
Random Games
Von der Fakultät für Mathematik, Informatik und Naturwissenshaften derRheinish-Westfälishen Tehnishen Hohshule Aahen zur Erlangung desakademishen Grades eines Doktors der Naturwissenshaften genehmigteDissertationvorgelegt vonD.E.A.Florian Hornaus Nany, Frane

Berihter: Universitätsprofessor Dr. Wolfgang Thomas Berihter:Universitätsprofessor Dr. Ana MushollTag der mündlihen Prüfung: 28 Oktober 2008
Diese Dissertation ist auf den Internetseiten der Hohshulbibliothek onlineverfügbar.





A�u�x �f�e�m�m�e�� �d�e �m�a� �v�i�e.



AknowledgementsA thesis is more than a few sore pages of theorems. It is a rite of passagein the life of a researher and as suh, an oasion to express gratitude forthose who were by my side in this journey.I want to thank �rst my grandfather, for the math problems he gave meto pass time during long ar trips. They were simple linear equations (I wasvery young), but they taught me perhaps the most important lesson for myaademi areer: maths are fun. To this day, I an think, write, or talkabout researh only when I enjoy it. In this regard, I must also thank mywhole family, with its strong sienti� tradition, Damien and Romain, fortheir long-standing friendship, and Caro, the mother of my signature Tigger.I met Claire in ÉNS Cahan, when we were both newomers to the si-enti� world. She beame one of my dearest friends, and I owe her morethan I an ever say. The ommunity of PhD students from LIAFA, RWTH,LABRI and PPS-on-the-other-side-of-the-elevators had a large part in mak-ing researh enjoyable. I want to pay tribute, in partiular, to Pierre's ouhand impressive basket skills and Mathilde's seminal Friday akeTM.My advisors, Ana and Wolfgang, have been a onstant soure of inspira-tion and motivation. I am ever so grateful for their guidane, their help, theiromments (even when they were less than pleased), and for the fat that theynever denied me the freedom to hoose my own researh diretions. I alsohave other researhers to thank for more spei� skills: Hugo, for example,showed me that there is more to a proof than energeti hand gestures, whileOlivier taught me how to rejet review papers.One of the best things in researh is the apaity, nay, the neessity totravel far and often. I went to a lot of interesting plaes, I met a lot ofinteresting people, and sometimes, I even worked with them. Eah of themdeserve my thanks, but I will fous on two persons who helped me in mytravels: Diana, for her part in the organisation of the Games projet, andNoelle, for her tolerane to my lak of administrative savvy.I annot write without feedbak, and I am indebted to eah and everyreviewer, o�ial or otherwise, who took the time to read and omment onone of my drafts (with speial thanks to the author of the review Page 16:should be �Cthulhu�). For this thesis, I found a lot of help in the omments ofChristel and Marin, my o�ial reviewers, but also in those of Hugo, Julien,Mathilde, and Pierre who proof-read the drafts of the di�erent hapters.Thanks also to Frane and Boulet, for the initial and �nal illustrations.



I had a million things to do and no time on the day of my defene, and Iam grateful to the little helpers that Claire drafted at the last minute: Pierre,Julien, Boris, Medhi, Gim, Jade, Eude, Dominique, Mathilde, and Konrad.I also thank everyone who ooked for the after-talk food (the real riterionfor a suessful defene), and all the attendees, even those who ame onlyfor the food (more surprisingly, some ame only for the talk).A law of list-like aknowledgements is that there is always someone whoshould have been in, and is not. Forgive me if that is you: I will try andmake it up to you the next time we meet.



AbstratGames are a lassial tool for the synthesis of ontrollers in reative systems.In this setting, a game is de�ned by: an arena, whih is a graph modellingthe system and its evolution; and a winning ondition, whih models thespei�ation that the ontroller must ensure. In eah state, the outgoingtransition is hosen either by the ontroller (Eve), an hostile environment(Adam), or a stohasti law (Random). This proess is repeated for anin�nite number of times, generating an in�nite play whose winner dependson the winning ondition.Our �rst objet of study is the fundamental ase of reahability games.We present a new e�etive approah to the omputation of the values, basedon permutations of random states. In terms of omplexity, the resulting�permutation algorithm� is orthogonal to the lassial, strategy-based algo-rithms: it is exponential in the number of random states, but not in thenumber of ontrolled states. We also present an improvement heuristi forthis algorithm, inspired by the �strategy improvement� algorithm.We turn next to the very general lass of pre�x-independent games. Weprove the existene of optimal strategies in these games. We also show thatour permutation algorithm an be extended into a �meta-algorithm�, turningany qualitative algorithm into a quantitative algorithm.We study then the omplexity of optimal strategies for Muller games,fousing on the amount of memory that an be saved through the use ofrandomised strategies. Using the Zielonka tree, we show tight bounds onthe neessary and su�ient memory needed to de�ne randomised optimalstrategies for any given Muller ondition. We also propose a polynomialalgorithm for the winner problem in expliit Muller games. The results ofthe former hapter yield immediately NP and o-NP algorithms for the valuesproblem.Lastly, we onsider the �nitary versions of parity and Streett games,where the regular onditions are supplemented by universal bounds on delays.We propose a polynomial algorithm for the winner problem on �nitary paritygames. For �nitary Streett games, a redution to Request-Response gamesprovides an EXPTIME algorithm for qualitative problems, and we show thatthe problem is PSPACE-hard.
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Chapter 1Prequel�Pleased to meet you�Hope you guess my name�But what's puzzling you�Is the nature of my game� Sympathy for the DevilThe Rolling StonesAfter short introdutory remarks on the development of Game Theory inComputer Siene in Setion 1.1, we desribe in Setion 1.2 the game modelunderlying the whole thesis, namely 21
2
-player simple graph games on �nitearenas with boolean winning ondition, as well as the main problems on suhgames. Setion 1.3 reviews our main ontributions.1.1 BakgroundGame Theory is a very versatile paradigm, whose appliations range frombiology [Smi82℄ to philosophy [Kav86℄ via eonomis [Cou38℄. This mathesthe pervasiveness of games in general in human history: there has never beena soiety without games, at least sine biblial times when the ontemporariesof Abraham played the royal game of Ur [Fin07℄.It is no surprise, then, that game theory found many appliations inomputer siene: arti�ial intelligene [GMW87℄, logi [Bla92℄, semantisof programming languages [Chr03℄, et. The model of graph games, whihwe use throughout this work, is quite straightforward: two players alled1



CHAPTER 1. PREQUEL 2Eve and Adam move alternatively a token between the di�erent positions ofa board, with a set of rules whih desribe the legal moves and deide thewinner. There is the fat that plays usually go on forever. Well, it ould notbe that simple, ould it?Automata. In the sixties, the problems of veri�ation and synthesis ofdigital iruits [Chu62℄ led to the introdution of automata over in�nitewords [Bü62℄ and in�nite graph games [MN65℄. The �rst solution toChurh's synthesis problem, by Bühi and Landweber, ame from a gameapproah [BL69℄. Rabin quikly followed suit, and provided a solution basedon tree automata [Rab69℄.Automata theory and graph games remain losely linked: two playergames an be seen as alternating automata over a one-letter alphabet, whilethe emptiness of non-deterministi tree automata (on a �nite alphabet) anbe redued to the problem of deiding the winner of a two-player game.Furthermore, the existene of strategies with �nite memory an be used toomplement automata: for example, Gurevih and Harrington used the latestappearane reords struture for Muller games �already mentioned by Buhiand MNaughton in unpublished manusripts� to get a simpler proof ofRabin's theorem [GH82℄.The nature of the players strategies, espeially with respet to memory,reeived a lot of attention in the following years, with notably the positionaldeterminay of parity games [Mos91, EJ91℄, the index of appearane reordsstruture for Rabin/Streett games [BLV96℄, and the split tree [Zie98℄, whoseanalysis provided tight bounds in memory for all Muller onditions [DJW97℄.To this day, graph games are one of the most popular and e�ient ap-proahes to automata problems: see for example [EWS01℄ on simulationrelations, and [CL08℄ on the (restrited) star-height problem over trees.Model heking. In the early eighties, the omplexity of program veri�-ation outgrew the possibilities of hand-onstruted proofs in Floyd-Hoarestyle logi [OG76℄. This led to the introdution of model heking by Clarkeand Emerson [CE81℄, and independently by Queille and Sifakis [QS82℄, inorder to hek whether a program meets a spei�ation without having tobuild an expliit proof. The idea is to represent the evolution of a programas a �nite Kripke struture, and the spei�ation as a formula of proposi-tional temporal logi. The resulting �model-heking problem� asks whether



CHAPTER 1. PREQUEL 3a Kripke struture M is a model for a logial formula ϕ. A more ompleteexposition of the history of model heking an be found in [Cla08℄.Model heking was quikly extended into a veri�ation tool for any realsystems, through a step of modelling: the system is represented as a Kripkestruture, and the spei�ation as a logial formula. The point of modelheking is then to either guarantee the good behaviour of the system, or pro-vide examples of faulty behaviours. The multipliity of possible situations ledto many variations of this problem: models may be �nite [VW86, MM93℄, in-�nite [BJNT00, BFLP03, Mor08℄, stohasti [Var85, CY95, BCHG+97℄, asyn-hronous [Maz75, GMSZ02℄ or timed [BKH99, BBBM08℄, while the spei�-ation an be written in several di�erent logis: temporal [Pnu77, EL85℄, �x-point [Mos91, EJ91℄, monadi seond order [MP92, Kla97℄, data [BDM+06℄.Graph games provide very natural and robust lasses of models for opensystems, where the agent (represented by Eve) must interat with an un-ontrollable environment (represented by Adam) [PR89℄. A strategy forEve is then a ontroller for the system, while a strategy for Adam is aounter-example for the satis�ability of the spei�ation. Here also, theframework had to undergo a great deal of generalisation to aount for allthe possible situations: to ite but a few, let us mention stohasti transi-tions [dA97℄, onurrent moves [dAHK98, dAH00℄, timed [dAFH+03℄ and hy-brid [BBJ+08℄ systems, pushdown arenas [Wal96, Ser05, CHM+08℄, quantita-tive rewards [FGK08℄, and multiple players [MW03, GLZ04, MTY05, GU08℄.Classial game theory. Another onsequene of the stohasti and on-urrent extensions was the reuni�ation of games in omputer siene andgames as studied in mathematial eonomis. These latter games evolvedfrom one-step matrix games, where the outome depends on a single andsimultaneous hoie of ations by the players. Borel introdued the notion ofmixed strategy in these games [Bor21℄, and von Neumann proved the exis-tene of optimal strategies �the well known �min-max theorem�� [vNM44℄,whih was extended to the setting of multiplayer games with the notion ofNash equilibrium [Nas50℄.In the early �fties, Shapley introdued stohasti graph games [Sha53℄to aount for situation where the evolution of the play, and not only theimmediate payo�s, depend on the hoies of the players. A stohasti gameis a (�nite) set of matrix games, and a play is a series of moves, instead of asingle round. Furthermore, the outome of a move determines whether and



CHAPTER 1. PREQUEL 4where the play proeeds for the next move. The reward of a play is the sumof the elementary payo�s �whih is �nite with probability one, sine thereis a positive probability to stop in eah state. An alternative and slightlydi�erent view of this reward is the disounted payo�: the game never stops,but the rewards at eah step are a�eted by umulative disount fatorswhih guarantee that the reward of a play onverges. Several other payo�funtions were onsidered �e.g. mean payo� [Gil57℄, limsup [MS96℄, andreahability [Con93℄� for other behaviours or situations.The ross-breeding of the two traditions has been fruitful: the strategyimprovement algorithm [HK66℄, in partiular, has been extended to paritygames in a disrete fashion [VJ00℄, while omputer siene tehniques pro-vided new insights on lassial games problems [FPT04, Rou05, GZ07℄.The study of graph games is a thriving topi in omputer siene, aswitnesses the wealth of reent theses on the subjet [Maj03, Ser05, Gim06,Cha07d℄. The present work is to be my own tessella in this vast and ever-expanding mosai.1.2 De�nitions1.2.1 PlayingOur model of games is the graph games, introdued by Zermelo in [Zer13℄and extended by Shapley in [Sha53℄: an arena is a direted graph, where atoken moves from state to state along the transitions. This model has knownenough variants to prompt the authors of [CJH03℄ to propose a systematilassi�ation: the variation we onsider are in�nite 21
2
-player games on simple�nite arenas. Before we proeed with the formal de�nitions, let us reviewthe meaning of these terms, as well as the alternatives.�In�nite�: Our games never end: a full play is a sequene indexed by non-negative integers, and the winning onditions are de�ned on in�nite plays.Notie that while a play may go on forever in a real game, e.g. in Go withoutthe �superko� rule, this is usually not the intended form of a play. In�nitegames subsume �nite games, but there is an even more general model, inwhih the plays are indexed by ordinals [CH08b, CH08a, RS08℄.



CHAPTER 1. PREQUEL 5�21
2
-player�: There are three agents: Eve, Adam and Random. An exam-ple of �real� 21

2
-player game is Bakgammon: the three agents are White,Blak, and the dies. This also provides natural names for games where oneor more agents are absent:

• 2-player games�deterministi games� if there are no random moves,e.g. Go;
• 11

2
-player games�Markov deision proesses� if either Eve or Adamannot move, e.g. Spider solitaire;

• 1-player games�non-deterministi transition systems� if only Eve oronly Adam an move, e.g. Sokoban;
• 1

2
-player games�Markov hains� if there are only random moves e.g.Progress Quest.

• 0-player games�deterministi transition systems� if all the positionshave only one suessor, e.g. Conway's game of life.It is also possible to onsider games with three or more players, but theiranalysis depends on many assumptions about allianes, king-maker situa-tions, and so on.�Simple�: Eah state belongs either to Eve, Adam, or Random, and theowner of the urrent state deides on his own whih transition is to be taken.Furthermore, both Eve and Adam know the exat position of the token atall times. This is in ontrast with onurrent games � e.g. Janken � andpartial-information games � e.g. Poker.�on �nite arenas� Throughout this work, we only onsider games playedon �nite arenas. The alternative, of ourse, is to aept in�nite �but �nitelyrepresentable� arenas. Notie that there are real games with in�nite arenas,e.g. Monopoly.Arenas and PlaysNotation 1.1 A probability distribution γ over a �nite set X is a funtionfrom X to [0, 1] suh that∑x∈X γ(x) = 1. The set of probability distributionsover X is denoted by D(X).



CHAPTER 1. PREQUEL 6Formally, we de�ne a 21
2
-player arena A over a set of olours C as a tuple

(Q,QE ,QA,QR, T , δ, χ), where:
• Q is a �nite set whose elements are the states of A;
• QE , QA, and QR partition Q between Eve's states (graphially repre-sented as #'s), Adam's states (2's), and random states (△'s);
• T ⊆ Q×Q is the set of transitions of A, and there are no dead-ends:
∀q ∈ Q, ∃s ∈ Q, (q, s) ∈ T ;
• δ : Q → D(Q) is the random law on the suessors of a state of QR,and δ(r)(q) > 0⇐⇒ (r, q) ∈ T ;
• χ is a partial olouring funtion, mapping the states to the olours C.Notation 1.2 In the whole thesis, whenever we all an arena A, we impli-itly mean that A = (Q,QE ,QA,QR, T , δ, χ). Likewise, the arena A is equalto (Q,QE,QA,QR,T, Æ, �), and A to (Q,QE ,QA,QR,T, d, X).A play ρ of A is a ��nite or in�nite� path in the graph (Q, T ): asequene of states suh that ∀i < |ρ| − 1, (ρi, ρi+1) ∈ T . The set of playsstarting in a state q is denoted Ωq. The funtions Occ (on �nite or in�niteplays) and Inf (on in�nite plays) denote, respetively, the sets of ourringand limit states:

Occ(ρ) = {q ∈ Q | ∃i, ρi = q} ;

Inf(ρ) = {q ∈ Q | ∃∞i, ρi = q} .Strategies and measuresStrategies are the �reipes� Adam and Eve use when it is their turn to play.We de�ne most of the onepts from Eve's point of view. Similar notions al-ways exist for Adam, and their de�nition is straightforward. A (randomised)strategy σ for Eve is a funtion from the �nite pre�xes ending in a state ofEve to distributions of probabilities over the legal states:
σ : Q∗QE → D(Q) ;

∀w ∈ Q∗, ∀q ∈ QE , ∀s ∈ Q, σ(wq)(s) > 0⇒ (q, s) ∈ T .



CHAPTER 1. PREQUEL 7A strategy is pure if it does not use randomisation:
∀w, ∀q, σ(w)(q) = 0 ∨ σ(w)(q) = 1 .A pure strategy an thus be seen as a funtion from the pre�xes to thestates, and we often write σ(w) for �the unique state q suh that σ(w)(q) = 1�.A play ρ is onsistent with σ if and only if ∀i < |ρ|, ρi−1 ∈ QE ⇒

σ(ρ0...i−1)(ρi) > 0. The set of plays onsistent with σ (resp. τ ; σ and τ)is denoted by Ωσ (resp. Ωτ ; Ωσ,τ ). One an initial state q and two strategies
σ and τ have been �xed, Ωσ,τ

q an naturally be made into a measurable spae
(Ωσ,τ

q ,O), where O is the σ-�eld generated by the ones {Ow | w ∈ Q∗}:
ρ ∈ Ow if and only if w is a pre�x of ρ. The probability measure Pσ,τ

q isreursively de�ned by:
∀r ∈ Q,Pσ,τ

q (Or) =

{

1 if r = q ,
0 if r 6= q ;

∀w ∈ Q∗, (r, s) ∈ Q2,Pσ,τ
q (Owrs) =







Pσ,τ
q (Owr) · σ(wr)(s) if r ∈ QE ,Pσ,τ
q (Owr) · τ(wr)(s) if r ∈ QA ,Pσ,τ
q (Owr) · δ(r)(s) if r ∈ QR .Carathéodory's extension theorem allows us to extend Pσ,τ

q to the Borel setsof (Ωσ,τ
q ,O). When we deal with events, we indi�erently use ρ ∈ Γ and ρ |= Γ,

Γ ∪∆ and Γ ∨∆, et etera.Sub-arenas and end-omponentsThe restrition of an arena A to a subset X of Q, denoted by A|X is asub-arena of A if and only if:
• ∀q ∈ X ∩ (QE ∪ QA), ∃s ∈ X, (q, s) ∈ T ;
• ∀q ∈ X ∩QR, ∀s ∈ Q, (q, s) ∈ T ⇒ s ∈ X.The end-omponents of A [CY95, dA97℄ are the supports of the stronglyonneted subarenas of A. Lemma 1.3 is entral in many a proof aboutstohasti games:Lemma 1.3 ([dA97℄) For any initial state q and strategies σ, τ for Eve andAdam, the limit of the ensuing play is an end-omponent with probability one.



CHAPTER 1. PREQUEL 8Strategies with memoryStrategies an also be de�ned as strategies with memory, for a given set ofmemory states M . A strategy σ with memory M is then a funtion from
Q ×M to D(Q ×M). Alternatively, a pure strategy with memory M anbe desribed as two separate funtions: a �next-move funtion� σn : (QE ×
M)→ Q and a �memory-update� funtion σu : (Q×M)→M . Randomisedfuntions σu and σn an also be used to de�ne randomised strategies, but itis not possible to represent all the randomised strategies with memory M inthis way: there may be a orrelation between the moves and the updates.There is a last, intermediate, model of strategies with memory: a semi-randomised strategy σ with memory M is de�ned by a randomised �next-move funtion� σn : (QE×M)→ D(Q) and a pure �memory-update� funtion
σu : (Q×M)→M . However, these strategies are less ompat than generalrandomised strategies with memory.Notie that any pure (resp. randomised) strategy an be represented as apure (resp. semi-randomised) strategy with memory Q∗. However, the pointis often to get strategies with �nite memory, or positional strategies, wherethe memory is redued to a singleton.In partiular, a strategy σ with �nite memory M an be used to desribethe restrition of A to σ, denoted by Aσ. If σ is pure or semi-randomised,we get the following 11

2
-player arena:

• Qσ = Q×M ;
• Qσ

A = QA ×M ;
• Qσ

R = (QR ∪ QE)×M ;
• T σ = ∪{((q, m), (r, n) | q ∈ QA and n = σu(q, m)}
T σ = ∪ {((q, m), (r, n) | (q, m) ∈ Qσ

R and δ(q, m)(r, n) > 0}

• δσ(q, m)(s, n) =

{

δ(q)(s) if q ∈ QR and n = σu(q, m)
σn(q, m)(s) if q ∈ QE and n = σu(q, m)The problem with general randomised strategies is that Adam gets too muhinformation: he is not supposed to know the urrent memory state of Eve.The good notion for a game restrited to a general randomised strategy wouldbe a 11

2
-player game with partial information, but its analysis is outside ofthe sope of this thesis.



CHAPTER 1. PREQUEL 9Attrators and trapsFor any subset X of Q, we de�ne the events Reach(X) = {ρ | ∃i, ρi ∈ X}and Reach∞ X = {ρ | ∃∞i, ρi ∈ X}, and the attrator of Eve to X in A
AttrE(X,A) as ∪i>0X

i:
X0 = X

X i+1 = X i ∪ {q ∈ (QE ∪ QR) | ∃s ∈ X i, (q, s) ∈ T }

X i ∪ {q ∈ QA | ∀s ∈ Q, (q, s) ∈ T ⇒ s ∈ X i}An attrator strategy of Eve to X is a pure and positional strategy −→aE(X)suh that ∀q ∈ ∪i>1X
i, q ∈ X i ⇒ −→aE(X)(q) ∈ X i−1. Propositions 1.4 and 1.5follow diretly from the de�nition of an attrator and Lemma 1.3:Proposition 1.4 For any state q in AttrE(X,A), there is a real number

η > 0 suh that for any strategy τ of Adam, we have:P−→aE(X),τ
q (Reach(X)) > ηProposition 1.5 For any state q in Q, for any strategy τ of Adam, we have:P−→aE(X),τ

q (Reach∞(X) | Reach∞(AttrE(X,A))) = 1An interesting remark is that the positional randomised strategy uniA,whih hooses any legal suessor in A with a uniform distribution, ats asan universal attrator strategy for any subset X of A [CdAH04℄: Proposi-tions 1.4 and 1.5 still hold if we replae aX by uniA.The dual notion of a trap X for Eve denotes a region from whih Eveannot esape:
• ∀q ∈ X ∩ (QE ∪ QR), ∀s ∈ Q, (q, s) ∈ T ⇒ s ∈ X;
• ∀q ∈ X ∩QA, ∃s ∈ X, (q, s) ∈ T .A strategy τ suh that ∀w ∈ Q∗, ∀q ∈ X ∩ QA, τ(wq)(X) = 1 is a trappingstrategy of Adam in X.Proposition 1.6 For any subset X of Q, Q\AttrE(X,A) is a trap for Evein A.Proposition 1.7 If X is a trap for Eve in A, A|X is a subarena of A.Proposition 1.8 Let X be a trap for Eve in A, and σ be a strategy for Evein A|X. For any state q in X and strategy τ for Adam in A, the probabilitymeasure Pσ,τ

q is the same in A|X and in A.



CHAPTER 1. PREQUEL 101.2.2 WinningConditionsA winning ondition W on C is a Borel subset of C∞. A play ρ in an arena
A on C is winning for Eve in the game (A, C) if χ(ρ) ∈ W, and winning forAdam otherwise.A regular ondition is a ω-regular language of C∞. However, there isa tradition of using the lassial aeptane onditions of regular automatadiretly on the play, as ifA itself was an alternating automaton on a singletonalphabet. The resulting parity, Rabin, Streett, and Muller games are usedin veri�ation, logi, and automata [GTW02℄:
• a parity arena A (resp. parity arena of rank k) is an arena on N (resp.
{0, . . . , k− 1}), and the winner of a play ρ in the orresponding paritygame depends on the smallest olour in the limit of ρ:

ρ ∈ Parity ⇐⇒ min χ(Inf(ρ)) is even
• a Rabin arena A of rank k is an arena on {−k, . . . ,−1, 1, . . . , k}. Anintuitive interpretation of the Rabin ondition of rank k is to onsiderthe negative integers as ativators and the positive ones as inhibitors:a play ρ is winning for Eve if at least one ativator −i in Inf(ρ) is notmathed by the orresponding inhibitor i:

ρ ∈ Rabin(k)⇐⇒ ∃ 1 ≤ i ≤ k,−i ∈ χ(Inf(ρ)) ∧ i /∈ χ(Inf(ρ))

• a Streett arena A of rank k is an arena on {−k, . . . ,−1, 1, . . . , k}. Anintuitive interpretation of the Streett ondition of rank k is to onsiderthe negative integers as requests and the positive ones as responses: aplay ρ is winning for Eve if eah request −i in Inf(ρ) is mathed by theorresponding response i:
ρ ∈ Streett(k)⇐⇒ ∀ 1 ≤ i ≤ k,−i ∈ χ(Inf(ρ))⇒ i ∈ χ(Inf(ρ))

• a Muller ondition F on C is a subset of P(C). The winner of a play ρin the orresponding Muller game on C depends diretly on its limit:
ρ ∈ Muller(F , C)⇐⇒ χ(Inf(ρ)) ∈ F .



CHAPTER 1. PREQUEL 11In a game G = (A,W), the value of a state q under the strategies σ and
τ , denoted vσ,τ (q), is the measure of W under Pσ,τ

q . The value of a strategy
σ for Eve is the in�mum of the {σ, τ}-values:

vσ(q) = inf
τ

vσ,τ (q) .Likewise, the value of a strategy τ for Adam is de�ned as a supremum:
vτ (q) = sup

σ

vσ,τ (q) .RegionsDe Alfaro and Henzinger de�ne in [dAH00℄ several qualitative notions ofwinning strategies and winning regions, depending on the hanes Eve getsto win:Sure / Heroi: A strategy σ for Eve is surely winning (or sure) from astate q if and only if for any strategy τ for Adam, any play starting in q andonsistent with σ and τ is winning for Eve. Dually, a strategy σ for Eve isheroially winning (or heroi) from a state q if and only if for any strategy
τ for Adam, there is a play ρ starting in q, onsistent with σ and τ , andwinning for Eve. The orresponding sure and heroi regions are de�ned asfollows:

WinW ,∀
E (A) = {q | ∃σ, ∀ρ ∈ Ωσ

q , ρ ⊢ W} ;

WinW ,∃
E (A) = {q | ∃σ, ∀τ, ∃ρ ∈ Ωσ,τ

q suh that ρ ⊢ W} .Almost-sure / Positive: A strategy σ for Eve is almost-surely winning(or almost-sure) from a state q if and only if for any strategy τ for Adam, theprobability that the ensuing play is winning for Eve is one. Dually, a strategy
σ for Eve is positively winning (or positive) from a state q if and only if forany strategy τ for Adam, the probability that the ensuing play is winning forEve is positive. The orresponding almost-sure region and positive regionsare de�ned as follows:

WinW ,1
E (A) = {q | ∃σ, ∀τ,Pσ,τ

q (W) = 1} ;

WinW , >0

E (A) = {q | ∃σ, ∀τ,Pσ,τ
q (W) > 0} .



CHAPTER 1. PREQUEL 12Limit-one / Bounded: The bounded region of Eve is the set of states withpositive value, and dually, the limit-one region of Eve is the set of states withvalue one:
WinW ,∼1

E (A) = {q | ∀η < 1, ∃σ, ∀τ, vσ,τ (q) ≥ η} ;

WinW ,≫0

E (A) = {q | ∃η > 0, ∃σ, ∀τ, vσ,τ (q) ≥ η} .These six notions of winning an also be de�ned for Adam in a straight-forward way. By onvention, we want the �rst supersript to orrespond tothe winning ondition of the game, in whih Adam is the opponent. Forexample, the almost-sure region of Adam in the game G = (A,W) is denoted
WinW ,1

A (A) and refers to the region where Adam an guarantee ¬W withprobability one.The two following propositions are diret onsequenes of the de�nitions:Proposition 1.9 Let G = (A,W) be a 21
2
-player games. We have:

WinW ,∀
E (A) ⊆ WinW ,1

E (A) ⊆ WinW ,∼1

E (A)

⊇
WinW ,∃

E (A) ⊇ WinW , >0

E (A) ⊇ WinW ,≫0

E (A) .Proposition 1.10 Let G = (A,W) be a 21
2
-player games. We have:

WinW ,∀
E (A) ∩ WinW ,∃

A (A) = ∅

WinW ,1
E (A) ∩ WinW , >0

A (A) = ∅

WinW ,∼1

E (A) ∩ WinW ,≫0

A (A) = ∅1.3 Usual problems and ontributions1.3.1 ProblemsDeterminay and existene of valuesA natural question is whether the disjuntions of Proposition 1.10 partitionQor not. The sure determinay of 2-player Borel1 games [Mar75℄, transposedto 21
2
-player games by replaing the random states with states of Adam,yields WinW ,∀

E (A) ∪WinW ,∃
A (A) = Q for any game G = (A,W). In the ase1The existene of non-determined 2-player games relies on the axiom of hoie.



CHAPTER 1. PREQUEL 13of 21
2
-player games, the quantitative determinay of Blakwell games [Mar98℄states that the value of a state q an indi�erently be de�ned as the supremumof the σ-values, or the in�mum of the τ -values:

v(q) = sup
σ

inf
τ

vσ,τ (q) = inf
τ

sup
σ

vσ,τ (q) .It follows immediately that WinW ,∼1

E (A)∪WinW ,≫0

A (A) = Q. However, thereis no suh general answer to the problem of �qualitative determinay�:
WinW ,1

E (A) ∪WinW , >0

A (A)
?
= Q .Qualitative and quantitative problemsIn [CJH03℄, the authors also lassify the di�erent problems on games:

• Qualitative problems depend on the winning regions of the players �for all six notions of �winning�. A �qualitative-omplete� problem on agame G = (A,W) onsists in deiding, for any given state q, player P ,and notion of winning ?, whether q belongs to WinW ,?
P (A).

• Quantitative problems on the other hand, depend on the values ofthe states �and thus are interesting only in 21
2
-player games. A�quantitative-omplete� problem onsists in omputing the value v(q)of any given state q.The deidability and omplexity of qualitative and quantitative problemsgenerate a major part of the artiles in graph games theory.Complexity of the winning strategiesAnother question ponders the nature of the winning strategies, in terms ofrandomisation and memory. This is espeially useful from a veri�ation pointof view, as the strategies represent possible implementations of ontrollers,whose ost is often more ritial than the spei�ation osts. In automatatheory, the existene of positional strategies for spei� winning onditionhas been an invaluable tool for several problems.



CHAPTER 1. PREQUEL 141.3.2 ContributionsSolving reahability gamesWe present two new algorithms omputing optimal strategies in 21
2
-playerreahability games. They are based on the existene of optimal permuta-tion strategies, a sub-lass of positional strategies derived from permutationsof the random states. As our algorithms never onsider the same permu-tation twie, their worst-ase omplexity mostly depends on the number ofsuh permutations, making the solution of 21

2
-player reahability games �xed-parameter tratable, when the parameter is the number of random states:this is orthogonal to the omplexity of the strategy-based algorithms, whihrather depends on the number of player's states.The �rst algorithm, the permutation-enumeration algorithm is a simpleexhaustive searh. Its omplexity is thus exponential, but it avoids the useof linear programming. The seond one, the permutation-improvement algo-rithm, emulates the heuristi of the lassial strategy improvement algorithm[HK66℄ in order to avoid an exhaustive searh.Another asset of our algorithms is that they do not rely on the expensivestopping hypothesis [Con92℄: this allows us, in the next hapter, to extendthem to the muh broader ase of pre�x-independent games.Pre�x-independent winning onditionsIn pre�x-independent games, the winner of a play depends only on its limit,and not on �nite pre�xes. We show that in these games, the positive andbounded regions, as well as the limit-one and almost-sure regions, are equal.We prove then their optimal determinay, and provide an algorithm om-puting the values of any pre�x-independent game with |QR|! alls to a qual-itative algorithm. Alternatively, a single non-deterministi guess an replaethe multiple iterations. It follows from our proof of orretness that optimalstrategies are no more omplex than almost-sure strategies.This generalises and extends several results on the winning regions of reg-ular [dAHK98, dAH00℄ and pre�x-independent games [Cha07a℄. The om-plexity of our general algorithm is better or on a par with the omplexity ofseveral known algorithms for speial ases [CJH04, CdAH05, CHH08℄.



CHAPTER 1. PREQUEL 15Muller gamesWe present a polynomial algorithm for the qualitative problems of expliitMuller games. It follows then from our results of the former hapter that thequantitative problems of expliit Muller games belongs in NP and o-NP. Theonly algorithm previously known for these games was the all-purpose PSPACEalgorithm for Muller games [MN93, NRY96℄.Our next ahievement is the omputation of tights bounds in memory foroptimal randomised strategies in Muller games. The omparison with similarresults for pure strategies [DJW97℄ allows us to asertain the di�erenesbetween the two models of strategies in this aspet.Former results on randomised strategies provided upper bounds for ran-domised games [CdAH04, Cha07b℄, but to the best of the author's knowledge,no lower bounds.Finitary gamesFinitary onditions [AH98℄ supplement regular onditions with bounds onthe time spent between a �bad� event and a subsequent �good� event whihompensate for it. Chatterjee and Henzinger studied 2-player games with�nitary parity and Streett onditions and proposed algorithms omputingthe winning regions of the players [CH06a℄.We extend this study to the ase of 21
2
-player games and provide fasteralgorithms for both kinds of games. In partiular, we have shown that thequalitative �nitary parity games an be solved in polynomial time �herealso, the results of Chapter 3 yield diretly NP and o-NP algorithms forquantitative problems. We also show that �nitary Streett games an beredued in polynomial time to Request-Response games [WHT03℄.



Chapter 2Reahability games�Consisteny is the last refuge of the unimaginative.� Osar WildeOne of the simplest, and yet most useful, winning onditions is the reah-ability ondition: there is a distinguished target state in the arena, denotedby ⊚, and Eve's objetive is to ensure that the token reahes it at some pointduring the play.In this hapter, we onsider the problems of omputing the values andoptimal strategies in suh games. Figure 2.1 presents an example of 21
2
-player reahability game, that we use throughout the hapter to demonstratenotions and intuitions.Setion 2.1 introdues some general onepts on 21

2
-player reahabilitygames, as well as the strategy improvement algorithm. We present in Se-tion 2.2 a new approah to the omputation of values and optimal strategies,based on permutations over the random states. Setion 2.3 exposes then animprovement heuristi for this �permutation algorithm�.2.1 First notionsThis setion is devoted to the fundamental notions that we use throughtoutthe hapter in order to deal with the values of 21

2
-player reahability games.It inludes a large part of the state of the art in the domain, whih an alsobe found in a more detailled way in the survey of Condon [Con93℄.16
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a b c d.4.6 .3.1.4 .1.1 .2.8 .2.6 .2

Figure 2.1: A 21
2
-player reahability gameHowever, there is a lot more work on 21

2
-player reahability games (see,for example, [Hal07℄ on the use of randomised algorithms) that we don'tdesribe here, beause it bears too few relations with our own results.We �rst desribe two speial lass of reahability games (2.1.1), and thenpresent some fundamental results about the values (2.1.2). A desription ofthe strategy improvement algorithm onludes the setion (2.1.3).2.1.1 Normalised and stopping gamesQualitative problems are easy to solve on 21

2
-player reahability games, andderive diretly from the notion of attrator:

Win
Reach(⊚), >0

E (A) = Win
Reach(⊚),≫0

E (A) = AttrE({⊚},A)

Win
Reach(⊚),∼1

A (A) = Win
Reach(⊚),1
A (A) = Q \Win

Reach(⊚), >0

E (A)

Win
Reach(⊚),∼1

E (A) = Win
Reach(⊚),1
E (A) = Q \ AttrA(Win

Reach(⊚),1
A (A), (A))

Win
Reach(⊚), >0

A (A) = Win
Reach(⊚),≫0

A (A) = Q \Win
Reach(⊚),1
E (A)The lass of normalised games is the lass of games where the thesequalitative questions have trivial answer: apart from the sink ⊗ and thetarget ⊚, no state has value zero or one. This lass is mainly of aesthetisigni�ane, as it simpli�es the proofs of algorithms and theorems whihwould still be orret, mutatis mutandis, on general 21

2
-player reahability



CHAPTER 2. REACHABILITY GAMES 18games. However, there are some ases where normalised games are a muhheaper alternative to stopping games.De�nition 2.1 A 21
2
-player reahability game G = (A, Reach(⊚)) is nor-malised if and only if the only state with value one is the target ⊚, and thereis only one state with value zero, whih we denote by ⊗.It is easy to transform any 21

2
-player reahability game G = (A, Reach(⊚))into a normalised game G = (A, Reach(⊚)):

• the region Win
Reach(⊚),1
E (A) is merged into a single state, whih is thetarget of G;

• the region Win
Reach(⊚),1
A (A) is merged into a single state, whih is thesink of G.This transformation is represented on Figure 2.2.

Win
Reach(⊚),1
A

Win
Reach(⊚),1
E(a) Original game G (b) Normalised game GFigure 2.2: Reahability game normalisationThere is another inentive to use normalised games: as the redution isvery heap (linear), and the resulting game is smaller in general than theoriginal one, it is a good idea in pratie to normalise a game before runningany quantitative algorithm on it.



CHAPTER 2. REACHABILITY GAMES 192.1.1.1 Stopping gamesThe stopping hypothesis is less benign, as stopping games really have strongerproperties, inherited from the original model of Shapley: in the games of[Sha53℄, the token has a positive probability to stop in eah visited state.As a result, the plays are �nite with probability one. In our model, we allstopping games the games whih share this property:De�nition 2.2 A 21
2
-player reahability game is stopping if and only if, forany strategies σ of Eve and τ of Adam, the probability that the token even-tually reahes ⊗ or ⊚ is one:

∀σ, τ, q,Pσ,τ
q (Reach(⊗) ∨ Reach(⊚)) = 1The point of these games is that they are symmetri: avoiding ⊗ andreahing ⊚ amount to the same thing, whih is not the ase in general. Asa onsequene, the following intuitive properties of eah player's strategieshold for both in stopping games.Proposition 2.3 Let G = (A, Reach(⊚)) be a 21

2
-player reahability gameand τ be a positional strategy for Adam suh that:

∀q ∈ QA,v(τ(q)) = v(q) .Then τ is optimal. This is not true in general for Eve's strategies.Proposition 2.4 Let G = (A, Reach(⊚)) be a 21
2
-player reahability gameand σ and τ be positional strategies for Eve and Adam suh that:

∀q ∈ QE , vσ,τ (σ(q)) = max{vσ,τ (s) | (q, s) ∈ T } .Then σ is an optimal ounter-strategy to τ . This is not true in general forAdam's strategies.Condon showed in [Con92℄ the existene of a polynomial redution whihpreserves optimal strategies and threshold regions:Proposition 2.5 ([Con92℄) Let G = (A, Reach(⊚)) be a 21
2
-player reaha-bility game. There is a stopping reahability game G = (A, Reach(⊚)) suhthat:

• QE = QE, QA = QA, and QR ⊃ QR;
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• to eah transition in T (q) orresponds a transition in T(q);
• the size of G is quadrati in the size of G;
• ∀q ∈ Q,v(q) > 1

2
⇐⇒ v(q) > 1

2
;

• if σ (resp. τ) is an optimal strategy for Eve (resp. Adam) in G, thenit is also optimal in G.Figure 2.3 shows the idea of the redution: in eah transition, there is asmall probability η that the token goes diretly to the sink ⊗ instead of itsintended destination. For an small enough η, the optimal strategies of theredued game are also optimal in the original game (the onverse is not truein general). However, the binary representation of a suitable η is linear inthe size of G, so the redution involves a quadrati blow-up in size.

(a) Originalgame G
1− η

η

(b) Stopping game GFigure 2.3: Redution to stopping gamesRemark 2.6 In [Con92℄, Condon onsiders games where the random stateshave only two suessors, with equal probabilities. Thus, her redution in-volves several suessive random states instead of one, but it still involves aquadrati blow-up.Using Proposition 2.5, it is possible to onsider only stopping games, andderive general theorems about 21
2
-player reahability games. However, in thishapter, we try to minimise the use of this option. Our reasons are twofold.First, altough polynomial, the redution of Figure 2.3 is quite expensive in



CHAPTER 2. REACHABILITY GAMES 21pratie as the preision grows; it is even not lear that it an be adaptedif the expeted preision is not known beforehand, or the probabilities arenot rational. Seond, the redution to stopping games is not very intuitive,espeially when it omes to a generalisation for in�nite games, as we do inChapter 3.2.1.2 Equations and Positional strategiesA simple tehnique of strategy translation yields the following system of equa-tions on the values of a game G = (A, Reach(⊚)):
∀q ∈ QE ,v(q) = max

s∈E(q)
(v(s))

∀q ∈ QA,v(q) = min
s∈E(q)

(v(s))

∀q ∈ QR,v(q) =
∑

s∈E(q)

δ(q)(s) · v(s) (2.1)
v(⊚) = 1

v(⊗) = 0In the ase of stopping games (but not in general games), there is onlyone solution to this system:Proposition 2.7 In a stopping 21
2
-player reahability game, the values arethe only solution to (2.1). Furthermore, if the whole transition funtion isdesribed by rationals on n bits, the values are rationals whih an be writtenon 2n bits.This proposition suggests immediately an algorithm omputing the valuesof a stopping 21

2
-player reahability game: hek exhaustively (or guess non-deterministially) the values of the game, and hek that they are a solutionto (2.1). The two following theorems, about the omplexity of the valueproblems, are a diret onsequene:Theorem 2.8 Quantitative deision problems about 21

2
-player reahabilitygames belong to NP and o-NP.Theorem 2.9 Let G = (A, Reach(⊚)) be a 21

2
-player reahability game. Thevalues of G an be omputed in time O(42·(|T |+|δ|)).



CHAPTER 2. REACHABILITY GAMES 22Another fundamental result whih follows immediately from (2.1) is theexistene of positional values in 21
2
-player reahability games:Theorem 2.10 In a 21

2
-player reahability game, both players have posi-tional optimal strategies.Proof. In a stopping 21

2
-player reahability game, a positional strategy suhthat:

• ∀q ∈ QE ,v(σ(q)) = v(q) if σ is a strategy for Eve, or
• ∀q ∈ QA,v(τ(q)) = v(q) if τ is a strategy for Adam.is optimal. By Proposition 2.5, there are also positional strategies in general

21
2
-player reahability games. �This allow us to onsider only positional strategies, whih are muh easierto handle. So, in the remainder of this hapter, whenever we mention a�strategy�, we mean a positional strategy.The values of a pair of strategies σ and τ are solutions to the followingsystem of equations:

∀q ∈ VE, vσ,τ (q) = vσ,τ (σ(q))

∀q ∈ VA, vσ,τ (q) = vσ,τ (τ(q))

∀q ∈ VR, vσ,τ (q) =
∑

s∈E(q)

δ(q)(s) · vσ,τ (s) (2.2)
vσ,τ (⊚) = 1

vσ,τ (⊗) = 0One again, the solution to (2.2) is not neessarily unique, unless thegame is stopping. A useful property of positional strategies is that optimalstrategies an be haraterised by a notion of stability :De�nition 2.11 Two strategies σ and τ are o-stable if and only if:
• ∀q ∈ QE , vσ,τ (σ(q)) = max{vσ,τ (s) | (q, s) ∈ T }

• ∀q ∈ QA, vσ,τ (τ(q)) = min{vσ,τ (s) | (q, s) ∈ T }



CHAPTER 2. REACHABILITY GAMES 23Proposition 2.12 Let G = (A, Reach(⊚)) be a 21
2
-player stopping reaha-bility game, and σ and τ be two strategies for Eve and Adam. Then, (i) and(ii) are equivalent:(i) σ and τ are o-stable(ii) σ is an optimal strategy for Eve, and τ is an optimal strategy for Adam.Proof. Proposition 2.12 follows diretly from Proposition 2.7, as two strate-gies σ and τ are o-stable if and only if vσ,τ is a solution to (2.1). �We an thus searh exhaustively for optimal strategies, instead of searh-ing diretly the optimal values. The omplexity of the resulting algorithm� Algorithm 2.1 � is muh better: O(|Q||Q|).Input: a game G = (A, Reach(⊚))Output: optimal strategies for both playersforall σ ∈ Σ do1 forall τ ∈ T do2 if σ and τ are o-stable then3 return σ, τ4 end5 end6 end7 Algorithm 2.1: Strategy enumeration for reahability gamesRemark 2.13 Proposition 2.12 does not hold when the game is not stoppinggames, so Algorithm 2.1 an return inorret results in this ase . For thissame reason, the strategy algorithms of the next setions usually suppose thatthe input games are stopping. We show, however, that a areful adaptationallows us to anel this hypothesis.2.1.3 Strategy improvementIn pratie, one never uses Algorithm 2.1. The two stati forall loops an bereplaed by more e�ient dynami strategy improvement shemes [HK66℄.



CHAPTER 2. REACHABILITY GAMES 24The idea is to use the values of a strategy in order to ompute a better one,unless the urrent strategy is already optimal.We onsider �rst the ase of 11
2
-player games where QE = ∅1. Strategyimprovement algorithms for 11

2
-player games are �rst mentioned in [How60℄.Notie that, in 11

2
-player games, normalised implies stopping:Proposition 2.14 Let G be a normalised 11

2
-player game. Then G is stop-ping.Proof. As G is normalised, the attrator of Eve to the target ⊚ is Q \ {⊗}.Eve has only one strategy whih is thus the attrator strategy to ⊚. So,by Proposition 1.5, ∀τ, q,Pτ

q (Reach(⊗) ∨ Reach(⊚)) = 1. Proposition 2.14follows. �At the ore of the strategy improvement algorithm is the onept ofswithing an unstable strategy:De�nition 2.15 Let G = (A, Reach(⊚)) be a 11
2
-player game suh that

QE = ∅, and τ be a strategy for Adam. The swithed strategy of τ is thestrategy θ de�ned as:
• if ∀s ∈ T (q), vτ (s) ≥ vτ (τ(q)), then θ(q) = τ(q);
• otherwise, θ(q) is hosen suh that ∀s ∈ T (q), vτ (s) ≥ vτ (θ(q)).The algorithm, omputing Adam's optimal strategy and desribed as Al-gorithm 2.2, onsists in repeatedly swithing the urrent strategy, until it isstable.Input: A 11

2
-player safety game GOutput: Optimal strategy for Adamrepeat1 swith τ2 until τ is stable3 return τ,v4Algorithm 2.2: Strategy Improvement for 11

2
-player safety gamesCorretness is ensured by Proposition 2.12, and termination by Proposi-tion 2.16:1The onepts work mostly in the same way when QA = ∅, albeit with di�erent proofs.



CHAPTER 2. REACHABILITY GAMES 25Proposition 2.16 Let G be a normalised 11
2
-player safety game, and τ bea strategy for Adam. Then, either τ is stable, or the strategy θ obtained byswithing τ is suh that vθ < vτ .The notion of swithing strategies desribed in De�nition 2.15 needs to beadapted in order to be used in 21

2
-player games. In this ontext,one swithesa strategy with respet to another :De�nition 2.17 Let G = (A, Reach(⊚)) be a 21

2
-player reahability game,and σ and τ be strategies for Eve and Adam. The swithed strategy of σ withrespet to τ is the strategy ς is de�ned as:

• if ∀s ∈ T (q), vσ,τ (s) ≤ vσ,τ (σ(q)), then ς(q) = σ(q);
• otherwise, ς(q) is hosen suh that ∀s ∈ T (q), vσ,τ (s) ≤ vσ,τ (ς(q)).The swithed strategy of τ with respet to σ is de�ned symmetrially. Itorresponds to the swithed strategy of τ in the 11

2
-player safety game Gσ.In Algorithm 2.3, improving a strategy σ, onsists in omputing an op-timal ounter-strategy τ , and then swithing σ with respet to τ . The runstops only when the strategies are o-stable.Input: The game GOutput: Optimal strategies and valueshoose σ as an attrator strategy of Eve to ⊚1 repeat2 ompute an optimal ounter-strategy τ to σ3 swith σ with respet to τ4 until σ and τ are o-stable5 return σ, τ6Algorithm 2.3: Strategy Improvement for 21

2
-player reahabilitygamesAgain, the impossibility of an in�nite run is proved through a notion ofprogress:Proposition 2.18 Let G = (A, Reach(⊚)) be a 21

2
-player reahability game,

σ be a positional attrator strategy to ⊚ for Eve, τ be an optimal ounter-strategy to σ, and ς be the swithed strategy of σ with respet to τ . Then,either σ and τ are optimal, or, for any strategy θ, vς,θ > vσ,τ .



CHAPTER 2. REACHABILITY GAMES 26There are two remarks to be made about Algorithm 2.3. The �rst one isthat we an remove the stopping hypothesis of [Con93℄ by using normalisedgames. There is no stopping hypothesis in Proposition 2.18. By Proposi-tion 2.14, normalisation is enough for the improvement of Adam's strategy.However, it is not true in general that if G is normalised, then Gσ is also nor-malised �while suh a property holds for stopping games. If σ is an attratorstrategy to ⊚, though, then Gσ is normalised. Proposition 2.18 guaranteesthat σ remains an attrator strategy to ⊚ for the whole run. The seondremark onsists in preisions about the improvement steps of both players:
• The improvement of Eve's strategy in line 4 onsists in a single swith-ing. It is not the omputation of an optimal ounter-strategy to Adam'surrent strategy, nor should it be, as it leads to in�nite loops.
• Symmetrially, it is not enough to swith Adam's strategy only oneinstead of omputing an optimal ounter-strategy in line 3. This alsoleads to in�nite runs.These two examples, as well as several other unsound variations [Mar07℄ ofAlgorithm 2.3, are presented in [Con93℄.In terms of theoretial omplexity, Algorithms 2.2 and 2.3 do not faremuh better than Algorithm 2.1. Progress ensures that any given pair ofstrategy annot be onsidered more than one, and no more. However, inpratie, both algorithms run very fast, to the point that they are widelyonjetured to be polynomial:Conjeture 2.19 Algorithm 2.2 runs in polynomial time on any normalised

11
2
-player safety game.Conjeture 2.20 Algorithm 2.3 runs in polynomial time on any normalised

21
2
-player reahability game game.Note that the strategy improvement algorithm for 2-player parity gamesdesribed in [VJ00℄, whih is derived from Algorithm 2.3, runs in polynomialtime on 1-player games [Jur07℄. However, even if Conjeture 2.19 does nothold, one an get a better omplexity for Algorithm 2.3 by using linear pro-gramming in line 3 instead of Algorithm 2.2. As Derman showed in [Der62℄the optimal values of a 11

2
-player safety game are the solution of the linearprogram presented in Algorithm 2.4.



CHAPTER 2. REACHABILITY GAMES 27Input: a game G = (A, Reach(⊚)) suh that QE = ∅Output: Valuesminimize ∑q∈Q v(q) subjet to the onstraints:1
v(q) ≤ v(s) if q ∈ QA and s ∈ T (q)2
v(q) =

∑

s∈T (q) δ(q)(s) · v(q) if q ∈ QR3
v(q) ≥ 0 if q ∈ Q4
v(⊗) = 05
v(⊚) = 16 return v7 Algorithm 2.4: Linear programming for 11

2
-player gamesLinear programs an be solved in polynomial time [Kha79, Ren88℄, re-sulting in an overall omplexity for Algorithm 2.3 that is exponential only in

QE or QA instead of both.2.2 Permutation AlgorithmIn a joint work with Hugo Gimbert [GH08, GH09℄, we propose a new algo-rithm omputing the values of 21
2
-player reahability games. Its priniple isto hek exhaustively a speial set of pairs of strategies, among whih thereis at least one pair of optimal strategies.The underlying intuition is that the only meaningful events in a play arethe visits to random states. Between two visits, the players strive to imposewhih state will be visited next, and the result of their interation an easilybe predited. In partiular:

• only the next random state matters, not the urrent one;
• there is no reason that Eve and Adam should ever agree on a hoie.Two ourenes of suh situations, exerpted from the game of Figure 2.1,are illustrated on Figure 2.4.In Figure 2.4(a), Eve an hoose between the two random states (refusingto hoose is not onsistent with the reahability objetive). Why should shehoose b in one state and c in the other ? The two strategies �always go to

b� and �always go to c� are the only relevant ones.
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b c.1.3.4 .1.1 .2.8
(a) Self onsisteny

a b.4.4.6 .3.1 .1.1(b) Consisteny between Eve and AdamFigure 2.4: Case for ConsistenyIn Figure 2.4(b), we onsider relationships between the two players' strate-gies. From their respetive states # and 2, Eve and Adam an send the tokento either a or b. Why should they hoose the same state ? Here, only theases where Eve prefers one and Adam the other are relevant.These intuitions �inluding, but not limited to, the two ases of Fig-ure 2.4� are realized by pairs of strategies orresponding to a permutationof the random states. We de�ne permutation-based strategies and regions(2.2.1), as well as the notions of liveness and self-onsisteny (2.2.2). Ouralgorithm is an exhausitve searh for a live and self-onsistent permuation:there is always suh a permutation, and the orresponding strategies are opti-mal (2.2.3). We study then its omplexity, and present a lass of reahabilitygames where the values an be omputed in polynomial time (2.2.4).2.2.1 Strategies and regionsIn order to e�et our intuitions [Mun07℄, we introdue several permutation-based onepts. First, whenever we mention a permutation π, we mean apermutation over the k random states, suh that {π1, . . . , πk} = QR. Suh apermutation represents a �preferene order� over the random states: if Eveis given a hoie between two random states πi and πj with i > j, thenher �π-strategy� sends the token to πi. Symmetrialy, in the same situation,Adam's π-strategy sends the token to πj. For this reason, the target andsink states an often be onsidered as random states in permutation-based
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1 2 3 4 50

Figure 2.5: The single-reward game derived from Figure 2.1onepts, with the impliit assumption that they are respetively the greatestand lowest states: πk+1 = ⊚ and π0 = ⊗.A intuitive way to understand the permutation-based onepts is to on-sider a 2-player game, where the game stops after a �nite number of stepsand Adam pays a reward to Eve at the end:1. if the token reahes a state πi, Adam pays i oins;2. if there is a loop in the path, Adam has nothing to pay.The π-regions are the value regions of this game, and the π-strategies are theorresponding optimal strategies. For example, if we use the permutation
π = abcd in the game of Figure 2.1, we get the game, regions, and strategiesrepresented in Figure 2.5.In order to formalise these onepts, we de�ne an �attrator-like� deter-ministi onstrution: the deterministi attrator for Eve to a region X inthe arena A, denoted DetE(X,A) is the set of states from where Eve anensure that the token will (1) reah X (2) not ross a random state before itreahes X:De�nition 2.21 The deterministi attrator of Eve to the set X, denoted
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DetE(X,A) is omputed reursively:

X0 = X

X i+1 = X i ∪ {q ∈ QE | ∃s ∈ X i, (q, s) ∈ T }

X i ∪ {q ∈ QA | ∀s ∈ Q, (q, s) ∈ T ⇒ s ∈ X i}A random state belongs to DetE(X,A) if and only if it belongs to X. Thedual notion of deterministi trap for Eve is a region from whih Eve annotesape, exept through a random state.The π-regions are de�ned as embedded deterministi attrators to therandom states, ordered by π: Wπ[k + 1] = {⊚}, ∀1 ≤ i ≤ k, Wπ[i] =
DetE({πi, πi+1, . . . , πk},A) \ Wπ[i + 1], and Wπ[0] = {⊗}. The π-regionsonstitutes a partition of the states, so we denote by π(q) the unique integer
i suh that q ∈ Wπ[i] �in partiular, π(πi) = i. The omputation of the
π-regions of the game G) is desribed as Proedure Regions(G, π).Input: A 21

2
-player reahability game G and a permutation πOutput: The π-regions of G

W [k + 1]← {⊚}1
W [0]← {⊗}2 for (i = 1, i ≤ k, i + +) do3

W [i]← DetE({πi, . . . , πk} ∪ {⊚},A) \W [i + 1]4 end5 return W6 Proedure Regions(G, π)The π-strategies are the natural attrating and trapping strategies fol-lowing from De�nition 2.21, whih enfore Propositions 2.22 and 2.23:Proposition 2.22 If the token starts in a state of Wπ[i] and Eve plays σπ,then the token surely reahes a random state, and the �rst random state πjthat the token reahes is suh that j ≥ i.Proposition 2.23 If the token starts in a state of Wπ[i], Adam plays τπ,and the token reahes a random state, then the �rst random state πj that thetoken reahes is suh that j ≤ i.A onsequene of Propositions 2.22 and 2.23 is Proposition 2.24:



CHAPTER 2. REACHABILITY GAMES 31Proposition 2.24 Let G = (A, Reach(⊚)) be a 21
2
-player reahability gameand π be a permutation. For any state q ∈Wπ[i], we have:

v(q) ≥ min{v(πj) | j ≥ i}

v(q) ≤ max{v(πj) | j ≤ i}Proof. Proposition 2.24 follows from a tehnique of �strategy translation�similar to the one used in the proof of (2.1): both Eve and Adam an playtheir π-strategy until the token reahes a random state, and then revert toan (ε-)optimal strategy. Propositions 2.22 and 2.23 yield then the desiredinequations. �2.2.2 Evaluating a PermutationOur �rst step in order to evaluate a permutation π is to ompute its valuesfrom the π-strategies σπ and τπ: vπ = vσπ ,τπ
. We denote by vπ[i] the valueof the i-th random state in π: vπ[i] = vπ(πi). It follows immediately fromPropositions 2.22 and 2.23 that all the states in the same region share thesame π-value: π(q) = i ⇒ vπ(q) = vπ[i]. We an also interpret these valuesusing a �ompated� 1

2
-player reahability game Gπ with k + 2 states:

• Q = {0, . . . , k + 1}

• d(i)(⊗) = δ(πi)(⊗)

• d(i)(⊚) = δ(πi)(⊚)

• d(i)(j) = δ(πi)(Wπ[j])This amounts to merging eah region Wπ[i] into a single state i. Figure 2.6shows the game resulting from our running example, as a graph (2.6(a)) andas a matrix (2.6(b)).This interpretation is used in Proedure Values(G, π, W) to ompute the
π-values, using a primitive MarkovChainSolver.In the game of Figure 2.6 with the permutation π = abcd, we get vπ(a) =
vπ(b) = .4 and vπ(c) = vπ(d) = .7. As we will see, the permutation π isself-onsistent (De�nition 2.26) and live (De�nition 2.27), thus for eah i,
vπ[i] is the value of all the states in Wπ in the original game (Lemma 2.33).The notion of self-onsisteny is our equivalent to the notion of stability:in strategy-based algorithms, a �good� strategy for Eve sends the token to
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a

b

c

d

.6.4
.3 .4 .1.1.1

1.2 .6.2
(a) Graph Representation

⊗ a b c d ⊚

⊗ 1 0 0 0 0 0
a 0 .6 .4 0 0 0
b .3 .4 0 .1 .1 .1
c 0 0 0 0 1 0
d 0 0 .2 .6 .2 0
⊚ 0 0 0 0 0 1(b) Matrix RepresentationFigure 2.6: The �ompated� game GπInput: A reahability game G, a permutation π, and a partition WOutput: The π-valuesfor (i = 1, i ≤ k, i + +) do1 for (j = 0, j ≤ k + 1, j + +) do2

mc[i][j]← δ(πi)(W [j])3 end4 end5
v ←MarkovChainSolver(mc)6 return v7 Proedure Values(G, π, W)the suessor with the highest value omputed from the andidate strategy ; inpermutation-based algorithms, a �good� permutation is onsistent with thepreorder of the values omputed from the andidate permutation. We �rstde�ne onsisteny in the general ase of independent permutation and valuesfor the random states.De�nition 2.25 A permutation π is onsistent with a set of values v if andonly if for any two states πi and πj in QR, i < j ⇒ v(πi) ≤ v(πj).De�nition 2.26 A permutation π is self-onsistent if and only if it is on-sistent with vπ: for any two states πi and πj in QR, i < j ⇒ vπ[i] ≤ vπ[j].



CHAPTER 2. REACHABILITY GAMES 33Input: A permutation π and a vetor of values vOutput: The onsisteny of π and vonsistent ← true1 for (i = 1, i ≤ k, i + +) do2 onsistent ← onsistent ∧ (v[i] ≤ v[i + 1])3 end4 return onsistent5 Proedure Consistent(π, v)It an be shown that the values of a self-onsistent permutation are solu-tion to (2.1). This would be enough to get an algorithm for stopping games,as we will show that there is always a self-onsistent permutation. How-ever, the stopping redution omes with a prie, and we an avoid it with aheaper logial ondition: the notion of liveness aptures the intuitive fatthat a random state πi with a positive value always has a positive probabilityto immediately go to a better region (from Eve's point of view).De�nition 2.27 A permutation π over the set QR is live if and only if forany state πi ∈ QR, δ(πi)(∪
k+1
j>i Wπ[j]) > 0.Input: A reahability game G, a permutation π, and a partition WOutput: The liveness of π in Glive← true1 for (i = 1, i ≤ k, i + +) do2 live← live ∧ (δ(πi)(∪j>iW [j]) > 0)3 end4 return live5 Proedure Live(G, π, W)One ould think that this notion is already aptured by self-onsisteny,as it is a �bad idea� for Eve to send the token to a random state that doesnot verify the internal property. However, the hoie of the permutation alsoe�ets Adam's strategy: if he wrongly hooses to avoid a state, all the valuesmay grow, with the possible side-e�et to hide the initial mistake. We give anexample of this proess in Figure 2.7, whih zooms on a detail of Figure 2.1.Eve's strategy in # should be to send the token to b, as Adam ouldotherwise trap the play in {a, #, 2}. However, let us onsider the unlive
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Figure 2.7: Liveness does not follow from self-onsistenypermutation µ = bcad: Adam sends the token from 2 to c to avoid a; Evesends the token from # to 2 to reah either a or c. We have thus vµ(a) =
vµ(c). Atually, vµ(b) ≤ vµ(a) = vµ(c) ≤ vµ(d), so µ is self-onsistent, but the
µ-values are not the orret ones. Formally, the point of liveness is expressedby Proposition 2.28.Proposition 2.28 Let G = (A, Reach(⊚)) be a 21

2
-player reahability gameand π be a live permutation. Then, for any strategy τ for Adam,Pσπ ,τ

q (Reach(⊚) ∨ Reach(⊗)) = 1 .Proof. By Lemma 1.3, the limit of a play ρ is an end-omponent with prob-ability one. Let X be an end-omponent of Gσπ,τ . We denote the integer
i = max{j|X ∩Wπ[j] 6= ∅} by i. There are three ases:
i = 0: As G is normalised, X = {⊗}.
1 ≤ i ≤ k: By Proposition 2.22 and by de�nition of i, πi belongs to X.By liveness of π, δ(πi)(∪

k+1
j=i+1Wπ[j]) > 0. As X is an end-omponent,there is a j > i suh that Wπ[j] ∩ X 6= ∅, in ontradition with thede�nition of i.

i = k + 1: As X is strongly onneted, X = {⊚}.Proposition 2.28 follows. �In a sense, liveness is a ounterpart for the stopping property, with Propo-sition 2.28 used in the proofs in lieu of the harateristis of stopping games.Notie that liveness is not a �weaker� property: there are stopping gameswith unlive permutations (see for example Figure 2.8 on page 42).



CHAPTER 2. REACHABILITY GAMES 352.2.3 Algorithm and CorretnessOur algorithm, desribed as Algorithm 2.9, onsists then in an exhaustivesearh for a live and self-onsistent permutation.Input: A reahability game GOutput: A partition of Q and the orresponding valuesforall π ∈ Sk do1
W ← Regions(G, π)2
v ← Values(G, π, W)3 self← Consistent(π, v)4 live← Live(G, π, W)5 if (live ∧ self) then6 return (W, v)7 end8 end9 Algorithm 2.9: Permutation algorithm for reahability gamesThe remainder of this setion is dediated to the proof of its orretness:Theorem 2.29 Let G = (A, Reach(⊚)) be a 21

2
-player reahability game. Arun of Algorithm 2.9 on G terminates and returns the values of the states.Proof. The proof of Theorem 2.29 onsists of two parts, whih are provenseparately:

• There is a live and self-onsistent permutation (Lemma 2.30).
• If a permutation π is live and self-onsistent, then vπ are the optimalvalues for the regions Wπ (Lemma 2.33).

�Lemma 2.30 Let G = (A, Reach(⊚)) be a 21
2
-player reahability game. Atleast one permutation is live and self-onsistent in G.Proof. The proof of Lemma 2.30 is itself in two parts: �rst, we show thatthere is a live permutation onsistent with the values of the game (Proposi-tion 2.31); then we show that suh a permutation is self-onsistent (Propo-sition 2.32). �



CHAPTER 2. REACHABILITY GAMES 36Proposition 2.31 There is a live permutation onsistent with the values of
G.Proof. The permutation is hosen starting from πk, and going down to π1.At eah step, the state πi is hosen so that:
• v(πi) = max{v(q) | q ∈ Q \ ∪j>iWπ[i]}

• δ(πi)(∪j>iWπ[i]) > 0The existene of a suitable random state is proved by ontradition: as
Q \ ∪j>iWπ[i] is a deterministi trap for Eve, a trapping strategy for Adamensures that the token an enter ∪j>iWπ[i] only through a random transi-tion. Thus, a (non-positional) strategy for Adam whih onsists in playingthe trapping strategy until the token enters ∪j>iWπ[i] and then swith to anoptimal strategy bounds the probability of reahing ⊚ to max{v(r) | r ∈
QR \ {πi+1, . . . , πk} ∧ δ(r)(∪j>iWπ[i]) > 0}} �Proposition 2.32 Let G = (A, Reach(⊚)) be a 21

2
-player reahability game,and π be a live permutation onsistent with the optimal values v of G. Then

vπ is self-onsistent.Proof. Quite naturally, we prove that π is self-onsistent by showing thatthe π-values are the optimal values. The key arguments is that the expeted(optimal) value after n moves is onstant, when the initial state is �xed andthe players play the π-strategies. We �x an initial state q ∈ Q, and we de�ne
e : N→ [0, 1] by e(n) =

∑

s∈Q v(s) · Pσπ,τπ
q (ρn = s). We have:

• ∀s ∈ QE ,v(s) = v(σπ(s)) �by Proposition 2.24
• ∀s ∈ QA,v(s) = v(τπ(s)) �by Proposition 2.24
• ∀r ∈ QR,v(r) =

∑

s∈Q δ(r)(s) · v(t) �by (2.1)Thus, for all n ∈ N, e(n) = e(n+1), and so v(q) = e(0) = e(n) =
∑

s∈Q v(s) ·Pσπ ,τπ
q (ρn = s). As π is live, Proposition 2.28 yields Pσπ ,τπ

q (Reach(⊚) ∨
Reach(⊗)) = 1. It follows that v(q) = Pσπ ,τπ

q (Reach(⊚)) = vπ(q). By hy-pothesis, π is onsistent with v. It follows that π is self-onsistent, whihompletes the proof of Proposition 2.32. �



CHAPTER 2. REACHABILITY GAMES 37Lemma 2.33 Let G = (A, Reach(⊚)) be a 21
2
-player reahability game, and

π be a live and self-onsistent permutation. Then, the π-strategies are opti-mal.Proof. The proof is lose to the one of Proposition 2.32. We �x an initialstate q and two positional strategies σ and τ for Eve and Adam, and wede�ne the funtions f and g by: f(n) =
∑

s∈Q vπ(s) · Pσπ ,τ
q (ρn = s) and

g(n) =
∑

s∈Q vπ(s) · Pσ,τπ
q (ρn = s). We have:

• ∀s ∈ QE , vπ(s) = vπ(σπ(s)) �by (2.2)
• ∀s ∈ QA, vπ(s) = vπ(τπ(s)) �by (2.2)
• ∀s ∈ QE , vπ(s) ≥ vπ(σ(s)) �by self-onsisteny of π.
• ∀s ∈ QA, vπ(s) ≤ vπ(τ(s)) �by self-onsisteny of π.
• ∀r ∈ QR, vπ(r) =

∑

s∈Q δ(r)(s) · vπ(t) �by (2.2)It follows that ∀n ∈ N, f(n) ≤ f(n + 1) and g(n) ≥ g(n + 1). Weget immediately vπ(q) = g(0) ≥ limn→∞ g(n) ≥ Pσ,τπ
q (Reach(⊚)). As πis live, Proposition 2.28 yields Pσπ ,τ

q (Reach(⊚) ∨ Reach(⊗)) = 1, and thus
vπ(q) = f(0) ≤ limn→∞ f(n) = Pσπ ,τ

q (Reach(⊚)).Thus, σπ and τπ are o-optimal, and Lemma 2.33 follows. �2.2.4 Complexity analysisTheorem 2.34 The values and optimal strategies of a normalised reahabil-ity game G = (A, Reach(⊚)) are omputable in time O(|QR|! · (|T | · log |Q|+
|δ|)), where |δ| is the maximal bit-length of a transition probability in δ.Proof. In the worst ase, Algorithm 2.9 enumerates all the |QR|! permutationsof QR. For eah permutation π, the algorithm omputes the π-regions and
π-strategies (in time O(|T | · log |Q|), see [Cha06℄). It omputes then thevalues of the resulting 1

2
-player reahability game (in time O(|Q3

R| · |δ|), see[Dix82℄). The tests for liveness and self-onsisteny an then be performedin time O(|QR|). Theorem 2.34 follows. �The number of iterations is similar to what we get with strategy-basedalgorithms, but it depends on di�erent �gures (QR in our algorithm, QE



CHAPTER 2. REACHABILITY GAMES 38and the outdegree of Eve's states in the strategy improvement). This dif-ferene is interesting when dealing with unbalaned arenas. For example,Corollary 2.35 presents an extreme ase where our algorithm is polynomial:Corollary 2.35 For eah k, the values and optimal strategies of a normal-ized reahability game G = (A, Reach(⊚)) suh that |QR| ≤ k are omputablein time O(|Q| · |T |+ |δ|), where |δ| is the maximal bit-length of a transitionprobability in δ.The advantage of our algorithm is the simpliity of the internal loop: inomplexity terms, it is muh simpler to solve reahability games on 1
2
-playerarenas than on 11

2
-player ones; we will see in Chapter 3 that this simpliityalso allows us to adapt our algorithm to a very general lass of winningonditions.2.3 Heuristis for permutation algorithmsThe theoretial bounds on the number of loops in the permutation algorithmand the strategy improvement algorithm are di�erent, yet similar. However,an important asset of the strategy improvement is its e�ieny in pratie.Although there is no proof for Conjeture 2.20, the study of pratial asessuggests that the number of iterations is linear in the number of states.The aim of this setion is to onsider similar heuristis in the updateof permutations. We �rst desribe a very natural heuristi (2.3.1), whihworks only for 11

2
-player games (2.3.2). We present then a �mixed� heuris-ti, using both our permutation tehniques and the improvement step ofAlgorithm 2.3 (2.3.3). The resulting algorithm is orret for all 21

2
-playerreahability games.2.3.1 Value-based improvementWe �rst onsider a very simple heuristi: in eah iteration, the new permuta-tion is onsistent with the values of the former one. The resulting algorithmis desribed as Algorithm 2.10.Notie that at line 2, we require that the hosen permutation is live, aswell as onsistent with the former values. This avoids getting stuk in aself-onsistent unlive permutation, like the one presented in Figure 2.7. Theuntil ondition of line 4 an thus only be met by a live and self-onsistent



CHAPTER 2. REACHABILITY GAMES 39Input: a game G = (A, Reach(⊚))Output: the values of Grepeat1 hoose π live and onsistent with v2
v ← vπ3 until π is onsistent with v4 return v5 Algorithm 2.10: Value-based permutation improvementpermutation, so Algorithm 2.10 returns only orret results. In the ase of

11
2
-player games, suh a hoie is always possible:Lemma 2.36 Let G = (A, Reach(⊚)) be a 11

2
-player reahability game and

π be a live permutation. There is a live permutation µ onsistent with vπ.Proof. By appliation of Lemma 2.30 to the 1
2
-player game G = Gσπ , wean de�ne a live and self-onsistent permutation µ in G. As G is a 1

2
-playergame, its values do not depend on any strategies, so �self-onsisteny in G�translates diretly as �onsisteny with vπ�. The interpretation of the livenessproperty is a little more involved. It guarantees that:

∀i ∈ 1 . . . k, δ(µi)

(

⋃

j>i

Wµ[j]

)

> 0 .However, in general, Wµ[j] 6= Wµ[j]. Rather, we have Wµ[j] = Wπ[π(µj)].And, as G is an 11
2
-player game, we get Wπ[π(µj)] ⊆ DetE(µj,A). So:

⋃

j>i

Wµ[j] =
⋃

j>i

Wπ[π(µj)] ⊆
⋃

j>i

DetE(µj,A) =
⋃

j>i

Wµ[j]Thus µ is live in the game G, and Lemma 2.36 follows. �We need then to show that Algorithm 2.10 annot have an endless run.Again in the ase of 11
2
-player games, Lemma 2.38 shows that the valuesomputed through a run are growing, ensuring that eah permutation isonsidered at most one. We �rst need to establish Proposition 2.37:Proposition 2.37 Let G = (A, Reach(⊚)) be a 11

2
-player reahability game,

π be a live permutation and µ be a live permutation onsistent with vπ. Then,for any state q ∈ Q, vπ(q) ≤ vπ(µµ(q)).



CHAPTER 2. REACHABILITY GAMES 40Proof. As G is a 11
2
-player game, µ(q) is equal to max{i | q ∈ DetE(µi,A)}.Sine q ∈ DetE(ππ(q),A), it follows that µ(q) ≥ µ(ππ(q)). By onsisteny of

µ and vπ, we get vπ(µµ(q)) ≥ vπ(µµ(ππ(q))) = vπ(q). Proposition 2.37 follows.
�Lemma 2.38 Let G = (A, Reach(⊚)) be a 11

2
-player reahability game, πbe a live permutation and µ be a live permutation onsistent with vπ. Then

vπ ≤ vµProof. For a given initial state q, we de�ne the funtion f by:
f(n) =

∑

s∈Q
vπ(µµ(s)) · Pσµ

q (ρn = s) .If s is a state of Eve, the de�nition of σµ yields vπ(µµ(s)) = vπ(µµ(σµ(s))). If ris a random state, the situation is more omplex:
vπ(µµ(r)) = vπ(r) �as r is a random state

=
∑

s∈Q δ(r)(s)vπ(s) �by (2.2)
≤

∑

s∈Q δ(r)(s)vπ[µµ(s)] �by Proposition 2.37We get:
vπ(q) ≤ vπ(µµ(q)) = f(0) ≤ lim

n→∞
f(n) ≤ Pσµ

q (Reach(⊚)) = vµ(q)Lemma 2.38 follows. �Lemmas 2.36 and 2.38 yield Theorem 2.39:Theorem 2.39 Let G = (A, Reach(⊚)) be a 11
2
-player reahability game.Algorithm 2.10 terminates, and returns orret values and regions.Proof. Lemma 2.36 guarantees that the update proess is sound. Lemma 2.33ensures that Algorithm 2.10 returns only orret values. Lemma 2.38 showsthat the values are growing. Notie that the inequality is not strit: thevalues of two suessive permutations an be equal. In this ase, though, thelater is self-onsistent, so Algorithm 2.9 terminates. Theorem 2.39 follows.

� We have no proof that the worst ase omplexity of this algorithm isatually better than the omplexity of Algorithm 2.2. However, we onjeturethat it is atually polynomial:



CHAPTER 2. REACHABILITY GAMES 41Conjeture 2.40 There is a polynomial P suh that a run of Algorithm 2.10on a 11
2
-player game with n states exeutes at most P (n) loops.This onjeture is atually equivalent to the lassial onjeture for thestrategy improvement algorithm:Proposition 2.41 Conjetures 2.19 and 2.40 are equivalent.Proof. We prove this equivalene by showing that if either onjeture doesnot hold, then the other does not hold. In both ases, the proof relies on atransformation of a ounter-witness game G = (A, Reach(⊚)) into anothergame G:

¬2.19 ⇒ ¬2.40: G is a opy of G, exept that eah transition q → s isreplaed by q ↔ r → s, where r is a new random state with equalhanes to send the token to q and s. The strategies (and their val-ues) are the same in both games, but in G all of them are permutationstrategies. Likewise, the strategy improvement of Algorithm 2.2 orre-sponds to the permutation improvement of Algorithm 2.10. Thus, anyrun of Algorithm 2.2 on the game G is mathed step-by-step with a runof Algorithm 2.10 on the game G.
¬2.40 ⇒ ¬2.19: G is a opy of G with �shortut� transitions: wheneverthe player an make two suessive moves in G, e.g. q → r → s with

q, r ∈ QA, there is a diret transition q → s in G. The values of thepermutations are the same in both games. Furthermore, if π an betransformed in µ in a run of Algorithm 2.10 on G, then any π-strategyan be transformed into a µ-strategy in a run of Algorithm 2.2 on G.Thus, any run of Algorithm 2.10 on the game G is mathed step-by-stepwith a run of Algorithm 2.2 on the game G.Proposition 2.41 follows. �We have shown the orretness of Algorithm 2.10 for 11
2
-player gameswith states of Eve. The straightforward adaptation for 11

2
-player games withstates of Adam (11

2
-player safety games) works just as well, and the proofsrequire only minor modi�ations.



CHAPTER 2. REACHABILITY GAMES 422.3.2 Value-based improvement and 21
2-player gamesThe simple heuristi of Algorithm 2.10 does not work in the ase of 21

2
-player games. The �rst problem is that Lemma 2.36 does not hold anymore,as witnessed by Figure 2.8.

a b

c

.2
.2

.6

.2
.8

.5

.3 .2

Figure 2.8: Unlive valuesIn this game, a permutation is live if and only it ranks a lower than b.But, if we start from the live permutation π = cab, a problem arises: Evesends the token from # to b, and Adam sends it from 2 to c. The resultingvalues are vπ(a) = .4, vπ(b) = .2, and vπ(c) = .6. These values are totallyordered, and the only onsistent permutation is µ = bac, whih is not live.This problem ould be irumvented by baktraking to the ase of stop-ping games, as self-onsisteny guarantees optimality in this ase. This allowus to lift the liveness restrition in line 2, while guaranteeing the orretnessof the result. This works orretly in the game of Figure 2.8 �whih is stop-ping: as µ is unlive, it is not self-onsistent. Indeed, the orresponding valuesare vµ(a) = 0, vµ(b) = .2, and vµ(c) = .54. The only permutation onsistentwith vµ is κ = abc, whih is self-onsistent: vκ(a) = .16, vκ(b) = .2, and
vκ(c) = .6.However, our proof of Lemma 2.38 annot be adapted, as it relies on anotion of �progress� whih does not make sense in 21

2
-player games. Otherinvariants ould (and have) been onsidered, but to no avail: one again, wefound a ounter-example, presented in Figure 2.9, where Algorithm 2.10 getsstuk in an in�nite yle.The game of Figure 2.9 is stopping: as long as the token has not reahedone of the �nal states, it is bound to visit again one of the random states;
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Figure 2.9: In�nite runand eah of these states has a positive probability to send the token to the�nal states. Thus, the token reahes a �nal state with probability one.In this game, the only self-onsistent permutation is π = abc. The orre-sponding strategies are # → b and 2 → #, and the values are vπ(a) = .46,
vπ(2) = vπ(#) = vπ(b) = .5, and vπ(c) = .54But, if we onsider a run where the permutation µ = acb is hosen at the�rst visit to line 2, we get stuk in an in�nite run:
• The µ-strategies send the token from# to b and from2 to c. The result-ing values are vµ(a) = .82, vµ(#) = vµ(b) = .5, and vµ(2) = vµ(c) = .9.When the repeat loop ends, and the modi�ed Algorithm 2.10 goesbak to line 2, its only hoie is κ = bac.
• The κ-strategies send the token from # to a and from 2 to #. Theresulting values are vκ(2) = vκ(#) = vκ(a) = .1, vκ(b) = .5, and

vκ(c) = .18. When the repeat loop ends, and the modi�ed Algo-rithm 2.10 goes bak to line 2, its only hoie is µ = acb.The algorithm osillates endlessly between µ and κ, leading to an in�niterun. This prohibits any straightforward adaptation of Algorithm 2.10 to
21

2
-player games.2.3.3 Mixed improvementIn order to get a working permutation-improvement algorithm for the gen-eral ase of 21

2
-player games, we need to onsider an asymmetri improvement



CHAPTER 2. REACHABILITY GAMES 44step, alike to the one used in the strategy improvement algorithm. The ideais that only Eve uses her π-strategy from (2.2.1), whereas Adam plays an op-timal ounter-strategy to σπ: instead of using the π-values vπ = vσπ,τπ
, we usevπ = vσπ

. Apart from this, Algorithm 2.11 works exatly as Algorithm 2.10Input: a game G = (A, Reach(⊚))Output: the values of Grepeat1 hoose π live and onsistent with v2
v← vσπ

3 until π is onsistent with v4 return v5 Algorithm 2.11: Mixed permuation improvementNotie that at the end of the omputation, π is onsistent with vπ, whihis not self-onsisteny in the sense of De�nition 2.26. We need thus to proveanew that the values returned by Algorithm 2.11 are orret, although theproof is almost idential to the proof of Lemma 2.33.Lemma 2.42 Let G = (A, Reach(⊚)) be a 21
2
-player reahability game and

π be a live permutation suh that π is onsistent with vπ. Then vπ are thevalues of G.Proof. As Eve an ensure vπ by playing σπ, we just need to show thatAdam an on�ne the probability of Reach(⊚) to vπ. In general an optimalounter-strategy to σπ is not satisfying in that respet. However, we an usethe π-strategy τπ of Adam, just as in the proof of Lemma 2.33. We �x aninitial state q and a positional strategy σ for Eve, and we de�ne the funtion
f by: f(n) =

∑

s∈Q vπ(s) · Pσ,τπ
q (ρn = s). We have:

• ∀s ∈ QA,vπ(s) = vπ(τπ(s)) �by onsisteny of π and vπ

• ∀s ∈ QE ,vπ(s) ≥ vπ(σ(s)) �by onsisteny of π and vπ

• ∀r ∈ QR,vπ(r) =
∑

s∈Q δ(r)(s) · vπ(t)It follows that f is inreasing, so:vπ(q) = f(0) ≥ lim
n→∞

f(n) ≥ Pσ,τπ

q (Reach(⊚)) .



CHAPTER 2. REACHABILITY GAMES 45Lemma 2.42 follows. �Another onsequene of using this notion of π-values is that the loop'sinner omplexity is muh higher: we need to ompute the values of a 11
2
-player reahability game, instead of a 1

2
-player reahability game. This anbe done by any 11

2
-player game algorithm: strategy improvement, linearprogramming, or value-based permutation improvement (Algorithms 2.2, 2.4,and 2.10).The remainder of the proof of orretness for Algorithm 2.11 is very loseto the proof of Algorithm 2.10, with some extra omplexity to aount for thepresene of Adam's states. For starters, the soundness of line 2, is resolvedby Lemma 2.43:Lemma 2.43 Let G = (A, Reach(⊚)) be a 21

2
-player reahability game and

π be a live permutation. There is a live permutation µ onsistent with vπ.Proof. By appliation of Lemma 2.30 to the 11
2
-player game G = Gσπ , we ande�ne a live and self-onsistent permutation µ in G. By Lemma 2.33, µ isonsistent with vπ. The liveness of µ in G guarantees that:

∀i ∈ 1 . . . k, δ(µi)

(

⋃

j>i

Wµ[j]

)

> 0 .By de�nition of the µ-regions in G, ∪j>iWµ[j] is equal to DetE(∪j>i{µj},A
σπ),whih is a subset of DetE(∪j>i{µj},A) = ∪j>iWµ[j]. Thus µ is live in G, andLemma 2.43 follows. �The absene of yles is proved through a notion of progress:We need then to show that Algorithm 2.10 annot have an endless run.Again in the ase of 11

2
-player games, Lemma 2.38 shows that the valuesomputed through a run are growing, ensuring that eah permutation isonsidered at most one. We �rst need to establish Proposition 2.44:Proposition 2.44 Let G = (A, Reach(⊚)) be a reahability game, π be alive permutation and µ be a live permutation onsistent with vπ. Then, forany state q ∈ Q, vπ(q) ≤ vπ(µµ(q)).Proof. By de�nition, we have �(q) = max{i | q ∈ DetE(∪j≥i{µj},A

σπ)},while µ(q) = max{i | q ∈ DetE(∪j≥i{µj},A)}. Thus, �(q) ≤ µ(q). As µ isonsistent with vσπ
, we get:

vσπ
(µµ(q)) ≥ vσπ

(µ�(q)) = vσπ ,�µ
(q) ≥ vσπ

(q) .



CHAPTER 2. REACHABILITY GAMES 46Proposition 2.44 follows. �Lemma 2.45 Let G = (A, Reach(⊚)) be a reahability game, π be a livepermutation and µ be a live permutation onsistent with vσπ
. Then vσπ

≤ vσµProof. We �x an initial state q and a strategy τ for Adam, and we de�ne thefuntion f by f(n) =
∑

s∈Q vσπ
(µµ(s)) · Pσµ,τ

q (ρn = s). For a state s of Eve,we have by de�nition µ(s) = µ(σµ(s)), so vσπ
(µµ(s)) = vσπ

(µµ(σµ(s))). For astate of Adam, we have µ(s) ≤ µ(τ(s)), so the onsisteny of µ and vσπ
yields

vσπ
(µµ(s)) ≤ vσπ

(µµ(τ(s))). For a random random state r, the argument is:
vσπ

(µµ(r)) = vσπ
(r) �as r is a random state

=
∑

s∈Q δ(r)(s)vσπ
(s) �by (2.1)

≤
∑

s∈Q δ(r)(s)vσπ
(µµ(s)) �by Proposition 2.44We get:

vσπ
(q) ≤ vσπ

(µµ(q)) = f(0) ≤ lim
n→∞

f(n) ≤ Pσµ,τ
q (Reach(⊚)) = vσµ,τ (q) .As τ is an arbitrary strategy of Adam, we an onlude that vσπ

(q) ≤ vσµ
(q),and Lemma 2.45 follows. �Lemmas 2.43 and 2.45 yield the orretness of Algorithm 2.11:Theorem 2.46 Algorithm 2.11 terminates and returns the values of its in-put.Proof. Lemma 2.43 guarantees that the update proess is sound. Lemma 2.42ensures that Algorithm 2.11 returns only orret values. Lemma 2.45 showsthat the values are growing, so there are no in�nite runs. Theorem 2.46follows. �We also onjeture that Algorithm 2.11 is polynomial:Conjeture 2.47 Algorithm 2.11 runs in polynomial time in the size of itsinput.However, we were only able to establish that this onjeture is strongerthan its equivalent for strategy improvement:Proposition 2.48 If Conjeture 2.47 holds, then Conjeture 2.20 holds.Proof. This side of the proof of Proposition 2.41 works just as well in thease of 21

2
-player games. �



CHAPTER 2. REACHABILITY GAMES 472.4 AfterwordWe proposed a new approah to the quantitative solution of 21
2
-player reah-ability games. Our motivation in doing so is twofold.

• First, the omplexity we get is orthogonal with the usual strategy-basedapproah: permutation algorithms are �xed-parameter tratable whenthe parameter is the number of random states in the game, whereas theomplexity of strategy-improvement algorithms depends on the numberof possible strategies for either player.
• Seond, the removal of the stopping hypothesis makes our approahmuh more �exible, as we demonstrate in Chapter 3 by extending apermutation algorithm for all pre�x-independent games.An intriguing question, en route to the huge endeavour of �nding a poly-nomial algorithm omputing the values of 21

2
-player reahability games, iswhether our permutation-improvement algorithm is (strongly) polynomialon 11

2
-player games.



Chapter 3Pre�x-independent onditions�Those who do not remember the past are ondemned to repeat it.�The Life of ReasonGeorge SantayanaAfter our onsiderations on the most spei� ase of reahability games,we take the opposite diretion in this hapter, and ponder the very generalase of games with pre�x-independent winning onditions. A ondition ispre�x-independent if adding a �nite pre�x to a play does not hange thewinner. In the even more general ase of pre�x-losed onditions, adding a�nite pre�x may hange a play winning for Adam into one winning for Eve,but not the other way round.One of the main motivation for studying pre�x-independent onditions isthat they subsume parity onditions. So, even though not all regular ondi-tions are pre�x-independent, our results have diret onsequenes for regulargames. On a veri�ation point of view, pre�x-independene orresponds toases where loal glithes are tolerated in the beginning of a run, as long asthe spei�ation is met in the limit, in the spirit of self-stabilising protools.Finally, one of the most popular payo� funtions in eonomi games, themean-payo� funtion, is also pre�x-independent.In Setion 3.1, we study the relations between the di�erent winning re-gions in pre�x-independent games, while Setion 3.2 uses them from an al-gorithmi point of view. Setion 3.3 takes on the quantitative problems, andshows that many results of Chapter 2 arry over to pre�x-independent games.48



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 493.1 Winning regionsIn this setion, we ontemplate the qualitative problems of pre�x-independentgames from an abstrat point of view, and look for relations between the dif-ferent qualitative regions. These relations an be sorted in three ategories:Loose inlusions: Our �rst question is whether the three �weak� re-gions (heroi, positive, and bounded) and the three �strong� regions (limit-one, almost-sure, and sure) really are di�erent for pre�x-independent games.In safety games, the �strong� regions are equal [dAHK98℄; in regular games,the limit-sure and almost-sure regions are equal, but not the sure region[dAH00℄.Existential and universal properties: A seond type of propertiesrelates the emptiness or ompleteness of two di�erent regions for the sameplayer. For example, the universal and existential bounded-limit propertiesof pre�x-independent games [Cha07a℄1 are:
WinW ,≫0

E (A) = Q =⇒WinW ,∼1

E (A) = Q

WinW ,∼1

E (A) = ∅ =⇒WinW ,≫0

E (A) = ∅Determinay: Last but not least, determinay properties state thatfrom any state of the game, either Eve or Adam has a winning strategy� for dual notions of winning. In 2-player games, there is not muh todo beyond the pure determinay of Borel games by Martin [Mar75℄. Hisquantitative determinay of 21
2
-player games[Mar98℄, however, is not whollysatisfying: the regions WinW ,≥.5

E (A) and WinW ,≥.5
A (A) over the whole graph,but they are not disjoint.We �rst disuss the evolution of values and σ-values in pre�x-independentgames (3.1.1). This prompts us to de�ne reset strategies, a onstrutionwhih builds onditional almost-sure strategies (3.1.2). In partiular, we usethem to prove: that positive and bounded regions, limit-one and almost-sure regions, are equal in pre�x-independent games; universal and existentialpositive-almost properties for pre�x-independent games; and the qualitativedeterminay of pre�x-independent games (3.1.3).1It is alled a positive-limit property in the paper, but depends on the existene of astate with positive value: this is a �bounded� state, aording to [dAH00℄'s taxonomy.



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 503.1.1 Values and σ-valuesIn pre�x-independent games, as in reahability games, the value of a pre�xis the value of its last state. We an thus use strategy translations to derivethe value of a state from its owner and the value of its suessors:
∀q ∈ QE ,v(q) = max{v(s) | (q, s) ∈ T }

∀q ∈ QA,v(q) = min{v(s) | (q, s) ∈ T } (3.1)
∀q ∈ QR,v(q) =

∑

(q,s)∈T
δ(q)(s) · v(s)However, there is no �target state�, whose value is �xed to one, nor anotion of �stopping games�, with a unique solution to (3.1). This system isthus insu�ient to the task of omputing the values. Still, it yields Proposi-tion 3.1:Proposition 3.1 Let A be an arena, and W a pre�x-losed winning ondi-tion. The region WinW ,∼1

A (A) � the region with value 0 � is a trap for Eve,and the WinW ,∼1

E (A) � the region with value 1 � is a trap for Adam.If pure and positional strategies were su�ient for pre�x-independentgames, we ould use similar equations for the values of the strategies. Asthis is not the ase, we have to satisfy ourselves with in�nite systems on the
σ-values of the pre�xes onsistent with a pure2 strategy σ:De�nition 3.2 The σ-value of a �nite play w onsistent with a pure strategy
σ for Eve is the in�mum of the {σ, τ}-values under the assumptions that wis a pre�x of the ensuing play:

vσ(w) = inf
τ
Pσ,τ

w0
(W | ρ0 = w0, ρ1 = w1, . . .) .We an derive an in�nite system of equations on the σ-values:2Most of the results on σ-values and reset strategies ould be adapted for semi-randomised strategies � with some extra aution. However, they are useless for strategieswith random memory.



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 51if q ∈ QE , vσ(wq) = vσ(wq · σ(wq))if q ∈ QA, vσ(wq) = min{vσ(wqs) | (q, s) ∈ T } (3.2)if q ∈ QR, vσ(wq) =
∑

(q,s)∈T
δ(q)(s) · vσ(wqs)Using σ-values, we an give an eduated opinion on the outome on theplay. In partiular, for any positive real number η < 1, we de�ne:

Lη = {ρ ∈ Ωσ | ∃i, vσ(ρ0 . . . ρi) ≤ η} .Proposition 3.3 Let q be a state of Q, τ be a strategy for Adam, and η <
ν ≤ vσ(q) be two positive real numbers. We have:Pσ,τ

q (Lη) ≤
1− ν

1− η
.Proof. For any �nite play u suh that vσ(u) ≤ η, we de�ne a strategy τu suhthat vσ,τu

(u) ≤ η. Consider now the strategy θ, de�ned by:
• if for any pre�x u of x, vσ(u) > η, θ(x) = τ(x);
• if u is the shortest pre�x of x suh that v(u) ≤ η, θ(x) = τu(x).It is lear that Pσ,τ

q (Lη) = Pσ,θ
q (Lη), and that Pσ,θ

q (W | Lη) ≤ η. As Pσ,θ
q (W) ≥

ν, we get:
ν ≤ η · Pσ,τ

q (Lη) + (1− Pσ,τ
q (Lη)) .Proposition 3.3 follows. �Proposition 3.4 Let q be a state of Q, τ be a strategy for Adam, and η bea positive real number. We have:Pσ,τ

q (W | ¬Lη) = 1 .Proof. For any integer n, we de�ne the funtion ϕn, from Ωσ,τ
q to [0, 1] by

ϕn(ρ) = vσ,τ (ρ0 . . . ρn). By Levy's law [Dur96℄,Pσ,τ
q ( lim

n→∞
Eσ,τ

q ϕn = 1W) = 1 .Now, if ρ 2 Lη, we get,
∀n, ϕn(ρ) = vσ,τ (ρ0 . . . ρn) ≥ vσ(ρ0 . . . ρn ≥ η ,so limn→∞ ϕn(ρ) 6= 0, Pσ,τ

q (W | ¬Lη) = 1, and Proposition 3.4 follows. �



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 523.1.2 Reset strategiesThis suggests a way to improve a pure strategy with a �reset� proedure fora given η: if the value of the pre�x drops below η, while the value of theurrent state is stritly greater than η, it is a better idea to forget the pastand restart with a lean slate.De�nition 3.5 The reset strategy of σ with respet to η, denoted by σ↓η, isa strategy with memory, whose memory states are plays of A onsistent with
σ. Its memory-update and next-move funtion are de�ned as follows:

σn
↓η(w, q) =

{

σ(q) if vσ(wq) ≤ η ∧ vσ(q) > η
σ(wq) otherwise

σu
↓η(w, q) =

{

q if vσ(wq) ≤ η ∧ vσ(q) > η
wq otherwiseWe de�ne some shorthand notation to simplify the manipulation of reset-related events:

Ri
η = {ρ ∈ Ωσ↓η | there are i resets in ρ} ,

R∞
η =

⋂

i∈NRi
η .Proposition 3.6 Let q be a state of Q and τ be a strategy for Adam. Wehave: Pσ↓η ,τ

q (R∞
η ) = 0 .Proof. Let ν = min{vσ(s) | s ∈ Q∧ vσ(s) > η}. The key observation is that:

∀i,Pσ↓η ,τ
q (Ri+1

η | Ri
η) ≤

1− ν

1− η
. (3.3)Indeed, after the ith reset, the token is in a state whose σ-value is greaterthan η (and thus greater or equal than ν), and Eve plays σ as if the playjust started. Thus, by Proposition 3.3, the probability that the σ-value ofthe �nite play in memory will ever drop below η is at most 1−ν

1−η
, and (3.3)follows. This ompletes the proof of Proposition 3.6.

�



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 53Proposition 3.7 Let q be a state of Q, and τ be a strategy for Adam. Wehave: Pσ↓η ,τ
q (W | ∃i, ∀j ≥ i, vσ(ρj) > η) = 1 .Proof. By Proposition 3.6, Pσ↓η ,τ

q (R∞
η ) = 0, so we an3 onsider only theplays with a �nite number of resets. Let us onsider the ��nal� memoryafter the play: it is a play onsistent with σ whih does not verify Lη. ByProposition 3.4 it is winning for Eve with probability one, and Proposition 3.7follows from the fat that W is pre�x-independent.

�3.1.3 LinksWe an now use reset strategies in order to expose several links between thedi�erent notions of winning for pre�x-independent games. Our �rst result isthat, in pre�x-independent games, there is no need to distinguish betweenpositive and bounded regions, nor between limit-one and almost-sure regions:Theorem 3.8 Let A be an arena, and W a pre�x-independent winning on-dition. We have:
WinW ,∼1

E (A) = WinW ,1
E (A)

WinW , >0

E (A) = WinW ,≫0

E (A)Proof. Let us start with the proof of WinW ,∼1

E (A) = WinW ,1
E (A). We hoosea real number η suh that ∀q /∈WinW ,∼1

E (A), v(q) < η < 1 and a strategy σsuh that ∀q ∈ WinW ,∼1

E (A), vσ(q) > η. The proof onsists then in showingthat σ↓η is almost-sure in WinW ,∼1

E (A). By Proposition 3.1, neither Adamnor Random an leave WinW ,∼1

E (A), and by De�nition 3.5, Eve does not:she ould leave only if the value of the pre�x was below η, and she wouldsooner reset her memory. So, for any play ρ starting in WinW ,∼1

E (A) andonsistent with σ↓η, ∀i, vσ(ρi) > η, and by Proposition 3.7, Pσ↓η ,τ
q (W) = 1.The seond equation, WinW , >0

E (A) = WinW ,≫0

E (A) follows from the �rstapplied to Adam, as ¬W also is pre�x-independent:
WinW ,≫0

E (A) = Q \WinW ,∼1

A (A) = Q \WinW ,1
A (A) ⊇WinW , >0

E (A)3Yes we an!
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�Theorem 3.8 does not hold for games with ontext-free onditions, in�nitearenas, or onurrent moves: in eah of the three games of Figure 3.1, thevalue of the initial state is 1, yet Eve has no almost-sure strategy.

a b b
W = anbn⊚(a) Context-free ondition

1|1

0|0

0|1

1|0

W = Reach ⊚(b) Conurrent moves
· · · · · ·

.2 .8 .2 .8 .2 .8
W = Avoid⊗() In�nite arenaFigure 3.1: Limit-one is not almost-sureOur seond result is the positive-almost property of pre�x-independentgames.Theorem 3.9 (Positive-almost property) Let A be an arena, and W apre�x-independent winning ondition. We have:

WinW , >0

E (A) = Q =⇒ WinW ,1
E = Q

WinW , >0

E (A) 6= ∅ =⇒ WinW ,1
E 6= ∅



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 55Proof. By Theorem 3.8, WinW , >0

E (A) = Q ⇒ WinW ,≫0

E (A) = Q. As Q is�nite, we an hoose a real number ν suh that ∀q ∈ Q, ν < v(q), and astrategy σ suh that ∀q ∈ Q, vσ(q) > ν. Let η be a real number suh that
η < ν. For any play ρ of A, ∀i, vσ(ρi) > η, so Proposition 3.7 yields thealmost sureness of σ↓η.The seond equation follows from the �rst and Theorem 3.8 to Adam:

WinW , >0

E (A) 6= ∅ =⇒ WinW ,1
A (A) 6= Q

=⇒ WinW , >0

A (A) 6= Q

=⇒ WinW ,≫0

A (A) 6= Q

=⇒ WinW ,∼1

E (A) 6= ∅

=⇒ WinW ,1
E (A) 6= ∅This onludes the proof of Theorem 3.9. �Although the formal prof is out of the sope of this work, Proposition 3.7and a large part of the proof of Theorem 3.9 hold in the more general ase ofonurrent pre�x-losed games. Theorem 3.8 does not, so the proof annot befully translated. Indeed, the games of Figure 3.1 are also ounter-examplesfor Theorem 3.9. Still, we ould derive a universal bounded-almost propertyand an existential positive-limit property for these games:Claim 3.10 Let A be a onurrent arena, and W a pre�x-losed winningondition. We have:

WinW ,≫0

E (A) = Q =⇒ WinW ,1
E (A) = Q

WinW , >0

A (A) 6= ∅ =⇒ WinW ,∼1

A (A) 6= ∅Last, but not least of our triptyh is Theorem 3.11, whih extends quan-titative determinay for pre�x-independent games:Theorem 3.11 (Qualitative determinay) Let G = (A,W) be a pre�x-independent 21
2
-player game. We have:

WinW , >0

E (A) ∪WinW ,1
A (A) = Q

WinW ,1
E (A) ∪WinW , >0

A (A) = Q



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 56Proof. Theorem 3.11 follows diretly from Theorem 3.8 and the quantitativedeterminay of Borel games. �By ontrast with Theorem 3.8, we were not able to �nd ounter-examplesfor natural extensions of Theorem 3.11. In partiular, the three games ofFigure 3.1 are qualitatively determined, and the qualitative determinay ofall Blakwell games is still an open problem.3.2 Fix-points algorithmsWe onsider now the problems from an algorithmi point of view, and showhow we an use some algorithms as reursive proedures in others. We on-sider �rst pre�x-losed games, and introdue the notion of partial algorithm,whih uni�es some lassial proof tehniques used as muh in pure games[Zie98, JPZ06, Hor07b℄ as in stohasti games [CdAH04, Hor07a℄ (3.2.1).In pre�x-independent games, almost-sure algorithms are partial algorithms,whih yields several results on the omplexity of almost-sure and positiveproblems, as well as almost-sure and positive strategies.3.2.1 Partial algorithmsIn pre�x-losed games, if Eve has a positive strategy from one state, herattrator to this state also belongs to her positive region. This is very use-full from an algorithmi point of view, sine the remainder of the arena isa stritly smaller sub-arena, whih allows reursive omputations. Partialalgorithms are orales tailored speially to take advantage of this:De�nition 3.12 A partial algorithm of Eve for a pre�x-independent ondi-tion W over C takes as argument an arena over C, and returns a region Xsuh that:
• X ⊆WinW , >0

E (A);
• X = ∅ ⇐⇒WinW , >0

E (A) = ∅.Algorithm 3.1 uses a partial algorithm for W-games as a parameter, andtakes a W-game as input. It returns the positive region of Eve, and thealmost-sure region of Adam.



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 57Parameter: A partial algorithm partial for W-gamesInput: A game G = (A,W)Output: (WinW , >0

E (A), WinW ,1
A (A))

WE = ∅;1
B = A;2 while partial(B,W) 6= ∅ do3

WE ←WE ∪AttrE(partial(B),B);4
B ← B \ AttrE(partial(B),B);5 end6 return (WE ,B)7 Algorithm 3.1: Fix-point algorithmWe an de�ne a positive strategy σ for Eve based on a run of Algo-rithm 3.2: in the ith iteration, we denote the region WinW ,1

E (B) by Xi,an almost-sure strategy for Eve from Xi in (B,W) by σi, and the region
AttrE(Xi,B) \Xi by Yi. The strategy σ uses a top-level memory whih tellswhat is the lowest (i.e. earliest) i for whih the token has already visited Xi,and plays aording to σi, unless
• either the token is in a region Yj with j < i: Eve plays her attratorto Xj ∪∪ℓ<j(Xℓ ∪ Yℓ) and resets � at eah step � her memory to theinitial memory state of σi;
• or the token is in a region Xj with j < i: Eve swithes her top-levelmemory to j (and starts playing aording to σj).Notie that partial algorithms an also be used in 2-player games, toompute the (sure) regions of the players. In terms of omplexity, the Algo-rithm 3.1 requires only the omputation of |Q| attrators and partial algo-rithms:Lemma 3.13 Let W be a pre�x-losed winning ondition on C. If there isa partial algorithm of Eve for W-games whose time omplexity on an arena

A on C is t(A) then Algorithm 3.1 omputes the positive winning region ofEve (and thus the almost-sure region of Adam) in time |Q| · (|T |+ t(A)).



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 583.2.2 Swithing algorithmIn pre�x-independent games almost-sure algorithms are partial algorithms:it is lear that the almost-sure region of Eve is a subset of her positive region,and by the positive-almost property (Theorem 3.9, page 54), the former isempty if and only if the latter is. The �xpoint algorithm transforms thenany almost-sure algorithm into a positive algorithm. Notie that ¬W ispre�x-independent, so we an also transform a positive algorithm into analmost-sure algorithm: hene the name �swithing algorithm�.Parameter: An algorithm omputing (WinW,1
E , WinW, >0

A )Input: A game G = (A,W)Output: (WinW , >0

E (A), WinW ,1
A (A))

WE = ∅;1
B = A;2 while WinW ,1

E (B) 6= ∅ do3
WE ←WE ∪AttrE(WinW ,1

E (B),B);4
B ← B \ AttrE(WinW ,1

E (B),B);5 end6 return (WE ,B)7 Algorithm 3.2: Swithing algorithmTheorem 3.14 follows diretly from Lemma 3.13:Theorem 3.14 Let W be a pre�x-independent winning ondition on C. If,for any arena A on C, we an ompute WinW ,1
E (A) (and WinW , >0

A (A)) intime t(A), then we an ompute WinW , >0

E (A) (and WinW ,1
A (A)) in time |Q| ·

(|T |+ t(A)).Another onsequene of the swithing algorithm is that positive strategiesrequire no more memory than almost-sure strategies. We de�ne �rst theonept of residually almost-sure strategies:De�nition 3.15 A strategy with memory is said to be residually almost sureif and only if for any state q and memory state m, vσ(q, m) = 1.Lemma 3.16 In any pre�x-independent game G, if there is a pure (resp.semi-randomised, resp. randomised) almost-sure strategy with memory Υ,



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 59there is a pure (resp. semi-randomised, resp. randomised) residually almost-sure strategy with memory Υ.Proof. Let σ be a almost-sure strategy with memory. We build the residuallyalmost-sure strategy ς on the same memory states. For any state q andmemory state m, we have:
• if there is a state q0 and a strategy τ suh that Pσ,τ

q0
(Reach(q, m)) > 0,

ς(q, m) = σ(q, m);
• otherwise, ς(q, m) = σ(q, m0).If σ is pure or semi-randomised, it is lear for any state q and memory state m,

(q, m) is reahable implies vσ(q, m) = 1, as Adam ould monitor the memoryand start playing a ounter-strategy when the value drops below one. If σ isa strategy with random memory, all he ould do would be to try a pre�x andguess Eve's memory, but this is enough to guarantee a positive probabilityof winning. Notie that this onstrution ould be done for bounded pureand semi-randomised strategies, but not for bounded strategies with randommemory. �Residually almost-sure strategies an then be used as omponents for apositive strategy on WinW , >0

E (A):Theorem 3.17 If there are almost-sure strategies with memory at most Υ,there are bounded strategies with memory at most Υ.Proof. By ontrast with the pre�x-losed ase, there is no need to rememberthe smallest i suh that Xi has been visited: the omposition of residuallyalmost-sure and attrator strategies is solely spatial:
• if q belongs to Xi, σ(q, m) = σi(q, m);
• if q belongs to Yi, σ(q, m) = (−→aE(Xi ∪

⋃

ℓ<j(Xℓ ∪ Yℓ))(q), m).
�3.3 Values and optimal strategiesThe values of pre�x-independent games G = (A,W) are usually omputedby hybrid algorithms, whih merge a qualitative algorithm forW-games with



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 60a quantitative algorithm for reahability games. For example, one an guessthe values of the states, and use a qualitative algorithm to hek neessaryand su�ient onditions on the value regions: see [CdAH05℄ for Rabin andStreett games, [Cha07℄ for Muller games, and [CHH08℄ for �nitary games.It is also possible to adapt the strategy improvement algorithm when one ofthe players has positional strategies: see [CJH04℄ for parity, and [CH06b℄ forRabin games. Finally, the problem of pre�x-independent 11
2
-player gamesan be solved by omputing �rst the almost-sure region, and then the valuesof the reahability game to this region [Cha07a℄.We use our permutation algorithm as an universal onverter: from analmost-sure algorithm for W-games, we derive a meta-algorithm omputingthe values. As a matter of fat, the resulting algorithm is exeedingly loseto the permutation algorithm for reahability games. The only di�erene isin the omputation of the regions: instead of using deterministi attrators,Proedure Metaregion(G, π) omputes almost-sure winning regions. Apartfrom that, Algorithm 3.3 is a arbon opy of Algorithm 2.9.Input: A pre�x-independent game GOutput: A partition of Q and the orresponding valuesforall π ∈ Sk do1

W ← Metaregions(G, π)2
v ← Values(G, π, W)3 self← Consistent(π, v)4 live← Live(G, π, W)5 if (live ∧ self) then6 return (W, v)7 end8 end9Algorithm 3.3: Permutation Algorithm for pre�x-independent gamesAll the π-onepts of Setion 2.2 an be adapted for pre�x-independentonditions, most of the time with only minute di�erenes. However, the in-tuitions behind these onepts are gone: regions an be empty, π-values maybe di�erent from the values of the π-strategies, and so forth. So, althoughregions, strategies, and values are de�ned for any permutation (3.3.1), theydo not make muh sense in general. On the other hand, the key properties oflive and/or self-onsistent permutations still hold mutatis mutandis (3.3.2).



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 61We use them to prove the orretness of Algorithm 3.3, and study its om-plexity (3.3.3). A diret onsequene is that optimal strategies need exatlyas muh memory as almost-sure strategies (3.3.4).3.3.1 π-onepts for pre�x independent onditionsAs in the ase of 21
2
-player reahability games, our �rst step is to normalisethe games we onsider, by merging all the states of WinW ,1

A (A) into the sinkstate ⊗, and all the states of WinW ,1
E (A) into the target state ⊚. The winningonditionW is modi�ed aordingly: Reach ⊚ =⇒W and Reach⊗ =⇒ ¬W.The de�nition of the π-regions is also lose to the ase of reahabilitygames:

• Wπ[k + 1] = {⊚}

• Wπ[i] = Win
W∨Reach(∪j≥i{πj}),1
E (A) \ ∪j>iWπ[j]

• Wπ[0] = {⊗}Input: A pre�x-independent game G and a permutation πOutput: The π-regions of G
W [k + 1]← {⊚}1
W [0]← {⊗}2 for (i = 1, i ≤ k, i + +) do3

W [i]←Win
W∨Reach(∪j≥i{πj}),1
E (A) \ ∪j>iWπ[j]4 end5 return W6 Proedure Metaregions(G, π)However, we need to ompute an almost-sure region, in lieu of a deter-ministi attrator: a random state πi may thus belong to a region Wπ[j] with

i < j (but not i > j). In this ase, the region Wπ[i] is empty.Eve's π-strategy σπ is a spatial ombination of residually almost-surestrategies: in Wπ[i], she plays a residually almost-sure strategy with respetto the objetive W ∨ Reach(∪j≥i{πj}).Adam's π-strategy τπ is a spatial ombination of reset strategies: in Wπ[i],he plays a bounded strategy of value η with respet to the objetive W ∨
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Reach(∪j≥i{πj})), whih is reset when the value of the pre�x drops below η

2
.By Proposition 3.7, if any region is visited in�nitely often, Adam wins withprobability one, and Proposition 3.18 follows:Proposition 3.18 Let π be a permutation, and τπ be the orresponding π-strategy for Adam. For any initial state q and strategy σ of Eve, we have:Pσ,τπ

q (¬W ∨Reach ⊚) = 1The vetor of π-values for the states of QR is omputed from the 1
2
-playerreahability game Gπ de�ned as follows:

• Q = QR ∪ {⊗} ∪ {⊚}

• d(πi)(⊗) = δ(πi)(⊗)

• d(πi)(⊚) = δ(πi)(⊚)

• d(πi)(πj) = δ(πi)(Wπ[j])For any 1 ≤ i ≤ k, vπ[i] is the value of πi in Gπ. The assoiated valuesfor the states are de�ned by: q ∈ Wπ[i] ⇒ vπ(q) = vπ[i]. Notie that if
πi ∈ Wπ[j], vπ(πi) = vπ[j], and not neessarily vπ(πi) = vπ[i]. By ontrastwith the ase of reahability game, it is not true in general that vπ = vσπ ,τπ

.3.3.2 Liveness and self-onsistenyThe notions of (self-)onsisteny and liveness need no tinkering from reaha-bility: De�nitions 3.19, 3.21, and 3.23 are arbon opies of De�nitions 2.27,2.25, and 2.26. In the same way, we prove equivalents of the key properties:Propositions 3.20 and 3.22 replae Propositions 2.28 and 2.31. An extraproposition, Proposition 3.24, deals with displaed random states.De�nition 3.19 A permutation π over the set QR is live if and only if forany 1 ≤ i ≤ k, δ(πi)(∪j>iWπ[j]) > 0.Proposition 3.20 Let π be a live permutation, and σπ be the orresponding
π-strategy for Eve. For any strategy τ of Adam, we have:Pσπ ,τ

q (W ∨ Reach⊗) = 1



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 63Proof. Let q be a state of Q, τ be a strategy for Adam, and Stuck(i) be theevent �Inf(ρ)∩Wπ[i] 6= ∅∧ Inf(ρ)∩{πi, . . . , πk} = ∅�. By de�nition of σπ, forany 1 ≤ i ≤ k, we have Pσπ,τ
q (Stuck(i)∧¬W) = 0. By the liveness property,for any 1 ≤ i ≤ k, we have Pσπ ,τ

q (πi ∈ Inf(ρ) ∧ Inf(ρ) ∩ ∪j>iWπ[j] = ∅) = 0.Proposition 3.20 follows. �De�nition 3.21 A permutation π is onsistent with a set of values v if andonly if for any two states πi and πj in QR, i < j ⇒ v(πi) ≤ v(πj).Proposition 3.22 There is a live permutation onsistent with the values of
G.Proof. The permutation is hosen starting from πk, and going down to π1.At eah step, the state πi is hosen among the ones suh that:
• v(πi) = max{v(q) | q ∈ QR \ {πi+1, . . . , πk}}

• δ(πi)(∪j>iWπ[i]) > 0There is always suh a state: otherwise, the set X of states whose value ismaximal in Q \ ∪j>iWπ[j] would be a trap for Adam, and the states of Xhave value 1, in ontradition with the �normalised� hypothesis. �De�nition 3.23 A permutation π is self-onsistent if and only if it is on-sistent with vπ: for any two states πi and πj in QR, i < j ⇒ vπ[i] ≤ vπ[j].Proposition 3.24 Let π be a self-onsistent permutation, and i and j betwo integers suh that i < j and πi ∈ Wπ[j]. Then for all ℓ suh that
δ(πi)(Wπ[ℓ]) > 0, vπ[i] = vπ[j] = vπ[ℓ].Proof. As πi ∈ Wπ[j], δ(πi)(Wπ[ℓ]) > 0 ⇒ ℓ ≥ j. By self-onsisteny,
ℓ ≥ j ⇒ vπ[ℓ] ≥ vπ[j], so vπ[i] ≥ vπ[j]. But, again by self-onsisteny,
vπ[i] ≤ vπ[j]. So vπ[i] = vπ[j], and, δ(πi)(Wπ[ℓ]) > 0 ⇒ vπ[i] = vπ[ℓ].Proposition 3.24 follows. �3.3.3 Corretness of Algorithm 3.3Now that all the piees are there, we an proeed to the main theorem:



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 64Theorem 3.25 Let G = (A,W) be a pre�x-independent game. A run ofAlgorithm 3.3 on G terminates and returns the values of the states.Proof. Theorem 3.25 is proved as Theorem 2.29, by two independent lemmas:
• there is a live and self-onsistent permutation (Lemma 3.26);
• if a permutation π is live and self-onsistent, then vπ are the optimalvalues for the regions Wπ (Lemma 3.27).

�Lemma 3.26 There is a live and self-onsistent permutation.Proof. The �rst part of this proof was to show that there is a live permutation
π onsistent with the values of the game (Proposition 3.22). The point isnow to prove that the π-values are the values of G. These values are onstantover the π-regions:

q ∈WinW∨Reach X,1
E (A)⇒ v(q) ≥ min{v(q) | q ∈ X}

q /∈WinW∨Reach X,1
E (A)⇒ v(q) ≤ max{v(r) | r ∈ QR \X}Thus, the relations between the values of the π-regions whih follow from(3.1) are exatly the relations between the values of the states in Gπ. So

v = vπ, and Lemma 3.26 follows. �Lemma 3.27 If π is a live and self-onsistent permutation, then the π-strategies are optimal and vπ = v.Proof. We �x an initial state q and prove independently that vσπ
(q) ≥ vπ(q)and vτπ

(q) ≤ vπ(q). Let τ be a strategy for Adam. We de�ne an �expeted
π-value� funtion f by f(n) =

∑

s∈Q vπ(s) · Pσπ ,τ
q (ρn = s). This funtion iswaxing:

• a move of Eve onsistent with σπ remains in the same π-region;
• a move of Adam sends the token to a state with greater or equal π-value(self-onsisteny);
• the value of a random state πi suh that πi ∈Wπ[i] is the average valueof its suessors;
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• a random state πi suh that πi ∈Wπ[j] and i < j sends the token to astate with equal π-value (Proposition 3.24).Thus, f(n) ≤ f(n + 1). Furthermore, as f(n) ≤ 1 − Pσπ ,τ

q (ρn = ⊗), weget lim f(n) ≤ 1 − Pσπ ,τ
q (Reach⊗). By Proposition 3.20, Pσ,τπ

q (Reach⊗) =
1− vσπ ,τ(q), so vπ(q) = f(0) ≤ limn→∞ f(n) ≤ vσπ ,τ (q). As τ is an arbitrarystrategy for Adam, we get vσπ

≥ vπ.Likewise, for a strategy σ for Eve, we de�ne the funtion g by g(n) =
∑

s∈Q vπ(s) · Pσ,τπ
q (ρn = s). This funtion is waning:

• a move of Eve sends the token to a state with lower or equal π-value(self-onsisteny);
• a move of Adam onsistent with τπ remains in the same π-region;
• the value of a random state πi suh that πi ∈Wπ[i] is the average valueof its suessors;
• a random state πi suh that πi ∈Wπ[j] and i < j sends the token to astate with equal π-value (Proposition 3.24).Thus, g(n) ≥ g(n + 1). Furthermore, as g(n) ≥ Pσ,τπ

q (ρn = ⊚), we get
lim g(n) ≥ Pσ,τπ

q (Reach ⊚). By Proposition 3.18, Pσ,τπ
q (Reach ⊚) = vσ,τπ

(q),so vπ(q) = g(0) ≥ limn→∞ g(n) ≥ vσ,τπ
(q). As σ is an arbitrary strategy forEve, we get vτπ

≤ vπ.It follows that vσπ
= vτπ

= vπ, so σπ and τπ are optimal strategies, and
vπ = v. This onludes the proof of Lemma 3.27. �Theorems 3.28 and 3.29 are diret onsequenes of Theorem 3.25:Theorem 3.28 Let G be a pre�x-independent game. If there is an algorithmomputing the almost-sure region of Eve in time t(G), then Algorithm 3.3omputes the values of G in time |QR + 1|! · (|δ|+ t(G)).Proof. In Proedure Metaregions, the time-onsuming operations are theomputation of the almost-sure regions (in time t(G)) and the omputationof the attrator (in time |δ|). Eah is done |sr| times in eah all, andin the worst ase, Algorithm 3.3 alls Proedure Metaregions |QR|! times.Theorem 3.28 follows. �



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 66Theorem 3.29 Let W be a lass of pre�x-independent winning onditions.If the qualitative problems of W-games belong to the omplexity lass K, thenthe quantitative problems belong to the lasses NPK and o-NPK.Proof. There is a non-deterministi variant of Algorithm 3.3 whih guessesthe orret permutation instead of searhing for it. The veri�ation an thenbe done in polynomial time with |QR| alls to a K-orale. �3.3.4 Optimal strategiesOne of the assets of Algorithm 3.3 is that we an derive optimal strategiesfrom a live and self-onsistent permutation, so Theorem 3.30 follows fromLemma 3.27:Theorem 3.30 Pre�x-independent games are optimally determined.Furthermore, the strategy σπ is de�ned as a spatial omposition of resid-ually almost-sure strategies, and does not use more memory than its ompo-nents:Theorem 3.31 Let W be a pre�x-independent winning ondition. If Evehas pure (resp. semi-randomised, randomised) qualitative strategies with �-nite memory Υ, she has pure (resp. semi-randomised, randomised) optimalstrategies with �nite memory Υ.Notie that Theorem 3.31 does not hold without the hypothesis thatW ispre�x-independent, even for regular winning onditions: a ounter-exampleis the weak parity game of Figure 3.2.1
2 3.5.5

Figure 3.2: Optimal strategies require memory in weak parity games



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 67In this game, the value of the initial state is .5: if Eve sends the tokenone to the left, and then always to the right, the lowest ourring olourhas equal hanes to be 1 or 2. However, this value annot be ahieved bymeans of a positional strategy:
• if Eve has a positive probability to send the token to the left, the lowestourring olour is almost surely 1;
• if Eve never sends the token to the right, the lowest ourring olouris surely 3.There are positional almost-sure winning strategies for both players in 21

2
-player weak parity games [GZ05℄. Optimal strategies for weak parity gameswith d olours may require up to d − 1 memory states, even in 11

2
-playergames.3.4 ValeditionWe showed that pre�x-independent games are optimally determined, andprovided a general algorithm omputing the values of any pre�x-independentgames with a single non-deterministi guess and a qualitative algorithm.The determinay result is very sensitive to eah of our hypotheses, asdemonstrated by Figure 3.1. However, the quantitative determinay of Borelgames may still be extended, by the qualitative determinay to begin with,and by similar questions for arbitrary values.



Chapter 4Muller Games�You an't have a strategy against telepaths: you have to at randomly. Youhave to not know what you're going to do next. You have to shut your eyesand run blindly. The problem is: how an you randomise your strategy, yetmove purposefully towards your goal?� Solar LotteryPhilip K. DikWith this hapter, we go bak to the origins of in�nite games: Churh'soriginal synthesis problem amounts to solving Muller games. Muller gamessubsume the other lassial normal forms of regular games suh as parity,Rabin, and Streett games.The Muller ondition is pre�x-independent, so they provide us with anappliation of the results of Chapter 3.We apply our results on pre�x-independent onditions to the setting ofMuller games, where the winner depends only on the states that are visitedin�nitely often. They subsumes other lassial normal forms of regular gamessuh as parity, Rabin, and Streett gamesThe qualitative problems of Muller games an usually1 be solved in poly-nomial spae [MN93, NRY96℄. However, this omplexity is not neessarilytight, depending on how the winning ondition is represented. As in Chap-ter 2, we present in Figure 4.1 an example of Muller game to demonstrateseveral interesting notions.1As long as deiding the winner of a limit set is in PSPACE.68
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F = {{a, b, c, d}, {a, b, c}, {a, b}, {b, c, d, e}, {b, c, e}, {b, d, e}, {c, d, e}, {e}}Figure 4.1: Muller game example: the game G = (A,F)We �rst present, in Setion 4.1, a polynomial algorithm for the qualita-tive problems of expliit Muller games. Setion 4.2 desribes the notion ofZielonka tree of a oloured Muller ondition, and shows how to use it to de-�ne a redution to parity onditions. This tree is again entral in Setion 4.3,whih de�nes a reursive PSPACE algorithm for 21
2
-player Muller games. Theanalysis of this algorithm also provide upper bounds in memory for pure aswell as randomised strategies. We use then the Zielonka DAG in Setion 4.4to show that these bounds are tight.4.1 Expliit gamesOur �rst result about Muller games is a polynomial algorithm omputingthe winning regions of expliit Muller games. The expliit representation ofa Muller ondition F onsists simply in the sequene F1 · · ·Fℓ of all the setsin F . Notie that this de�nition preludes the use of a (non-trivial) olouringfuntion: the winner problem of oloured Muller games, whih we study inthe next setions, is PSPACE-omplete.We introdue the notions of semi-alternation and sensibleness for expliitMuller games, and show that any expliit game an be translated in poly-nomial time into a semi-alternating and sensible game (4.1.1). We use thenthese notions to desribe a polynomial algorithm for expliit Muller games(4.1.2).



CHAPTER 4. MULLER GAMES 704.1.1 Normal formWe �rst de�ne three properties of expliit Muller games. A game is:1. semi-alternating if there is no transition between two states of Adam(but there an be one between two states of Eve);2. sensible if eah set in F is an end-omponent of A;3. ordered for inlusion if i < j ⇒ Fi + Fj.Our algorithm for expliit Muller games, Algorithm 4.1, relies on the fatthat its input satis�es these three properties. However, this does not restritthe generality of our result, sine any expliit Muller game an be transformedin polynomial time into an equivalent semi-alternating, sensible, and orderedgame of polynomial size. The semi-alternation transformation onsists inreplaing eah state q ∈ QA of Adam by a pair of states r ∈ QE , s ∈ QA,as in Figure 4.2. Eah set ontaining q in the winning ondition is modi�edaordingly: F ← (λq.(r, s))F . This is where the lassial alternation trans-formation fails: adding a state to eah transition leads to an exponentialblow-up in the size of the winning ondition.
q

(a) Original arena
r s

(b) Semi-alternating arenaFigure 4.2: Semi-alternating arena onstrutionA game an be made sensible by removing from F all the sets that arenot end-omponents of A: by Lemma 1.3, whatever the strategies of Eve andAdam, the limit of the play is an end-omponent with probability one. Thismodi�ation is thus transparent with respet to stohasti onepts �thesure and heroi regions do hange, however. Finally, ordering the sets forinlusion an be done in quadrati time.



CHAPTER 4. MULLER GAMES 71The games of the form (A, {Q}), where Eve wins if and only if the tokenvisits all the states in�nitely often, play an important part in our solution toexpliit Muller games. These games, whih have also been studied in routingproblems [DK00, IK02℄, are easy to solve and there is always only one winnerin the whole game:Proposition 4.1 Let A be a 21
2
-player arena, and G be the expliit Mullergame (A, {Q}). Either, for any state q ∈ Q, Eve's attrator to q is equal to

Q, and Eve wins almost-surely everywhere in G, or there is a state q ∈ Qsuh that AttrE({q},A) 6= Q, and Adam wins surely everywhere in G.Proof. In the �rst ase, Eve an win almost-surely by playing the uniformstrategy uniA: in�nite visits to all the states of Q ensues [CdAH04℄. Inthe seond ase, Adam an win surely with any trapping strategy out of
AttrE({q},A): if the token ever gets out of AttrE({q},A), it never goesbak. �Following Proposition 4.1, we say that �Eve wins (A, {Q})� if she winsalmost-surely from any state of Q, and that �Adam wins (A, {Q})� if he winssurely from any states of Q. This ould be misleading if we were to onsiderthe sure region of Eve or the heroi region of Adam, but we do not.4.1.2 AlgorithmOur algorithm takes as input a semi-alternating, sensible 21

2
-player expliitMuller game whose winning ondition is ordered for inlusion; it returns thepositive region of Eve and the almost-sure region of Adam. Eah set in F isonsidered at most one, starting with the (smallest) set F1. At eah step,the operation of a set Fi modi�es the arena and the winning ondition in oneof the following ways:If Adam wins (A|Fi

, {Fi}), Fi is removed from F .If Eve wins (A|Fi
, {Fi}), and Fi is a trap for Adam in A, Eve'sattrator to Fi in A, AttrE(Fi,A), is removed from A (and added to thewinning region of Eve), and all the sets interseting AttrE(Fi,A) are removedfrom F .If Eve wins (A|Fi

, {Fi}), and Fi is not a trap for Adam in A, a newstate Fi, desribed in Figure 4.3, is added to A with the following attributes:
• Fi is a state of Adam;
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• the predeessors of Fi are all the states of Eve in Fi;
• the suessors of Fi are the suessors outside Fi of the states of Adamin Fi.Furthermore, the state Fi is added to all the supersets of Fi in F , and Fiitself is removed from F .

ab

c

M = {{a, b}, {a, b, c}}(a) Before
ab

c{a,b}
M = {{a, b, c, {a,b}}}(b) AfterFigure 4.3: Removal of a set in an expliit Muller onditionThe important ase, from an intuitive point of view, is the last one: itorresponds to a �threat� of Eve to win by visiting exatly the states of Fi.Adam has to answer by getting out, but he an hoose his exit from any ofhis states. Notie that it would not do to simply replae the whole region Fiby the state Fi: as in Figure 4.3, Adam may be able to avoid a state of Fi ina larger arena, even if he is inapable of doing so in A|Fi

.As only one state is added eah step, the number of states in the game isbounded by |A|+ |F|. The whole proedure is desribed as Algorithm 4.1.In the proof of orretness, we use typewriter fonts to denote the mod-i�ed arena and ondition, and calligraph fonts to denote the original game.Furthermore, we denote by F|Fi
the intersetion of F and P(Fi), i.e. thesets of F that are also subsets of Fi. We an now proeed to the three mainlemmas:



CHAPTER 4. MULLER GAMES 73Input: An expliit Muller game (A,F)Output: WinF , >0

E (A) and WinF ,1
A (A)

A = (Q, QE, QA, QR, T, p)← A = (Q,QE ,QA,QR, T , p);1
F← F ;2
WE ← ∅;3 while F 6= ∅ do4

Fi ← pop(F);5 if Eve wins (A|Fi
, {Fi}) then6 if Fi is a trap for Adam in A then7 remove AttrE(Fi, A) from A and add it to WE ;8 remove all the sets interseting AttrE(Fi, A) from F;9 else10 add a state Fi to QA;11 add transitions from Fi ∩ QE to Fi;12 add transitions from Fi to T(Fi ∩ QA) \ Fi;13 add Fi to all the supersets of Fi in F;14 end15 end16 end17 return WE ∩ Q, Q ∩ Q18Algorithm 4.1: Polynomial algorithm for expliit Muller gamesLemma 4.2 If, in the ourse of a run of Algorithm 4.1, the game (A|Fi

, {Fi})is winning for Eve at line 6, then Eve wins almost-surely everywhere in thegame (A|Fi
,F|Fi

).Proof. Let H1, . . . ,Hk = Fi be the sets of F|Fi
suh that (A|Hj , {Hj}) waswinning for Eve in the run of Algorithm 4.1. Notie that Fi itself is one ofthese states, say Hk. The σj's denote her orresponding almost-sure strate-gies. We build a strategy σ for Eve in A|Fi

, whose memory states are staksof pairs (Hj , ρj). At any time, ρj is a play of A|Hj whih an be extended bythe urrent state q. The initial memory state is (Hk, ε), and the operation of
σ when the memory state is (Hj, w) and the urrent state is q is desribedbelow:1. If q /∈ Hj, the top pair is removed, and the proedure restarts at step1 with the new memory. Notie that it may involve further pops if qstill does not belong to the top set.



CHAPTER 4. MULLER GAMES 742. If q is a state of Eve, and σj(wq) is a new state Hh, the memory ismodi�ed as follows: w beomes wqHh, and a new pair (Hh, ε) is pushedat the top of the stak. The proedure restarts at step 2. with the newmemory. Notie that it may involve further pushes if σh(q) is also anew state.3. The new memory state is (Hj , wq); if q belongs to Eve, she plays σj(wq).We laim that σ is almost-sure for Eve in the game (A|Fi
,F|Fi

). Let ρ be aplay onsistent with σ, and Hj the highest set that is never unstaked. Wedenote by ρj the (in�nite) limit of the �play� part. As ρj is onsistent with
σj, Inf(ρj) = Hj with probability one. Furthermore, Inf(ρ) ⊇ Inf(ρj)∩Q and
Inf(ρ) ⊆ Hj . So, Inf(ρ) = Hj with probability one, and Lemma 4.2 follows.
� For Adam, the problem is a little more omplex: we need two lemmas,whose proofs are mutually reursive:Lemma 4.3 If, in the ourse of a run of Algorithm 4.1, the game (A|Fi

, {Fi})is winning for Adam at line 6, then Adam wins surely everywhere in the game
(A|Fi

,F|Fi
).Lemma 4.4 If, in the ourse of a a run of Algorithm 4.1, the game (A|Fi

, {Fi})is winning for Eve at line 6, then Adam wins surely everywhere in the game
(A|Fi

,F|Fi
\ {Fi}).Proof. We start with the (simpler) proof of Lemma 4.4. Let H1, . . . ,Hk bethe maximal sets, with respet to inlusion, of F|Fi

. There is a sure strategy
τ j for Adam in eah Hj: if Adam won (A|Hj , {Hj}), it is a winning strategy forthe game (A|Hj ,F|Hj) (reursive use of Lemma 4.3); if Eve won (A|Hj , {Hj}),it is a strategy for the game (A|Hj ,F|Hj \ Hj) (reursive use of Lemma 4.4).The strategy τ for Adam in (A|Fi

, {F|Fi
}) uses k top-level memory states toswith between the {τ j}1≤j≤k. Adam remains in a top-level memory state jonly as long as the token is in Hj . As soon as it gets out, he updates it to (j

mod k) + 1. His ations when the top-level memory state is j are desribedbelow:
• if he won (A|Hj , {Hj}), he plays τ j ;
• if Eve won (A|Hj , {Hj}), he plays τ j unless he an get out of Hj .



CHAPTER 4. MULLER GAMES 75We laim that τ is surely winning for Adam in (A|Fi
,F|Fi

). Any play ρonsistent with τ falls in exatly one of the three following ategories:
• The top-level memory of τ is not ultimately onstant; thus Inf(ρ) isnot inluded in any of the Hj 's, and ρ is winning for Adam.
• The top-level memory of τ is ultimately onstant at j, and (A|Hj , {Hj})was winning for Adam; ρ is ultimately a play of A|Hj onsistent with

τ j , so ρ is winning for Adam.
• the top-level memory of τ is ultimately onstant at j, and (A|Hj , {Hj})was winning for Eve; ρ is ultimately a play of A|Hj onsistent with τ j ,so Eve an win only by visiting all the states of Hj . But Hj is nota trap for Adam, and the de�nition of τ implies that Adam leaves assoon as possible. So, at least one of the states of Hj was not visited,and ρ is winning for Adam.This ompletes the proof of Lemma 4.4. The proof of Lemma 4.3 is moreinvolved, due to the neessity to avoid at least one of the states of Fi. ByProposition 4.1 there is a state q in Fi suh that X = AttrE({q}, A|Fi

) is notequal to A|Fi
. It follows from the de�nition of A|Fi

that neither Fi ∩ X nor
Fi \X is empty. Adam's strategy is then exatly the same than in the proofof Lemma 4.4, with the provision that Adam never moves from Fi \X to X:this guarantees that the token annot visit in�nitely often all the states of
Fi, and ompletes the proof of Lemma 4.3. �The orretness of Algorithm 4.1 follows from Lemmas 4.2, 4.3, and 4.4:the �rst one guarantees that the states in WE∩Q are winning for Eve, and thelast one that the states remaining at the end of Algorithm 4.1 are winningfor Adam.About omplexity, there are at most |F| loops in a run, and the mosttime-onsuming operation is to ompute the winner of the games (A|Fi

, {Fi}),whih are quadrati in |A| ≤ (|A| + |F|). Thus, the worst-ase time om-plexity of Algorithm 4.1 is O(|F| · (|A| + |F|)2), whih ompletes the proofof Theorem 4.5:Theorem 4.5 The winner problem of expliit 21
2
-player Muller games be-longs to PTIME.We an use Theorem 3.29 to diretly derive a omplexity lass for thequantitative problems of expliit games:



CHAPTER 4. MULLER GAMES 76Theorem 4.6 The value problem of expliit 21
2
-player Muller games belongsto NP and o-NP.Notie that these omplexity results depend on the fat that there isno olouring funtion: even in the very restrited ase of the win-set repre-sentation [MN93℄, where the only di�erene is the introdution of a set ofirrelevant states, the winner problem beomes PSPACE-hard [HD05℄.4.2 Solution through redutionsA �rst approah to the solution of 21

2
-player Muller games uses suessiveredutions from the well-studied problem of 2-player parity2 games (4.2.1).It is possible to redue the qualitative solution of 21

2
-player parity games tothis problem (4.2.2), and Muller onditions to parity onditions (4.2.3).4.2.1 Solving 2-player parity gamesThe omplexity of 2-player parity games is one of the entral questions ingame theory. One of the motivation is the link between these games andlogis: there is a polynomial redution from µ-alulus to 2-player paritygames, and vie versa. Another one is that parity games admit positionalstrategies (under some hypothesis, they are even the only games to admitpure and positional strategies [CN06℄).Theorem 4.7 ([EJ91℄, [Mos91℄) In a 2-player parity game, both playershave positional winning strategies.An immediate onsequene is that parity game an be solved with NP oro-NP algorithm, by guessing a strategy for one or the other player.Theorem 4.8 The problem of the winner in 2-player parity games belongsto NP and to o-NP.It is even possible to adapt the strategy improvement for 21

2
-player reah-ability games, in a disrete fashion [VJ00℄. The resulting algorithm is poly-nomial for 1-player games, and onjetured to be also polynomial for 2-playergames. It is also possible to solve parity games with a reursive algorithm2�Priority� would be a muh better name.



CHAPTER 4. MULLER GAMES 77like the one we desribe in Setion 4.3. Other approahes introdued smallprogress measure [Jur00℄ (later extended to Rabin and Streett games in[PP06℄), or mixed these with a round of exhaustive exploration of smallsubarenas [JPZ06, Sh07℄.4.2.2 21
2-player parity games to 2-player parity gamesIt is possible to redue qualitative problems for 21

2
-player Muller games to thewinner problem of 2-player games: see [JKH02℄ for Bühi and o-Bühi on-ditions, [CJH03℄ for parity onditions, and [CdAH05℄ for Rabin and Streettonditions. The priniple is to replae the random states with a gadget whereAdam and Eve �barter� for the right to hoose the next state. For example,Figure 4.4 presents the redution of [CJH03℄ for parity games.
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· · ·Figure 4.4: Parity gadget: from 21
2
-player to 2-playerEah visit to a random state is replaed by this �gadget�, where Adamhooses �rst a rank i, and Eve an:

• either visit to a 2i− 1 priority and deide the next state;
• or visit to a 2i priority and let Adam deide the next state.This redution is polynomial, and preserves the winning region (Eve'swinning region orresponds to her almost-sure region, and Adam's region tohis positive region). Furthermore, the positional strategies of the reduedgame translate as positional strategies in the original game. Theorem 4.9and 4.10 follow:



CHAPTER 4. MULLER GAMES 78Theorem 4.9 In a 21
2
-player parity game, both player have positional strate-gies.Theorem 4.10 The qualitative problems of 21

2
-player parity games are inNP ∩ o-NP4.2.3 Muller onditions to parity onditionsMuller onditions an be translated as parity onditions by adding infor-mation to the states. The �rst data struture onsidered to this e�et wasthe Latest Appearane Reords (LAR) of MNaughton, whih were used byGurevih and Harrington as memory for winning strategies in Muller games[GH82℄. Thomas use them in [Tho95℄ to redue Muller games to paritygames. However, the size of the LAR struture is totally insensitive to theatual winning ondition. Zielonka's insightful onstrution [Zie98℄ repre-sents a Muller ondition by a split tree whose nodes are labelled by sets ofolours, fousing on the alternation between the sets winning for Eve andthose winning for Adam:De�nition 4.11 (Zielonka tree [Zie98℄) The Zielonka tree of a Mullerondition F over C, denoted ZF ,C, is the rooted tree with the following prop-erties:

• eah node is labelled by a set of olours, and two di�erent siblings havedi�erent labels; if the label of a node is winning for Eve, the node be-longs to Eve, otherwise it belongs to Adam;
• the root of ZF ,C is labelled by C;
• if n is a node labelled by C ⊆ C, and C1, . . . , Ch are the maximal subsetsof C suh that C ∈ F < Ci ∈ F , then the hildren of n are labelled bythe Ci's.Hunter and Dawar derive a DAG from this tree (the Zielonka DAG), byidentifying the nodes with the same labels [HD05℄.The Zielonka tree and DAG of F, from Figure 4.1, are represented inFigure 4.5(a).Dziembowski, Jurdzi«ski, andWalukiewiz presented in [DJW97℄ a redu-tion from Muller games to parity games using the branhes of the Zielonkatree as data struture. Their onstrution builds a parity game G from a
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∅(b) DF,CFigure 4.5: Zielonka representations of FMuller game G = (A,F). The states of G are pairs (q, b), with q a state of
A, and b a branh of ZF ,C. The support of q and b is the lowest node where
χ(q) appears. The olour of a state (q, b) is the depth of the support of q and
b in ZF ,C. There is a transition from (q, b) to (q′, b′) if and only if there is atransition from q to q′ in G, and b′ goes through the next hild of the supportof q and b. A transition, taken from the translation of G, is represented inFigure 4.6.A play ρ is winning in G if and only if its projetion on Q is winning in
G. The size of G is polynomial in the size of the game if the ondition isrepresented by its Zielonka tree, so the omplexity of these games is in NP ∩o-NP :Theorem 4.12 The qualitative problems of 21

2
-player Muller games whosewinning ondition are represented by their Zielonka tree belong to NP ando-NP.Furthermore, if we de�ne ℓF as the number of branhes of the Zielonkatree:De�nition 4.13 (Number ℓ of a Muller ondition) Let F be a Mullerondition on C, and C1 · · · Ck be the maximal subsets of C suh that C ∈ F <

Ci ∈ F . We denote by Fi the Muller ondition F|Ci
, and we de�ne the number
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ℓF indutively as follows:

ℓF =











1 if ZF ,C does not have any subtrees,
k
∑

i=1

lFi
if C ∈ F otherwise.
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1 1
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1 1 1

1 1

1 1Figure 4.7: Computation of ℓFBoth players have winning strategies with memory ℓF : by keeping theurrent branh of in memory, a player an determine where the token wouldbe in G, and play aordingly.Theorem 4.14 Let F be a Muller ondition over C, A be an arena on C,



CHAPTER 4. MULLER GAMES 81and q be a state of Q. If either player has a winning strategy from q, theyhave a pure winning strategy with memory ℓF .4.3 Reursive algorithmHowever, the Zielonka tree is not more suint than any of the representa-tions we presented, and the redution uses thus an exponential spae in theseases. However, it is possible to simulate this redution on the �y, in spaepolynomial in the size of the arena. This approah is reursive, and has beenimplemented �rst by Dziembowski, Jurdzi«ski, and Walukiewiz for 2-playerMuller games (and in�nite arenas) in [DJW97℄. The speial ase of 2-playerStreett games was studied in [Hor05℄, and extended to 21
2
-player games in[Hor07a℄. Chatterjee later extended the extension to 21

2
-player Muller gamesin [Cha07℄.The reursive alls of this reursive algorithm orresponds to the stru-ture of the Zielonka tree: the �nal solution is the one we get at the root,and solving a node require to solve its hildren. However, we do not needto remember the struture of the tree, and omputing the hildren of a nodein the Zielonka tree an be done in polynomial spae regardless of the repre-sentation of the Muller ondition, as long as deiding the winner of a set ofolours an be done in PSPACE.As Muller onditions are pre�x-independent, we use the results of Chap-ter 3, to desribe only a partial algorithm. The role of the players in thisalgorithm depends on who wins if all the olours are visited: if it is Eve, weompute a subset of Adam's positive region; if it is Adam, we ompute asubset of Eve's winning region. In order to get the atual regions, we use the�x-point algorithm, and the swithing algorithm if needed.The study of the Zielonka tree ZF ,C of a Muller ondition F on C enablesus to de�ne two asymmetri numbers mF and rF , whih are tight bounds forthe memory needed in F -games (Theorems 4.16 and 4.18).De�nition 4.15 (Number m of a Muller ondition) Let F be a Mullerondition on C, and C1 . . . Ck be the maximal subsets of C suh that C ∈ F <

Ci ∈ F . We denote by Fi the Muller ondition F|Ci
, and we de�ne the number

mF indutively as follows:
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mF =



















1 if ZF ,C does not have any subtrees,
max{1, mF1 , mF2 , . . . , mFk

} if C /∈ F (Adam node),
k
∑

i=1

mFi
if C ∈ F (Eve node).Theorem 4.16 ([DJW97, Cha07℄) Let F be a Muller ondition over C.In any A on C, if Eve has a winning strategy in the game (A,F), she hasa pure winning strategy with memory mF . Furthermore, there is a 2-playerarena AF where Eve has a winning strategy in the game (AF ,F), and noneof her pure strategies with memory less than mF is winning.De�nition 4.17 (Number r of a Muller ondition) Let F be a Mullerondition on C suh that the root of the Zielonka tree ZF ,C has ℓ leaf and knon-leaf hildren. We denote by C1 . . . Ck the labels of the non-leave hildren,and by Fi the Muller ondition F|Ci

. The number rF is de�ned indutively asfollows:
rF =







































1 if ZF ,C does not have any subtrees,
max{1, rF1 , rF2, . . . , rFk

} if C /∈ F (Adam node),
k
∑

i=1

rFi
if C ∈ F (Eve node) and ℓ = 0,

k
∑

i=1

rFi
+ 1 if C ∈ F (Eve node) and ℓ ≥ 1.Theorem 4.18 ([Hor09℄) Let F be a Muller ondition over C. In any A on

C, if Eve has a winning strategy in the game (A,F), she has a randomisedwinning strategy with memory rF . Furthermore, there is a 2-player arena
AF where Eve has a winning strategy in the game (AF ,F), and none of herrandomised strategies with memory less than rF is winning.In the remainder of this hapter, we prove simultaneously Theorems 4.16and 4.18. The study of the reursive algorithm of this setion provide theupper bounds, while the lower bounds are proved in Setion 4.4.All the desriptions and properties of this setion refer to a generi game
G = (A,F) over the set of olours C. In order to simplify sentenes, wesuppose that the root of ZF ,C belongs to Eve. The ase where Adam ownsthe root works exatly in the same way, exhanging the roles of Eve andAdam.
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1 1(b) rFFigure 4.8: Computation of mF and rF4.3.1 Partial algorithmThe partial algorithm itself is reursive: it involves the solution of sub-games,in the sense that the arena is a sub-arena of A, and the winning onditionorresponds to a subtree of ZF ,C. Let us start with some notations: wedenote by C1 . . . Cℓ the labels of the hildren of the root. For eah of them,
Fi is the restrition of F to Ci, and Di is the set C \ Ci. These notations aresummarised on Figure 4.9, whih represents the top of ZF ,C.

C

ZF1, C1 ZFi, Ci
ZFℓ, Cℓ

· · · · · ·Figure 4.9: Generi top of a Zielonka TreeIntuitively, in order to win, Adam must eventually stay lear of at leastone of the Di's, while winning with respet to the sub-ondition Fi. Other-wise, Eve an win either in one of the sub-onditions, or by visiting ylially



CHAPTER 4. MULLER GAMES 84eah of the Di's. For eah i, the algorithm omputes Ai = A\AttrE(Di, ()A)and the Adam's almost-sure region in (Ai,Fi). If one of these regions is notempty, it is returned. Otherwise, the algorithm returns ∅. This algorithm isdesribed as Algorithm 4.2.Input: A Muller game G = (A,F) suh that C ∈ FOutput: A (non-empty) subset of WinF , >0

A (A)forall i ∈ {1, .., ℓ} do1
Ai ← A \ AttrE(Di,A);2 if WinFi,1

A (Ai) 6= ∅ then3 return WinFi,1
A (Ai);4 end5 end6 return ∅7 Algorithm 4.2: Partial algorithm for Muller gamesNotie that in line 3, the reursive all omputes the almost-sure winningregion of Adam in (Ai,Fi). Atually, we just need a partial algorithm forAdam with respet to Fi, but, as Adam wins the root of ZFi, Ci

, we annotuse diretly Algorithm 4.2. So, we use his almost-sure winning region, in thespirit of the swithing algorithm (Algorithm 3.2). In terms of omplexity, itmeans that we use a �x-point omputation in eah reursive all.4.3.2 Non-empty output: spatial ompositionWhen the output X of Algorithm 4.2 is non-empty, we have to show that itbelongs to the positive region of Adam. Let i be the last value of i in therun. X is thus the almost-sure region of Adam in (Ai,Fi). We laim that Xbelongs to Adam's almost-sure region in G. Let τi be an almost-sure strategyfor Adam from X in (Ai,Fi), and onsider what happens if a play of G startsin X and Adam plays τi:
• X is a trap for Eve in Ai, whih is itself a trap for her in A, so thetoken remains surely in X;
• τi is almost-sure for Adam in (Ai,Fi), so the set of olours visitedin�nitely often almost surely does not belong to Fi.



CHAPTER 4. MULLER GAMES 85As Fi is the restrition of F to Ci, and χ(Ai) ⊆ Ci, it follows that the set ofolours visited in�nitely often almost-surely does not belong to F . So τi isalmost-sure for Adam from X in G, X belongs to his almost-sure region in G,and onsequently, to his positive region. Notie that, although X is almost-sure for Adam in G, the region returned by the �x-point is only positive,sine the iteration involves a positive attrator.Furthermore, as Adam has pure (randomised) strategies with memory atmost mFi
(rFi

) for eah ondition Fi, he has pure (randomised) strategieswith memory mF = max1≤i≤ℓ mFi
(rF = max1≤i≤ℓ rFi

) for F .4.3.3 Empty output: temporal ompositionWhen the output of Algorithm 4.2 is empty, we need to show that Eve winsalmost-surely everywhere in G. The �rst remark is that Eve wins positivelyeverywhere in eah game (Ai,Fi). By the positive-almost property, she alsowins almost-surely everywhere in eah game (Ai,Fi). For eah 1 ≤ i ≤ ℓ,let σi be an almost-sure strategy for Eve in (Ai,Fi). The strategy σ uses atop-level memory with values in 1 . . . ℓ to swith between these strategies. Ifthe top level memory is equal to i, Eve plays as follows:
• in Ai, play aording to σi;
• in AttrE(Di,A) \Di, play the attrator strategy to Di;
• in Di, move to any state of A and update the top-level memory to i

mod ℓ +1.Let ρ be a play onsistent with σ. It falls in exatly one of these threeases:1. the top-level memory is not ultimately onstant;2. the top level memory is ultimately onstant at i, and Inf(ρ) ⊆ Ai;3. the top level memory is ultimately onstant at i, and Inf(ρ) * Ai.In the �rst ase, eah of the Di is visited in�nitely often, so Eve winssurely; in the seond ase, ρ is ultimately a play of (Ai,Fi) onsistent with
σi, so Eve wins almost surely; �nally, by Proposition 1.5, the last ase almostnever ours. Thus, σ is almost surely winning. Furthermore, if Eve has



CHAPTER 4. MULLER GAMES 86pure strategies with memory at most mFi
for eah ondition Fi, she has purestrategies with memory mF =

∑

1≤i≤ℓ mFi
for F .If some of the hildren are leaves, we an de�ne a randomised strat-egy with less memory. Indeed, if ZFi, Ci
is redued to a leaf belonging toAdam, Eve annot win in (Ai,Fi), so her attrator to Di overs A en-tirely. Instead of de�ning a di�erent attrator strategy to eah of thesesets (whih is neessary in pure strategies), we an de�ne a generi strat-egy σ0, whih onsists in always hoosing the next state at random. Aseah attrator overs the whole arena, there is always the o�-hane that thehoies of Adam fores the token to the desired set. This is the ore ideaof [CdAH04℄, whih shows that Eve has positional strategies for upward-losed Muller onditions. If all the hildren are leaves, σ0 an diretly re-plae σ, as Chatterjee showed in [Cha07b℄. When some hildren are leaves,and others are not, the problem is to deide when the memory should beupdated, as the strategy must guarantee that all the orresponding Di'sare visited in�nitely often. Our solution is to randomise this update: eahtime Adam's top-level memory is 0, it has equal hanes to remain 0 andto be updated to 1. The probability that the token visits a Di is still posi-tive: Adam just needs to do the orret moves and to remain in the orretmemory state long enough. If the top-level memory is 0 in�nitely often,the probability that the all the Di's orresponding to a leaf are visited in-�nitely often is one. So, if Eve has randomised strategies with memory atmost rFi

for eah ondition Fi, she has randomised strategies with memory
rF =

∑

{rFi
| ZFi, Ci

is not a leaf}+ 1 if at least one of the ZFi, Ci
is a leaf.4.4 Lower bounds for Muller onditionsIn this setion, we prove the lower bounds in Theorems 4.16 and 4.18. We �rstde�ne a lass of sub-DAGs, the ropped DAGs of the Zielonka DAG, whihhave a strong relation with the numbers mF and rF (4.4.1), and then derivefrom them 2-player arenas whih follow roughly their struture (4.4.2). Weshow that these arenas are winning for Eve, and de�ne �branh strategies� forAdam (4.4.3). Any pure strategy with less than mF states, and any randomstrategy with less than rF memory states fails against at least one of thebranh strategies of Adam (4.4.4). Finally, we show that for many Mulleronditions, the bounds mF and rF still hold when the arena is polynomial inthe number of olours(4.4.5).



CHAPTER 4. MULLER GAMES 874.4.1 Cropped DAGsThe relation between the numbers mF and rF and the shape of DF, C isasymmetrial: they depend diretly on the number of hildren of Eve's nodes,and not at all on the number of hildren of Adam's nodes. The notion ofropped DAG is the next logial step: a sub-DAG where Eve's nodes keep alltheir hildren, while eah node of Adam keeps only one hild. De�nition 4.19formalises this idea:De�nition 4.19 A DAG E is a ropped DAG of a Zielonka DAG DF, C ifand only if
• The nodes of E are a subset of the nodes of DF, C. Furthermore, theowner and label of a node in E are its owner and label in DF, C.
• There is only one node without predeessor in E , whih we all the rootof E . It is the root of DF, C, if it belongs to Eve; otherwise, it is one ofits hildren.
• The hildren of a node of Eve in E are exatly its hildren in DF, C.
• A node of Adam has exatly one hild in E , hosen among his hildrenin DF, C, providing there is one. If it has no hildren in DF, C, it has nohildren in E .A ropped DAG has the general form of a Zielonka DAG: the nodes belongto either Eve or Adam, they are labelled by sets of states, and the label of ahild is always a strit subset of the label of his parents. However, a roppedDAG is not neessarily the Zielonka DAG of a(nother) Muller ondition: inthe ase of `ardinal parity with three olours� �Figure 4.10� a roppedDAG ontains at least two nodes on the �singleton� level, and eah nodelabelled with a doubleton has only one hild, while in a Zielonka DAG, asingleton node must have two parents.On the other hand, when it omes to omputing mF and rF , it is enoughto know who owns a state to deide whih ase of De�nitions 4.15 and 4.17is relevant. It is thus possible to de�ne the numbers mE and rE of a roppedDAG E in exatly the same way.In fat, these numbers have a more intuitive meaning in the ase of aropped DAG E : mE (and rE when the leaves belong to Eve) is the number
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abc

ab ac bc

a b c

∅(a) Zielonka DAG of ardinal par-ity 3

abc

ab ac bc

a b c

∅(b) ropped DAGFigure 4.10: Cropped DAGs are not Zielonka DAGsof branhes in E . When Adam owns the leaves, rE is the number of branhesin E without the leaves.There is also a diret link between the ropped DAGs of a Zielonka DAG
DF, C and the numbers mF and rF : in a ropped DAG, there is one hild foreah internal node of Adam; in the reursive de�nition of mF and rF , there isa maximum over the values of the hildren. Proposition 4.20 follows diretly:Proposition 4.20 Let F be a Muller ondition over the set of olours C,and DF, C be its Zielonka DAG. Then for any ropped DAG E of DF, C, wehave mE ≤ mF and rE ≤ rF . Furthermore, there two ropped DAGs E ′ and
E∗ suh that mE ′ = mF and rE∗ = rF .4.4.2 From ropped DAGs to arenasFrom any ropped DAG E of DF, C, we de�ne an arena AE whih followsroughly the struture of E : the token starts from the root, goes towards theleaves, and then restarts from the root. In her nodes, Eve an hoose towhih hild she wants to go. Adam's hoies, on the other hand, onsists ineither stopping the urrent traversal or allowing it to proeed.We present �rst two �maros�, depending on a subset of C. They arerepresented in Figure 4.11, and are the only oasions where olours arevisited in AE : all the other states are olourless.
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• In Pick∗(C), Adam an visit any subset of olours in C;
• in Pick(D), he must visit exatly one olour in D.

c1 ci ck

· · · · · ·

C = {c1 . . . ck}(a) Pick∗(C)

d1 di dk· · · · · ·

D = {d1 . . . dk}(b) Pick(D)Figure 4.11: Pick∗(C) and Pick(D)Eve's states in the arenaAE are in bijetion with the nodes of E . Likewise,eah outgoing transition orresponds to a hild of the orresponding node.But the suessors of these states are not themselves in bijetion with thenodes of Adam: if a single node of Adam A is the hild of two di�erentnodes of Eve E and F , we must use the onstrution of Figure 4.13 twie:one for E − A and one for F − A. In states orresponding to leaves, Evehas no deision to take; Adam an visit any olours in the label of the leaf(Pick∗ proedure). The token is then sent bak to the root. These ases aredesribed in Figure 4.12.
E

A1 A2 Ai

E

E − A1 E − A2 E −A3(a) Node �E�
E

Pick∗(E)root(b) Leaf �E�Figure 4.12: Eve hooses where to go . . .



CHAPTER 4. MULLER GAMES 90Adam's options on a given node, on the other hand, do not involve thehoie of a hild: by De�nition 4.19, Adam's nodes in E have but one hild.Instead, he an either stop the urrent traversal, or, if the urrent node isnot a leaf, allow it to proeed to its only hild.If he hooses to stop, Adam has to visit some oloured states before thetoken is sent bak to the root. The available hoies depend on the labels ofboth the urrent and the former nodes � whih is why there are as manyopies of Adam's nodes in AE as they have parents in E . If the parent islabelled by E, and the urrent node by A, the token goes through Pick∗(E)and Pick(E \A). Adam an thus hoose any number of olours in E, as longas he hooses at least one outside of A.Notie that if Adam does not stop the traversal, the token is sent to theunique state orresponding to the hild of the urrent node. This is why thesize of these arenas are roughly DAG-sized, instead of tree-sized.
E

A

E ′

E

E −A

E ′

Pick∗(E)

Pick(E \ A)root(a) Edge �E� - �A� when �A� is a node
E

A

Pick∗(E)

Pick(E \ A)root(b) Edge �E� - �A� when �A� is a leafFigure 4.13: . . . and Adam hooses when to stop.4.4.3 Strategies in the DAG gameWe �rst desribe a winning strategy σ for Eve in the game (AE ,F). Itsmemory states are the branhes of E , and do not hange during a traversal.Her moves in the memory state b = E1A1 . . . Eℓ(Aℓ) follow the branh b:in the state Ei, Eve hooses the suessor orresponding to the transition
Ei − Ai. Notie that Adam annot diverge from the branh, as his nodeshave at most one hild. When he hooses to stop the traversal, Eve updates



CHAPTER 4. MULLER GAMES 91her memory. If he stops at the ith step, while Eve is in the memory state
b = E1A1 . . . Eℓ(Aℓ). There are two ases:
• if Ei has zero or one hild in E , the memory is unhanged;
• otherwise, the new memory branh has E1A1 . . . EiA as a pre�x, where

A is the next hild of Ei, or the �rst one if Ai was the last.Proposition 4.21 The strategy σ is surely winning for Eve in the game
(AE ,F).Proof. Let ρ be a play onsistent with σ. We denote by i the smallest integersuh that Adam stops in�nitely often a traversal at the ith step.After a �nite pre�x, the �rst 2i− 1 nodes in the memory branh are on-stant, and we denote them by E1A1E2 . . . Ei. From this point on, whateverAdam does, he an only hoose olours in Ei. Furthermore, eah time hehooses i, he must hoose a state outside of the urrent Ai, whih hangesafterwards to the next, in a irular way.So, in the end, Inf(ρ) ⊆ Ei, and, for any hild A of Ei in E , Inf(ρ) * A.Thus ρ is winning for Eve. Proposition 4.21 follows. �Obviously, Adam has no winning strategy in AE . However, we desribethe lass of branh strategies for him, whose point is to punish any attemptof Eve to win with less than mF or rF memory states. There is one suhstrategy τb for eah branh b in E (whene the name), and the priniple isthat τb stops the traversal as soon as Eve deviates from b:De�nition 4.22 The branh strategy τb for Adam in AE, orresponding tothe branh b = E1A1E2 . . . Eℓ(Aℓ) in E , is a positional strategy whose movesare desribed below.
• In a state E −A suh that ∃i, E = Ei ∧A 6= Ai: stop the traversal andvisit the olours of Ai;
• in a state E−A suh that ∃i, E = Ei∧A = Ai: send the token to Ei+1;
• in the state Eℓ − Aℓ: visit Eℓ;
• in the leaf Eℓ: visit Eℓ.



CHAPTER 4. MULLER GAMES 92Notie that no move is given for a state E−A suh that ∀i, E 6= Ei. Thereason is that these states are not reahable from the root when Adam plays
τb, so, in the limit, what he does in these states doesn't matter. Notie alsothat when Adam hooses to stop a traversal in a state Ei − A, he an visitexatly the olours of Ai: as A and Ai are maximal subsets of Ei, there is atleast one state in Ai \ A that he an pik in the Pick(Ei \ A) area.We informally desribe one last strategy for Adam: the passive strategy,in whih he never stops a traversal before it reahes a leaf, and then plays atrandom in the Pick / Pick∗ part.4.4.4 Winning against branh strategiesLet σ = (M, σn, σu) be a pure strategy for Eve. We de�ne the branh of amemory state m ∈M as the unique branh that the token follows if it startsin the root while Eve is in the memory state m and Adam plays a passivestrategy.Proposition 4.23 Let σ = (M, σn, σu) be a pure winning strategy for Evein (AE ,F). Then σ has memory at least mE .Proof. The priniple of the proof is that Eve needs a di�erent memory stateto deal with eah of the mE branh strategies of Adam.Let b = E1A1 . . . Eℓ(Aℓ) be a branh of E and τb be the orrespondingbranh strategy for Adam. We onsider the unique play ρ onsistent with σand τb. By de�nition of τb, the set of olours visited in a traversal of ρ is oneof the Ai's, or Eℓ if and only if the branh of the urrent memory state is b.Suppose now that there is no memory state whose branh is b. As A1 ⊃
A2 ⊃ · · · ⊃ Aℓ−1(⊃ Aℓ), the set of olours visited in�nitely often in the playis one of the Ai's, and Adam wins. This is in ontradition with the fat that
σ is winning. It follows that for eah branh b of E , there must be a memorystate in M whose branh is b. As there is only one branh per memory state,and there are mE branhes, it follows that there are at least mE memorystates in M . This onludes the proof of Proposition 4.23. �By Proposition 4.20, there is a ropped DAG E of DF, C suh that mE =
mF . So, in general, Eve needs pure strategies with memory mF in order towin games whose winning ondition is F . As we saw in Setion 4.3 that shehas suh strategies, it ompletes the proof of Theorem 4.16.



CHAPTER 4. MULLER GAMES 93The notion of �branh of a memory state� arries to the ase of randomisedstrategies, but not its uniity: even if Eve starts in the same memory stateand Adam plays with a passive strategy, the random deisions an lead todi�erent branhes. We onsider thus the set of branhes of a memory state
m: they are the branhes that have a positive probability to be traversedwhen Eve is in the memory state m and Adam plays with a passive strategy.Proposition 4.24 Let σ = (M, σn, σu) be an almost-sure winning strategyfor Eve in (AE ,F). Then σ has memory at least rE .Proof. Again, the idea is that the memory states are neessary to deal withthe branh strategies. However, as we will see, a single memory state ansometimes deal with several branh strategies.Let b = E1A1 . . . Eℓ(Aℓ) be a branh of E and τb be the orrespondingbranh strategy for Adam. Consider what happens if Eve plays σ and Adamplays τb. By de�nition of τb, the set of olours visited in a traversal of ρ isone of the Ai's, or Eℓ if and only if Eve plays along b. So, as σ wins against
τb, there is at least one memory state m suh that b is a branh of m.Contrary to what happens in the pure ase, m an have other branhesthan b, as long as they lead to visits to Aℓ, and not another Ai i.e. when theother branhes are siblings or nephews to b. Consequently, a memory state
m is suitable against τb if
• b is a branh of m, and
• E1A1 . . . Eℓ is a pre�x of all the branhes of mIt follows that a single memory state an be suitable against two strate-gies τb and τb′ orresponding to the branhes b = E1A1 . . . EℓAℓ and b′ =

E ′
1A

′
1 . . . E ′

ℓ′A
′
ℓ′ only if they are siblings:

• ℓ = ℓ′

• ∀i < ℓ, Ei = E ′
iThere are rE equivalene lasses for this relation in E . Hene, there mustbe at least rE memory states in M . Proposition 4.24 follows. �By Proposition 4.20, there is a ropped DAG E of DF, C suh that rE = rF .So, in general, Eve needs randomised strategies with memory rF in order to



CHAPTER 4. MULLER GAMES 94win games whose winning ondition is F . As we saw in Setion 4.3 that hehad suh strategies, it ompletes the proof of Theorem 4.18.In their original proof for pure strategies, the authors of [DJW97℄ useropped trees, in lieu of our ropped DAG. Our result is thus a little better,sine Zielonka DAGs are more ompat than Zielonka trees. For example,in a �mathing priority� winning ondition of rank k, the size of the tree is
O(2k), while the DAG is of size O(k).4.4.5 Arenas of polynomial sizeIn general, the size of a ropped DAG is exponential in the number of olours.The question of whether the mF and rF bounds hold when the arenas are ofpolynomial size is still open. It does in several speial ases: for example, thearenas for the �ardinal-guessing ondition�, used in [DJW97℄ and [Maj03℄ toprove global lower bounds for pure and random strategies are polynomial. Italso holds for mathing priority, Streett, mathing onjuntion, and ardinalparity. In eah ase, there is a witness arena of polynomial size where theplays onsists in a suession of basi loops with parameters, whih are hosenby Adam:Mathing priority: The parameter is a rank i. Eve must hoose whethershe visits +i or −i (Figure 4.14(a)). The size of the arena is linear inthe maximal rank.Streett: The parameters are two integers i and j. Eve visits either −i and

+j, or +i and −j (Figure 4.14(b)) a request for one of these and aresponse for the other. The size of the arena is quadrati in in themaximal rank.Mathing onjuntion and ardinal parity: The parameters are two in-tegers i and j. Eve an hoose to visit either +i, −i, +j, or −j. Adaman then hoose to visit either olour in the other pair (Figure 4.14()).The size of the arena is quadrati in in the maximal rank.Finally, the only ondition for whih we did not found a polynomial arenawas the majority ondition � although Figure 4.14(a) shows that strategieswhose memory is polynomial in the size of the arena are not enough. Itis interesting to notie that it is the only ondition we onsidered wherethe di�erene of ardinality between a node and one of its hildren is notbounded: in all the others, the hange always depends on only one olour.
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i

+i

−i(a) Mathing priority loop i, j

−i

−j

+j

+i(b) Streett loop
i, j

+i

−i

+j

−j

+j

−j

+i

−i() Mathing onjuntion / ardinal parity loopFigure 4.14: Polynomial-size arenas4.5 DisussionWe found a polynomial algorithm for expliit Muller games, whih providedus with a nie appliation for our results of Chapter 3. Using the standartequivalene, this algorithm an be used to deide the emptiness of expliitMuller tree automata. It would be interesting to know whether other prob-lems on these automata an be solved in a similar fashion.Our main result, the tight bound on the neessary memory for randomisedstrategies, raises four natural questions:
• Does these bounds still hold for arenas of polynomial size?
• Is it possible to �nd suh bounds for any regular game, irumventingthe produt with an automata reognising the winning ondition?
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• Does our upper bound still hold for semi-randomised strategies?
• What are the links in terms of memory between our two models ofrandomised strategies with memory?



Chapter 5Finitary winning in ω-regulargames�In the long run, we're all dead.� John Maynard KeynesEvery ω-regular spei�ation (indeed, every spei�ation) an be deom-posed into a safety part and a liveness part [AS85℄. The safety part ensuresthat the omponent will not do anything �bad� (suh as violate an invariant)within any �nite number of transitions. The liveness part ensures that theomponent will do something �good� (suh as proeed, or respond, or termi-nate) within some �nite number of transitions. Liveness an be violated onlyin the limit, by in�nite sequenes of transitions, as no bound is stipulated onwhen the �good� thing must happen. This in�nitary, lassial formulation ofliveness has both strengths and weaknesses. A main strength is robustness, inpartiular, independene from the level of detail of the transitions. Anotherone is simpliity, allowing liveness to serve as an abstration for ompliatedsafety onditions. For example, a omponent may always respond in a num-ber of transitions that depends, in some ompliated manner, on the exatsize of the stimulus. Yet, for orretness, we may be interested only that theomponent will respond �eventually�. On the other hand, this also pointsto a weakness of the lassial de�nition of liveness: it an be satis�ed byomponents that in pratie are quite unsatisfatory beause no bound anbe put on their response time. It is for this reason that alternative, strongerformulations of liveness have been proposed. One of these is �nitary liveness97



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 98[AH98, DJP03℄, whih requires the existene of a bound b suh that everystimulus is followed by a response within b transitions. Notie that this isquite di�erent from a spei�ation whih would insist on a response withina known bound b, as onsidered for example in [KPV07℄. In the �nitaryase, the bound b may be arbitrarily large, but the response time must notgrow forever from one stimulus to the next. In this way, �nitary liveness stillmaintains the robustness (independene of step granularity) and simpliity(abstration of ompliated safety) of traditional liveness, while removingunsatisfatory implementations.In this hapter, we study games with �nitary winning onditions. Themotivation is the same as for �nitary liveness. Consider, for example, thesynthesis of an elevator ontroller as a strategy in a game where one playerrepresents the environment (i.e., the pushing of all buttons on various �oors,and the pushing of target buttons inside the elevators), and the other playerrepresents the elevator ontrol (i.e., the ommands to move an elevator up ordown, and the opening and losing of elevator doors). Clearly, one objetiveof the ontroller is that whenever a all button is pushed on a �oor, thenan elevator will eventually arrive, and whenever a target button is pushedinside an elevator, then the elevator will eventually get to the orresponding�oor. Note that this objetive is formulated in an in�nitary way (the keyterm is �eventually�). This is beause, for robustness and simpliity, wedo not wish to speify for eah state the exat number of transitions untilthe objetive must be met. However, a truly unbounded implementationof elevator ontrol (where the response time grows from request to request,without bound) would be utterly unsatisfatory. A �nitary interpretation ofthe objetive prohibits suh undesirable ontrol strategies: there must exista bound b suh that the ontroller meets every all request, and every targetrequest, within b transitions.This hapter, whose results ome from a joint work with KrishnenduChatterjee and Thomas A. Henzinger [CHH09, CHH08℄, fouses on two typesof objetives: the �nitary parity ondition, in Setion 5.1; and the �nitaryStreett ondition in Setion 5.2.5.1 Finitary Parity GamesWe �rst onsider the �nitary version of the parity ondition, whih allow us toexpress �nitary versions of the ω-regular onditions. It also subsumes �nitary



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 99reahability, �nitary Bühi, and �nitary o-Bühi objetives as speial ases.In the lassial, in�nitary parity objetive, Eve wins by ensuring thatevery odd priority that repeats in�nitely often is followed by a smaller evenpriority �eventually� (arbitrarily many transitions later). The �nitary parityondition, by ontrast, insists on the existene of a bound b suh that everyodd priority that repeats in�nitely often is followed by a smaller even prioritywithin b transitions. The �nitary parity objetive is stritly stronger thanthe lassial parity objetive, as is illustrated by the example of Figure 5.1.
1 2 0

Figure 5.1: Finitary parity is not parityIn this parity arena, Eve wins with respet to the lassial parity ondi-tion: the lowest olour of a play an be 0 if Adam hooses in�nitely oftento go right, or 2 if he eventually remains forever in the middle state, butit annot by 1. However, Adam an win with respet to the �nitary parityondition, by staying i times in the middle state the ith time he gets therefrom the left state: with this strategy, the distanes grows without bound.The �nitary parity ondition is formally de�ned through the notion ofthe parity distane sequene of an in�nite play:De�nition 5.1 (Parity distane sequene of a play ρ) Let (A, χ) be aparity arena, and ρ be a play of A. The parity distane sequene of ρ, denotedby (Pdist(ρ, i))i∈N is de�ned as follows: Pdist(ρ, i) is the smallest j suh that
χ(ρi+j) is even and smaller or equal than χ(ρi). Notie that if χ(ρi) is even,
Pdist(ρ, i) is equal to 0.Intuitively, the distane for a position i in a play with an odd priority atposition i, denotes the shortest distane to a stronger even priority in theplay. We assume the standard onvention that the in�mum of the empty setis ∞.



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 100De�nition 5.2 Let (A, χ) be a parity arena. A play ρ of A is winning forEve in the �nitary parity game (A, χ) if and only if lim supi Pdist(ρ, i) <∞.By ontrast, a play is winning for Eve in the in�nitary parity game ifthere is only a �nite number of positions with an in�nite distane.We present an algorithm omputing the winning regions of a �nitaryparity game. Its orretness argument also proves diretly the determinayfor these games, and establishes the existene of positional winning strategiesfor Eve; unsurprisingly, Adam needs in�nite memory to win. This algorithmis polynomial time, and omputes the winning region of a �nitary paritygames with n states and m transitions in time O(n2 ·m). This is in ontrastto lassial, in�nitary parity games, for whih the best known algorithmshave time omplexity O(n⌊k
3
⌋ ·m) [Sh07℄ or nO(

√
n) [JPZ06℄.We use two other notions of parity in our proofs: the well known weakparity ondition (5.1.1) and a new bounded parity ondition (5.1.2). Our al-gorithm for �nitary parity games is obtained by iteratively solving boundedparity games, and the solution of bounded parity games is obtained by iter-atively solving weak parity games (5.1.3).5.1.1 Weak parity gamesThe notion of �weak� ondition has been introdued by Staiger and Wagnerin [SW74℄. Weak onditions are ω-regular onditions that do not distinguishbetween plays with the same set of ourring olours:De�nition 5.3 Let A be an arena on C and F be a subset of P(C). A play

ρ of A is winning for Eve in the Staiger-Wagner game (A,F) if and only if
Occ(ρ) ∈ F .This an be related with Muller onditions, whih do not distinguishbetween plays with the same set of in�nitely ourring olours. Staiger-Wagner games are thus often alled weak Muller games. Likewise, we ande�ne weak Streett games on Streett arenas, and weak parity games on parityarenas. In this setion, we are mostly interested by this last ase, where thewinner is deided by the parity of the minimum priority ourring in theplay:De�nition 5.4 Let (A, χ) be a parity arena. A play ρ of A is winning forEve in the weak parity game (A, χ) if and only if min χ(Occ(ρ)) is even.



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 101We informally desribe a reursive algorithm omputing the winning re-gions of a 2-player weak parity game. The input is a 2-player arena (A, χ),with A = (Q,QE ,QA, T ) and χ : Q → [0 . . . k]. The reursion step dependson the lowest olour i whih appears in χ(A):
• If i is even, we start by omputing the attrator of Eve to the stateswith priority i: these states learly belong to the winning region of Eve.Furthermore, A1 = A \ AttrE(χ−1(i),A) is a trap for Eve, and thus asubarena. We an reursively ompute WinwP

E (A1, χ) and WinwP
A (A1, χ).The winning regions of Eve and Adam in G are AttrE(χ−1(i),A) ∪

WinwP
E (A1, χ) and WinwP

A (A1, χ).
• If i is odd, we ompute the attrator of Adam to the states with pri-ority i: these states learly belong to the winning region of Adam.Furthermore, A1 = A\AttrA(χ−1(i),A) is a trap for Adam, and thus asubarena. We an reursively ompute WinwP

E (A1, χ) and WinwP
A (A1, χ).The winning regions of Eve and Adam in G are WinwP

E (A1, χ) and
AttrE(χ−1(i),A) ∪WinwP

A (A1, χ).The formal desription of the omplete algorithm an be found in [LT00℄.At �rst sight, the time omplexity appears to be O(k · |T |). However, [Cha06℄provides a detailed running time analysis and shows that, with adequate datastrutures, it runs in time O(|T |). Notie that as eah attrator is de�ned ona di�erent domain, they an be ombined into positional winning strategiesfor both players. Theorem 5.5 summarises the results on games with weakparity objetives:Theorem 5.5 (Weak parity games[LT00, Cha06℄) Let (A, χ) be a 2-player parity arena. The following assertions hold:1. (Determinay). We have WinwP
E (A, χ) = Q \WinwP

A (A, χ).2. (Strategy omplexity). Both players have positional winning strategies.3. (Time omplexity). The sets WinwP
E (A, χ) and WinwP

A (A, χ) an be om-puted in time O(|T |).



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 1025.1.2 Bounded parity gamesWe use the bounded parity ondition as an intermediate step in our shemeto solve �nitary parity games. This ondition requires that whenever an oddpriority is visited, then now or later a lower even priority is visited. Theformal de�nition of the bounded parity ondition uses the parity distanesequene: Eve must ensure that it takes only �nite values. Adam wins ifthere is a position with an in�nite distane:De�nition 5.6 Let (A, χ) be a parity arena. A play ρ of A is winning forEve in the bounded parity game (A, χ) if and only if ∀i, Pdist(ρ, i) <∞.We �rst show that we an use a �x-point algorithm to ompute the win-ning regions of bounded parity games, using an algorithm for weak paritygames as a partial algorithm (De�nition 3.12, page 56):Lemma 5.7 Let (A, χ) be a 2-player parity arena. The following assertionshold:1. Adam's winning region for the weak parity ondition is a subset ofhis winning region for the bounded parity ondition: WinwP
A (A, χ) ⊆

WinbP
A (A, χ).2. If Eve wins from eah state in Q for the weak parity ondition, she winsfrom eah state in Q for the bounded parity ondition: WinwP

E (A, χ) =
Q ⇒WinbP

E (A, χ) = Q.Proof.1. Consider a play ρ winning for Adam with respet to the weak par-ity ondition, and denote by i the lowest olour ourring in ρ: i =
min(Occ(ρ)). Let j be a position suh that ρj = i. By De�nition 5.1,
Pdist(ρ, j) = ∞. Thus ρ is winning for Adam with respet to thebounded parity ondition.2. By Theorem 5.5, Eve has a positional winning strategy σ with respetto the weak parity ondition. Let ρ be a play onsistent with σ. Byontradition, assume that there is a position i suh that χ(ρi) is oddand ∀i < j < i+|Q|, χ(ρj) is odd or greater than χ(ρi). There is a yle
c and a path w from ρi to c in Aσ suh that all the olours appearingin c and w are greater than χ(ρ(i)). The play ρiwcω is onsistent with
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σ, and winning for Adam with respet to the weak parity ondition.This is in ontradition with the fat that σ is winning for Eve withrespet to this ondition. Thus, for any play ρ onsistent with σ, forany position k, we have Pdist(ρ, k) < |Q|, so ρ is winning for Eve withrespet to the bounded parity ondition. It follows that σ is winningfor Eve with respet to the bounded parity ondition.

�The existene of positional winning strategies for Eve means that insteadof asking for �nite distane, we an ask that the distane is bounded by |Q|:Corollary 5.8 For any 2-player parity arena (A, χ), we have:
WinbP

E (A, χ) = {q ∈ Q | ∃σ, ∀τ, ∀i, Pdist(ρσ,τ
q , i) <∞}

= {q ∈ Q | ∃σ, ∀τ, ∀i, Pdist(ρσ,τ
q , i) < |Q|}We an thus use a �x-point algorithm to solve bounded games, as inAlgorithm 5.1. By Lemma 3.13, the resulting omplexity is |Q| times theomplexity of the partial algorithm: O(|Q| · |T |).Input: A parity arena (A, χ)Output: The winning regions WinbP

E (A, χ) and WinbP
A (A, χ)

WA = ∅1
B = A2 while WinwP

A (B, χ) 6= ∅ do3
WA ←WA ∪ AttrA(WinwP

A (B, χ),B)4
B ← B \ AttrA(WinwP

A (B, χ),B)5 end6 return (B, WA)7Algorithm 5.1: Winning regions of a 2-player bounded parity gameNotie that the existene of positional winning strategies for Adam inweak parity games does not arry over to bounded parity games: Theo-rem 3.17 holds only for pre�x-independent games. Indeed, there are arenaswhere Adam wins, but not with any positional winning strategy: onsider, forexample, the arena of Figure 5.1. On the other hand, the proof of Lemma 5.7shows that Eve's positional winning strategies for the weak parity onditionwere still winning for the bounded parity ondition.Theorem 5.9 summarises our results on bounded parity games:



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 104Theorem 5.9 (Bounded parity games) Let (A, χ) be a 2-player parityarena. The following assertions hold:1. (Determinay). We have WinbP
E (A, χ) = Q \WinbP

A (A, χ).2. (Strategy omplexity). Eve has positional winning strategies, whihbound the sequene distane to |Q|.3. (Time omplexity). The sets WinbP
E (A, χ) and WinbP

A (A, χ) an be om-puted in time O(|Q| · |T |).5.1.3 Solving games with �nitary parity objetivesThe relations between the winning regions of bounded and �nitary parity on-ditions are exatly the opposite of the relations between weak and boundedparity:Lemma 5.10 For any 2-player parity arena (A, χ), the following assertionshold:1. Eve's winning region for the bounded parity ondition is a subset ofher winning region for the �nitary parity ondition: WinbP
E (A, χ) ⊆

WinfP
E (A, χ).2. If Adam wins from all the state in Q for the bounded parity ondition,then he wins from all the states in Q for the �nitary parity ondition:

WinbP
A (A, χ) = Q =⇒WinfP

A (A, χ) = Q.Proof.1. This is a diret onsequene of Corollary 5.8.2. Let τ be a winning strategy for Adam with respet to the boundedparity ondition. We de�ne the strategy τ ′ as follows:Step 1: Set a ounter c to 1 and τ to its initial memory.Step 2: Play the strategy τ until the parity distane is equal to c.Step 3: Inrement c.Step 4: Reset the memory for τ and go to to step 2.



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 105Let ρ be a play onsistent with τ ′. We denote by wc the fator or-responding to the cth iteration of τ ′. Notie that if wc is in�nite, the
{wd | d > c} are not de�ned. However, wc is onsistent with τ , andwould be winning for Eve with respet to the bounded parity onditionif it was in�nite. Thus, eah wc is �nite, and ρ is the onatenation ofthe {wc | c ≥ 1}. It follows that ρ and τ ′ are winning for Adam withrespet to the �nitary parity ondition.

�Algorithm 5.2 uses Algorithm 5.1 as a partial algorithm for Eve, for aresulting omplexity is |Q| times the omplexity of the partial algorithm:
O(|Q|2 · |T |).Input: A parity arena (A, χ)Output: The winning regions WinfP

E (A, χ) and WinfP
A (A, χ)

WE = ∅1
B = A2 while WinbP

E (B, χ) 6= ∅ do3
WE ←WE ∪ AttrE(WinbP

E (B, χ),B)4
B ← B \ AttrE(WinbP

E (B, χ),B)5 end6 return (WE ,B)7Algorithm 5.2: Winning regions of a 2-player �nitary parity game.Theorem 5.9 summarises our results on �nitary parity games:Theorem 5.11 (Finitary parity games) For any 2-player parity arena
(A, χ), the following assertions hold:1. (Determinay). We have WinfP

E (A, χ) = Q \WinfP
A (A, χ).2. (Strategy omplexity). Eve has memoryless winning strategies. In gen-eral, Adam has no strategy with �nite memory.3. (Time omplexity). The sets WinfP

E (A, χ) and WinfP
A (A, χ) an be om-puted in time O(|Q|2 · |T |).An interesting point is that the algorithm for 2-player bounded paritygames is also a partial algorithm for 21

2
-player �nitary games. It an be used



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 106to ompute the sure region of Eve, interpreting the random states as statesof Adam:Lemma 5.12 For any 21
2
-player parity arena (A, χ), the following asser-tions hold:1. Eve's sure region for the bounded parity ondition is a subset of her pos-itive winning region for the �nitary parity ondition: WinbP,∀

E (A, χ) ⊆
WinfP, >0

E (A, χ).2. If all the state in Q belongs to Adam's heroi region for the boundedparity ondition, then he almost surely wins from all the states in Q forthe �nitary parity ondition: WinbP,∃
A (A, χ) = Q ⇒WinfP,1

A (A, χ) = Q.Proof.1. Lemma 5.10 states that WinbP,∀
E (A, χ) ⊆ WinfP,∃

E (A, χ), and, for anywinning ondition, the sure winning region of Eve is a subset of herpositive winning region.2. A pure strategy τ ′ an be de�ned in a way similar to the 2-playerase. However, as τ is a heroi strategy, it is possible that Adam'sattempts to get a given distane fails. In this ase, he tries again,without inrementing the ounter:Step 1: Set a ounter c to 1 and τ to its initial memory.Step 2: Play the strategy τ until either the parity distane is equal to
c or a random move deviates from the presription of τ .Step 3: Inrement c if and only if the distane is equal to the urrentvalue c.Step 4: Reset the memory for τ and goto to step 2.Let z be the smallest positive probability in A. For any value c of theounter, the probability that the ounter gets inremented is greaterthan zc·|Q|. It follows that the probability that the ounter gets �stuk�at a �nite value is zero, so τ ′ is almost surely winning. Notie that thesame arguments proves that the uniform strategy uniA is also almost-sure.
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�One again, Eve has positional positive winning strategies. We an alsoompute the almost-sure winning region of Eve, and derive the existeneof positional almost sure winning strategies, with the help of the swithingalgorithm (Algorithm 3.2) and Theorem 3.17.5.2 Finitary Streett GamesAlthough �nitary versions of any regular ondition an be redued to �ni-tary parity, we onsider in this setion the speial alse of �nitary Streettobjetives. Indeed, in�nitary Streett games are of partiular interest in sys-tem design, as they orrespond to strong fairness onstraints [MP92℄. The�nitary Streett objetives, therefore, give the �nitary formulation of strongfairness.The de�nition of the �nitary Streett ondition is even more natural thanthe �nitary parity one: Eve wins if she answers all the requests appearing in-�nitely often within an unspei�ed bound b. Figure 5.2, for example, desribea request-servie situation:

−1 −2+1 +2

−2 −1

+2 +1Figure 5.2: A request-servie gameThere are two requests −1 and −2, whih are served by the orrespondingresponses +1 and +2. Whenever a request ours, further requests of thesame type are disabled until the request is served; then these requests areenabled again. The ontroller (Eve) needs to make deisions in the ase where



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 108two requests are unserved at the same time: she has to hoose whih one toserve. Clearly, no matter what the players do, the resulting play is winningfor Eve with respet to the lassial Streett ondition. However, onsider thetwo following strategies for Eve:Stak strategy Answering �rst the most reent request, she goes ւ fromthe left #, and ց from the right #.Queue strategy Answering �rst the most anient request, she goesց fromthe left #, and ւ from the right #.With the stak strategy, the number of transitions between an ourreneof Q1 and the next ourrene of R1 an be ultimately unbounded. Henethe stak strategy is not a winning strategy with respet to the �nitaryStreett objetive. The queue strategy, by ontrast, ensures not only thatevery request that is reeived in�nitely often is served, but it also ensuresthat the number of transitions between the arrival of a request and its serveis at most 6. It is thus winning with respet to the �nitary Streett ondition.We de�ne the �nitary Streett ondition through the notion of Streett dis-tane sequene, whih is a natural extension of the parity distane sequene:De�nition 5.13 (Streett distane sequene of a play ρ) Let (A,S) bea Streett arena of order k, and ρ be a play of A. The distane sequene of ρfor the pair (−h, +h), denoted by (Sdisth(ρ, i))i∈N is de�ned as follows:
Sdisth(ρ, i) =

{

0 if χ(ρi) 6= −h;
inf{j > 0 | χ(ρi+j) = +h} if χ(ρi) = −hThe Streett distane sequene of ρ, denoted (Sdist(ρ, i))i∈N, is de�ned by

Sdist(ρ, i) = maxh{Sdisth(ρ, i)}.The distane for a position i in a play where one or more requests oursat position i is the number of steps before eah request has been satis�ed.De�nition 5.14 Let (A,S) be a Streett arena of order k. A play ρ of Abelongs to finitaryStreett(A,S) if and only if lim supi Sdist(ρ, i) <∞.We present an algorithm omputing the winning regions of a �nitaryStreett game of degree k with n states and m transitions in time O(n2 ·m ·k ·
2k). Hene, the winner problem an be deided in EXPTIME. We also show thatit is PSPACE-hard. For omparison, the winner problem for (in�nitary) Streettgames is o-NP-omplete [EJ88℄, and the winning regions an be omputed in



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 109time O(nk · k! ·m) [Hor05℄. We also prove, that Eve has strategies with �nitememory: k · 2k memory states are enough, and 2⌊
k
2
⌋ is sometimes neessary.This an be ompared with in�nitary Streett games, where the lower andupper bounds are k!. One again, Adam may need in�nite memory in orderto win.We use one other Streett ondition in our proofs, whih is alled Request-Response ondition, and ful�ls the same role as the bounded parity ondition(5.2.1). Here also, our algorithm for �nitary Streett games is a �x-point usingan algorithm for Request-Response games as partial algorithm (5.2.2).5.2.1 Request-Response gamesRequest-Response onditions are a speial ase of ω-regular onditions, intro-dued by Wallmeier, Hütten, and Thomas in [WHT03℄. They are de�ned onStreett arenas, and a play is winning for Eve if and only if for eah pair, when-ever a request is visited, then now or later a response is visited. Althoughthey were not de�ned this way, Request-Response onditions an easily beexpressed through the Streett distane sequene:De�nition 5.15 Let (A,S) be a Streett arena of order k. A play ρ of Abelongs to Request−Response(A,S) if and only if ∀i, Sdist(ρ, i) <∞.The authors of [WHT03℄ propose a solution to Request-Response games,whih involves a redution to generalised Bühi games. Starting from a2-player Streett arena (A,S) of degree k, with A = (Q,QE ,QA, T ), anexpanded arena is built over the vertex set S ′ := S × {0, 1}k: the bit vetorsignals whih of the k onditions have an open request. The generalised Bühiondition requires that eah bit assumes in�nitely often the value 0. Winningstrategies with memory k in the redued game an be translated as strategieswith memory k · 2k in the original Request-Response game. Moreover, it iseasy to see that the anonial �round robin� strategy bounds the Streettdistane sequene of a play to |Q| · k: at any moment, the �next response�is reahed in less than |Q| moves, and it an take k suh response before theurrent request is served. These results are summarised as Theorem 5.16:Theorem 5.16 (Request-Response games [WHT03℄) Let (A,S) be a2-player Streett arena. The following assertions hold:1. (Determinay). We have WinRR

E (A,S) = Q \WinRR
E (A,S).



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 1102. (Strategy omplexity). Eve has winning strategies with memory k · 2kwhih bound the Streett distane sequene to |Q| · k. Adam has winningstrategies with memory 2k.3. (Time omplexity). The sets WinRR
E (A,S) and WinRR

E (A,S) an be om-puted in time O(|Q| · |T | · 4k · k2).Note that, as the Request-Response ondition is su�x-losed, Request-Response games ould be solved by a �x-point sheme applied to a partialalgorithm for Adam. Inspired by the results of (5.1.2), we sought to use thesolution of weak Streett games in this role � this would yield a PSPACE algo-rithm for Request-Response games. However, if the weak Streett onditionis indeed harder than the Request-Response ondition, it does not omplyto the other rule: there are arenas, like the one of Figure 5.3, where Adamwins nowhere with respet to the weak Streett ondition, and still managesto win somewhere with respet to to Request-Response ondition.
q1 r1 q1

r1

q2 r2

Figure 5.3: WinwS
A (G) = ∅ ∧WinRR

A (G) 6= ∅5.2.1.1 Complexity and MemoryWe give now some preision about the omplexity of Request-Response gamesin terms of omplexity lasses. The redution of [WHT03℄ yields the mem-bership of the winner problem to EXPTIME. Proposition 5.17 shows that it isalso PSPACE-hard.



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 111Proposition 5.17 The problem of the winner in Request-Response games isPSPACE-hard.Proof. Inspired by the redution of [NSW02℄ for weak Streett games, wepropose the following redution from QBF to Request-Response games. Let
F be the formula �∃x, ∀y, ∃z, (x ∨ y ∨ z)

∧

(x ∨ y ∨ z)�. We redue it tothe Streett arena of Figure 5.4. There is a Streett pair for eah literal: therequest is in lowerase, and the response in upperase. Furthermore, Σ is arequest for all the pairs, and ¬X is a response for all the pairs but X. It islear that Eve an win if and only if F is true. �

x

x

y

y

z

z

¬X

¬Y

¬Z

¬X

¬Y

¬ZFigure 5.4: Request-Response games are PSPACE-hardIn the ase of 1-player games with states of Eve, the problem is NP-omplete:Proposition 5.18 The winner problem of 1-player Request-Response gameswith states of Eve is NP-hard.Proof. We redue the formula (x ∨ y ∨ z)
∧

(x ∨ y ∨ z) to the Streett arenaof Figure 5.5. We use the same Streett pairs than in Figure 5.4. In orderto win, Eve must hoose the dual of a satisfying valuation, then the orretliteral in eah lause, and �nally the satisfying valuation itself. �
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Σ

X X

Y Y

Z Z

x y z

x y z

X X

Y Y

Z Z

Figure 5.5: 1-player Request-Response games with states of Eve are NP-hardProposition 5.19 The winner problem of 1-player Request-Response gameswith states of Eve is in NP.Proof. If Eve an win, she an do so by �rst following a path of length at most
nk, and then visiting all the states of a strongly onneted omponent. Bothan be guessed non-deterministially in polynomial time. Proposition 5.19follows. �On the other hand, for 1-player games with states of Adam, the problemis polynomial:Proposition 5.20 The winner problem of 1-player Request-Response gameswith states of Adam is in PTIME.Proof. We propose a polynomial proedure to ompute the winning regionsin a 1-player game where the states belong to Adam:Step 1: For eah pair i, ompute the set Xi = Qi \ AttrA(Ri,A).Step 2: Let X be the union of the Xi's. The winning region of Eve is

Q \ AttrA(X,A), and the winning region of Adam is AttrA(X,A).
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�Theorem 5.21 subsumes our results:Theorem 5.21 Deiding the winner in 2-player Request-Response gamesan be done in EXPTIME and is PSPACE-hard. In the ase of 1-player gameswith states of Eve, it is NP-omplete. In the ase of 1-player games with statesof Adam, it is polynomial.Lemma 5.22 provides lower bounds for the memory:Lemma 5.22 For any k, there is a 2-player Streett arena (A,S) of order

2k suh that Eve wins, but has no winning strategy with less than 2k memorystates; there is a (A,S) of order 2k suh that Adam wins, but has no winningstrategy with less than 2k memory states.Proof. Both witness arenas for k = 3 are represented in Figure 5.6. Althoughthere are no literals here, we use the same pairs than in Figure 5.4. InFigure 5.6(a), Eve must mimi the moves of Adam to answer all the requesthe makes. In Figure 5.6(b), all the requests are made to begin with, and Eveanswers to k of them. Adam must request exatly the same ones to ensurethat Eve annot win with her last hoie. �5.2.2 Solving games with �nitary Streett objetivesAll the arguments of (5.1.3) an be adapted for the ase of �nitary Streettgames, using Request-Response onditions in lieu of bounded parity ondi-tions.For a given Streett arena (A,S), the winning regions of the players underthe Request-Response and the �nitary Streett onditions have the same re-lation than the winning regions of a parity arena under the bounded parityand the �nitary parity onditions:Lemma 5.23 Let (A,S) be a 2-player Streett arena. The following asser-tions hold:1. Eve's winning region for the Request-Response ondition is a subset ofher winning region for the �nitary Streett ondition: WinRR
E (A,S) ⊆

WinfS
E (A,S).
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k
2
⌋ memory in Request-Response games2. If Adam wins from all the state in Q for the Request-Response on-dition, then he wins from all the states in Q for the �nitary Streettondition: WinRR

E (A,S) = Q =⇒WinfS
A (A,S) = Q.Proof.1. This is a diret onsequene of Theorem 5.16.2. Let τ be a winning strategy for Adam with respet to the Request-Response ondition. We de�ne the strategy τ ′ as follows:Step 1: Set a ounter c to 1 and τ to its initial memory.Step 2: Play the strategy τ until the Streett distane is equal to c.Step 3: Inrement c.



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 115Step 4: Reset the memory for τ ′ and go to to step 2.Let ρ be a play onsistent with τ ′. We denote by wc the fator or-responding to the cth iteration of τ ′. Notie that if wc is in�nite, the
{wd | d > c} are not de�ned. However, wc is onsistent with τ , andwould be winning for Eve with respet to the Request-Response ondi-tion if it was in�nite. Thus, eah wc is �nite, and ρ is the onatenationof the {wc | c ≥ 1}. It follows that ρ and τ ′ are winning for Adam withrespet to the �nitary Streett ondition.

�We an thus solve �nitary Streett games, be they 2-player or 21
2
-player,with �x-point arguments, using a Request-Response solver as a partial algo-rithm. Theorem 5.24 follows:Theorem 5.24 (�nitary Streett games) Let (A,S) be a 2-player Streettarena. The following assertions hold:1. (Determinay). We have WinfS

E (A,S) = Q \WinfS
A (A,S).2. (Strategy omplexity). Eve has winning strategies with memory k ·

2k whih ultimately bound the Streett distane sequene to |Q| · k. Ingeneral, Adam has no winning strategies with �nite memory.3. (Time omplexity). The sets WinfS
E (A,S) and WinfS

A (A,S) an be om-puted in time O(|Q|2 · |T | · 4k · k2).All the usual qualitative variations of these results still hold for 21
2
-playerStreett arenas. As in the ase of �nitary parity games, Adam has positionalrandomised winning strategies.Most of the omplexity results we got for Request-Response games arryto the ase of �nitary Streett games. In partiular, a PSPACE algorithm forRequest-Response games would immediately lead to a PSPACE algorithm for�nitary Streett games.Theorem 5.25 The problem of the winner in 2-player �nitary Streett gamesbelong to EXPTIME. It is also PSPACE-hard. In the ase of 1-player games, itis polynomial.



CHAPTER 5. FINITARY WINNING IN ω-REGULAR GAMES 116Proof. The redution of Figure 5.4 an be easily adapted, by adding a tran-sition from the last state to the �rst. In this game, Adam an wait foras long as he wishes with an open request between two suessive rounds.Notie that this is not possible in Figure 5.5, sine the all the states be-longs to Eve. Indeed, for any 1-player Streett arena with states of Eve
(A,S), WinfS

E (A,S) = WinSt
E (A,S). As the winner problem of 1-playerStreett games is polynomial, so is the winner problem of 1-player �nitaryStreett games. The algorithm for 1-player arenas with states of Adam aneasily be adapted for the �nitary Streett ondition. �Likewise, the lower bounds in memory derive from the ones for Request-Response games:Lemma 5.26 For any k, there is a 2-player Streett arena (A,S) of order

2k suh that Eve wins, but has no winning strategy with less than 2k memorystates.Proof. The arena of Figure 5.6 an also be adapted for �nitary games, byadding a transition from the last state to the �rst. �5.3 PerspetivesOur ontribution to the study of �nitary games unearthed a quite ompleteset of omplexity bounds for the various problems indued by �nitary games.The polynomial algorithm for �nitary parity is espeially pleasing: froma veri�ation point of view, it o�ers a muh heaper alternative to lassialparity games, while removing only pathologial behaviours that are oftenunsatisfatory to begin with.It would be nie, of ourse, to get the exat omplexity of �nitary Streettgames, through either a PSPACE algorithm or a proof of EXPTIME-hardness.Our most promising prospet, however, is to re�ne the analysis of �nitarygames, by taking in aount not only the mere satisfation of the winningondition but also the quantitative aspet of minimising the delay betweenthe requests and the subsequent responses, in the spirit of [HTW08℄.



Chapter 6Conlusion�Shool's out for summer�Shool's out forever� Shool's OutAlie CooperIn Chapter 2, we have desribed a new approah to the fundamentalproblem of reahability games, linking the omplexity to an intuitive param-eter, the number of random verties. Furthermore, the omplexity of ourpermutation algorithm is omparable to the best known deterministi algo-rithms, and the �permutation improvement� sheme makes it a andidatefor polynomiality. The obvious problem now would be to �nd a polynomialalgorithm omputing the values of 21
2
-player reahability games. However,this problem is harder than the winner problem in 2-player parity games.An interesting, yet more reasonable objetive would be to prove that ourpermutation improvement algorithm is polynomial on 11

2
-player games.We onsidered then in Chapter 3 the general ase of pre�x-independentonditions, and proved their optimal determinay. We also adapt our per-mutation algorithm to ompute the values of any pre�x-independent gameswith a single non-deterministi guess and a qualitative algorithm. It is wellknown that Borel games in general are not optimally determined , but itdoes not mean that quantitative determinay is the best we an do: we donot know any ounter-examples for qualitative determinay.We ame bak in Chapter 4 to the origins of in�nite games with the ven-erable ase of Muller games. A �rst result was the membership of the winner117



CHAPTER 6. CONCLUSION 118problem in expliit games to PTIME, and we would like to hek whetherthis result an be adapted for other tree automata problems. Our main re-sult, however, is the tight bound on the neessary memory for randomisedstrategies. We also got smaller witness arenas for the lower bounds, leadingnaturally to the question of the resiliene of these bounds in the ase of are-nas of polynomial size. Another logial extension would be to get memorybounds for any ω-regular winning ondition: even Muller games are a normalform, whose ost may be redued in some ases.A question that arose during this study was the problem of the orretde�nition of a randomised strategy with memory: by ontrast with the ase ofpure strategy, there is not an obvious �standard� notion, and we have shownthat semi-randomised strategies and strategies with random memory reallyare two di�erent models. This gives perspetives in two diretions: �rst,does our upper bound for Muller games hold for semi-randomised strategies;seond, how do these two models relate together, and with other models ofrandomised strategies with memory, e.g. strategies where the move and theupdate are independent.Lastly, the �nitary games we studied in Chapter 5 ame more from themodel-heking tradition: quite often, a really in�nitary ontroller with un-bounded delays is unaeptable. Our polynomial algorithm for parity gamesyields an e�ient approah for any �nitary ω-regular game, through theZielonka tree redution. We also studied the �nitary version of strong fair-ness, with the ase of �nitary Streett games. Our redution to request-response games suggests a new way to onsider these games, where a playyields a reward instead of a winner, in the spirit of [HTW08℄.



List of Figures
2.1 A 21

2
-player reahability game . . . . . . . . . . . . . . . . . . 172.2 Reahability game normalisation . . . . . . . . . . . . . . . . . 182.3 Redution to stopping games . . . . . . . . . . . . . . . . . . . 202.4 Case for Consisteny . . . . . . . . . . . . . . . . . . . . . . . 282.5 The single-reward game derived from Figure 2.1 . . . . . . . . 292.6 The �ompated� game Gπ . . . . . . . . . . . . . . . . . . . . 322.7 Liveness does not follow from self-onsisteny . . . . . . . . . 342.8 Unlive values . . . . . . . . . . . . . . . . . . . . . . . . . . . 422.9 In�nite run . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.1 Limit-one is not almost-sure . . . . . . . . . . . . . . . . . . . 543.2 Optimal strategies require memory in weak parity games . . . 664.1 Muller game example: the game G = (A,F) . . . . . . . . . . . 694.2 Semi-alternating arena onstrution . . . . . . . . . . . . . . . 704.3 Removal of a set in an expliit Muller ondition . . . . . . . . 724.4 Parity gadget: from 21

2
-player to 2-player . . . . . . . . . . . . 774.5 Zielonka representations of F . . . . . . . . . . . . . . . . . . . 794.6 Coloration and transitions of the generalized LAR redution . 804.7 Computation of ℓF . . . . . . . . . . . . . . . . . . . . . . . . 804.8 Computation of mF and rF . . . . . . . . . . . . . . . . . . . . 834.9 Generi top of a Zielonka Tree . . . . . . . . . . . . . . . . . . 834.10 Cropped DAGs are not Zielonka DAGs . . . . . . . . . . . . . 884.11 Pick∗(C) and Pick(D) . . . . . . . . . . . . . . . . . . . . . . 894.12 Eve hooses where to go . . . . . . . . . . . . . . . . . . . . . . 894.13 . . . and Adam hooses when to stop. . . . . . . . . . . . . . . . 904.14 Polynomial-size arenas . . . . . . . . . . . . . . . . . . . . . . 95119



LIST OF FIGURES 1205.1 Finitary parity is not parity . . . . . . . . . . . . . . . . . . . 995.2 A request-servie game . . . . . . . . . . . . . . . . . . . . . . 1075.3 WinwS
A (G) = ∅ ∧WinRR

A (G) 6= ∅ . . . . . . . . . . . . . . . . . . 1105.4 Request-Response games are PSPACE-hard . . . . . . . . . . . 1115.5 1-player Request-Response games with states of Eve are NP-hard1125.6 Both players need 2⌊
k
2
⌋ memory in Request-Response games . 114



List of Algorithms2.1 Strategy enumeration for reahability games . . . . . . . . . . . 232.2 Strategy Improvement for 11
2
-player safety games . . . . . . . . 242.3 Strategy Improvement for 21

2
-player reahability games . . . . . 252.4 Linear programming for 11

2
-player games . . . . . . . . . . . . . 272.5 Regions(G, π) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.6 Values(G, π, W ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.7 Consistent(π, v) . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.8 Live(G, π, W ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.9 Permutation algorithm for reahability games . . . . . . . . . . 352.10 Value-based permutation improvement . . . . . . . . . . . . . . 392.11 Mixed permuation improvement . . . . . . . . . . . . . . . . . 443.1 Fix-point algorithm . . . . . . . . . . . . . . . . . . . . . . . . 573.2 Swithing algorithm . . . . . . . . . . . . . . . . . . . . . . . . 583.3 Permutation Algorithm for pre�x-independent games . . . . . . 603.4 Metaregions(G, π) . . . . . . . . . . . . . . . . . . . . . . . . . 614.1 Polynomial algorithm for expliit Muller games . . . . . . . . . 734.2 Partial algorithm for Muller games . . . . . . . . . . . . . . . . 845.1 Winning regions of a 2-player bounded parity game . . . . . . . 1035.2 Winning regions of a 2-player �nitary parity game. . . . . . . . 105

121



Bibliography[AH98℄ Rajeev Alur and Thomas A. Henzinger. Finitary Fairness.ACM Transations on Programming Languages and Systems,20(6):1171�1194, 1998.[AS85℄ Bowen Alpern and Fred B. Shneider. De�ning Liveness. Infor-mation Proessing Letters, 21(4):181�185, 1985.[BBBM08℄ Nathalie Bertrand, Patriia Bouyer, Thomas Brihaye, and Nio-las Markey. Quantitative Model-Cheking of One-Clok TimedAutomata under Probabilisti Semantis. In Proeedings of the5th International Conferene on Quantitative Evaluation of Sys-tems, QEST'08, pages 55�64. IEEE Computer Soiety, 2008.[BBJ+08℄ Patriia Bouyer, Thomas Brihaye, Marin Jurdzi«ski, RankoLazi¢, and Mihaª Rutkowski. Average-Prie and Reahability-Prie Games on Hybrid Automata with Strong Resets. In Pro-eedings of the 6th International Conferene on Formal Mod-elling and Analysis of Timed Systems, FORMATS'08, vol-ume 5215 of Leture Notes in Computer Siene, pages 63�77.Springer-Verlag, 2008.[BCHG+97℄ Christel Baier, Edmund M. Clarke, Vassili Hartonas-Garmhausen, Marta Z. Kwiatkowska, and Mark Ryan. Sym-boli Model Cheking for Probabilisti Proesses. In Proeedingsof the 24th International Colloquium on Automata, Languagesand Programming, ICALP'97, volume 1256 of Leture Notes inComputer Siene, pages 430�440. Springer-Verlag, 1997.[BDM+06℄ Mikolaj Bojanzyk, Claire David, Ana Musholl, ThomasShwentik, and Lu Segou�n. Two-variable logi on data trees122



BIBLIOGRAPHY 123and XML reasoning. In Proeedings of the 25th ACM SIGACT-SIGMOD-SIGART Symposium on Priniples of Database Sys-tems, PODS'06, pages 10�19. ACM Press, 2006.[BFLP03℄ Sébastien Bardin, Alain Finkel, Jér�me Leroux, and LaurePetrui. FAST: Fast Aeleration of Symbolik Transition Sys-tems. In Proeedings of the 15th International Conferene onComputer Aided Veri�ation, CAV'03, volume 2725 of LetureNotes in Computer Siene, pages 118�121. Springer-Verlag,2003.[BJNT00℄ Ahmed Bouajjani, Bengt Jonsson, Marus Nilsson, and TayssirTouili. Regular Model Cheking. In Proeedings of the12th International Conferene on Computer Aided Veri�ation,CAV'00, volume 1855 of Leture Notes in Computer Siene,pages 403�418. Springer-Verlag, 2000.[BKH99℄ Christel Baier, Joost-Pieter Katoen, and Holger Hermanns.Approximate Symboli Model Cheking of Continuous-TimeMarkov Chains. In Proeedings of the 10th International Con-ferene on Conurreny Theory, CONCUR'99, volume 1664 ofLeture Notes in Computer Siene, pages 146�161. Springer-Verlag, 1999.[BL69℄ J. Rihard Bühi and Lawrene H. Landweber. Solving Sequen-tial Conditions by Finite-State Strategies. Transations of theAmerian Mathematial Soiety, 138:295�311, 1969.[Bla92℄ Andreas Blass. A Game Semantis for Linear Logi. Annals ofPure and Applied Logi, 56(1�3):183�220, 1992.[BLV96℄ Nils Buhrke, Helmut Lesow, and Jens Vöge. Strategy Constru-tion in In�nite Ganes with Streett and Rabin Chain WinningConditions. In Proeedings of the 2nd International Confereneon Tools and Algorithms for the Constrution and Analysis ofSystems, TACAS'96, volume 1055 of Leture Notes in ComputerSiene, pages 207�224. Springer-Verlag, 1996.[Bor21℄ Émile Borel. La théorie du Jeu et les équations intégrales `anoyau symétrique. Comptes-rendus de l'Aadémie des Sienes,1923:1304�1308, 1921.



BIBLIOGRAPHY 124[Bü62℄ J. Rihard Bühi. On a deision method in restrited seond-order arithmeti. In Proeedings of the 1st InternationalCongress of Logi, Methodology, and Philosophy of Siene,CLMPS'60, pages 1�11. Stanford University Press, 1962.[CdAH04℄ Krishnendu Chatterjee, Lua de Alfaro, and Thomas A. Hen-zinger. Trading Memory for Randomness. In Proeedings of the1st International Conferene on Quantitative Evaluation of Sys-tems, QEST'04, pages 206�217. IEEE Computer Soiety, 2004.[CdAH05℄ Krishnendu Chatterjee, Lua de Alfaro, and Thomas A. Hen-zinger. The Complexity of Stohasti Rabin and Streett Games.In Proeedings of the 32nd International Colloquium on Au-tomata, Languages and Programming, ICALP'05, volume 3580of Leture Notes in Computer Siene, pages 878�890. Springer-Verlag, 2005.[CE81℄ Edmund M. Clarke and E. Allen Emerson. Design and Synthesisof Synhronization Skeletons Using Branhing-Time TemporalLogi. In Logi of Programs, volume 131 of Leture Notes inComputer Siene, pages 52�71. Springer-Verlag, 1981.[CH06a℄ Krishnendu Chatterjee and Thomas A. Henzinger. FinitaryWinning in ω-Regular Games. In Proeedings of the 12th In-ternational Conferene on Tools and Algorithms for the Con-strution and Analysis of Systems, TACAS'06, volume 3920 ofLeture Notes in Computer Siene, pages 257�271. Springer-Verlag, 2006.[CH06b℄ Krishnendu Chatterjee and Thomas A. Henzinger. Strategy Im-provement for Stohasti Rabin and Streett Games. In Proeed-ings of the 17th International Conferene on Conurreny The-ory, CONCUR'06, volume 4137 of Leture Notes in ComputerSiene, pages 375�389. Springer-Verlag, 2006.[CH08a℄ Julien Cristau and Florian Horn. Graph Games on Ordinals. InProeedings of the 28th International Conferene on the Founda-tions of Software Tehnology and Theoretial Computer Siene,FSTTCS'08, volume 2 of Leibniz International Proeedings inInformatis, pages 143�154. Shloÿ Dagstuhl, 2008.



BIBLIOGRAPHY 125[CH08b℄ Julien Cristau and Florian Horn. On Reahability Games ofOrdinal Length. In Proeedings of the 34th Conferene on Cur-rent Trends in Theory and Pratie of Computer Siene, SOF-SEM'08, volume 4910 of Leture Notes in Computer Siene,pages 211 � 221. Springer-Verlag, 2008.[Cha06℄ Krishnendu Chatterjee. Linear Time Algorithm for Weak ParityGames. Tehnial Report UCB/EECS-2006-153, University ofCalifornia at Berkeley, 2006.[Cha07a℄ Krishnendu Chatterjee. Conurrent Games with Tail Obje-tives. Theoretial Computer Siene, 388(1�2):181�198, 2007.[Cha07b℄ Krishnendu Chatterjee. Optimal Strategy Synthesis in Stohas-ti Muller Games. In Proeedings of the 10th International Con-ferene on the Foundations of Software Siene and Computa-tional Strutures, FoSSaCS'07, volume 4423 of Leture Notes inComputer Siene, pages 138�152. Springer-Verlag, 2007.[Cha07℄ Krishnendu Chatterjee. Stohasti Müller Games are PSPACE-Complete. In Proeedings of the 27th International Confer-ene on the Foundations of Software Tehnology and TheoretialComputer Siene, FSTTCS'07, volume 4855 of Leture Notesin Computer Siene, pages 436�448. Springer-Verlag, 2007.[Cha07d℄ Krishnendu Chatterjee. Stohasti ω-regular Games. PhD the-sis, University of California at Berkeley, 2007.[CHH08℄ Krishnendu Chatterjee, Thomas A. Henzinger, and FlorianHorn. Stohasti Finitary Games. Tehnial Report 2008�002,Laboratoire d'Informatique Algorithmique: Fondements et Ap-pliations, CNRS UMR 7089, 2008.[CHH09℄ Krishnendu Chatterjee, Thomas A. Henzinger, and FlorianHorn. Finitary Winning in ω-regular Games. To appear inACM Transations on Computational Logi, 2009.[CHM+08℄ Arnaud Carayol, Matthew Hague, Antoine Meyer, C.-H. LukeOng, and Olivier Serre. Winning Regions of Higher-Order Push-down Games. In Proeedings of the 23rd Annual IEEE Sympo-



BIBLIOGRAPHY 126sium on Logi in Computer Siene, LICS'08, pages 193�204.IEEE Computer Soiety, 2008.[Chr03℄ Juliusz Chrobozek. Game Semantis and Subtyping. PhD the-sis, University of Edinburgh, 2003.[Chu62℄ Alonzo Churh. Logi, arithmeti, and automata. In Proeedingsof the International Congress of Mathematiians, pages 23�35,1962.[CJH03℄ Krishnendu Chatterjee, Marin Jurdzi«ski, and Thomas A.Henzinger. Simple Stohasti Parity Games. In Proeedingsof the 12th EACSL Annual Conferene on Computer Sieneand Logi, CSL'03, volume 2803 of Leture Notes in ComputerSiene, pages 100�113. Springer-Verlag, 2003.[CJH04℄ Krishnendu Chatterjee, Marin Jurdzi«ski, and Thomas A.Henzinger. Quantitative Stohasti Parity Games. In Proeed-ings of the 15th Symposium on Disrete Algorithms, SODA'04,pages 121�130. Soiety for Industrial and Applied Mathematis,2004.[CL08℄ Thomas Colombet and Christof Löding. The Nesting-Depth ofDisjuntive µ-alulus for Tree Languages and the LimitednessProblem. In Proeedings of the 17th EACSL Annual Confer-ene on Computer Siene and Logi, CSL'08, volume 5213 ofLeture Notes in Computer Siene, pages 416�430. Springer-Verlag, 2008.[Cla08℄ Edmund M. Clarke. The Birth of Model Cheking. In 25 Yearsof Model Cheking, volume 5000 of Leture Notes in ComputerSiene, pages 1�26. Springer-Verlag, 2008.[CN06℄ Thomas Colombet and Damian Niwinski. On the PositionalDeterminay of Edge-Labeled Games. Theoretial ComputerSiene, 352(1�3):190�196, 2006.[Con92℄ Anne Condon. The Complexity of Stohasti Games. Informa-tion and Computation, 96(2):203�224, 1992.



BIBLIOGRAPHY 127[Con93℄ Anne Condon. On Algorithms for Simple Stohasti Games. InAdvanes in Computational Complexity Theory, volume 13 ofDIMACS Series in Disrete Mathematis and Theoretial Com-puter Siene, pages 51�73. Amerian Mathematial Soiety,1993.[Cou38℄ A. Augustin Cournot. Reherhes sur les prinipes mathéma-tiques de la théorie des rihesses. 1838.[CY95℄ Costas Couroubetis and Mihalis Yannakakis. The Complexityof Probabilisti Veri�ation. Journal of the ACM, 42(4):857�907, 1995.[dA97℄ Lua de Alfaro. Formal Veri�ation of Probabilisti Systems.PhD thesis, Stanford University, 1997.[dAFH+03℄ Lua de Alfaro, Maro Faella, Thomas A. Henzinger, RupakMajumdar, and Marielle Stoelinga. The Element of Surprise inTimed Games. In Proeedings of the 14th International Con-ferene on Conurreny Theory, CONCUR'03, volume 2761 ofLeture Notes in Computer Siene, pages 142�156. Springer-Verlag, 2003.[dAH00℄ Lua de Alfaro and Thomas A. Henzinger. Conurrent ω-regularGames. In Proeedings of the 16th Annual IEEE Symposiumon Logi in Computer Siene, LICS'00, pages 141�154. IEEEComputer Soiety, 2000.[dAHK98℄ Lua de Alfaro, Thomas A. Henzinger, and Orna Kupfer-man. Conurrent Reahability Games. In Proeedings of the39th Annual Symposium on Foundations of Computer Siene,FoCS'98, pages 564�575. IEEE Computer Soiety, 1998.[Der62℄ Cyrus Derman. On Sequential Deisions and Markov Chains.Management Siene, 9(1):16�24, 1962.[Di55℄ Philip K. Dik. Solar Lottery. Ae Books, 1955.[Dix82℄ John D. Dixon. Exat Solution of Linear Equations Using p-adiExpansions. Numerishe Mathematik, 40:137�141, 1982.



BIBLIOGRAPHY 128[DJP03℄ Nahum Dershowitz, D. N. Jayasimha, and Seungjoon Park.Bounded Fairness. In Veri�ation: Theory and Pratie, Essaysdediated to Zohar Manna on the oasion of his 64th birthday,volume 2772 of Leture Notes in Computer Siene, pages 304�317. Springer-Verlag, 2003.[DJW97℄ Stefan Dziembowski, Marin Jurdzi«ski, and Igor Walukiewiz.How Muh Memory is Needed to Win In�nite Games? In Pro-eedings of the 12th Annual IEEE Symposium on Logi in Com-puter Siene, LICS'97, pages 99�110. IEEE Computer Soiety,1997.[DK00℄ Mihael J. Dinneen and Bakhadyr Khoussainov. Update Net-works and Their Routing Strategies. In Proeedings of the 26thInternational Workshop on Graph-Theoreti Conepts in Com-puter Siene, WG'00, volume 1928 of Leture Notes in Com-puter Siene, pages 127�136. Springer-Verlag, 2000.[Dur96℄ Rihard Durett. Probability Theory and Examples. DuxburyPress, 1996.[EJ88℄ E. Allen Emerson and Charanjit S. Jutla. The Complexity ofTree Automata and Logis of Programs. In Proeedings of the29th Annual Symposium on Foundations of Computer Siene,FoCS'88, pages 328�337. IEEE Computer Soiety, 1988.[EJ91℄ E. Allen Emerson and Charanjit S. Jutla. Tree Automata, µ-Calulus and Determinay. In Proeedings of the 32nd AnnualSymposium on Foundations of Computer Siene, FoCS'91,pages 368�377. IEEE Computer Soiety, 1991.[EL85℄ E. Allen Emerson and Chin-Laung Lei. Modalities for ModelCheking: Branhing Time Strikes Bak. In Proeedings of the12th Annual ACM Symposium on Priniples of ProgrammingLanguages, POPL'85, pages 84�96, 1985.[EWS01℄ Kousha Etessami, Thomas Wilke, and Rebea A. Shuller. FairSimulation Relations, Parity Games, and State Spae Redu-tion for Bühi Automata. In Proeedings of the 28th Interna-tional Colloquium on Automata, Languages and Programming,



BIBLIOGRAPHY 129ICALP'01, volume 2076 of Leture Notes in Computer Siene,pages 694�707. Springer-Verlag, 2001.[FGK08℄ Diana Fisher, Erih Grädel, and �ukasz Kaiser. Model Chek-ing Games for the Quantitative µ-alulus. In Proeedings of the25th International Symposium on Theoretial Aspets of Com-puter Siene, STACS'08, volume 1 of Leibniz InternationalProeedings in Informatis, pages 301�312. Shloÿ Dagstuhl,2008.[Fin07℄ Irving Finkel. Anient Board Games in Perspetive. BritishMuseum Publiations, 2007.[FPT04℄ Alex Fabrikant, Christos H. Papadimitriou, and Kunal Tal-war. The omplexity of pure Nash equilibria. In Proeedingsof the 36th Annual ACM Symposium on Theory of Computing,STOC'04, pages 604�612. ACM Press, 2004.[GH82℄ Yuri Gurevih and Leo Harrington. Trees, Automata, andGames. In Proeedings of the 14th Annual ACM Symposiumon Theory of Computing, STOC'82, pages 60�65. ACM Press,1982.[GH08℄ Hugo Gimbert and Florian Horn. Simple Stohasti Gameswith Few Random Verties are Easy to Solve. In Proeedings ofthe 11th International Conferene on the Foundations of Soft-ware Siene and Computational Strutures, FoSSaCS'08, vol-ume 4962 of Leture Notes in Computer Siene, pages 5 � 19.Springer-Verlag, 2008.[GH09℄ Hugo Gimbert and Florian Horn. Solving Simple StohastiGames with Few Random Verties. Logial Methods in Com-puter Siene, 5(2):9th, 2009.[Gil57℄ Dean Gillette. Stohasti Games with Zero Stop Probability,volume 3 of Contributions to the Theory of Games, pages 179�187. Prineton University Press, 1957.[Gim06℄ Hugo Gimbert. Jeux Positionels. PhD thesis, Université ParisVII � Denis Diderot, 2006.



BIBLIOGRAPHY 130[GLZ04℄ Paul Gastin, Benjamin Lerman, and Mar Zeitoun. DistributedGames with Causal Memory Are Deidable for Series-ParallelSystems. In Proeedings of the 24th International Conferene onthe Foundations of Software Tehnology and Theoretial Com-puter Siene, FSTTCS'04, volume 3328 of Leture Notes inComputer Siene, pages 275�286. Springer-Verlag, 2004.[GMSZ02℄ Blaise Genest, Ana Musholl, Helmut Seidl, and Mar Zeitoun.In�nite-State High-Level MSCs: Model-Cheking and Realiz-ability. In Proeedings of the 29th International Colloquiumon Automata, Languages and Programming, ICALP'02, vol-ume 2380 of Leture Notes in Computer Siene, pages 657�668.Springer-Verlag, 2002.[GMW87℄ Oded Goldreih, Silvio Miali, and Avi Wigderson. How to Playany Mental Game or A Completeness Theorem for Protoolswith Honest Majority. In Proeedings of the 19th Annual ACMSymposium on Theory of Computing, STOC'87, pages 218�229.ACM Press, 1987.[GTW02℄ Erih Grädel, Wolfgang Thomas, and Thomas Wilke, editors.Automata, Logis, and In�nite Games: A Guide to Current Re-searh [outome of a Dagstuhl seminar, February 2001℄, volume2500 of Leture Notes in Computer Siene. Springer-Verlag,2002.[GU08℄ Erih Grädel and Mihael Ummels. Solution Conepts and Al-gorithms for In�nite Multiplayer Games. In New Perspetives onGames and Interation, volume 5 of Texts in Logi and Games.Amsterdam University Press, 2008.[GZ05℄ Hugo Gimbert and Wieslaw Zielonka. Games Where You CanPlay Optimally Without Any Memory. In Proeedings of the16th International Conferene on Conurreny Theory, CON-CUR'05, volume 3653 of Leture Notes in Computer Siene,pages 428�442. Springer-Verlag, 2005.[GZ07℄ Hugo Gimbert and Wieslaw Zielonka. Applying Blakwell Opti-mality: priority mean-payo� games as limits of multi-disounted



BIBLIOGRAPHY 131games. In Logi and Automata: History and Perspetive, vol-ume 2 of Texts in Logi and Games, pages 331�355. AmsterdamUniversity Press, 2007.[Hal07℄ Nir Halman. Simple Stohasti Games, Parity Games, MeanPayo� Games and Disounted Payo� Games are all LP-TypeProblems. Algorithmia, 49:37�50, 2007.[HD05℄ Paul Hunter and Anuj Dawar. Complexity Bounds for RegularGames. In Proeedings of the 30th International Symposiumon Mathematial Foundations of Computer Siene, MFCS'05,volume 3618 of Leture Notes in Computer Siene, pages 495�506. Springer-Verlag, 2005.[HK66℄ Alan J. Ho�man and Rihard M. Karp. On NonterminatingStohasti Games. Management Siene, 12(5):359�370, 1966.[Hor05℄ Florian Horn. Streett Games on Finite Graphs. In the 2ndWorkshop on Games in Design and Veri�ation, GDV'05, 2005.[Hor07a℄ Florian Horn. Diing on the Streett. Information ProessingLetters, 104(1):1�9, 2007.[Hor07b℄ Florian Horn. Faster Algorithms for Finitary Games. InProeedings of the 13th International Conferene on Toolsand Algorithms for the Constrution and Analysis of Systems,TACAS'07, volume 4424 of Leture Notes in Computer Siene,pages 472�484. Springer-Verlag, 2007.[Hor09℄ Florian Horn. Random Fruits on the Zielonka Tree. In Pro-eedings of the 26th International Symposium on TheoretialAspets of Computer Siene, STACS'09, volume 3 of LeibnizInternational Proeedings in Informatis, pages 541�552. ShloÿDagstuhl, 2009.[How60℄ Ronald A. Howard. Dynami Programming and Markov Pro-esses. M.I.T. Press, 1960.[HTW08℄ Florian Horn, Wolfgang Thomas, and Nio Wallmeier. OptimalStrategy Synthesis in Request-Response Games. In Proeed-ings of the 6th International Symposium on Automated Teh-nology for Veri�ation and Analysis, ATVA'08, volume 5311 of



BIBLIOGRAPHY 132Leture Notes in Computer Siene, pages 361�373. Springer-Verlag, 2008.[IK02℄ Hajime Ishihara and Bakhadyr Khoussainov. Complexity ofSome In�nite Games Played on Finite Graphs. In Proeedings ofthe 28th International Workshop on Graph-Theoreti Coneptsin Computer Siene, WG'02, volume 2573 of Leture Notes inComputer Siene, pages 270�281. Springer-Verlag, 2002.[JKH02℄ Marin Jurdzi«ski, Orna Kupferman, and Thomas A. Hen-zinger. Trading Probability for Fairness. In Proeedings ofthe 11th EACSL Annual Conferene on Computer Siene andLogi, CSL'02, volume 2471 of Leture Notes in Computer Si-ene, pages 292�305. Springer-Verlag, 2002.[JPZ06℄ Marin Jurdzi«ski, Mike Paterson, and Uri Zwik. A Deter-ministi Subexponential Algorithm for Solving Parity Games.In Proeedings of the 17th Symposium on Disrete Algorithms,SODA'06, pages 117�123. ACM Press, 2006.[Jur00℄ Marin Jurdzi«ski. Small Progress Measures for Solving Par-ity Games. In Proeedings of the 17th International Symposiumon Theoretial Aspets of Computer Siene, STACS'00, vol-ume 1770 of Leture Notes in Computer Siene, pages 290�301.Springer-Verlag, 2000.[Jur07℄ Marin Jurdzi«ski, 2007. Personal ommuniation.[Kav86℄ Gregory S. Kavka. Hobbesian moral and politial theory. Prine-ton University Press, 1986.[Kha79℄ Leonid G. Khahiyan. A Polynomial Algorithm in Linear Pro-gramming. Soviet Mathematis Doklady, 20:191�194, 1979.[Kla97℄ Nils Klarlund. Mona & Fido: The Logi-Automaton Connetionin Pratie. In Proeedings of the 11th EACSL Annual Confer-ene on Computer Siene and Logi, CSL'98, volume 1414 ofLeture Notes in Computer Siene, pages 311�326. Springer-Verlag, 1997.



BIBLIOGRAPHY 133[KPV07℄ Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. FromLiveness to Promptness. In Proeedings of the 19th InternationalConferene on Computer Aided Veri�ation, CAV'07, volume4590 of Leture Notes in Computer Siene, pages 406�419.Springer-Verlag, 2007.[LT00℄ Christof Löding and Wolfgang Thomas. Alternating Automataand Logis over In�nite Words. In Proeedings of the IFIP In-ternational Conferene on Theoretial Computer Siene, IFIPTCS'00, volume 1872 of Leture Notes in Computer Siene,pages 521�535. Springer-Verlag, 2000.[Maj03℄ Rupak Majumdar. Symboli Algorithms for Veri�ation andControl. PhD thesis, University of California at Berkeley, 2003.[Mar75℄ Donald A. Martin. Borel Determinay. Annals of Mathematis,102(2):363�371, 1975.[Mar98℄ Donald A. Martin. The Determinay of Blakwell Games. Jour-nal of Symboli Logi, 63(4):1565�1581, 1998.[Mar07℄ George R.R. Martin. Unsound Variations. In Dreamsongs: ARRetrospetive, volume 2, pages 478�531. Orion Books, 2007.[Maz75℄ Antoni W. Mazurkiewiz. Parallel Reursive Program Shemes.In Proeedings of the 4th International Symposium on Mathe-matial Foundations of Computer Siene, MFCS'75, volume 32of Leture Notes in Computer Siene, pages 75�87. Springer-Verlag, 1975.[MM93℄ Kenneth L. MMillan. Symboli Model Cheking. PhD thesis,Carnegie Mellon University, 1993.[MN65℄ Robert MNaughton. Finite-state In�nite Games. Tehnialreport, Massahusetts Institute of Tehnology, 1965. ProjetMAC.[MN93℄ Robert MNaughton. In�nite Games Played on Finite Graphs.Annals of Pure and Applied Logi, 65(2):149�184, 1993.



BIBLIOGRAPHY 134[Mor08℄ Pierre Moro. Tehniques de véri�ation basées sur des représen-tations symboliques par automates et l'abstration guidée parles ontre-exemples. PhD thesis, Université Paris VII � DenisDiderot, 2008.[Mos91℄ Andrzej W. Mostowski. Games with Forbidden Positions. Teh-nial Report 78, University of Gdansk, 1991.[MP92℄ Zohar Manna and Amir Pnueli. The Temporal Logi of Reativeand Conurrent Systems: Spei�ation. Springer-Verlag, 1992.[MS96℄ Ashok P. Maitra and William D. Sudderth. Disrete Gamblingand Stohasti Games. Springer-Verlag, 1996.[MTY05℄ Parthasarathy Madhusudan, P.S. Thiagarajan, and ShaofaYang. The MSO Theory of Connetedly Communiating Pro-esses. In Proeedings of the 25th International Conferene onthe Foundations of Software Tehnology and Theoretial Com-puter Siene, FSTTCS'05, volume 3821 of Leture Notes inComputer Siene, pages 201�212. Springer-Verlag, 2005.[Mun07℄ Randall Munroe. E�et an E�et. XKCD 326, 2007.[MW03℄ Swarup Mohalik and Igor Walukiewiz. Distributed Games. InProeedings of the 23th International Conferene on the Foun-dations of Software Tehnology and Theoretial Computer Si-ene, FSTTCS'03, volume 2914 of Leture Notes in ComputerSiene, pages 338�351. Springer-Verlag, 2003.[Nas50℄ John F. Nash. Equilibrium points in n-person games. Proeed-ings of the National Aademy of Siene of the USA, 36(1):48�49, 1950.[NRY96℄ Anil Nerode, Je�rey B. Remmel, and Alexander Yakhnis. M-Naughton Games and Extrating Strategies for Conurrent Pro-grams. Annals of Pure and Applied Logi, 78(1�3):203�242,1996.[NSW02℄ Jakub Neumann, Andrzej Szepietowski, and Igor Walukiewiz.Complexity of Weak Aeptane Conditions in Tree Automata.Information Proessing Letters, 84(4):181�187, 2002.



BIBLIOGRAPHY 135[OG76℄ Susan S. Owiki and David Gries. Verifying Properties of Par-allel Programs: An Axiomati Approah. Communiations ofthe ACM, 19(5):279�285, 1976.[Pnu77℄ Amir Pnueli. The Temporal Logi of Programs. In Proeedingsof the 18th Annual Symposium on Foundations of ComputerSiene, FoCS'77, pages 46�57. IEEE Computer Soiety, 1977.[PP06℄ Nir Piterman and Amir Pnueli. Faster Solutions of Rabin andStreett Games. In Proeedings of the 21st Annual IEEE Sym-posium on Logi in Computer Siene, LICS'06, pages 275�284.IEEE Computer Soiety, 2006.[PR89℄ Amir Pnueli and Roni Rosner. On the Synthesis of a ReativeModule. In Proeedings of the 16th Annual ACM Symposiumon Priniples of Programming Languages, POPL'89, pages 179�190, 1989.[QS82℄ Jean-Pierre Queille and Joseph Sifakis. A Temporal Logi toDeal with Fairness in Transition Systems. In Proeedings of the23th Annual Symposium on Foundations of Computer Siene,FoCS'82, pages 217�225. IEEE Computer Soiety, 1982.[Rab69℄ Mihael Oser Rabin. Automata on In�nite Objets and Churh'sProblem. Transations of the Amerian Mathematial Soiety,141:1�35, 1969.[Ren88℄ James Renegar. A polynomial-time algorithm, based on new-ton's method, for linear programming. Mathematial Program-ming, 40(1):59�93, 1988.[Rou05℄ Tim Roughgarden. Sel�sh Routing and the Prie of Anarhy.Massahusetts Institute of Tehnology, 2005.[RS08℄ Alexander Rabinovih and Amit Shomrat. Seletion and Uni-formization Problems in the Monadi Theory of Ordinals: ASurvey. In Pillars of Computer Siene, Essays Dediated toBoris (Boaz) Trakhtenbrot on the Oasion of his 85th Birth-day, volume 4800 of Leture Notes in Computer Siene, pages571�588. Springer-Verlag, 2008.



BIBLIOGRAPHY 136[Sh07℄ Sven Shewe. Solving Parity Games in Big Steps. In Pro-eedings of the 27th International Conferene on the Founda-tions of Software Tehnology and Theoretial Computer Siene,FSTTCS'07, volume 4855 of Leture Notes in Computer Si-ene, pages 449�460. Springer-Verlag, 2007.[Ser05℄ Olivier Serre. Contribution à l'étude des jeux sur des graphesde proessus à pile. PhD thesis, Université Paris VII � DenisDiderot, 2005.[Sha53℄ Lloyd S. Shapley. Stohasti Games. In Proeedings of the Na-tional Aademy of Siene of the USA, volume 39, pages 1095�1100, 1953.[Smi82℄ John Maynard Smith. Evolution and the Theory of Games.Cambridge University Press, 1982.[SW74℄ Ludwig Staiger and Klaus W. Wagner. Automatentheoretisheund automatenfreie Charakterisierungen topologisher Klassenregulärer Folgenmengen. Elektronishe Informationsverar-beitung und Kybernetik, 10(7):379�392, 1974.[Tho95℄ Wolfgang Thomas. On the Synthesis of Strageties in In�niteGames. In Proeedings of the 12th International Symposium onTheoretial Aspets of Computer Siene, STACS'95, volume900 of Leture Notes in Computer Siene, pages 1�13. Springer-Verlag, 1995.[Var85℄ Moshe Y. Vardi. Automati Veri�ation of Probabilisti Conur-rent Finite-State Programs. In Proeedings of the 26th AnnualSymposium on Foundations of Computer Siene, FoCS'85,pages 327�338. IEEE Computer Soiety, 1985.[VJ00℄ Jens Vöge and Marin Jurdzi«ski. A Disrete Strategy Improve-ment Algorithm for Solving Parity Games. In Proeedings of the12th International Conferene on Computer Aided Veri�ation,CAV'00, volume 1855 of Leture Notes in Computer Siene,pages 202�215. Springer-Verlag, 2000.[vNM44℄ J. von Neumann and O. Morgenstern. Theory of Games andEonomi Behavior. Prineton University Press, 1944.



BIBLIOGRAPHY 137[VW86℄ Moshe Y. Vardi and Pierre Wolper. An Automata-TheoretiApproah to Automati Program Veri�ation. In Proeedings ofthe 1st Annual IEEE Symposium on Logi in Computer Siene,LICS'86, pages 332�344. IEEE Computer Soiety, 1986.[Wal96℄ Igor Walukiewiz. Pushdown Proesses: Games and ModelCheking. In Proeedings of the 8th International Confereneon Computer Aided Veri�ation, CAV'96, volume 1102 of Le-ture Notes in Computer Siene, pages 62�74. Springer-Verlag,1996.[WHT03℄ Nio Wallmeier, Patrik Hütten, and Wolfgang Thomas.Symboli Synthesis of Finite-State Controllers for Request-Response Spei�ations. In Proeedings of the 8th InternationalConferene on Implementation and Appliation of Automata,CIAA'03, volume 2759 of Leture Notes in Computer Siene,pages 11�22. Springer-Verlag, 2003.[Zer13℄ Ernst Zermelo. Uber eine Anwendung der Mengenlehre auf dieTheorie des Shahspiels. In Proeedings of the 5th InternationalCongress of Mathematiians, ICM'13, volume 2, pages 501�504.Cambridge University Press, 1913.[Zie98℄ Wieslaw Zielonka. In�nite Games on Finitely Coloured Graphswith Appliations to Automata on In�nite Trees. TheoretialComputer Siene, 200(1�2):135�183, 1998.




