The size of the arena is linear inthe maximal rank.Streett: The parameters are two integers i and j. Eve visits either −i and

+j, or +i and −j (Figure 4.14(b)) a request for one of these and aresponse for the other. The size of the arena is quadrati
 in in themaximal rank.Mat
hing 
onjun
tion and 
ardinal parity: The parameters are two in-tegers i and j. Eve 
an 
hoose to visit either +i, −i, +j, or −j. Adam
an then 
hoose to visit either 
olour in the other pair (Figure 4.14(
)).The size of the arena is quadrati
 in in the maximal rank.Finally, the only 
ondition for whi
h we did not found a polynomial arenawas the majority 
ondition � although Figure 4.14(a) shows that strategieswhose memory is polynomial in the size of the arena are not enough. Itis interesting to noti
e that it is the only 
ondition we 
onsidered wherethe di�eren
e of 
ardinality between a node and one of its 
hildren is notbounded: in all the others, the 
hange always depends on only one 
olour.
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i
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−i(a) Mat
hing priority loop i, j

−i

−j

+j

+i(b) Streett loop
i, j

+i

−i

+j

−j

+j

−j

+i

−i(
) Mat
hing 
onjun
tion / 
ardinal parity loopFigure 4.14: Polynomial-size arenas4.5 Dis
ussionWe found a polynomial algorithm for expli
it Muller games, whi
h providedus with a ni
e appli
ation for our results of Chapter 3. Using the standartequivalen
e, this algorithm 
an be used to de
ide the emptiness of expli
itMuller tree automata. It would be interesting to know whether other prob-lems on these automata 
an be solved in a similar fashion.Our main result, the tight bound on the ne
essary memory for randomisedstrategies, raises four natural questions:
• Does these bounds still hold for arenas of polynomial size?
• Is it possible to �nd su
h bounds for any regular game, 
ir
umventingthe produ
t with an automata re
ognising the winning 
ondition?
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• Does our upper bound still hold for semi-randomised strategies?
• What are the links in terms of memory between our two models ofrandomised strategies with memory?



Chapter 5Finitary winning in ω-regulargames�In the long run, we're all dead.� John Maynard KeynesEvery ω-regular spe
i�
ation (indeed, every spe
i�
ation) 
an be de
om-posed into a safety part and a liveness part [AS85℄. The safety part ensuresthat the 
omponent will not do anything �bad� (su
h as violate an invariant)within any �nite number of transitions. The liveness part ensures that the
omponent will do something �good� (su
h as pro
eed, or respond, or termi-nate) within some �nite number of transitions. Liveness 
an be violated onlyin the limit, by in�nite sequen
es of transitions, as no bound is stipulated onwhen the �good� thing must happen. This in�nitary, 
lassi
al formulation ofliveness has both strengths and weaknesses. A main strength is robustness, inparti
ular, independen
e from the level of detail of the transitions. Anotherone is simpli
ity, allowing liveness to serve as an abstra
tion for 
ompli
atedsafety 
onditions. For example, a 
omponent may always respond in a num-ber of transitions that depends, in some 
ompli
ated manner, on the exa
tsize of the stimulus. Yet, for 
orre
tness, we may be interested only that the
omponent will respond �eventually�. On the other hand, this also pointsto a weakness of the 
lassi
al de�nition of liveness: it 
an be satis�ed by
omponents that in pra
ti
e are quite unsatisfa
tory be
ause no bound 
anbe put on their response time. It is for this reason that alternative, strongerformulations of liveness have been proposed. One of these is �nitary liveness97
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h requires the existen
e of a bound b su
h that everystimulus is followed by a response within b transitions. Noti
e that this isquite di�erent from a spe
i�
ation whi
h would insist on a response withina known bound b, as 
onsidered for example in [KPV07℄. In the �nitary
ase, the bound b may be arbitrarily large, but the response time must notgrow forever from one stimulus to the next. In this way, �nitary liveness stillmaintains the robustness (independen
e of step granularity) and simpli
ity(abstra
tion of 
ompli
ated safety) of traditional liveness, while removingunsatisfa
tory implementations.In this 
hapter, we study games with �nitary winning 
onditions. Themotivation is the same as for �nitary liveness. Consider, for example, thesynthesis of an elevator 
ontroller as a strategy in a game where one playerrepresents the environment (i.e., the pushing of 
all buttons on various �oors,and the pushing of target buttons inside the elevators), and the other playerrepresents the elevator 
ontrol (i.e., the 
ommands to move an elevator up ordown, and the opening and 
losing of elevator doors). Clearly, one obje
tiveof the 
ontroller is that whenever a 
all button is pushed on a �oor, thenan elevator will eventually arrive, and whenever a target button is pushedinside an elevator, then the elevator will eventually get to the 
orresponding�oor. Note that this obje
tive is formulated in an in�nitary way (the keyterm is �eventually�). This is be
ause, for robustness and simpli
ity, wedo not wish to spe
ify for ea
h state the exa
t number of transitions untilthe obje
tive must be met. However, a truly unbounded implementationof elevator 
ontrol (where the response time grows from request to request,without bound) would be utterly unsatisfa
tory. A �nitary interpretation ofthe obje
tive prohibits su
h undesirable 
ontrol strategies: there must exista bound b su
h that the 
ontroller meets every 
all request, and every targetrequest, within b transitions.This 
hapter, whose results 
ome from a joint work with KrishnenduChatterjee and Thomas A. Henzinger [CHH09, CHH08℄, fo
uses on two typesof obje
tives: the �nitary parity 
ondition, in Se
tion 5.1; and the �nitaryStreett 
ondition in Se
tion 5.2.5.1 Finitary Parity GamesWe �rst 
onsider the �nitary version of the parity 
ondition, whi
h allow us toexpress �nitary versions of the ω-regular 
onditions. It also subsumes �nitary
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hability, �nitary Bü
hi, and �nitary 
o-Bü
hi obje
tives as spe
ial 
ases.In the 
lassi
al, in�nitary parity obje
tive, Eve wins by ensuring thatevery odd priority that repeats in�nitely often is followed by a smaller evenpriority �eventually� (arbitrarily many transitions later). The �nitary parity
ondition, by 
ontrast, insists on the existen
e of a bound b su
h that everyodd priority that repeats in�nitely often is followed by a smaller even prioritywithin b transitions. The �nitary parity obje
tive is stri
tly stronger thanthe 
lassi
al parity obje
tive, as is illustrated by the example of Figure 5.1.
1 2 0

Figure 5.1: Finitary parity is not parityIn this parity arena, Eve wins with respe
t to the 
lassi
al parity 
ondi-tion: the lowest 
olour of a play 
an be 0 if Adam 
hooses in�nitely oftento go right, or 2 if he eventually remains forever in the middle state, butit 
annot by 1. However, Adam 
an win with respe
t to the �nitary parity
ondition, by staying i times in the middle state the ith time he gets therefrom the left state: with this strategy, the distan
es grows without bound.The �nitary parity 
ondition is formally de�ned through the notion ofthe parity distan
e sequen
e of an in�nite play:De�nition 5.1 (Parity distan
e sequen
e of a play ρ) Let (A, χ) be aparity arena, and ρ be a play of A. The parity distan
e sequen
e of ρ, denotedby (Pdist(ρ, i))i∈N is de�ned as follows: Pdist(ρ, i) is the smallest j su
h that
χ(ρi+j) is even and smaller or equal than χ(ρi). Noti
e that if χ(ρi) is even,
Pdist(ρ, i) is equal to 0.Intuitively, the distan
e for a position i in a play with an odd priority atposition i, denotes the shortest distan
e to a stronger even priority in theplay. We assume the standard 
onvention that the in�mum of the empty setis ∞.



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 100De�nition 5.2 Let (A, χ) be a parity arena. A play ρ of A is winning forEve in the �nitary parity game (A, χ) if and only if lim supi Pdist(ρ, i) <∞.By 
ontrast, a play is winning for Eve in the in�nitary parity game ifthere is only a �nite number of positions with an in�nite distan
e.We present an algorithm 
omputing the winning regions of a �nitaryparity game. Its 
orre
tness argument also proves dire
tly the determina
yfor these games, and establishes the existen
e of positional winning strategiesfor Eve; unsurprisingly, Adam needs in�nite memory to win. This algorithmis polynomial time, and 
omputes the winning region of a �nitary paritygames with n states and m transitions in time O(n2 ·m). This is in 
ontrastto 
lassi
al, in�nitary parity games, for whi
h the best known algorithmshave time 
omplexity O(n⌊k
3
⌋ ·m) [S
h07℄ or nO(

√
n) [JPZ06℄.We use two other notions of parity in our proofs: the well known weakparity 
ondition (5.1.1) and a new bounded parity 
ondition (5.1.2). Our al-gorithm for �nitary parity games is obtained by iteratively solving boundedparity games, and the solution of bounded parity games is obtained by iter-atively solving weak parity games (5.1.3).5.1.1 Weak parity gamesThe notion of �weak� 
ondition has been introdu
ed by Staiger and Wagnerin [SW74℄. Weak 
onditions are ω-regular 
onditions that do not distinguishbetween plays with the same set of o

urring 
olours:De�nition 5.3 Let A be an arena on C and F be a subset of P(C). A play

ρ of A is winning for Eve in the Staiger-Wagner game (A,F) if and only if
Occ(ρ) ∈ F .This 
an be related with Muller 
onditions, whi
h do not distinguishbetween plays with the same set of in�nitely o

urring 
olours. Staiger-Wagner games are thus often 
alled weak Muller games. Likewise, we 
ande�ne weak Streett games on Streett arenas, and weak parity games on parityarenas. In this se
tion, we are mostly interested by this last 
ase, where thewinner is de
ided by the parity of the minimum priority o

urring in theplay:De�nition 5.4 Let (A, χ) be a parity arena. A play ρ of A is winning forEve in the weak parity game (A, χ) if and only if min χ(Occ(ρ)) is even.
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ribe a re
ursive algorithm 
omputing the winning re-gions of a 2-player weak parity game. The input is a 2-player arena (A, χ),with A = (Q,QE ,QA, T ) and χ : Q → [0 . . . k]. The re
ursion step dependson the lowest 
olour i whi
h appears in χ(A):
• If i is even, we start by 
omputing the attra
tor of Eve to the stateswith priority i: these states 
learly belong to the winning region of Eve.Furthermore, A1 = A \ AttrE(χ−1(i),A) is a trap for Eve, and thus asubarena. We 
an re
ursively 
ompute WinwP

E (A1, χ) and WinwP
A (A1, χ).The winning regions of Eve and Adam in G are AttrE(χ−1(i),A) ∪

WinwP
E (A1, χ) and WinwP

A (A1, χ).
• If i is odd, we 
ompute the attra
tor of Adam to the states with pri-ority i: these states 
learly belong to the winning region of Adam.Furthermore, A1 = A\AttrA(χ−1(i),A) is a trap for Adam, and thus asubarena. We 
an re
ursively 
ompute WinwP

E (A1, χ) and WinwP
A (A1, χ).The winning regions of Eve and Adam in G are WinwP

E (A1, χ) and
AttrE(χ−1(i),A) ∪WinwP

A (A1, χ).The formal des
ription of the 
omplete algorithm 
an be found in [LT00℄.At �rst sight, the time 
omplexity appears to be O(k · |T |). However, [Cha06℄provides a detailed running time analysis and shows that, with adequate datastru
tures, it runs in time O(|T |). Noti
e that as ea
h attra
tor is de�ned ona di�erent domain, they 
an be 
ombined into positional winning strategiesfor both players. Theorem 5.5 summarises the results on games with weakparity obje
tives:Theorem 5.5 (Weak parity games[LT00, Cha06℄) Let (A, χ) be a 2-player parity arena. The following assertions hold:1. (Determina
y). We have WinwP
E (A, χ) = Q \WinwP

A (A, χ).2. (Strategy 
omplexity). Both players have positional winning strategies.3. (Time 
omplexity). The sets WinwP
E (A, χ) and WinwP

A (A, χ) 
an be 
om-puted in time O(|T |).



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 1025.1.2 Bounded parity gamesWe use the bounded parity 
ondition as an intermediate step in our s
hemeto solve �nitary parity games. This 
ondition requires that whenever an oddpriority is visited, then now or later a lower even priority is visited. Theformal de�nition of the bounded parity 
ondition uses the parity distan
esequen
e: Eve must ensure that it takes only �nite values. Adam wins ifthere is a position with an in�nite distan
e:De�nition 5.6 Let (A, χ) be a parity arena. A play ρ of A is winning forEve in the bounded parity game (A, χ) if and only if ∀i, Pdist(ρ, i) <∞.We �rst show that we 
an use a �x-point algorithm to 
ompute the win-ning regions of bounded parity games, using an algorithm for weak paritygames as a partial algorithm (De�nition 3.12, page 56):Lemma 5.7 Let (A, χ) be a 2-player parity arena. The following assertionshold:1. Adam's winning region for the weak parity 
ondition is a subset ofhis winning region for the bounded parity 
ondition: WinwP
A (A, χ) ⊆

WinbP
A (A, χ).2. If Eve wins from ea
h state in Q for the weak parity 
ondition, she winsfrom ea
h state in Q for the bounded parity 
ondition: WinwP

E (A, χ) =
Q ⇒WinbP

E (A, χ) = Q.Proof.1. Consider a play ρ winning for Adam with respe
t to the weak par-ity 
ondition, and denote by i the lowest 
olour o

urring in ρ: i =
min(Occ(ρ)). Let j be a position su
h that ρj = i. By De�nition 5.1,
Pdist(ρ, j) = ∞. Thus ρ is winning for Adam with respe
t to thebounded parity 
ondition.2. By Theorem 5.5, Eve has a positional winning strategy σ with respe
tto the weak parity 
ondition. Let ρ be a play 
onsistent with σ. By
ontradi
tion, assume that there is a position i su
h that χ(ρi) is oddand ∀i < j < i+|Q|, χ(ρj) is odd or greater than χ(ρi). There is a 
y
le
c and a path w from ρi to c in Aσ su
h that all the 
olours appearingin c and w are greater than χ(ρ(i)). The play ρiwcω is 
onsistent with
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σ, and winning for Adam with respe
t to the weak parity 
ondition.This is in 
ontradition with the fa
t that σ is winning for Eve withrespe
t to this 
ondition. Thus, for any play ρ 
onsistent with σ, forany position k, we have Pdist(ρ, k) < |Q|, so ρ is winning for Eve withrespe
t to the bounded parity 
ondition. It follows that σ is winningfor Eve with respe
t to the bounded parity 
ondition.

�The existen
e of positional winning strategies for Eve means that insteadof asking for �nite distan
e, we 
an ask that the distan
e is bounded by |Q|:Corollary 5.8 For any 2-player parity arena (A, χ), we have:
WinbP

E (A, χ) = {q ∈ Q | ∃σ, ∀τ, ∀i, Pdist(ρσ,τ
q , i) <∞}

= {q ∈ Q | ∃σ, ∀τ, ∀i, Pdist(ρσ,τ
q , i) < |Q|}We 
an thus use a �x-point algorithm to solve bounded games, as inAlgorithm 5.1. By Lemma 3.13, the resulting 
omplexity is |Q| times the
omplexity of the partial algorithm: O(|Q| · |T |).Input: A parity arena (A, χ)Output: The winning regions WinbP

E (A, χ) and WinbP
A (A, χ)

WA = ∅1
B = A2 while WinwP

A (B, χ) 6= ∅ do3
WA ←WA ∪ AttrA(WinwP

A (B, χ),B)4
B ← B \ AttrA(WinwP

A (B, χ),B)5 end6 return (B, WA)7Algorithm 5.1: Winning regions of a 2-player bounded parity gameNoti
e that the existen
e of positional winning strategies for Adam inweak parity games does not 
arry over to bounded parity games: Theo-rem 3.17 holds only for pre�x-independent games. Indeed, there are arenaswhere Adam wins, but not with any positional winning strategy: 
onsider, forexample, the arena of Figure 5.1. On the other hand, the proof of Lemma 5.7shows that Eve's positional winning strategies for the weak parity 
onditionwere still winning for the bounded parity 
ondition.Theorem 5.9 summarises our results on bounded parity games:



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 104Theorem 5.9 (Bounded parity games) Let (A, χ) be a 2-player parityarena. The following assertions hold:1. (Determina
y). We have WinbP
E (A, χ) = Q \WinbP

A (A, χ).2. (Strategy 
omplexity). Eve has positional winning strategies, whi
hbound the sequen
e distan
e to |Q|.3. (Time 
omplexity). The sets WinbP
E (A, χ) and WinbP

A (A, χ) 
an be 
om-puted in time O(|Q| · |T |).5.1.3 Solving games with �nitary parity obje
tivesThe relations between the winning regions of bounded and �nitary parity 
on-ditions are exa
tly the opposite of the relations between weak and boundedparity:Lemma 5.10 For any 2-player parity arena (A, χ), the following assertionshold:1. Eve's winning region for the bounded parity 
ondition is a subset ofher winning region for the �nitary parity 
ondition: WinbP
E (A, χ) ⊆

WinfP
E (A, χ).2. If Adam wins from all the state in Q for the bounded parity 
ondition,then he wins from all the states in Q for the �nitary parity 
ondition:

WinbP
A (A, χ) = Q =⇒WinfP

A (A, χ) = Q.Proof.1. This is a dire
t 
onsequen
e of Corollary 5.8.2. Let τ be a winning strategy for Adam with respe
t to the boundedparity 
ondition. We de�ne the strategy τ ′ as follows:Step 1: Set a 
ounter c to 1 and τ to its initial memory.Step 2: Play the strategy τ until the parity distan
e is equal to c.Step 3: In
rement c.Step 4: Reset the memory for τ and go to to step 2.
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onsistent with τ ′. We denote by wc the fa
tor 
or-responding to the cth iteration of τ ′. Noti
e that if wc is in�nite, the
{wd | d > c} are not de�ned. However, wc is 
onsistent with τ , andwould be winning for Eve with respe
t to the bounded parity 
onditionif it was in�nite. Thus, ea
h wc is �nite, and ρ is the 
on
atenation ofthe {wc | c ≥ 1}. It follows that ρ and τ ′ are winning for Adam withrespe
t to the �nitary parity 
ondition.

�Algorithm 5.2 uses Algorithm 5.1 as a partial algorithm for Eve, for aresulting 
omplexity is |Q| times the 
omplexity of the partial algorithm:
O(|Q|2 · |T |).Input: A parity arena (A, χ)Output: The winning regions WinfP

E (A, χ) and WinfP
A (A, χ)

WE = ∅1
B = A2 while WinbP

E (B, χ) 6= ∅ do3
WE ←WE ∪ AttrE(WinbP

E (B, χ),B)4
B ← B \ AttrE(WinbP

E (B, χ),B)5 end6 return (WE ,B)7Algorithm 5.2: Winning regions of a 2-player �nitary parity game.Theorem 5.9 summarises our results on �nitary parity games:Theorem 5.11 (Finitary parity games) For any 2-player parity arena
(A, χ), the following assertions hold:1. (Determina
y). We have WinfP

E (A, χ) = Q \WinfP
A (A, χ).2. (Strategy 
omplexity). Eve has memoryless winning strategies. In gen-eral, Adam has no strategy with �nite memory.3. (Time 
omplexity). The sets WinfP

E (A, χ) and WinfP
A (A, χ) 
an be 
om-puted in time O(|Q|2 · |T |).An interesting point is that the algorithm for 2-player bounded paritygames is also a partial algorithm for 21

2
-player �nitary games. It 
an be used
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ompute the sure region of Eve, interpreting the random states as statesof Adam:Lemma 5.12 For any 21
2
-player parity arena (A, χ), the following asser-tions hold:1. Eve's sure region for the bounded parity 
ondition is a subset of her pos-itive winning region for the �nitary parity 
ondition: WinbP,∀

E (A, χ) ⊆
WinfP, >0

E (A, χ).2. If all the state in Q belongs to Adam's heroi
 region for the boundedparity 
ondition, then he almost surely wins from all the states in Q forthe �nitary parity 
ondition: WinbP,∃
A (A, χ) = Q ⇒WinfP,1

A (A, χ) = Q.Proof.1. Lemma 5.10 states that WinbP,∀
E (A, χ) ⊆ WinfP,∃

E (A, χ), and, for anywinning 
ondition, the sure winning region of Eve is a subset of herpositive winning region.2. A pure strategy τ ′ 
an be de�ned in a way similar to the 2-player
ase. However, as τ is a heroi
 strategy, it is possible that Adam'sattempts to get a given distan
e fails. In this 
ase, he tries again,without in
rementing the 
ounter:Step 1: Set a 
ounter c to 1 and τ to its initial memory.Step 2: Play the strategy τ until either the parity distan
e is equal to
c or a random move deviates from the pres
ription of τ .Step 3: In
rement c if and only if the distan
e is equal to the 
urrentvalue c.Step 4: Reset the memory for τ and goto to step 2.Let z be the smallest positive probability in A. For any value c of the
ounter, the probability that the 
ounter gets in
remented is greaterthan zc·|Q|. It follows that the probability that the 
ounter gets �stu
k�at a �nite value is zero, so τ ′ is almost surely winning. Noti
e that thesame arguments proves that the uniform strategy uniA is also almost-sure.
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�On
e again, Eve has positional positive winning strategies. We 
an also
ompute the almost-sure winning region of Eve, and derive the existen
eof positional almost sure winning strategies, with the help of the swit
hingalgorithm (Algorithm 3.2) and Theorem 3.17.5.2 Finitary Streett GamesAlthough �nitary versions of any regular 
ondition 
an be redu
ed to �ni-tary parity, we 
onsider in this se
tion the spe
ial 
alse of �nitary Streettobje
tives. Indeed, in�nitary Streett games are of parti
ular interest in sys-tem design, as they 
orrespond to strong fairness 
onstraints [MP92℄. The�nitary Streett obje
tives, therefore, give the �nitary formulation of strongfairness.The de�nition of the �nitary Streett 
ondition is even more natural thanthe �nitary parity one: Eve wins if she answers all the requests appearing in-�nitely often within an unspe
i�ed bound b. Figure 5.2, for example, des
ribea request-servi
e situation:

−1 −2+1 +2

−2 −1

+2 +1Figure 5.2: A request-servi
e gameThere are two requests −1 and −2, whi
h are served by the 
orrespondingresponses +1 and +2. Whenever a request o

urs, further requests of thesame type are disabled until the request is served; then these requests areenabled again. The 
ontroller (Eve) needs to make de
isions in the 
ase where



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 108two requests are unserved at the same time: she has to 
hoose whi
h one toserve. Clearly, no matter what the players do, the resulting play is winningfor Eve with respe
t to the 
lassi
al Streett 
ondition. However, 
onsider thetwo following strategies for Eve:Sta
k strategy Answering �rst the most re
ent request, she goes ւ fromthe left #, and ց from the right #.Queue strategy Answering �rst the most an
ient request, she goesց fromthe left #, and ւ from the right #.With the sta
k strategy, the number of transitions between an o

urren
eof Q1 and the next o

urren
e of R1 
an be ultimately unbounded. Hen
ethe sta
k strategy is not a winning strategy with respe
t to the �nitaryStreett obje
tive. The queue strategy, by 
ontrast, ensures not only thatevery request that is re
eived in�nitely often is served, but it also ensuresthat the number of transitions between the arrival of a request and its serveis at most 6. It is thus winning with respe
t to the �nitary Streett 
ondition.We de�ne the �nitary Streett 
ondition through the notion of Streett dis-tan
e sequen
e, whi
h is a natural extension of the parity distan
e sequen
e:De�nition 5.13 (Streett distan
e sequen
e of a play ρ) Let (A,S) bea Streett arena of order k, and ρ be a play of A. The distan
e sequen
e of ρfor the pair (−h, +h), denoted by (Sdisth(ρ, i))i∈N is de�ned as follows:
Sdisth(ρ, i) =

{

0 if χ(ρi) 6= −h;
inf{j > 0 | χ(ρi+j) = +h} if χ(ρi) = −hThe Streett distan
e sequen
e of ρ, denoted (Sdist(ρ, i))i∈N, is de�ned by

Sdist(ρ, i) = maxh{Sdisth(ρ, i)}.The distan
e for a position i in a play where one or more requests o

ursat position i is the number of steps before ea
h request has been satis�ed.De�nition 5.14 Let (A,S) be a Streett arena of order k. A play ρ of Abelongs to finitaryStreett(A,S) if and only if lim supi Sdist(ρ, i) <∞.We present an algorithm 
omputing the winning regions of a �nitaryStreett game of degree k with n states and m transitions in time O(n2 ·m ·k ·
2k). Hen
e, the winner problem 
an be de
ided in EXPTIME. We also show thatit is PSPACE-hard. For 
omparison, the winner problem for (in�nitary) Streettgames is 
o-NP-
omplete [EJ88℄, and the winning regions 
an be 
omputed in



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 109time O(nk · k! ·m) [Hor05℄. We also prove, that Eve has strategies with �nitememory: k · 2k memory states are enough, and 2⌊
k
2
⌋ is sometimes ne
essary.This 
an be 
ompared with in�nitary Streett games, where the lower andupper bounds are k!. On
e again, Adam may need in�nite memory in orderto win.We use one other Streett 
ondition in our proofs, whi
h is 
alled Request-Response 
ondition, and ful�ls the same role as the bounded parity 
ondition(5.2.1). Here also, our algorithm for �nitary Streett games is a �x-point usingan algorithm for Request-Response games as partial algorithm (5.2.2).5.2.1 Request-Response gamesRequest-Response 
onditions are a spe
ial 
ase of ω-regular 
onditions, intro-du
ed by Wallmeier, Hütten, and Thomas in [WHT03℄. They are de�ned onStreett arenas, and a play is winning for Eve if and only if for ea
h pair, when-ever a request is visited, then now or later a response is visited. Althoughthey were not de�ned this way, Request-Response 
onditions 
an easily beexpressed through the Streett distan
e sequen
e:De�nition 5.15 Let (A,S) be a Streett arena of order k. A play ρ of Abelongs to Request−Response(A,S) if and only if ∀i, Sdist(ρ, i) <∞.The authors of [WHT03℄ propose a solution to Request-Response games,whi
h involves a redu
tion to generalised Bü
hi games. Starting from a2-player Streett arena (A,S) of degree k, with A = (Q,QE ,QA, T ), anexpanded arena is built over the vertex set S ′ := S × {0, 1}k: the bit ve
torsignals whi
h of the k 
onditions have an open request. The generalised Bü
hi
ondition requires that ea
h bit assumes in�nitely often the value 0. Winningstrategies with memory k in the redu
ed game 
an be translated as strategieswith memory k · 2k in the original Request-Response game. Moreover, it iseasy to see that the 
anoni
al �round robin� strategy bounds the Streettdistan
e sequen
e of a play to |Q| · k: at any moment, the �next response�is rea
hed in less than |Q| moves, and it 
an take k su
h response before the
urrent request is served. These results are summarised as Theorem 5.16:Theorem 5.16 (Request-Response games [WHT03℄) Let (A,S) be a2-player Streett arena. The following assertions hold:1. (Determina
y). We have WinRR

E (A,S) = Q \WinRR
E (A,S).
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omplexity). Eve has winning strategies with memory k · 2kwhi
h bound the Streett distan
e sequen
e to |Q| · k. Adam has winningstrategies with memory 2k.3. (Time 
omplexity). The sets WinRR
E (A,S) and WinRR

E (A,S) 
an be 
om-puted in time O(|Q| · |T | · 4k · k2).Note that, as the Request-Response 
ondition is su�x-
losed, Request-Response games 
ould be solved by a �x-point s
heme applied to a partialalgorithm for Adam. Inspired by the results of (5.1.2), we sought to use thesolution of weak Streett games in this role � this would yield a PSPACE algo-rithm for Request-Response games. However, if the weak Streett 
onditionis indeed harder than the Request-Response 
ondition, it does not 
omplyto the other rule: there are arenas, like the one of Figure 5.3, where Adamwins nowhere with respe
t to the weak Streett 
ondition, and still managesto win somewhere with respe
t to to Request-Response 
ondition.
q1 r1 q1

r1

q2 r2

Figure 5.3: WinwS
A (G) = ∅ ∧WinRR

A (G) 6= ∅5.2.1.1 Complexity and MemoryWe give now some pre
ision about the 
omplexity of Request-Response gamesin terms of 
omplexity 
lasses. The redu
tion of [WHT03℄ yields the mem-bership of the winner problem to EXPTIME. Proposition 5.17 shows that it isalso PSPACE-hard.



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 111Proposition 5.17 The problem of the winner in Request-Response games isPSPACE-hard.Proof. Inspired by the redu
tion of [NSW02℄ for weak Streett games, wepropose the following redu
tion from QBF to Request-Response games. Let
F be the formula �∃x, ∀y, ∃z, (x ∨ y ∨ z)

∧

(x ∨ y ∨ z)�. We redu
e it tothe Streett arena of Figure 5.4. There is a Streett pair for ea
h literal: therequest is in lower
ase, and the response in upper
ase. Furthermore, Σ is arequest for all the pairs, and ¬X is a response for all the pairs but X. It is
lear that Eve 
an win if and only if F is true. �

x

x

y

y

z

z

¬X

¬Y

¬Z

¬X

¬Y

¬ZFigure 5.4: Request-Response games are PSPACE-hardIn the 
ase of 1-player games with states of Eve, the problem is NP-
omplete:Proposition 5.18 The winner problem of 1-player Request-Response gameswith states of Eve is NP-hard.Proof. We redu
e the formula (x ∨ y ∨ z)
∧

(x ∨ y ∨ z) to the Streett arenaof Figure 5.5. We use the same Streett pairs than in Figure 5.4. In orderto win, Eve must 
hoose the dual of a satisfying valuation, then the 
orre
tliteral in ea
h 
lause, and �nally the satisfying valuation itself. �
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Σ

X X

Y Y

Z Z

x y z

x y z

X X

Y Y

Z Z

Figure 5.5: 1-player Request-Response games with states of Eve are NP-hardProposition 5.19 The winner problem of 1-player Request-Response gameswith states of Eve is in NP.Proof. If Eve 
an win, she 
an do so by �rst following a path of length at most
nk, and then visiting all the states of a strongly 
onne
ted 
omponent. Both
an be guessed non-deterministi
ally in polynomial time. Proposition 5.19follows. �On the other hand, for 1-player games with states of Adam, the problemis polynomial:Proposition 5.20 The winner problem of 1-player Request-Response gameswith states of Adam is in PTIME.Proof. We propose a polynomial pro
edure to 
ompute the winning regionsin a 1-player game where the states belong to Adam:Step 1: For ea
h pair i, 
ompute the set Xi = Qi \ AttrA(Ri,A).Step 2: Let X be the union of the Xi's. The winning region of Eve is

Q \ AttrA(X,A), and the winning region of Adam is AttrA(X,A).
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�Theorem 5.21 subsumes our results:Theorem 5.21 De
iding the winner in 2-player Request-Response games
an be done in EXPTIME and is PSPACE-hard. In the 
ase of 1-player gameswith states of Eve, it is NP-
omplete. In the 
ase of 1-player games with statesof Adam, it is polynomial.Lemma 5.22 provides lower bounds for the memory:Lemma 5.22 For any k, there is a 2-player Streett arena (A,S) of order

2k su
h that Eve wins, but has no winning strategy with less than 2k memorystates; there is a (A,S) of order 2k su
h that Adam wins, but has no winningstrategy with less than 2k memory states.Proof. Both witness arenas for k = 3 are represented in Figure 5.6. Althoughthere are no literals here, we use the same pairs than in Figure 5.4. InFigure 5.6(a), Eve must mimi
 the moves of Adam to answer all the requesthe makes. In Figure 5.6(b), all the requests are made to begin with, and Eveanswers to k of them. Adam must request exa
tly the same ones to ensurethat Eve 
annot win with her last 
hoi
e. �5.2.2 Solving games with �nitary Streett obje
tivesAll the arguments of (5.1.3) 
an be adapted for the 
ase of �nitary Streettgames, using Request-Response 
onditions in lieu of bounded parity 
ondi-tions.For a given Streett arena (A,S), the winning regions of the players underthe Request-Response and the �nitary Streett 
onditions have the same re-lation than the winning regions of a parity arena under the bounded parityand the �nitary parity 
onditions:Lemma 5.23 Let (A,S) be a 2-player Streett arena. The following asser-tions hold:1. Eve's winning region for the Request-Response 
ondition is a subset ofher winning region for the �nitary Streett 
ondition: WinRR
E (A,S) ⊆

WinfS
E (A,S).
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x x

y y

z z X X

Y Y

Z Z

(a) Eve

Z Z

Y Y

X X

Σ

z z

y y

x x

¬X ¬X ¬Y ¬Y ¬Z ¬Z(b) AdamFigure 5.6: Both players need 2⌊
k
2
⌋ memory in Request-Response games2. If Adam wins from all the state in Q for the Request-Response 
on-dition, then he wins from all the states in Q for the �nitary Streett
ondition: WinRR

E (A,S) = Q =⇒WinfS
A (A,S) = Q.Proof.1. This is a dire
t 
onsequen
e of Theorem 5.16.2. Let τ be a winning strategy for Adam with respe
t to the Request-Response 
ondition. We de�ne the strategy τ ′ as follows:Step 1: Set a 
ounter c to 1 and τ to its initial memory.Step 2: Play the strategy τ until the Streett distan
e is equal to c.Step 3: In
rement c.



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 115Step 4: Reset the memory for τ ′ and go to to step 2.Let ρ be a play 
onsistent with τ ′. We denote by wc the fa
tor 
or-responding to the cth iteration of τ ′. Noti
e that if wc is in�nite, the
{wd | d > c} are not de�ned. However, wc is 
onsistent with τ , andwould be winning for Eve with respe
t to the Request-Response 
ondi-tion if it was in�nite. Thus, ea
h wc is �nite, and ρ is the 
on
atenationof the {wc | c ≥ 1}. It follows that ρ and τ ′ are winning for Adam withrespe
t to the �nitary Streett 
ondition.

�We 
an thus solve �nitary Streett games, be they 2-player or 21
2
-player,with �x-point arguments, using a Request-Response solver as a partial algo-rithm. Theorem 5.24 follows:Theorem 5.24 (�nitary Streett games) Let (A,S) be a 2-player Streettarena. The following assertions hold:1. (Determina
y). We have WinfS

E (A,S) = Q \WinfS
A (A,S).2. (Strategy 
omplexity). Eve has winning strategies with memory k ·

2k whi
h ultimately bound the Streett distan
e sequen
e to |Q| · k. Ingeneral, Adam has no winning strategies with �nite memory.3. (Time 
omplexity). The sets WinfS
E (A,S) and WinfS

A (A,S) 
an be 
om-puted in time O(|Q|2 · |T | · 4k · k2).All the usual qualitative variations of these results still hold for 21
2
-playerStreett arenas. As in the 
ase of �nitary parity games, Adam has positionalrandomised winning strategies.Most of the 
omplexity results we got for Request-Response games 
arryto the 
ase of �nitary Streett games. In parti
ular, a PSPACE algorithm forRequest-Response games would immediately lead to a PSPACE algorithm for�nitary Streett games.Theorem 5.25 The problem of the winner in 2-player �nitary Streett gamesbelong to EXPTIME. It is also PSPACE-hard. In the 
ase of 1-player games, itis polynomial.
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tion of Figure 5.4 
an be easily adapted, by adding a tran-sition from the last state to the �rst. In this game, Adam 
an wait foras long as he wishes with an open request between two su

essive rounds.Noti
e that this is not possible in Figure 5.5, sin
e the all the states be-longs to Eve. Indeed, for any 1-player Streett arena with states of Eve
(A,S), WinfS

E (A,S) = WinSt
E (A,S). As the winner problem of 1-playerStreett games is polynomial, so is the winner problem of 1-player �nitaryStreett games. The algorithm for 1-player arenas with states of Adam 
aneasily be adapted for the �nitary Streett 
ondition. �Likewise, the lower bounds in memory derive from the ones for Request-Response games:Lemma 5.26 For any k, there is a 2-player Streett arena (A,S) of order

2k su
h that Eve wins, but has no winning strategy with less than 2k memorystates.Proof. The arena of Figure 5.6 
an also be adapted for �nitary games, byadding a transition from the last state to the �rst. �5.3 Perspe
tivesOur 
ontribution to the study of �nitary games unearthed a quite 
ompleteset of 
omplexity bounds for the various problems indu
ed by �nitary games.The polynomial algorithm for �nitary parity is espe
ially pleasing: froma veri�
ation point of view, it o�ers a mu
h 
heaper alternative to 
lassi
alparity games, while removing only pathologi
al behaviours that are oftenunsatisfa
tory to begin with.It would be ni
e, of 
ourse, to get the exa
t 
omplexity of �nitary Streettgames, through either a PSPACE algorithm or a proof of EXPTIME-hardness.Our most promising prospe
t, however, is to re�ne the analysis of �nitarygames, by taking in a

ount not only the mere satisfa
tion of the winning
ondition but also the quantitative aspe
t of minimising the delay betweenthe requests and the subsequent responses, in the spirit of [HTW08℄.



Chapter 6Con
lusion�S
hool's out for summer�S
hool's out forever� S
hool's OutAli
e CooperIn Chapter 2, we have des
ribed a new approa
h to the fundamentalproblem of rea
hability games, linking the 
omplexity to an intuitive param-eter, the number of random verti
es. Furthermore, the 
omplexity of ourpermutation algorithm is 
omparable to the best known deterministi
 algo-rithms, and the �permutation improvement� s
heme makes it a 
andidatefor polynomiality. The obvious problem now would be to �nd a polynomialalgorithm 
omputing the values of 21
2
-player rea
hability games. However,this problem is harder than the winner problem in 2-player parity games.An interesting, yet more reasonable obje
tive would be to prove that ourpermutation improvement algorithm is polynomial on 11

2
-player games.We 
onsidered then in Chapter 3 the general 
ase of pre�x-independent
onditions, and proved their optimal determina
y. We also adapt our per-mutation algorithm to 
ompute the values of any pre�x-independent gameswith a single non-deterministi
 guess and a qualitative algorithm. It is wellknown that Borel games in general are not optimally determined , but itdoes not mean that quantitative determina
y is the best we 
an do: we donot know any 
ounter-examples for qualitative determina
y.We 
ame ba
k in Chapter 4 to the origins of in�nite games with the ven-erable 
ase of Muller games. A �rst result was the membership of the winner117
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it games to PTIME, and we would like to 
he
k whetherthis result 
an be adapted for other tree automata problems. Our main re-sult, however, is the tight bound on the ne
essary memory for randomisedstrategies. We also got smaller witness arenas for the lower bounds, leadingnaturally to the question of the resilien
e of these bounds in the 
ase of are-nas of polynomial size. Another logi
al extension would be to get memorybounds for any ω-regular winning 
ondition: even Muller games are a normalform, whose 
ost may be redu
ed in some 
ases.A question that arose during this study was the problem of the 
orre
tde�nition of a randomised strategy with memory: by 
ontrast with the 
ase ofpure strategy, there is not an obvious �standard� notion, and we have shownthat semi-randomised strategies and strategies with random memory reallyare two di�erent models. This gives perspe
tives in two dire
tions: �rst,does our upper bound for Muller games hold for semi-randomised strategies;se
ond, how do these two models relate together, and with other models ofrandomised strategies with memory, e.g. strategies where the move and theupdate are independent.Lastly, the �nitary games we studied in Chapter 5 
ame more from themodel-
he
king tradition: quite often, a really in�nitary 
ontroller with un-bounded delays is una

eptable. Our polynomial algorithm for parity gamesyields an e�
ient approa
h for any �nitary ω-regular game, through theZielonka tree redu
tion. We also studied the �nitary version of strong fair-ness, with the 
ase of �nitary Streett games. Our redu
tion to request-response games suggests a new way to 
onsider these games, where a playyields a reward instead of a winner, in the spirit of [HTW08℄.
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