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Abstract

Games are a classical tool for the synthesis of controllers in reactive systems.
In this setting, a game is defined by: an arena, which is a graph modelling
the system and its evolution; and a winning condition, which models the
specification that the controller must ensure. In each state, the outgoing
transition is chosen either by the controller (Eve), an hostile environment
(Adam), or a stochastic law (Random). This process is repeated for an
infinite number of times, generating an infinite play whose winner depends
on the winning condition.

Our first object of study is the fundamental case of reachability games.
We present a new effective approach to the computation of the values, based
on permutations of random states. In terms of complexity, the resulting
“permutation algorithm” is orthogonal to the classical, strategy-based algo-
rithms: it is exponential in the number of random states, but not in the
number of controlled states. We also present an improvement heuristic for
this algorithm, inspired by the “strategy improvement” algorithm.

We turn next to the very general class of prefix-independent games. We
prove the existence of optimal strategies in these games. We also show that
our permutation algorithm can be extended into a “meta-algorithm”, turning
any qualitative algorithm into a quantitative algorithm.

We study then the complexity of optimal strategies for Muller games,
focusing on the amount of memory that can be saved through the use of
randomised strategies. Using the Zielonka tree, we show tight bounds on
the necessary and sufficient memory needed to define randomised optimal
strategies for any given Muller condition. We also propose a polynomial
algorithm for the winner problem in ezplicit Muller games. The results of
the former chapter yield immediately NP and co-NP algorithms for the values
problem.

Lastly, we consider the finitary versions of parity and Streett games,
where the regular conditions are supplemented by universal bounds on delays.
We propose a polynomial algorithm for the winner problem on finitary parity
games. For finitary Streett games, a reduction to Request-Response games
provides an EXPTIME algorithm for qualitative problems, and we show that
the problem is PSPACE-hard.



Contents

1 Prequel 1
1.1 Background . . . .. ... ... .. ... ... 1
1.2 Definitions . . . . . . . ..o 4

1.2.1 Playing . . ... ... .. .. ... 4
1.2.2 Winning . . . . . . ... 10
1.3 Usual problems and contributions . . . . . . . ... ... ... 12
1.3.1 Problems . .. ... ... .. ... 12
1.3.2 Contributions . . . . . ... ... 14

2 Reachability games 16

2.1 Firstnotions . . . . . . . . ... Lo 16
2.1.1 Normalised and stopping games . . . . . . . .. .. .. 17
2.1.2 Equations and Positional strategies . . . . . .. .. .. 21
2.1.3 Strategy improvement . . . . . .. .. ... ... ... 23

2.2 Permutation Algorithm . . . . . ... ... ... ... ..., 27
2.2.1 Strategies and regions . . . . . .. ... ... L. 28
2.2.2  Evaluating a Permutation . . . .. ... ... ... .. 31
2.2.3 Algorithm and Correctness . . . . . . . .. ... .. .. 35
2.2.4 Complexity analysis . . . . ... ... ... ...... 37

2.3 Heuristics for permutation algorithms . . . . . . ... ... .. 38
2.3.1 Value-based improvement . . . .. .. ... ... ... 38
2.3.2  Value-based improvement and 2%—player games . . . . . 42
2.3.3 Mixed improvement, . . . . . .. ... 43

24 Afterword . . . ... 47

3 Prefix-independent conditions 48
3.1 Winning regions . . . . . . . . ... Lo 49

3.1.1 Valuesand o-values . . . . . . . . . . .. ... ... .. 50



3.1.2 Reset strategies . . . . . . . ...
3.1.3 Links. . .. . . ..
3.2 Fix-points algorithms . . . . . .. ... ...
3.2.1 Partial algorithms . . . . . . . ... ..o
3.2.2  Switching algorithm . . . . . ... ... 000
3.3 Values and optimal strategies . . . . . .. ... .. ... ...
3.3.1 m-concepts for prefix independent conditions . . . . . .
3.3.2 Liveness and self-consistency . . . . . . ... ... ...
3.3.3 Correctness of Algorithm 3.3 . . . . .. ... ... ...
3.3.4 Optimal strategies . . . . . . ... ... ... ... ..
3.4 Valediction . . .. .. ... ...

Muller Games

4.1 Explicit games. . . . . . .. ... Lo
4.1.1 Normal form. . .. .. ... ... ... ... ......
4.1.2 Algorithm . . . .. .. ... ... ... ... ...,

4.2 Solution through reductions . . . . . ... .. ... ... ...
4.2.1 Solving 2-player parity games . . . . . ... ... ...
4.2.2 2%—player parity games to 2-player parity games . . . .
4.2.3 Muller conditions to parity conditions . . . . . . . . ..

4.3 Recursive algorithm . . . . . ... ...
4.3.1 Partial algorithm . . . . ... ... ..o
4.3.2 Non-empty output: spatial composition . . . . . . . ..
4.3.3 Empty output: temporal composition . . . . . . .. ..

4.4 Lower bounds for Muller conditions . . . . . . . .. ... ...
441 Cropped DAGs . . .. ... .. ... .. ........
4.4.2 From cropped DAGs toarenas . . . . . ... ... ...
4.4.3 Strategies in the DAG game . . . . . ... ... .. ..
4.4.4 Winning against branch strategies . . . . . . . .. ...
4.4.5 Arenas of polynomial size . . . . . ... ... ... ..

4.5 Discussion . . . . ...

Finitary winning in w-regular games

5.1 Finitary Parity Games . . . . . . . .. ... ... ... ..
5.1.1 Weak parity games . . . . . .. .. ... ...
5.1.2 Bounded parity games . . . .. .. ... ... ...
5.1.3 Solving games with finitary parity objectives . . . . . .

5.2 Finitary Streett Games . . . . . . . .. . ... .. ... .. ..



5.2.1 Request-Response games . . . . . . .. ... ... ... 109

5.2.2  Solving games with finitary Streett objectives . . . . . 113
5.3 Perspectives . . . . . . ... 116
6 Conclusion 117

Bibliography 121






Chapter 1

Prequel

“Pleased to meet you

Hope you guess my name
But what’s puzzling you
Is the nature of my game”

Sympathy for the Devil
The Rolling Stones

After short introductory remarks on the development of Game Theory in
Computer Science in Section 1.1, we describe in Section 1.2 the game model
underlying the whole thesis, namely 2%—player simple graph games on finite
arenas with boolean winning condition, as well as the main problems on such
games. Section 1.3 reviews our main contributions.

1.1 Background

Game Theory is a very versatile paradigm, whose applications range from
biology [Smi82] to philosophy [Kav86] via economics [Cou38|. This matches
the pervasiveness of games in general in human history: there has never been
a society without games, at least since biblical times when the contemporaries
of Abraham played the royal game of Ur [Fin07].

It is no surprise, then, that game theory found many applications in
computer science: artificial intelligence [GMW8T|, logic [Bla92|, semantics
of programming languages [Chr03], etc. The model of graph games, which
we use throughout this work, is quite straightforward: two players called
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Eve and Adam move alternatively a token between the different positions of
a board, with a set of rules which describe the legal moves and decide the
winner. There is the fact that plays usually go on forever. Well, it could not
be that simple, could it?

Automata. In the sixties, the problems of verification and synthesis of
digital circuits [Chu62] led to the introduction of automata over infinite
words [Biic62] and infinite graph games [McN65|. The first solution to
Church’s synthesis problem, by Biichi and Landweber, came from a game
approach [BL69|. Rabin quickly followed suit, and provided a solution based
on tree automata [Rab69].

Automata theory and graph games remain closely linked: two player
games can be seen as alternating automata over a one-letter alphabet, while
the emptiness of non-deterministic tree automata (on a finite alphabet) can
be reduced to the problem of deciding the winner of a two-player game.
Furthermore, the existence of strategies with finite memory can be used to
complement automata: for example, Gurevich and Harrington used the latest
appearance records structure for Muller games —already mentioned by Buchi
and McNaughton in unpublished manuscripts— to get a simpler proof of
Rabin’s theorem [GHS82|.

The nature of the players strategies, especially with respect to memory,
received a lot of attention in the following years, with notably the positional
determinacy of parity games [Mos91, EJ91|, the index of appearance records
structure for Rabin/Streett games [BLV96], and the split tree [Zie98], whose
analysis provided tight bounds in memory for all Muller conditions [DJW97|.

To this day, graph games are one of the most popular and efficient ap-
proaches to automata problems: see for example [EWS01]| on simulation
relations, and [CLO8| on the (restricted) star-height problem over trees.

Model checking. In the early eighties, the complexity of program verifi-
cation outgrew the possibilities of hand-constructed proofs in Floyd-Hoare
style logic [OGT76]. This led to the introduction of model checking by Clarke
and Emerson [CE81]|, and independently by Queille and Sifakis [QS82], in
order to check whether a program meets a specification without having to
build an explicit proof. The idea is to represent the evolution of a program
as a finite Kripke structure, and the specification as a formula of proposi-
tional temporal logic. The resulting “model-checking problem” asks whether
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a Kripke structure M is a model for a logical formula ¢. A more complete
exposition of the history of model checking can be found in [Cla08§].

Model checking was quickly extended into a verification tool for any real
systems, through a step of modelling: the system is represented as a Kripke
structure, and the specification as a logical formula. The point of model
checking is then to either guarantee the good behaviour of the system, or pro-
vide examples of faulty behaviours. The multiplicity of possible situations led
to many variations of this problem: models may be finite [VW86, McM93|, in-
finite [BINT00, BELP03, Mor08|, stochastic [Var85, CY95, BCHG 97|, asyn-
chronous [Maz75, GMSZ02] or timed [BKH99, BBBMO8|, while the specifi-
cation can be written in several different logics: temporal [Pnu77, EL85], fix-
point [Mos91, EJ91], monadic second order [MP92, Kla97], data [BDM™*06].

Graph games provide very natural and robust classes of models for open
systems, where the agent (represented by Eve) must interact with an un-
controllable environment (represented by Adam) [PR89]. A strategy for
Eve is then a controller for the system, while a strategy for Adam is a
counter-example for the satisfiability of the specification. Here also, the
framework had to undergo a great deal of generalisation to account for all
the possible situations: to cite but a few, let us mention stochastic transi-
tions [dA97], concurrent moves [dAHK98, dAHO00|, timed [{AFH*03] and hy-
brid [BBJ108] systems, pushdown arenas [Wal96, Ser05, CHM*08], quantita-
tive rewards [FGKO8|, and multiple players [MWO03, GLZ04, MTY05, GUO0S|.

Classical game theory. Another consequence of the stochastic and con-
current extensions was the reunification of games in computer science and
games as studied in mathematical economics. These latter games evolved
from one-step matrix games, where the outcome depends on a single and
simultaneous choice of actions by the players. Borel introduced the notion of
mixed strategy in these games [Bor21|, and von Neumann proved the exis-
tence of optimal strategies —the well known “min-max theorem”— [vNM44],
which was extended to the setting of multiplayer games with the notion of
Nash equilibrium [Nas50].

In the early fifties, Shapley introduced stochastic graph games [Sha53]
to account for situation where the evolution of the play, and not only the
immediate payoffs, depend on the choices of the players. A stochastic game
is a (finite) set of matrix games, and a play is a series of moves, instead of a
single round. Furthermore, the outcome of a move determines whether and
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where the play proceeds for the next move. The reward of a play is the sum
of the elementary payoffs —which is finite with probability one, since there
is a positive probability to stop in each state. An alternative and slightly
different view of this reward is the discounted payoff: the game never stops,
but the rewards at each step are affected by cumulative discount factors
which guarantee that the reward of a play converges. Several other payoff
functions were considered —e.g. mean payoff [Gil57], limsup [MS96], and
reachability [Con93]— for other behaviours or situations.

The cross-breeding of the two traditions has been fruitful: the strategy
improvement algorithm [HKG66|, in particular, has been extended to parity
games in a discrete fashion [VJ00], while computer science techniques pro-
vided new insights on classical games problems [FPT04, Rou05, GZ07].

The study of graph games is a thriving topic in computer science, as
witnesses the wealth of recent theses on the subject [Maj03, Ser05, GimO06,
Cha07d]. The present work is to be my own tessella in this vast and ever-
expanding mosaic.

1.2 Definitions

1.2.1 Playing

Our model of games is the graph games, introduced by Zermelo in [Zer13]
and extended by Shapley in [Sha53]: an arena is a directed graph, where a
token moves from state to state along the transitions. This model has known
enough variants to prompt the authors of [CJH03| to propose a systematic
classification: the variation we consider are infinite 2%—player games on simple
finite arenas. Before we proceed with the formal definitions, let us review
the meaning of these terms, as well as the alternatives.

“Infinite”: Our games never end: a full play is a sequence indexed by non-
negative integers, and the winning conditions are defined on infinite plays.
Notice that while a play may go on forever in a real game, e.g. in Go without
the “superko” rule, this is usually not the intended form of a play. Infinite
games subsume finite games, but there is an even more general model, in

which the plays are indexed by ordinals [CHO8b, CH08a, RS08|.
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“2%—player”: There are three agents: Eve, Adam and Random. An exam-
ple of “real” 2%—player game is Backgammon: the three agents are White,
Black, and the dices. This also provides natural names for games where one
or more agents are absent:

e 2-player games—deterministic games— if there are no random moves,
e.qg. Go;

) 1%—player games— Markov decision processes— if either Eve or Adam
cannot move, e.g. Spider solitaire;

e l-player games—non-deterministic transition systems— if only Eve or
only Adam can move, e.g. Sokoban;

° %—player games— Markov chains— if there are only random moves e.g.

Progress Quest.

e (-player games—deterministic transition systems— if all the positions
have only one successor, e.g. Conway’s game of life.

It is also possible to consider games with three or more players, but their
analysis depends on many assumptions about alliances, king-maker situa-
tions, and so on.

“Simple”: Fach state belongs either to Eve, Adam, or Random, and the
owner of the current state decides on his own which transition is to be taken.
Furthermore, both Eve and Adam know the exact position of the token at
all times. This is in contrast with concurrent games — e.g. Janken — and
partial-information games — e.g. Poker.

“on finite arenas” Throughout this work, we only consider games played
on finite arenas. The alternative, of course, is to accept infinite —but finitely
representable— arenas. Notice that there are real games with infinite arenas,
e.g. Monopoly.

Arenas and Plays

Notation 1.1 A probability distribution v over a finite set X is a function
from X to [0,1] such that ) . v(x) = 1. The set of probability distributions
over X is denoted by D(X).
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Formally, we define a 2%-player arena A over a set of colours C as a tuple
(Q,Qg, Qa,9r, 7,0, X), where:

e Q is a finite set whose elements are the states of A;

e Qp, Qa, and Qp partition Q between Eve’s states (graphically repre-
sented as O’s), Adam’s states (O’s), and random states (A’s);

e 7T C Q x Qis the set of transitions of A, and there are no dead-ends:
Vge Q,ds € Q,(q,s) € T;

e 0: Q — D(Q) is the random law on the successors of a state of Qg,
and 6(r)(q) > 0 < (r,q) € T;

e Y is a partial colouring function, mapping the states to the colours C.

Notation 1.2 In the whole thesis, whenever we call an arena A, we implic-
itly mean that A = (Q, Qp, Qa, Qr,7T,6,x). Likewise, the arena A is equal
to (Q) QE) QA) QR) —"—7 87 X); and @ to (®a ®E7 QBA) QBR) m:a b) :{)

A play p of A is a —finite or infinite— path in the graph (Q,7): a
sequence of states such that Vi < |p| — 1, (p;, pis1) € 7. The set of plays
starting in a state ¢ is denoted €2,. The functions Occ (on finite or infinite
plays) and Inf (on infinite plays) denote, respectively, the sets of occurring
and limit states:

Occ(p) ={q€ Q| Fi,pi=4q} ;
Inf(p) ={q € Q| 3%, p; =q} .

Strategies and measures

Strategies are the “recipes” Adam and Eve use when it is their turn to play.
We define most of the concepts from Eve’s point of view. Similar notions al-
ways exist for Adam, and their definition is straightforward. A (randomised)
strategy o for Eve is a function from the finite prefixes ending in a state of
Eve to distributions of probabilities over the legal states:

0:9°Qp —D(Q) ;

Vw € Q" Vg € Qp,Vs € Q,0(wq)(s) >0= (¢,8) € T .
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A strategy is pure if it does not use randomisation:
Vw, Vg, o(w)(q) =0V o(w)(qg) =1 .

A pure strategy can thus be seen as a function from the prefixes to the
states, and we often write o(w) for “the unique state g such that o(w)(q) = 1”.

A play p is consistent with o if and only if Vi < |p|,pis1 € Qp =
o(po..i-1)(p;) > 0. The set of plays consistent with o (resp. 7; o and 7)
is denoted by Q7 (resp. Q7; Q7). Once an initial state ¢ and two strategies
o and 7 have been fixed, 277 can naturally be made into a measurable space
(Q57,0), where O is the o-field generated by the cones {O,, | w € Q*}:
p € O, if and only if w is a prefix of p. The probability measure P7" is
recursively defined by:

1 ifr=gq,

VTEQ,PZ’T(OT):{ 0 ifrtg.

IPZ’T((’)W) co(wr)(s) ifre Qg ,
Yw € 9, (r,s) € Q7 PT"(Owrs) = § P77 (Ouyr) - T(wr)(s) ifre Qa,
PET(Our) - 0(r)(s) ifr e Qg .
Carathéodory’s extension theorem allows us to extend Pg™ to the Borel sets
of (277, 0). When we deal with events, we indifferently use p € I'and p = T,
IF'uAand I' VA, et cetera.

Sub-arenas and end-components

The restriction of an arena A to a subset X of Q, denoted by Ax is a
sub-arena of A if and only if:

e Vg e XN(QpUQ4),3s € X, (q,8) € T;
e Vge XNQgrVse Q, (¢qs) €T =seX.

The end-components of A [CY95, dA97| are the supports of the strongly
connected subarenas of A. Lemma 1.3 is central in many a proof about
stochastic games:

Lemma 1.3 ([dA97]) For any initial state q and strategies o, T for Eve and
Adam, the limit of the ensuing play is an end-component with probability one.
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Strategies with memory

Strategies can also be defined as strategies with memory, for a given set of
memory states M. A strategy o with memory M is then a function from
Q X M to D(Q x M). Alternatively, a pure strategy with memory M can
be described as two separate functions: a “next-move function” o : (Qp X
M) — Q and a “memory-update” function o* : (Q x M) — M. Randomised
functions ¢® and o™ can also be used to define randomised strategies, but it
is not possible to represent all the randomised strategies with memory M in
this way: there may be a correlation between the moves and the updates.
There is a last, intermediate, model of strategies with memory: a semi-
randomised strategy o with memory M is defined by a randomised “next-
move function” o : (Qrpx M) — D(Q) and a pure “memory-update” function
o : (Qx M) — M. However, these strategies are less compact than general
randomised strategies with memory.

Notice that any pure (resp. randomised) strategy can be represented as a
pure (resp. semi-randomised) strategy with memory Q*. However, the point
is often to get strategies with finite memory, or positional strategies, where
the memory is reduced to a singleton.

In particular, a strategy o with finite memory M can be used to describe
the restriction of A to o, denoted by A?. If ¢ is pure or semi-randomised,
we get the following 11-player arena:

o Q7 =0Q x M;
o Q% =094 xM;

o Q% =(QrUQp) x M,
e 7° = {((g.m),(r,n) | ¢ € Qa and n = 0*(¢q,m)}

U {((q, m), (r,n) | (g,m) € Qf and d(g, m)(r,n) > 0}
o 5°(qm)(s,n) = { d(q)(s) if ¢ € Qg and n = o*(q,m)

a*(¢,m)(s) if ¢ € Qp and n = o"(¢, m)

The problem with general randomised strategies is that Adam gets too much
information: he is not supposed to know the current memory state of Eve.
The good notion for a game restricted to a general randomised strategy would
be a 1%—player game with partial information, but its analysis is outside of
the scope of this thesis.
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Attractors and traps

For any subset X of Q, we define the events Reach(X) = {p | Ji,p; € X}
and Reach™ X = {p | 34, p; € X}, and the attractor of Eve to X in A
AttI‘E(X, A) as Ui>0XiI
X% = X
X* = X'U{qe(QrUQg)|3se X' (¢5s) €T}
U{geQu|VseQ,(qs)cT =scX'}
An attractor strategy of Eve to X is a pure and positional strategy az(X)

such that Vg € Uis1 X%, ¢ € X* = ap(X)(¢g) € X', Propositions 1.4 and 1.5
follow directly from the definition of an attractor and Lemma 1.3:

Proposition 1.4 For any state q in Attrg(X, . A), there is a real number
n > 0 such that for any strategy T of Adam, we have:

ag(X),r
IPqE( )7 (Reach(X)) > n
Proposition 1.5 For any state q in Q, for any strateqy 7 of Adam, we have:
[PZ?(X)’T(ReaChOO(X) | Reach™ (Attrg (X, A))) =1

An interesting remark is that the positional randomised strategy uni 4,
which chooses any legal successor in A with a uniform distribution, acts as
an universal attractor strategy for any subset X of A [CAAHO04|: Proposi-
tions 1.4 and 1.5 still hold if we replace ax by uni 4.

The dual notion of a trap X for Fve denotes a region from which Eve
cannot escape:

e Vge XN(QrUQR),Vse Q,(q,s) €T =s€X;

e Vge XNQyu,dse X, (¢,8) eT.

A strategy 7 such that Vw € Q*, Vg € X N Qu, 7(wq)(X) = 1 is a trapping
strategy of Adam in X.

Proposition 1.6 For any subset X of Q, Q\ Attrg(X,.A) is a trap for Fve
in A.

Proposition 1.7 If X is a trap for Eve in A, Ax is a subarena of A.
Proposition 1.8 Let X be a trap for Eve in A, and o be a strateqy for Eve

in Ajx. For any state q in X and strategy T for Adam in A, the probability
measure P77 is the same in Ajx and in A.
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1.2.2 Winning
Conditions

A winning condition VW on C is a Borel subset of C>*. A play p in an arena
A on C is winning for Eve in the game (A,C) if x(p) € W, and winning for
Adam otherwise.

A regular condition is a w-regular language of C*°. However, there is
a tradition of using the classical acceptance conditions of regular automata
directly on the play, as if A itself was an alternating automaton on a singleton
alphabet. The resulting parity, Rabin, Streett, and Muller games are used
in verification, logic, and automata [GTWO02]:

e a parity arena A (resp. parity arena of rank k) is an arena on N (resp.
{0,...,k—1}), and the winner of a play p in the corresponding parity
game depends on the smallest colour in the limit of p:

p € Parity <= min x(Inf(p)) is even

e a Rabin arena A of rank k is an arena on {—k,...,—1,1,... k}. An
intuitive interpretation of the Rabin condition of rank k is to consider
the negative integers as activators and the positive ones as inhibitors:
a play p is winning for Eve if at least one activator —i in Inf(p) is not
matched by the corresponding inhibitor 7:

p € Rabin(k) <= 31 <i < k,—i € x(Inf(p)) A7 ¢ x(Inf(p))

e a Streett arena A of rank k is an arena on {—k,...,—1,1,... k}. An
intuitive interpretation of the Streett condition of rank k is to consider
the negative integers as requests and the positive ones as responses: a
play p is winning for Eve if each request —i in Inf(p) is matched by the
corresponding response i:

p € Streett(k) <=V 1 <i<k,—i e x(Inf(p)) =i € x(Inf(p))

e a Muller condition F on C is a subset of P(C). The winner of a play p
in the corresponding Muller game on C depends directly on its limit:

p € Muller(F,C) <= x(Inf(p)) € F .
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In a game G = (A, W), the value of a state q under the strategies o and
7, denoted v, -(q), is the measure of W under P77, The value of a strategy
o for Eve is the infimum of the {o, 7}-values:

'UJ(Q) = ll;_lf 'UJ,T(Q) .
Likewise, the value of a strateqy T for Adam is defined as a supremum:

v-(q) = sup vy (q) .

[

Regions

De Alfaro and Henzinger define in [dAHO00| several qualitative notions of
winning strategies and winning regions, depending on the chances Eve gets
to win:

Sure / Heroic: A strategy o for Eve is surely winning (or sure) from a
state ¢ if and only if for any strategy 7 for Adam, any play starting in ¢ and
consistent with o and 7 is winning for Eve. Dually, a strategy o for Eve is
heroically winning (or heroic) from a state ¢ if and only if for any strategy
7 for Adam, there is a play p starting in ¢, consistent with ¢ and 7, and
winning for Eve. The corresponding sure and heroic regions are defined as
follows:

Winy"(A) = {q|3o,Vp € Qf,pk W} ;
Winy, Y(A) = {q|3o,V7,3p € Q77 such that p - W} .

Almost-sure / Positive: A strategy o for Eve is almost-surely winning
(or almost-sure) from a state ¢ if and only if for any strategy 7 for Adam, the
probability that the ensuing play is winning for Eve is one. Dually, a strategy
o for Eve is positively winning (or positive) from a state ¢ if and only if for
any strategy 7 for Adam, the probability that the ensuing play is winning for
Eve is positive. The corresponding almost-sure region and positive regions
are defined as follows:

Winy, '(4) = {q|30,Y7, P77 (W) =1} ;
Winy 7°(A) = {q|3o,¥r,PI"(W) > 0} .
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Limit-one / Bounded: The bounded region of Eve is the set of states with
positive value, and dually, the limit-one region of Eve is the set of states with
value one:

Winyy ~'(A4) = {q¢|¥n < 1,30,Y7,v,,(q)
Winyy >°(A) = {q|3n>0,30,¥7,v,.(q)

—

?

>
>

—

These six notions of winning can also be defined for Adam in a straight-
forward way. By convention, we want the first superscript to correspond to
the winning condition of the game, in which Adam is the opponent. For
example, the almost-sure region of Adam in the game G = (A, W) is denoted
Win"} ' (A) and refers to the region where Adam can guarantee —)V with
probability one.

The two following propositions are direct consequences of the definitions:

Proposition 1.9 Let G = (A, W) be a 2%—player games. We have:

WinY(4) € Winl'(4) < Wind"(A)
Nl

Win¥?(4) 2 Win)">%(A4) > Win)'>°(A) .
Proposition 1.10 Let G = (A, W) be a 2%—player games. We have:

Winy "(A) N Win’y7(A4) =0
WinV'(A) N Win’} 7°(A)
Winy ' (A) N Win} >°(A)

0
0

1.3 Usual problems and contributions

1.3.1 Problems
Determinacy and existence of values

A natural question is whether the disjunctions of Proposition 1.10 partition Q
or not. The sure determinacy of 2-player Borel' games [Mar75]|, transposed

to 2%—player games by replacing the random states with states of Adam,

yields Win)¥""(A) U Win"Y7(A) = Q for any game G = (A, W). In the case

!The existence of non-determined 2-player games relies on the axiom of choice.
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of 2%—player games, the quantitative determinacy of Blackwell games [Mar98§|
states that the value of a state g can indifferently be defined as the supremum
of the o-values, or the infimum of the 7-values:

v(q) = supinf v, ,(q) = infsup v, -(q) -

Tt follows immediately that Win)y ™' (A)UWin,">°(A) = Q. However, there
is no such general answer to the problem of “qualitative determinacy”:

2

Win*(A) U Win} 7%(A) = Q .

Qualitative and quantitative problems

In [CJHO3], the authors also classify the different problems on games:

o Qualitative problems depend on the winning regions of the players —
for all six notions of “winning”. A “qualitative-complete” problem on a
game G = (A, W) consists in deciding, for any given state ¢, player P,
and notion of winning ?, whether ¢ belongs to Win}y"’(A).

e Quantitative problems on the other hand, depend on the values of
the states —and thus are interesting only in 2%—player games. A
“quantitative-complete” problem consists in computing the value v(q)

of any given state q.

The decidability and complexity of qualitative and quantitative problems
generate a major part of the articles in graph games theory.

Complexity of the winning strategies

Another question ponders the nature of the winning strategies, in terms of
randomisation and memory. This is especially useful from a verification point
of view, as the strategies represent possible implementations of controllers,
whose cost is often more critical than the specification costs. In automata
theory, the existence of positional strategies for specific winning condition
has been an invaluable tool for several problems.
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1.3.2 Contributions
Solving reachability games

We present two new algorithms computing optimal strategies in 2%—player
reachability games. They are based on the existence of optimal permuta-
tion strategies, a sub-class of positional strategies derived from permutations
of the random states. As our algorithms never consider the same permu-
tation twice, their worst-case complexity mostly depends on the number of
such permutations, making the solution of 2%—player reachability games fixed-
parameter tractable, when the parameter is the number of random states:
this is orthogonal to the complexity of the strategy-based algorithms, which
rather depends on the number of player’s states.

The first algorithm, the permutation-enumeration algorithm is a simple
exhaustive search. Its complexity is thus exponential, but it avoids the use
of linear programming. The second one, the permutation-improvement algo-
rithm, emulates the heuristic of the classical strategy improvement algorithm
[HK66] in order to avoid an exhaustive search.

Another asset of our algorithms is that they do not rely on the expensive
stopping hypothesis [Con92|: this allows us, in the next chapter, to extend
them to the much broader case of prefix-independent games.

Prefix-independent winning conditions

In prefix-independent games, the winner of a play depends only on its limit,
and not on finite prefixes. We show that in these games, the positive and
bounded regions, as well as the limit-one and almost-sure regions, are equal.
We prove then their optimal determinacy, and provide an algorithm com-
puting the values of any prefix-independent game with |Qg|! calls to a qual-
itative algorithm. Alternatively, a single non-deterministic guess can replace
the multiple iterations. It follows from our proof of correctness that optimal
strategies are no more complex than almost-sure strategies.

This generalises and extends several results on the winning regions of reg-
ular [dIAHK98, dAHO00] and prefix-independent games [Cha07a|. The com-
plexity of our general algorithm is better or on a par with the complexity of
several known algorithms for special cases [CJH04, CdAAHO05, CHHOS|.
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Muller games

We present a polynomial algorithm for the qualitative problems of explicit
Muller games. It follows then from our results of the former chapter that the
quantitative problems of explicit Muller games belongs in NP and co-NP. The
only algorithm previously known for these games was the all-purpose PSPACE
algorithm for Muller games [McN93, NRY96].

Our next achievement is the computation of tights bounds in memory for
optimal randomised strategies in Muller games. The comparison with similar
results for pure strategies [DJWO97| allows us to ascertain the differences
between the two models of strategies in this aspect.

Former results on randomised strategies provided upper bounds for ran-
domised games [CAAH04, Cha07b|, but to the best of the author’s knowledge,
no lower bounds.

Finitary games

Finitary conditions [AH98| supplement regular conditions with bounds on
the time spent between a “bad” event and a subsequent “good” event which
compensate for it. Chatterjee and Henzinger studied 2-player games with
finitary parity and Streett conditions and proposed algorithms computing
the winning regions of the players [CHO6a].

We extend this study to the case of 2%—player games and provide faster
algorithms for both kinds of games. In particular, we have shown that the
qualitative finitary parity games can be solved in polynomial time —here
also, the results of Chapter 3 yield directly NP and co-NP algorithms for
quantitative problems. We also show that finitary Streett games can be
reduced in polynomial time to Request-Response games [WHTO3].



Chapter 2

Reachability games

“Consistency is the last refuge of the unimaginative.”
Oscar Wilde

One of the simplest, and yet most useful, winning conditions is the reach-
ability condition: there is a distinguished target state in the arena, denoted
by ©, and Eve’s objective is to ensure that the token reaches it at some point
during the play.

In this chapter, we consider the problems of computing the values and
optimal strategies in such games. Figure 2.1 presents an example of 2%—
player reachability game, that we use throughout the chapter to demonstrate
notions and intuitions.

Section 2.1 introduces some general concepts on 2%—player reachability
games, as well as the strategy improvement algorithm. We present in Sec-
tion 2.2 a new approach to the computation of values and optimal strategies,
based on permutations over the random states. Section 2.3 exposes then an

improvement heuristic for this “permutation algorithm”.

2.1 First notions

This section is devoted to the fundamental notions that we use throughtout
the chapter in order to deal with the values of 2%—player reachability games.
It includes a large part of the state of the art in the domain, which can also
be found in a more detailled way in the survey of Condon [Con93|.

16



CHAPTER 2. REACHABILITY GAMES 17

Figure 2.1: A 2%—player reachability game

However, there is a lot more work on 2%—player reachability games (see,
for example, [Hal07] on the use of randomised algorithms) that we don’t
describe here, because it bears too few relations with our own results.

We first describe two special class of reachability games (2.1.1), and then
present some fundamental results about the values (2.1.2). A description of
the strategy improvement algorithm concludes the section (2.1.3).

2.1.1 Normalised and stopping games

ualitative problems are easy to solve on 2i-player reachability games, and
y D) y y g

derive directly from the notion of attractor:
Winy ™M@ 20(4) = Winjy M@ >°(4) = Attrp({©}, A)

Wiﬂljeach(@),wl (./4) _ Wiﬂieach(@),l(/l) _ Q \ VViﬂ%each(@)7 >O(./4)
Winhe M@~y = WinfeM@t(4) = 9\ Attro(Winh* @t (4), (4))
Winy; M@ 20(4) = Win{= M@ >°(4) = 9\ Winp @ (4)

The class of normalised games is the class of games where the these
qualitative questions have trivial answer: apart from the sink ® and the
target ©, no state has value zero or one. This class is mainly of aesthetic
significance, as it simplifies the proofs of algorithms and theorems which
would still be correct, mutatis mutandis, on general 2%—player reachability
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games. However, there are some cases where normalised games are a much
cheaper alternative to stopping games.

Definition 2.1 A 2%—player reachability game G = (A, Reach(®)) is nor-
malised if and only if the only state with value one is the target ©, and there
15 only one state with value zero, which we denote by &®.

It is easy to transform any 2%—player reachability game G = (A, Reach(©®))
into a normalised game & = (4, Reach(®)):

e the region Win%eaCh(@’l(A) is merged into a single state, which is the

target of &;
e the region WinlzeaCh(@’l(A) is merged into a single state, which is the
sink of &.

This transformation is represented on Figure 2.2.

Wiﬂeach(@),l

. Reach(®),1
V\/mEeaC (@)

(a) Original game G (b) Normalised game &

Figure 2.2: Reachability game normalisation

There is another incentive to use normalised games: as the reduction is
very cheap (linear), and the resulting game is smaller in general than the
original one, it is a good idea in practice to normalise a game before running
any quantitative algorithm on it.
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2.1.1.1 Stopping games

The stopping hypothesis is less benign, as stopping games really have stronger
properties, inherited from the original model of Shapley: in the games of
[Sha53|, the token has a positive probability to stop in each visited state.
As a result, the plays are finite with probability one. In our model, we call
stopping games the games which share this property:

Definition 2.2 A 2%—player reachability game is stopping if and only if, for
any strategies o of Fve and T of Adam, the probability that the token even-
tually reaches ® or © s one:

Vo, T,q, P77 (Reach(®) V Reach(©)) =1

The point of these games is that they are symmetric: avoiding ® and
reaching © amount to the same thing, which is not the case in general. As
a consequence, the following intuitive properties of each player’s strategies
hold for both in stopping games.

Proposition 2.3 Let G = (A, Reach(®)) be a 2%-player reachability game
and T be a positional strategy for Adam such that:

Vg€ Qa,v(7(q)) = v(q) .
Then 7 is optimal. This is not true in general for Eve’s strategies.

Proposition 2.4 Let G = (A, Reach(®)) be a 2%—player reachability game
and o and T be positional strategies for Eve and Adam such that:

Vg € Qp,v,.(0(q)) = max{v,.(s) | (¢,s) € T} .

Then o is an optimal counter-strateqy to 7. This is not true in general for
Adam’s strategies.

Condon showed in [Con92| the existence of a polynomial reduction which
preserves optimal strategies and threshold regions:

Proposition 2.5 ([Con92]) Let G = (A, Reach(®)) be a 23-player reacha-
bility game. There is a stopping reachability game & = (4, Reach(©®)) such
that:

o Qp=0Qp, Q4= Q,u, and Qr D Op;



CHAPTER 2. REACHABILITY GAMES 20

to each transition in T (q) corresponds a transition in T(q);

the size of @ is quadratic in the size of G;

Vg e Q,v(q) > 5 <= 0(q) > 3;

if o (resp. T) is an optimal strategy for Eve (resp. Adam) in &, then
it is also optimal in G.

Figure 2.3 shows the idea of the reduction: in each transition, there is a
small probability n that the token goes directly to the sink ® instead of its
intended destination. For an small enough 7, the optimal strategies of the
reduced game are also optimal in the original game (the converse is not true
in general). However, the binary representation of a suitable 7 is linear in
the size of G, so the reduction involves a quadratic blow-up in size.

(a) Original (b) Stopping game &
game G

Figure 2.3: Reduction to stopping games

Remark 2.6 In [Con92], Condon considers games where the random states
have only two successors, with equal probabilities. Thus, her reduction in-
volves several successive random states instead of one, but it still involves a
quadratic blow-up.

Using Proposition 2.5, it is possible to consider only stopping games, and
derive general theorems about 2%—player reachability games. However, in this

chapter, we try to minimise the use of this option. Our reasons are twofold.
First, altough polynomial, the reduction of Figure 2.3 is quite expensive in
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practice as the precision grows; it is even not clear that it can be adapted
if the expected precision is not known beforehand, or the probabilities are
not rational. Second, the reduction to stopping games is not very intuitive,
especially when it comes to a generalisation for infinite games, as we do in
Chapter 3.

2.1.2 Equations and Positional strategies

A simple technique of strategy translation yields the following system of equa-
tions on the values of a game G = (A, Reach(®)):

Vg€ Qp,v(g) = Sren]gé)(V(S))

Vg€ Qa,v(g) = SZE{;)("<S))

Vg€ Qr,v(g) = Y d(g)(s)-v(s) (2.1)
v(Ee) = 816E(q)
vie) = 0

In the case of stopping games (but not in general games), there is only
one solution to this system:

Proposition 2.7 In a stopping 2%—player reachability game, the values are
the only solution to (2.1). Furthermore, if the whole transition function is
described by rationals on n bits, the values are rationals which can be written
on 2n bits.

This proposition suggests immediately an algorithm computing the values
of a stopping 2%—player reachability game: check exhaustively (or guess non-
deterministically) the values of the game, and check that they are a solution
to (2.1). The two following theorems, about the complexity of the value
problems, are a direct consequence:

Theorem 2.8 Quantitative decision problems about 2%—player reachability
games belong to NP and co-NP.

Theorem 2.9 Let G = (A, Reach(®)) be a 2%—player reachability game. The
values of G can be computed in time O(4*(T1H19D),
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Another fundamental result which follows immediately from (2.1) is the
existence of positional values in 2%—player reachability games:

Theorem 2.10 In a 2%—player reachability game, both players have posi-
tional optimal strategies.

Proof. In a stopping 2%—player reachability game, a positional strategy such
that:

o Vg€ Qp,v(o(q)) = v(q) if o is a strategy for Eve, or
o Vg € Qa,v(7(q)) = v(q) if 7 is a strategy for Adam.

is optimal. By Proposition 2.5, there are also positional strategies in general
2%—player reachability games. 0

This allow us to consider only positional strategies, which are much easier
to handle. So, in the remainder of this chapter, whenever we mention a
“strategy”, we mean a positional strategy.

The values of a pair of strategies o and 7 are solutions to the following
system of equations:

vq € VE7 UU,T(Q) = UO',T
vq € VAava,T(Q) = Vs r\T\Q

Vq € Vg, U@T(Q) = 9(q)(s) - 'UJ,T(S) (2.2)
s€E(q)
'UJ,T(@) =1
Upr(®) = 0

Once again, the solution to (2.2) is not necessarily unique, unless the
game is stopping. A useful property of positional strategies is that optimal
strategies can be characterised by a notion of stability:

Definition 2.11 Two strategies o and T are co-stable if and only if:
® Vg € Qp,vy-(0(q)) = max{v,.(s) | (¢;8) € T}
o Vg € Qu,0,.(7(q)) = min{v,-(s) | (¢,5) € T}
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Proposition 2.12 Let G = (A, Reach(®)) be a 2%-player stopping reacha-
bility game, and o and T be two strategies for Eve and Adam. Then, (i) and
(ii) are equivalent:

(i) o and T are co-stable
(ii) o is an optimal strategy for Fve, and T is an optimal strategy for Adam.
Proof. Proposition 2.12 follows directly from Proposition 2.7, as two strate-

gies o and 7 are co-stable if and only if v, , is a solution to (2.1). O

We can thus search exhaustively for optimal strategies, instead of search-
ing directly the optimal values. The complexity of the resulting algorithm
— Algorithm 2.1 — is much better: O(|Q|/<!).

Input: a game G = (A, Reach(®))
Output: optimal strategies for both players
forall o € ¥ do
forall 7 € T' do

if 0 and 7 are co-stable then

‘ return o, 7

end

end

o B = B B U VN

end

Algorithm 2.1: Strategy enumeration for reachability games

Remark 2.13 Proposition 2.12 does not hold when the game is not stopping
games, so Algorithm 2.1 can return incorrect results in this case . For this
same reason, the strategy algorithms of the next sections usually suppose that
the input games are stopping. We show, however, that a careful adaptation
allows us to cancel this hypothesis.

2.1.3 Strategy improvement

In practice, one never uses Algorithm 2.1. The two static forall loops can be
replaced by more efficient dynamic strategy improvement schemes [HKG66].
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The idea is to use the values of a strategy in order to compute a better one,
unless the current strategy is already optimal.

We consider first the case of lé—player games where Qp = ()'. Strategy
improvement algorithms for 13-player games are first mentioned in [How60].
Notice that, in 1%—player games, normalised implies stopping:

Proposition 2.14 Let G be a normalised 1%—player game. Then G is stop-
ping.

Proof. As G is normalised, the attractor of Eve to the target © is Q \ {®}.
Eve has only one strategy which is thus the attractor strategy to ©. So,

by Proposition 1.5, V7,q, Pj(Reach(®) V Reach(®)) = 1. Proposition 2.14
follows. O

At the core of the strategy improvement algorithm is the concept of

switching an unstable strategy:

Definition 2.15 Let G = (A,Reach(®)) be a 1i-player game such that
Qr = 0, and T be a strateqy for Adam. The switched strategy of T is the
strategqy 0 defined as:

o if Vs € T(q),v:(s) = v:(7(q)), then 0(q) = 7(q);
o otherwise, 6(q) is chosen such that Vs € T(q),v,(s) > v-(6(q))-

The algorithm, computing Adam’s optimal strategy and described as Al-
gorithm 2.2, consists in repeatedly switching the current strategy, until it is
stable.

Input: A 11-player safety game G
Output: Optimal strategy for Adam
1 repeat
2 ‘ switch 7
3 until 7 is stable
4 return 7, v

Algorithm 2.2: Strategy Improvement for lé—player safety games

Correctness is ensured by Proposition 2.12, and termination by Proposi-
tion 2.16:

!The concepts work mostly in the same way when Q4 = (), albeit with different proofs.
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Proposition 2.16 Let G be a normalised 1%—player safety game, and T be
a strateqy for Adam. Then, either T is stable, or the strateqy 6 obtained by
switching T is such that vy < v,.

The notion of switching strategies described in Definition 2.15 needs to be
adapted in order to be used in 2%—player games. In this context,one switches
a strategy with respect to another:

Definition 2.17 Let G = (A, Reach(®)) be a 23-player reachability game,
and o and T be strategies for Eve and Adam. The switched strategy of o with
respect to T is the strategy < is defined as:

o ifVs € (), tnr(5) < 02(0(a)), then s(a) = o(a);
o otherwise, ¢(q) is chosen such that Vs € T(q),Vs+(s) < v,.-(s(q))-

The switched strateqy of T with respect to o is defined symmetrically. It
corresponds to the switched strategy of T in the 1%—player safety game G°.

In Algorithm 2.3, improving a strategy o, consists in computing an op-
timal counter-strategy 7, and then switching ¢ with respect to 7. The run
stops only when the strategies are co-stable.

Input: The game G

Output: Optimal strategies and values

choose o as an attractor strategy of Eve to ©

repeat
compute an optimal counter-strategy 7 to o
switch o with respect to 7

until 0 and 7 are co-stable

return o, 7

[= I, S U VI

Algorithm 2.3: Strategy Improvement for 2%—player reachability
games

Again, the impossibility of an infinite run is proved through a notion of
progress:

Proposition 2.18 Let G = (A, Reach(®)) be a 2L -player reachability game,
o be a positional attractor strateqy to © for FEve, T be an optimal counter-
strategy to o, and ¢ be the switched strateqy of o with respect to 7. Then,
either o and T are optimal, or, for any strategy 0, vcg > Vs .
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There are two remarks to be made about Algorithm 2.3. The first one is
that we can remove the stopping hypothesis of [Con93| by using normalised
games. There is no stopping hypothesis in Proposition 2.18. By Proposi-
tion 2.14, normalisation is enough for the improvement of Adam’s strategy.
However, it is not true in general that if G is normalised, then G? is also nor-
malised —while such a property holds for stopping games. If ¢ is an attractor
strategy to ©, though, then G is normalised. Proposition 2.18 guarantees
that o remains an attractor strategy to © for the whole run. The second
remark consists in precisions about the improvement steps of both players:

e The improvement of Eve’s strategy in line 4 consists in a single switch-
ing. It is not the computation of an optimal counter-strategy to Adam’s
current, strategy, nor should it be, as it leads to infinite loops.

e Symmetrically, it is not enough to switch Adam’s strategy only once
instead of computing an optimal counter-strategy in line 3. This also
leads to infinite runs.

These two examples, as well as several other unsound variations [Mar07] of
Algorithm 2.3, are presented in [Con93|.

In terms of theoretical complexity, Algorithms 2.2 and 2.3 do not fare
much better than Algorithm 2.1. Progress ensures that any given pair of
strategy cannot be considered more than once, and no more. However, in
practice, both algorithms run very fast, to the point that they are widely
conjectured to be polynomial:

Conjecture 2.19 Algorithm 2.2 runs in polynomial time on any normalised
1%—player safety game.

Conjecture 2.20 Algorithm 2.3 runs in polynomial time on any normalised
2%—player reachability game game.

Note that the strategy improvement algorithm for 2-player parity games
described in [VJ00], which is derived from Algorithm 2.3, runs in polynomial
time on 1-player games [Jur07]. However, even if Conjecture 2.19 does not
hold, one can get a better complexity for Algorithm 2.3 by using linear pro-
gramming in line 3 instead of Algorithm 2.2. As Derman showed in [Der62|
the optimal values of a 1%—player safety game are the solution of the linear
program presented in Algorithm 2.4.
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Input: a game G = (A, Reach(®)) such that Qp = ()
Output: Values

minimize ) _,v(¢q) subject to the constraints:
v(g) <wv(s) if g€ Q4 and s € T(q)

0(q) = X ser()0(a)(s) - v(q) if q € Qg

v(g) >0if g€ Q

v(®) =0

v(E) =1

return v

b =R U VI

Algorithm 2.4: Linear programming for 1%—player games

Linear programs can be solved in polynomial time [Kha79, Ren88|, re-
sulting in an overall complexity for Algorithm 2.3 that is exponential only in
Qpr or Q4 instead of both.

2.2 Permutation Algorithm

In a joint work with Hugo Gimbert [GHO08, GH09|, we propose a new algo-
rithm computing the values of 2%—player reachability games. Its principle is
to check exhaustively a special set of pairs of strategies, among which there
is at least one pair of optimal strategies.

The underlying intuition is that the only meaningful events in a play are
the visits to random states. Between two visits, the players strive to impose
which state will be visited next, and the result of their interaction can easily
be predicted. In particular:

e only the next random state matters, not the current one;

e there is no reason that Eve and Adam should ever agree on a choice.

Two occurences of such situations, excerpted from the game of Figure 2.1,
are illustrated on Figure 2.4.

In Figure 2.4(a), Eve can choose between the two random states (refusing
to choose is not consistent with the reachability objective). Why should she
choose b in one state and c¢ in the other 7 The two strategies “always go to
b” and “always go to ¢’ are the only relevant ones.
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A 9
PNV

(a) Self consistency (b) Consistency between Eve and Adam

Figure 2.4: Case for Consistency

In Figure 2.4(b), we consider relationships between the two players’ strate-
gies. From their respective states O and O, Eve and Adam can send the token
to either a or b. Why should they choose the same state 7 Here, only the
cases where Eve prefers one and Adam the other are relevant.

These intuitions —including, but not limited to, the two cases of Fig-
ure 2.4— are realized by pairs of strategies corresponding to a permutation
of the random states. We define permutation-based strategies and regions
(2.2.1), as well as the notions of liveness and self-consistency (2.2.2). Our
algorithm is an exhausitve search for a live and self-consistent permuation:
there is always such a permutation, and the corresponding strategies are opti-
mal (2.2.3). We study then its complexity, and present a class of reachability
games where the values can be computed in polynomial time (2.2.4).

2.2.1 Strategies and regions

In order to effect our intuitions [Mun07]|, we introduce several permutation-
based concepts. First, whenever we mention a permutation m, we mean a
permutation over the k random states, such that {m,..., 7} = Qg. Such a
permutation represents a “preference order” over the random states: if Eve
is given a choice between two random states m; and m; with ¢ > j, then
her “m-strategy” sends the token to m;. Symmetricaly, in the same situation,
Adam’s m-strategy sends the token to 7;. For this reason, the target and
sink states can often be considered as random states in permutation-based
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Figure 2.5: The single-reward game derived from Figure 2.1

concepts, with the implicit assumption that they are respectively the greatest
and lowest states: m,11 = © and 71y) = ®.

A intuitive way to understand the permutation-based concepts is to con-
sider a 2-player game, where the game stops after a finite number of steps
and Adam pays a reward to Eve at the end:

1. if the token reaches a state m;, Adam pays 7 coins;
2. if there is a loop in the path, Adam has nothing to pay.

The m-regions are the value regions of this game, and the m-strategies are the
corresponding optimal strategies. For example, if we use the permutation
m = abed in the game of Figure 2.1, we get the game, regions, and strategies
represented in Figure 2.5.

In order to formalise these concepts, we define an “attractor-like” deter-
ministic construction: the deterministic attractor for Fve to a region X in
the arena A, denoted Detg (X, A) is the set of states from where Eve can
ensure that the token will (1) reach X (2) not cross a random state before it
reaches X:

Definition 2.21 The deterministic attractor of Fve to the set X, denoted
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Detg(X,.A) is computed recursively:

X% = X
X = X'U{qeQp|Ise X' (¢5) €T}
U{q€Qa|Vs€Q(qs)eT =se X"}

A random state belongs to Detg (X, A) if and only if it belongs to X. The
dual notion of deterministic trap for Eve is a region from which Fve cannot
escape, except through a random state.

The 7-regions are defined as embedded deterministic attractors to the
random states, ordered by m: Wik + 1] = {©}, V1 < i < k,W,[i] =
Detp({m, miv1, .-, e} A) \ Weli + 1], and W,[0] = {®}. The m-regions
constitutes a partition of the states, so we denote by m(¢q) the unique integer
i such that ¢ € W,[i] —in particular, w(m;) = i. The computation of the
m-regions of the game G) is described as Procedure Regions (G, 7).

Input: A 2%—player reachability game G and a permutation 7
Output: The 7-regions of G

1 Wik+1] — {o}

2 WI0] — {®}

3 for (i=1,i<k,i++)do

a | W]« Detg({m;,...,m} U{®@}, A)\ W[i+1]

5 end

6 return W

Procedure Regions (G, m)

The m-strategies are the natural attracting and trapping strategies fol-
lowing from Definition 2.21, which enforce Propositions 2.22 and 2.23:

Proposition 2.22 [f the token starts in a state of Wy[i| and Fve plays o,
then the token surely reaches a random state, and the first random state 7,
that the token reaches is such that j > 1.

Proposition 2.23 If the token starts in a state of W,[i], Adam plays 7,
and the token reaches a random state, then the first random state m; that the
token reaches is such that j < 1.

A consequence of Propositions 2.22 and 2.23 is Proposition 2.24:
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Proposition 2.24 Let G = (A, Reach(®)) be a 25-player reachability game
and 7 be a permutation. For any state ¢ € W,[i], we have:

v(g) = min{v(m;)|j =i}
v(g) < max{v(m)|j <1}

Proof. Proposition 2.24 follows from a technique of “strategy translation”
similar to the one used in the proof of (2.1): both Eve and Adam can play
their m-strategy until the token reaches a random state, and then revert to
an (e-)optimal strategy. Propositions 2.22 and 2.23 yield then the desired
inequations. 0

2.2.2 Evaluating a Permutation

Our first step in order to evaluate a permutation 7 is to compute its values
from the m-strategies o, and 7;: v; = vy, ... We denote by v.[i] the value
of the i-th random state in 7: v, [i] = v,(m;). Tt follows immediately from
Propositions 2.22 and 2.23 that all the states in the same region share the
same m-value: m(q) =i = v;(q) = v.[i]. We can also interpret these values
using a “compacted” %—player reachability game & with k + 2 states:

e @={0,....k+1}
o 8(1)(®) = o(m)(®)
* 8(i)(®) = d(m)(®)
® 8(i)(j) = o(m:)(Wxj])

This amounts to merging each region W, [i] into a single state i. Figure 2.6
shows the game resulting from our running example, as a graph (2.6(a)) and
as a matrix (2.6(b)).

This interpretation is used in Procedure Values (G, m, W) to compute the
m-values, using a primitive MarkovChainSolver.

In the game of Figure 2.6 with the permutation m = abcd, we get v, (a) =
vr(b) = 4 and v.(c) = v(d) = .7. As we will see, the permutation 7 is
self-consistent (Definition 2.26) and live (Definition 2.27), thus for each i,
vr[7] is the value of all the states in W, in the original game (Lemma 2.33).

The notion of self-consistency is our equivalent to the notion of stability:
in strategy-based algorithms, a “good” strategy for Eve sends the token to
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| [®]af[blcld]|o]
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(a) Graph Representation (b) Matrix Representation

Figure 2.6: The “compacted” game &

Input: A reachability game G, a permutation 7, and a partition W
Output: The m-values
for i=1,i<k,i++)do

for (j=0,j<k+1,j7++) do

| mefil[j] < 8(m) (W)

end
end
v «—MarkovChainSolver(mc)
return v

N O kA W =

Procedure Values(G,m, W)

the successor with the highest value computed from the candidate strategy; in
permutation-based algorithms, a “good” permutation is consistent with the
preorder of the values computed from the candidate permutation. We first
define consistency in the general case of independent permutation and values
for the random states.

Definition 2.25 A permutation 7 is consistent with a set of values v if and
only if for any two states m; and 7; in Qp, i < j = v(m) < v(m;).

Definition 2.26 A permutation 7w is self-consistent if and only if it is con-
sistent with v,: for any two states m; and ; in Qp, i < j = v[i| < vg[j].
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Input: A permutation 7 and a vector of values v
Output: The consistency of 7 and v
consistent < true
for i=1,i<k,i++)do

| consistent « consistent A (v[i] < v[i + 1])
end
return consistent

[ N

Procedure Consistent (7, v)

It can be shown that the values of a self-consistent permutation are solu-
tion to (2.1). This would be enough to get an algorithm for stopping games,
as we will show that there is always a self-consistent permutation. How-
ever, the stopping reduction comes with a price, and we can avoid it with a
cheaper logical condition: the notion of liveness captures the intuitive fact
that a random state m; with a positive value always has a positive probability
to immediately go to a better region (from Eve’s point of view).

Definition 2.27 A permutation m over the set Qg is live if and only if for

any state m; € Qp, 0(m;) (ST Welj]) > 0.

Input: A reachability game G, a permutation 7, and a partition W
Output: The liveness of 7 in G
live « true
for i=1,i<k,i++)do
| live « live A (6(m)(UjsWj]) > 0)
end
return live

[S U VN

Procedure Live (G, m, W)

One could think that this notion is already captured by self-consistency,
as it is a “bad idea” for Eve to send the token to a random state that does
not verify the internal property. However, the choice of the permutation also
effects Adam’s strategy: if he wrongly chooses to avoid a state, all the values
may grow, with the possible side-effect to hide the initial mistake. We give an
example of this process in Figure 2.7, which zooms on a detail of Figure 2.1.

Eve’s strategy in O should be to send the token to b, as Adam could
otherwise trap the play in {a,O,0}. However, let us consider the unlive
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Figure 2.7: Liveness does not follow from self-consistency

permutation p = bcad: Adam sends the token from O to ¢ to avoid a; Eve
sends the token from O to O to reach either a or ¢. We have thus v,(a) =
v,(c). Actually, v,(b) < wv,(a) =v,(c) < v,(d), so p is self-consistent, but the
p-values are not the correct ones. Formally, the point of liveness is expressed
by Proposition 2.28.

Proposition 2.28 Let G = (A, Reach(®)) be a 23-player reachability game
and 7 be a live permutation. Then, for any strateqy T for Adam,

P77 (Reach(®) V Reach(®)) =1 .

Proof. By Lemma 1.3, the limit of a play p is an end-component with prob-
ability one. Let X be an end-component of G°~7. We denote the integer
i = max{j|X N W,[j] # 0} by i. There are three cases:

i =0: As G is normalised, X = {®}.

1 <4 < k: By Proposition 2.22 and by definition of i, m; belongs to X.
By liveness of m, 5(ﬂi)(ufii1+1W,r [7]) > 0. As X is an end-component,
there is a j > 7 such that W;[j] N X # 0, in contradiction with the

definition of <.
i =k+ 1: As X is strongly connected, X = {©}.

Proposition 2.28 follows. 0

In a sense, liveness is a counterpart for the stopping property, with Propo-
sition 2.28 used in the proofs in lieu of the characteristics of stopping games.
Notice that liveness is not a “weaker” property: there are stopping games
with unlive permutations (see for example Figure 2.8 on page 42).
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2.2.3 Algorithm and Correctness

Our algorithm, described as Algorithm 2.9, consists then in an exhaustive
search for a live and self-consistent permutation.

Input: A reachability game G
Output: A partition of Q and the corresponding values
forall 7 € S, do
W «— Regions (G, )
v« Values (G, m, W)
self < Consistent (7, v)
live <« Live(G,m, W)
if (1ive A self) then
| return (W, v)
end
end

© 0w N O A W=

Algorithm 2.9: Permutation algorithm for reachability games

The remainder of this section is dedicated to the proof of its correctness:

Theorem 2.29 Let G = (A, Reach(®)) be a 2%—player reachability game. A
run of Algorithm 2.9 on G terminates and returns the values of the states.

Proof. The proof of Theorem 2.29 consists of two parts, which are proven
separately:

e There is a live and self-consistent permutation (Lemma 2.30).
e If a permutation 7 is live and self-consistent, then v, are the optimal
values for the regions W, (Lemma 2.33).

0

Lemma 2.30 Let G = (A, Reach(®)) be a 2%-player reachability game. At
least one permutation s live and self-consistent in G.

Proof. The proof of Lemma 2.30 is itself in two parts: first, we show that
there is a live permutation consistent with the values of the game (Proposi-
tion 2.31); then we show that such a permutation is self-consistent (Propo-
sition 2.32). O
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Proposition 2.31 There is a live permutation consistent with the values of

g.

Proof. The permutation is chosen starting from 7, and going down to ;.
At each step, the state ; is chosen so that:

o v(m) =max{v(q) | ¢ € Q\U;>;W,[i]}
[ ] 5(71'@)(U]>ZW7|—[Z]) > 0

The existence of a suitable random state is proved by contradiction: as
Q\ U;j»;Wr[i] is a deterministic trap for Eve, a trapping strategy for Adam
ensures that the token can enter U,-;Wy[i] only through a random transi-
tion. Thus, a (non-positional) strategy for Adam which consists in playing
the trapping strategy until the token enters U;-;WW;[i] and then switch to an
optimal strategy bounds the probability of reaching © to max{v(r) | r €

Qr\ ATiy1, - me} A0(r)(UjsiWrli]) > 04} U

Proposition 2.32 Let G = (A, Reach(®)) be a 2%-player reachability game,
and 7 be a live permutation consistent with the optimal values v of G. Then
vy 1S self-consistent.

Proof. Quite naturally, we prove that 7 is self-consistent by showing that
the m-values are the optimal values. The key arguments is that the expected
(optimal) value after n moves is constant, when the initial state is fixed and
the players play the m-strategies. We fix an initial state ¢ € Q, and we define
e:N—[0,1] by e(n) = >, .o V(s) - PI=™(p, = s). We have:

o Vs € Qp,v(s)

v(ox(s)) —by Proposition 2.24
o Vs € Qu,v(s) =v(r:(s)) —by Proposition 2.24

> s 0(r)(s) - v(t) —by (2.1)

Thus, for alln € N,e(n) = e(n+1), and so v(q) = e(0) = e(n) = >, .o V(s)-
Po=™(p, = s). As 7 is live, Proposition 2.28 yields P7="(Reach(®) V
Reach(®)) = 1. It follows that v(q) = P7~"(Reach(©)) = v:(q). By hy-
pothesis, 7 is consistent with v. It follows that 7 is self-consistent, which
completes the proof of Proposition 2.32. O

o Vrc Qg,v(r)



CHAPTER 2. REACHABILITY GAMES 37

Lemma 2.33 Let G = (A,Reach(®)) be a 21-player reachability game, and
7w be a live and self-consistent permutation. Then, the m-strategies are opti-
mal.

Proof. The proof is close to the one of Proposition 2.32. We fix an initial
state ¢ and two positional strategies ¢ and 7 for Eve and Adam, and we
define the functions f and g by: f(n) = > ovx(s) - P7™7(p, = s) and
g(n) = cqVx(8) - Py (pp = 5). We have:

vr(0x(s)) —by (2.2)

(
Un(7x(s)) —Dy (2.2)
(
(

o Vs € Qp, vu:(s

o Vs e Qu,vu.(s

(s)
(s)
o Vs € Qp,vx(s)
(s)
(r)

v

v (o(s)
.\V/SGQA, Ur\S ()

—by self-consistency of 7.

)

) —by self-consistency of .
< vg(7(8))
(

o Vr € Qp,v.(r

= 250 0(r)(s) - va(t) —by (2.2)

It follows that Vn € N, f(n) < f(n+ 1) and g(n) > g(n + 1). We
get immediately v.(q) = ¢(0) > lim, ., g(n) > P (Reach(®)). As 7
is live, Proposition 2.28 yields P7=7(Reach(®) V Reach(®)) = 1, and thus
vx(q) = f(0) < limy o f(n) = P7~7(Reach(®)).

Thus, o, and 7, are co-optimal, and Lemma 2.33 follows. O]

2.2.4 Complexity analysis

Theorem 2.34 The values and optimal strategies of a normalised reachabil-
ity game G = (A, Reach(®)) are computable in time O(|Qg|'- (|7 -log|Q| +
10])), where |8 is the mazimal bit-length of a transition probability in 9.

Proof. In the worst case, Algorithm 2.9 enumerates all the |Qg|! permutations
of Qgr. For each permutation m, the algorithm computes the w-regions and
m-strategies (in time O(\’T| log |Q|), see [Cha06]). It computes then the
values of the resulting i-player reachability game (in time O(|Q%| - |d]), see
[Dix82|). The tests for liveness and self-consistency can then be performed
in time O(|Qg|). Theorem 2.34 follows. O

The number of iterations is similar to what we get with strategy-based
algorithms, but it depends on different figures (Qg in our algorithm, Qg
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and the outdegree of Eve’s states in the strategy improvement). This dif-
ference is interesting when dealing with unbalanced arenas. For example,
Corollary 2.35 presents an extreme case where our algorithm is polynomial:

Corollary 2.35 For each k, the values and optimal strategies of a normal-
ized reachability game G = (A, Reach(®)) such that |Qgr| < k are computable
in time O(|Q| - |T| +|8]), where |§| is the mazimal bit-length of a transition
probability in 0.

The advantage of our algorithm is the simplicity of the internal loop: in
complexity terms, it is much simpler to solve reachability games on %—player
arenas than on lé—player ones; we will see in Chapter 3 that this simplicity
also allows us to adapt our algorithm to a very general class of winning
conditions.

2.3 Heuristics for permutation algorithms

The theoretical bounds on the number of loops in the permutation algorithm
and the strategy improvement algorithm are different, yet similar. However,
an important asset of the strategy improvement is its efficiency in practice.
Although there is no proof for Conjecture 2.20, the study of practical cases
suggests that the number of iterations is linear in the number of states.

The aim of this section is to consider similar heuristics in the update
of permutations. We first describe a very natural heuristic (2.3.1), which
works only for 13-player games (2.3.2). We present then a “mixed” heuris-
tic, using both our permutation techniques and the improvement step of
Algorithm 2.3 (2.3.3). The resulting algorithm is correct for all 21-player
reachability games.

2.3.1 Value-based improvement

We first consider a very simple heuristic: in each iteration, the new permuta-
tion is consistent with the values of the former one. The resulting algorithm
is described as Algorithm 2.10.

Notice that at line 2, we require that the chosen permutation is live, as
well as consistent with the former values. This avoids getting stuck in a
self-consistent unlive permutation, like the one presented in Figure 2.7. The
until condition of line 4 can thus only be met by a live and self-consistent,
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Input: a game G = (A, Reach(®@))
Output: the values of G
1 repeat
2 choose m live and consistent with v
3 V< Uy
4 until 7 is consistent with v
5 return v

Algorithm 2.10: Value-based permutation improvement

permutation, so Algorithm 2.10 returns only correct results. In the case of
1%—player games, such a choice is always possible:

Lemma 2.36 Let G = (A, Reach(®)) be a 11-player reachability game and
m be a live permutation. There is a live permutation pu consistent with v,.

Proof. By application of Lemma 2.30 to the %—player game G = G, we
can define a live and self-consistent permutation p in G. As G is a %—player
game, its values do not depend on any strategies, so “self-consistency in G”
translates directly as “consistency with v,”. The interpretation of the liveness
property is a little more involved. It guarantees that:

Viel.. . k6(w) <Uwu[j]> >0 .

>
However, in general, W,[j] # W,[j]. Rather, we have W,[j] = Wi[m(y;)].
And, as G is an 13-player game, we get W[ (u;)] C Detg(u;, A). So:

UWuli) = UWalr ()] € (JDetr(n, A) = [ JW,lj]
j>i 5>i j>i j>i
Thus p is live in the game G, and Lemma, 2.36 follows. 0
We need then to show that Algorithm 2.10 cannot have an endless run.
Again in the case of 1%—player games, Lemma 2.38 shows that the values

computed through a run are growing, ensuring that each permutation is
considered at most once. We first need to establish Proposition 2.37:

Proposition 2.37 Let G = (A, Reach(®)) be a 11-player reachability game,
m be a liwe permutation and p be a live permutation consistent with v,.. Then,

for any state g € Q, vx(q) < va(Hpu(g))-
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Proof. As G is a 13-player game, u(q) is equal to max{i | ¢ € Detg(u;, A)}.
Since ¢ € Detg(mx(q), A), it follows that (q) > (7). By consistency of
pand vy, we get vr(Hp(q)) > Vn(fu(r, ) = Ux(q). Proposition 2.37 follows.
U

Lemma 2.38 Let G = (A,Reach(®)) be a 13-player reachability game, w
be a live permutation and p be a live permutation consistent with v,. Then
Ur S U,

Proof. For a given initial state ¢, we define the function f by:
f(n) = ZUF(NM(S)) Py (pn =) .
s€Q

If 5 is a state of Eve, the definition of o, yields v (i) = Vr(tu(ou(s)))- T
is a random state, the situation is more complex:

Vr(ppery) = vr(7) —as r is a random state
= 20 d(r)(s)ur(s)  —by (2.2)
< D w0 0(r)(8)vrlpius)]  —by Proposition 2.37
We get:
02(0) < 0r1u(0) = £(0) < lim f(n) < P (Reach(®)) = v,(q)
Lemma 2.38 follows. U

Lemmas 2.36 and 2.38 yield Theorem 2.39:

Theorem 2.39 Let G = (A,Reach(®)) be a 13-player reachability game.
Algorithm 2.10 terminates, and returns correct values and regions.

Proof. Lemma 2.36 guarantees that the update process is sound. Lemma 2.33
ensures that Algorithm 2.10 returns only correct values. Lemma 2.38 shows
that the values are growing. Notice that the inequality is not strict: the
values of two successive permutations can be equal. In this case, though, the
later is self-consistent, so Algorithm 2.9 terminates. Theorem 2.39 follows.
OJ

We have no proof that the worst case complexity of this algorithm is
actually better than the complexity of Algorithm 2.2. However, we conjecture
that it is actually polynomial:
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Conjecture 2.40 There is a polynomial P such that a run of Algorithm 2.10
on a 1%—player game with n states executes at most P(n) loops.

This conjecture is actually equivalent to the classical conjecture for the
strategy improvement algorithm:

Proposition 2.41 Conjectures 2.19 and 2.0 are equivalent.

Proof. We prove this equivalence by showing that if either conjecture does
not hold, then the other does not hold. In both cases, the proof relies on a
transformation of a counter-witness game G = (A, Reach(®)) into another
game G:

=2.19 = —=2.40: G is a copy of G, except that each transition ¢ — s is
replaced by q < r — s, where r is a new random state with equal
chances to send the token to q and s. The strategies (and their val-
ues) are the same in both games, but in G all of them are permutation
strategies. Likewise, the strategy improvement of Algorithm 2.2 corre-
sponds to the permutation improvement of Algorithm 2.10. Thus, any
run of Algorithm 2.2 on the game G is matched step-by-step with a run
of Algorithm 2.10 on the game G.

=240 = —=2.19: G is a copy of G with “shortcut” transitions: whenever
the player can make two successive moves in G, e.g. ¢ — r — s with
q,7 € Qy4, there is a direct transition g — s in G. The values of the
permutations are the same in both games. Furthermore, if 7 can be
transformed in g in a run of Algorithm 2.10 on G, then any m-strategy
can be transformed into a p-strategy in a run of Algorithm 2.2 on G.
Thus, any run of Algorithm 2.10 on the game G is matched step-by-step
with a run of Algorithm 2.2 on the game C.

Proposition 2.41 follows. O

We have shown the correctness of Algorithm 2.10 for lé—player games
with states of Eve. The straightforward adaptation for 1%—player games with
states of Adam (1%—player safety games) works just as well, and the proofs
require only minor modifications.
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2.3.2 Value-based improvement and 2%—player games

The simple heuristic of Algorithm 2.10 does not work in the case of 2%—
player games. The first problem is that Lemma 2.36 does not hold anymore,
as witnessed by Figure 2.8.

Figure 2.8: Unlive values

In this game, a permutation is live if and only it ranks a lower than b.
But, if we start from the live permutation m = cab, a problem arises: Eve
sends the token from O to b, and Adam sends it from O to c¢. The resulting
values are v(a) = .4, v,(b) = .2, and v(c) = .6. These values are totally
ordered, and the only consistent permutation is ;1 = bac, which is not live.

This problem could be circumvented by backtracking to the case of stop-
ping games, as self-consistency guarantees optimality in this case. This allow
us to lift the liveness restriction in line 2, while guaranteeing the correctness
of the result. This works correctly in the game of Figure 2.8 —which is stop-
ping: as p is unlive, it is not self-consistent. Indeed, the corresponding values
are v,(a) =0, v,(b) = .2, and v,(c) = .54. The only permutation consistent
with v, is kK = abc, which is self-consistent: v,(a) = .16, v,(b) = .2, and
ve(c) = .6.

However, our proof of Lemma 2.38 cannot be adapted, as it relies on a
notion of “progress” which does not make sense in 2%—player games. Other
invariants could (and have) been considered, but to no avail: once again, we
found a counter-example, presented in Figure 2.9, where Algorithm 2.10 gets
stuck in an infinite cycle.

The game of Figure 2.9 is stopping: as long as the token has not reached
one of the final states, it is bound to visit again one of the random states;



CHAPTER 2. REACHABILITY GAMES 43

.09 .09

Figure 2.9: Infinite run

and each of these states has a positive probability to send the token to the
final states. Thus, the token reaches a final state with probability one.

In this game, the only self-consistent permutation is m = abc. The corre-
sponding strategies are O — b and O — O, and the values are v, (a) = .46,
U-(0) = v:(O) = v (b) = .5, and v, (c) = .54

But, if we consider a run where the permutation = acb is chosen at the
first visit to line 2, we get stuck in an infinite run:

e The p-strategies send the token from O to b and from O to ¢. The result-
ing values are v,(a) = .82, v,(0O) = v,(b) = .5, and v,(O) = v,(c) = .9.
When the repeat loop ends, and the modified Algorithm 2.10 goes
back to line 2, its only choice is kK = bac.

e The k-strategies send the token from O to a and from O to O. The
resulting values are v,(0) = v,(0) = wv(a) = .1, ve(b) = .5, and
ve(c) = .18. When the repeat loop ends, and the modified Algo-
rithm 2.10 goes back to line 2, its only choice is y = acb.

The algorithm oscillates endlessly between i and &, leading to an infinite
run. This prohibits any straightforward adaptation of Algorithm 2.10 to
23-player games.

2.3.3 Mixed improvement

In order to get a working permutation-improvement algorithm for the gen-
eral case of 2%—player games, we need to consider an asymmetric improvement
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step, alike to the one used in the strategy improvement algorithm. The idea
is that only Eve uses her m-strategy from (2.2.1), whereas Adam plays an op-
timal counter-strategy to o,: instead of using the m-values v, = v,,_ .., we use
Vi = Vy,. Apart from this, Algorithm 2.11 works exactly as Algorithm 2.10

Input: a game G = (A, Reach(®@))

Output: the values of G

repeat
choose 7 live and consistent with v
V — Uy,

until 7 is consistent with v

return v

U W N =

Algorithm 2.11: Mixed permuation improvement

Notice that at the end of the computation, 7 is consistent with v, which
is not self-consistency in the sense of Definition 2.26. We need thus to prove
anew that the values returned by Algorithm 2.11 are correct, although the
proof is almost identical to the proof of Lemma 2.33.

Lemma 2.42 Let G = (A, Reach(®)) be a 23-player reachability game and
7w be a live permutation such that 7 is consistent with v,.. Then v, are the
values of G.

Proof. As Eve can ensure v, by playing o,, we just need to show that
Adam can confine the probability of Reach(®) to v,. In general an optimal
counter-strategy to o, is not satisfying in that respect. However, we can use
the m-strategy 7, of Adam, just as in the proof of Lemma 2.33. We fix an
initial state ¢ and a positional strategy o for Eve, and we define the function

fhy: f(n) =23 coVa(s) Py (p, = s). We have:
o Vs € Qu,V,(s) = va(7(s)) —by consistency of 7 and v,
o Vs € Qp,v.(s) > vy(o(s)) —by consistency of 7 and v,
o Vr € Qr,va(r) = > 0 d(r)(s) - vr(t)

It follows that f is increasing, so:

vx(q) = f(0) > lim f(n) > Py (Reach(®)) .

n—0o0
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Lemma 2.42 follows. O

Another consequence of using this notion of m-values is that the loop’s
inner complexity is much higher: we need to compute the values of a 1%—
player reachability game, instead of a %—player reachability game. This can
be done by any 1%—player game algorithm: strategy improvement, linear
programming, or value-based permutation improvement (Algorithms 2.2, 2.4,
and 2.10).

The remainder of the proof of correctness for Algorithm 2.11 is very close
to the proof of Algorithm 2.10, with some extra complexity to account for the
presence of Adam’s states. For starters, the soundness of line 2, is resolved
by Lemma 2.43:

Lemma 2.43 Let G = (A, Reach(®)) be a 2%—player reachability game and
m be a live permutation. There is a live permutation p consistent with v,.

Proof. By application of Lemma 2.30 to the 1%—player game G = G, we can
define a live and self-consistent permutation p in G. By Lemma 2.33, p is
consistent with v,. The liveness of 1 in G guarantees that:

Viel.. .k o(u) <Uwu[j]> >0 .

j>i
By definition of the p-regions in G, U;~,W,,[j] is equal to Det g (U;;{y; }, A7),
which is a subset of Detg(U;>i {1}, A) = UjiW,[j]. Thus p is live in G, and
Lemma 2.43 follows. O

The absence of cycles is proved through a notion of progress:

We need then to show that Algorithm 2.10 cannot have an endless run.
Again in the case of lé—player games, Lemma 2.38 shows that the values
computed through a run are growing, ensuring that each permutation is
considered at most once. We first need to establish Proposition 2.44:

Proposition 2.44 Let G = (A, Reach(®)) be a reachability game, 7™ be a
live permutation and p be a live permutation consistent with v,. Then, for
any state ¢ € Q, V(q) < Valfiu(g))-

Proof. By definition, we have p(q) = max{i | ¢ € Detg(U;>{p,}, A7)},

while 11(¢) = max{i | ¢ € Detg(U;>i{p;},A)}. Thus, p(q) < p(qg). As p is
consistent with v,_, we get:

,UO",.- (MM(Q)) Z UUTF (M[u(@) = UUTr,“'/,L (q) Z UUTF (q) N
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Proposition 2.44 follows. 0

Lemma 2.45 Let G = (A, Reach(®)) be a reachability game, m be a live
permutation and p be a live permutation consistent with v, . Then v, < v,

Proof. We fix an initial state ¢ and a strategy 7 for Adam, and we define the
function f by f(n) =3, co Ve, () - Pe"" (pn = ). For a state s of Eve,
we have by definition y(s) = p(0.(5)), 50 Vo, (Hpu(s)) = Vo, (Hu(o,(s)))- For a
state of Adam, we have p(s) < u(7(s)), so the consistency of p and v, yields
Vo (Ppa(s)) < Vo (Hu(r(s)))- For a random random state r, the argument is:

Vo (flu(r)) = Vor(T) —as r is a random state
= 20 0(r)(s)vo, (s) —by (2.1)
< D ec0 0(r)(8)Vo, (Hus))  —by Proposition 2.44
We get:
Vo (q) < Vor (Hu(q)) = f(0) < lim f(n) < PP7(Reach(®)) = vs, 7(q) -

n—oo

As 7 is an arbitrary strategy of Adam, we can conclude that v, (¢q) < vs,(q),
and Lemma 2.45 follows. U

Lemmas 2.43 and 2.45 yield the correctness of Algorithm 2.11:

Theorem 2.46 Algorithm 2.11 terminates and returns the values of its in-
put.

Proof. Lemma 2.43 guarantees that the update process is sound. Lemma 2.42
ensures that Algorithm 2.11 returns only correct values. Lemma 2.45 shows

that the values are growing, so there are no infinite runs. Theorem 2.46
follows. [

We also conjecture that Algorithm 2.11 is polynomial:

Conjecture 2.47 Algorithm 2.11 runs in polynomial time in the size of its
mnput.

However, we were only able to establish that this conjecture is stronger
than its equivalent for strategy improvement:

Proposition 2.48 If Conjecture 2.47 holds, then Conjecture 2.20 holds.

Proof. This side of the proof of Proposition 2.41 works just as well in the

case of 2%—player games. O
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2.4 Afterword

We proposed a new approach to the quantitative solution of 2%—player reach-
ability games. Our motivation in doing so is twofold.

e First, the complexity we get is orthogonal with the usual strategy-based
approach: permutation algorithms are fixed-parameter tractable when
the parameter is the number of random states in the game, whereas the
complexity of strategy-improvement algorithms depends on the number
of possible strategies for either player.

e Second, the removal of the stopping hypothesis makes our approach
much more flexible, as we demonstrate in Chapter 3 by extending a
permutation algorithm for all prefix-independent games.

An intriguing question, en route to the huge endeavour of finding a poly-
nomial algorithm computing the values of 2%—player reachability games, is
whether our permutation-improvement algorithm is (strongly) polynomial
on lé—player games.



Chapter 3

Prefix-independent conditions

“Those who do not remember the past are condemned to repeat it.”

The Life of Reason
George Santayana

After our considerations on the most specific case of reachability games,
we take the opposite direction in this chapter, and ponder the very general
case of games with prefix-independent winning conditions. A condition is
prefix-independent if adding a finite prefix to a play does not change the
winner. In the even more general case of prefix-closed conditions, adding a
finite prefix may change a play winning for Adam into one winning for Eve,
but not the other way round.

One of the main motivation for studying prefix-independent conditions is
that they subsume parity conditions. So, even though not all regular condi-
tions are prefix-independent, our results have direct consequences for regular
games. On a verification point of view, prefix-independence corresponds to
cases where local glitches are tolerated in the beginning of a run, as long as
the specification is met in the limit, in the spirit of self-stabilising protocols.
Finally, one of the most popular payoff functions in economic games, the
mean-payoff function, is also prefix-independent.

In Section 3.1, we study the relations between the different winning re-
gions in prefix-independent games, while Section 3.2 uses them from an al-
gorithmic point of view. Section 3.3 takes on the quantitative problems, and
shows that many results of Chapter 2 carry over to prefix-independent games.

48
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3.1 Winning regions

In this section, we contemplate the qualitative problems of prefix-independent
games from an abstract point of view, and look for relations between the dif-
ferent qualitative regions. These relations can be sorted in three categories:

Loose inclusions: Our first question is whether the three “weak” re-
gions (heroic, positive, and bounded) and the three “strong” regions (limit-
one, almost-sure, and sure) really are different for prefix-independent games.
In safety games, the “strong” regions are equal [dAHK98|; in regular games,
the limit-sure and almost-sure regions are equal, but not the sure region
[dAHO00].

Existential and universal properties: A second type of properties
relates the emptiness or completeness of two different regions for the same
player. For example, the universal and existential bounded-limit properties
of prefix-independent games [Cha07a]' are:

WinY'>%(A) = Q = Win™(4) = Q
Winy "~ (A) = ) = Win)y»>°(A) = 0

Determinacy: Last but not least, determinacy properties state that
from any state of the game, either Eve or Adam has a winning strategy
— for dual notions of winning. In 2-player games, there is not much to
do beyond the pure determinacy of Borel games by Martin [Mar75]. His
quantitative determinacy of 2%—player games|Mar98|, however, is not wholly
satisfying: the regions Winy = °(A) and Win","=*(A) cover the whole graph,
but they are not disjoint.

We first discuss the evolution of values and o-values in prefix-independent
games (3.1.1). This prompts us to define reset strategies, a construction
which builds conditional almost-sure strategies (3.1.2). In particular, we use
them to prove: that positive and bounded regions, limit-one and almost-
sure regions, are equal in prefix-independent games; universal and existential
positive-almost properties for prefix-independent games; and the qualitative
determinacy of prefix-independent games (3.1.3).

Tt is called a positive-limit property in the paper, but depends on the existence of a
state with positive value: this is a “bounded” state, according to [AAHO00]’s taxonomy.
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3.1.1 Values and o-values

In prefix-independent games, as in reachability games, the value of a prefix
is the value of its last state. We can thus use strategy translations to derive
the value of a state from its owner and the value of its successors:

Ve Qp,v(g) = max{v(s)|[(q,s) €T}

Vg € Qa,v(g) = min{v(s)|(q,s) € T} (3.1)
Vg€ Qrvig) = Y 3(q)(s)-v(s)
(a,5)€T

However, there is no “target state”, whose value is fixed to one, nor a
notion of “stopping games”, with a unique solution to (3.1). This system is
thus insufficient to the task of computing the values. Still, it yields Proposi-
tion 3.1:

Proposition 3.1 Let A be an arena, and W a prefiz-closed winning condi-
tion. The region WinZV’Nl(.A) — the region with value 0 — is a trap for Eve,
and the Wing)"“l(/l) — the region with value 1 — is a trap for Adam.

If pure and positional strategies were sufficient for prefix-independent
games, we could use similar equations for the values of the strategies. As
this is not the case, we have to satisfy ourselves with infinite systems on the
o-values of the prefixes consistent with a pure? strategy o:

Definition 3.2 The o-value of a finite play w consistent with a pure strategy
o for Eve is the infimum of the {o, T}-values under the assumptions that w
15 a prefix of the ensuing play:

vy (W) = iITlf Por OV | po = wo, p1 = wy,...) .

We can derive an infinite system of equations on the o-values:

2Most of the results on o-values and reset strategies could be adapted for semi-
randomised strategies — with some extra caution. However, they are useless for strategies
with random memory.
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if g € OQp,v,(wq) = v,(wqg-o(wq))

if g € Qa,v,(wq) = min{u,(wgs) | (¢,s) € T} (3.2)
if g€ Qr,vs(wg) = Y 6(g)(s) - vo(wgs)
(¢9,:5)€T

Using o-values, we can give an educated opinion on the outcome on the
play. In particular, for any positive real number 1 < 1, we define:

Ly, = {peQ|3v(po...p:) <m} .

Proposition 3.3 Let q be a state of Q, T be a strategy for Adam, and n <
v < v,(q) be two positive real numbers. We have:

1—v

Proof. For any finite play u such that v,(u) <7, we define a strategy 7, such
that v, ,, (u) <n. Consider now the strategy 6, defined by:

o if for any prefix u of z, v,(u) > n, 6(z) = 7(x);

e if u is the shortest prefix of x such that v(u) <, 6(z) = 7,(z).

It is clear that P7(L,) = P7Y(L,), and that P7*(W | £,) < n. As P7?(W) >
v, we get:
v<n-PPT(L,) + (1 =P77(Ly)) -

Proposition 3.3 follows. 0

Proposition 3.4 Let q be a state of Q, T be a strateqy for Adam, and n be
a positive real number. We have:

PETW [ =L,) =1 .
Proof. For any integer n, we define the function ¢, from Q77 to [0, 1] by
©n(p) = vor(po-..pn). By Levy’s law [Dur96],
Po(lim E77p, = ly) =1 .

Now, if p ¥ L,, we get,
Vn, on(p) = Vor(po---pPn) 2 Vs(po---pn =1,
80 limy, o n(p) # 0, P77 (W | =L,) = 1, and Proposition 3.4 follows. [
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3.1.2 Reset strategies

This suggests a way to improve a pure strategy with a “reset” procedure for
a given 7: if the value of the prefix drops below 7, while the value of the
current state is strictly greater than 7, it is a better idea to forget the past
and restart with a clean slate.

Definition 3.5 The reset strategy of o with respect to n, denoted by o,, is
a strateqy with memory, whose memory states are plays of A consistent with
o. Its memory-update and next-move function are defined as follows:

n _ Joola)  ifve(wg) <nAve(q) >
aly(w,q) = { o(wq) otherwise

" _ Ja ifue(wg) SnAvs(q) >
(W q) = { wq otherwise

We define some shorthand notation to simplify the manipulation of reset-
related events:

Rﬁ] = {p € Q%n | there are i resets in p} ,
Ry = (1R
1EN

Proposition 3.6 Let g be a state of Q and T be a strategy for Adam. We
have:

Py (R) =0 .
Proof. Let v = min{v,(s) | s € Q Av,(s) > n}. The key observation is that:

1—v
1—n

Vi, PgmT(RITVIRY) < (3.3)
Indeed, after the 7th reset, the token is in a state whose o-value is greater
than 1 (and thus greater or equal than v), and Eve plays o as if the play
just started. Thus, by Proposition 3.3, the probability that the o-value of
the finite play in memory will ever drop below 7 is at most 1=, and (3.3)
n

follows. This completes the proof of Proposition 3.6.

O
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Proposition 3.7 Let q be a state of Q, and T be a strategy for Adam. We
have:
[PZM,T(W | 3,V > Z.aUO(pj) > 77) =1.

Proof. By Proposition 3.6, IPZ”’T(RZO) = 0, so we can® consider only the
plays with a finite number of resets. Let us consider the “final” memory
after the play: it is a play consistent with o which does not verify £,. By
Proposition 3.4 it is winning for Eve with probability one, and Proposition 3.7
follows from the fact that WV is prefix-independent.

O

3.1.3 Links

We can now use reset strategies in order to expose several links between the
different notions of winning for prefix-independent games. Our first result is
that, in prefix-independent games, there is no need to distinguish between
positive and bounded regions, nor between limit-one and almost-sure regions:

Theorem 3.8 Let A be an arena, and W a prefizx-independent winning con-
dition. We have:

Winpy “(A) = Winp "' (A)
Winy “°(A) = Winp >°(A)

Proof. Let us start with the proof of Winly"~*(A) = Win)Y"*(A4). We choose
a real number 7 such that Vg ¢ Winy "™ (A),v(q) < 1 < 1 and a strategy o
such that Vg € Winy~*(A), v,(q) > 1. The proof consists then in showing
that o, is almost-sure in Win}y"~*(.A). By Proposition 3.1, neither Adam
nor Random can leave Wingv’wl(A), and by Definition 3.5, Eve does not:
she could leave only if the value of the prefix was below 7, and she would
sooner reset her memory. So, for any play p starting in Wing’Ni(A) and
consistent with o, Vi, v,(p;) > 1, and by Proposition 3.7, Pg""" (W) = 1.
The second equation, Winy>”°(A) = Win)y'>°(A) follows from the first
applied to Adam, as =WV also is prefix-independent:

Wil #0(4) = @\ Win't ™ (4) = @\ Win}™(4) > Win}l">*(4)

3Yes we can!
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O

Theorem 3.8 does not hold for games with context-free conditions, infinite
arenas, or concurrent moves: in each of the three games of Figure 3.1, the
value of the initial state is 1, yet Eve has no almost-sure strategy.

0[0

dHg o

W = a"b"© W = Reach ®

(a) Context-free condition (b) Concurrent moves

(c) Infinite arena

Figure 3.1: Limit-one is not almost-sure

Our second result is the positive-almost property of prefix-independent
games.

Theorem 3.9 (Positive-almost property) Let A be an arena, and W a
prefiz-independent winning condition. We have:

Win7°(A) = Q — Wind' =9

Winp 7°(A) # 0 = Winy "' #0
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Proof. By Theorem 3.8, Win)y'”°(A) = Q = Win)y*°(4A) = Q. As Q is
finite, we can choose a real number v such that V¢ € Q,v < v(q), and a
strategy o such that V¢ € Q,v,(q) > v. Let n be a real number such that
n < v. For any play p of A, Vi,v,(p;) > n, so Proposition 3.7 yields the
almost sureness of o,.

The second equation follows from the first and Theorem 3.8 to Adam:

Win) 7%(A) #0 = Win}""(A) # Q
— Win}"7%A) # Q
— Win}"”°(A) # Q
— Winy"™"(A) #0
— Win)"'(A) # 0

This concludes the proof of Theorem 3.9. 0

Although the formal prof is out of the scope of this work, Proposition 3.7
and a large part of the proof of Theorem 3.9 hold in the more general case of
concurrent prefix-closed games. Theorem 3.8 does not, so the proof cannot be
fully translated. Indeed, the games of Figure 3.1 are also counter-examples
for Theorem 3.9. Still, we could derive a universal bounded-almost property
and an existential positive-limit property for these games:

Claim 3.10 Let A be a concurrent arena, and VW a prefix-closed winning
condition. We have:

Winl'>%(A) = Q — Wind'(4) = Q
Winy"7%(A) #0 = Win"""(A) #0

Last, but not least of our triptych is Theorem 3.11, which extends quan-
titative determinacy for prefix-independent games:

Theorem 3.11 (Qualitative determinacy) Let G = (A, W) be a prefiz-
independent 2%—player game. We have:

Winl>~°(A) UWin} ' (A) = Q

Wint ' (A) U Win"} 7°(A) = Q
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Proof. Theorem 3.11 follows directly from Theorem 3.8 and the quantitative
determinacy of Borel games. OJ

By contrast with Theorem 3.8, we were not able to find counter-examples
for natural extensions of Theorem 3.11. In particular, the three games of
Figure 3.1 are qualitatively determined, and the qualitative determinacy of
all Blackwell games is still an open problem.

3.2 Fix-points algorithms

We consider now the problems from an algorithmic point of view, and show
how we can use some algorithms as recursive procedures in others. We con-
sider first prefix-closed games, and introduce the notion of partial algorithm,
which unifies some classical proof techniques used as much in pure games
[Zie98, JPZ06, Hor07b| as in stochastic games [CdAHO04, Hor07a| (3.2.1).
In prefix-independent games, almost-sure algorithms are partial algorithms,
which yields several results on the complexity of almost-sure and positive
problems, as well as almost-sure and positive strategies.

3.2.1 Partial algorithms

In prefix-closed games, if Eve has a positive strategy from one state, her
attractor to this state also belongs to her positive region. This is very use-
full from an algorithmic point of view, since the remainder of the arena is
a strictly smaller sub-arena, which allows recursive computations. Partial
algorithms are oracles tailored specially to take advantage of this:

Definition 3.12 A partial algorithm of Eve for a prefix-independent condi-
tion YW over C takes as argument an arena over C, and returns a region X
such that:

e X C Winy ”°A);
o X =0 < Win""°(A) = 0.

Algorithm 3.1 uses a partial algorithm for W-games as a parameter, and
takes a W-game as input. It returns the positive region of Eve, and the
almost-sure region of Adam.
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Parameter: A partial algorithm partial for WW-games
Input: A game G = (A, W)
Output: (Winy ~°(A), Win}"*(A))
Wg =0,
B = A,
while partial(B, W) # 0 do
Wg «— Wg U Attrg(partial(B), B);
B — B\ Attrg(partial(B), B);
end
return (Wg, B)

Algorithm 3.1: Fix-point algorithm

N O ok W

We can define a positive strategy o for Eve based on a run of Algo-
rithm 3.2: in the ith iteration, we denote the region Winy*(B) by X;,
an almost-sure strategy for Eve from X; in (B,) by o;, and the region
Attrg(X;, B) \ X; by Y;. The strategy o uses a top-level memory which tells
what is the lowest (i.e. earliest) i for which the token has already visited X,
and plays according to o;, unless

e cither the token is in a region Y; with j < i: Eve plays her attractor
to X; UUp<;(X,UY,) and resets — at each step — her memory to the
initial memory state of o;;

e or the token is in a region X; with j < ¢: Eve switches her top-level
memory to j (and starts playing according to o;).

Notice that partial algorithms can also be used in 2-player games, to
compute the (sure) regions of the players. In terms of complexity, the Algo-
rithm 3.1 requires only the computation of |Q| attractors and partial algo-
rithms:

Lemma 3.13 Let W be a prefix-closed winning condition on C. If there is
a partial algorithm of FEve for YW-games whose time complezxity on an arena
A on C is t(A) then Algorithm 3.1 computes the positive winning region of
Eve (and thus the almost-sure region of Adam) in time |Q| - (|T| 4+ t(A)).



CHAPTER 3. PREFIX-INDEPENDENT CONDITIONS 58

3.2.2 Switching algorithm

In prefix-independent games almost-sure algorithms are partial algorithms:
it is clear that the almost-sure region of Eve is a subset of her positive region,
and by the positive-almost property (Theorem 3.9, page 54), the former is
empty if and only if the latter is. The fixpoint algorithm transforms then
any almost-sure algorithm into a positive algorithm. Notice that =W is
prefix-independent, so we can also transform a positive algorithm into an
almost-sure algorithm: hence the name “switching algorithm?”.

Parameter: An algorithm computing (Win'y", Win' ~°)

Input: A game G = (A, W)
Output: (Wing’>°(¢4), Winzv’l(A))
WE = @;
B = A,
while Win)''(B) # 0 do
Wi — Wg U Attrg(Win¥*(B), B):
B — B\ Attrp(Winy " (B), B);
end
return (Wg, B)

Algorithm 3.2: Switching algorithm

N O otk W =

Theorem 3.14 follows directly from Lemma 3.13:

Theorem 3.14 Let VW be a prefiz-independent winning condition on C. If,
for any arena A on C, we can compute Winly " (A) (and Win',"7°(A)) in
time t(A), then we can compute Winly'“°(A) (and Win"*(A)) in time |Q)| -
(7] + t(A)).

Another consequence of the switching algorithm is that positive strategies
require no more memory than almost-sure strategies. We define first the
concept of residually almost-sure strategies:

Definition 3.15 A strategy with memory is said to be residually almost sure
if and only if for any state ¢ and memory state m, vy(q,m) = 1.

Lemma 3.16 In any prefiz-independent game G, if there is a pure (resp.
semi-randomised, resp. randomised) almost-sure strategy with memory T,
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there is a pure (resp. semi-randomised, resp. randomised) residually almost-
sure strateqy with memory Y.

Proof. Let o be a almost-sure strategy with memory. We build the residually
almost-sure strategy ¢ on the same memory states. For any state ¢ and
memory state m, we have:

e if there is a state gy and a strategy 7 such that P7"(Reach(g,m)) > 0,
s(g,m) = o(q, m);

e otherwise, ¢(q, m) = o(q, mo).

If o is pure or semi-randomised, it is clear for any state ¢ and memory state m,
(¢, m) is reachable implies v, (g, m) = 1, as Adam could monitor the memory
and start playing a counter-strategy when the value drops below one. If ¢ is
a strategy with random memory, all he could do would be to try a prefix and
guess Eve’s memory, but this is enough to guarantee a positive probability
of winning. Notice that this construction could be done for bounded pure
and semi-randomised strategies, but not for bounded strategies with random
memory. O]

Residually almost-sure strategies can then be used as components for a
positive strategy on Winy~°(A):

Theorem 3.17 If there are almost-sure strategies with memory at most T,
there are bounded strategies with memory at most Y.

Proof. By contrast with the prefix-closed case, there is no need to remember
the smallest ¢ such that X; has been visited: the composition of residually
almost-sure and attractor strategies is solely spatial:

e if ¢ belongs to X;, o(q,m) = o;(q,m);
e if ¢ belongs to Y;, o(q, m) = (ap(X; U Ue; (Xe UY2))(q), m).

3.3 Values and optimal strategies

The values of prefix-independent games G = (A, W) are usually computed
by hybrid algorithms, which merge a qualitative algorithm for WW-games with
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a quantitative algorithm for reachability games. For example, one can guess
the values of the states, and use a qualitative algorithm to check necessary
and sufficient conditions on the value regions: see [CdAHO05| for Rabin and
Streett games, [Cha07c¢| for Muller games, and [CHHO8| for finitary games.
It is also possible to adapt the strategy improvement algorithm when one of
the players has positional strategies: see [CJH04| for parity, and [CHO6b| for
Rabin games. Finally, the problem of prefix-independent 1%—player games
can be solved by computing first the almost-sure region, and then the values
of the reachability game to this region [Cha0T7a).

We use our permutation algorithm as an universal converter: from an
almost-sure algorithm for W-games, we derive a meta-algorithm computing
the values. As a matter of fact, the resulting algorithm is exceedingly close
to the permutation algorithm for reachability games. The only difference is
in the computation of the regions: instead of using deterministic attractors,
Procedure Metaregion(G, 7) computes almost-sure winning regions. Apart
from that, Algorithm 3.3 is a carbon copy of Algorithm 2.9.

Input: A prefix-independent game G
Output: A partition of Q and the corresponding values
forall 7 € S;. do
W «— Metaregions (G, )
v« Values (G, m, W)
self « Consistent (7, v)
live <« Live(G,n, W)
if (1ive A self) then
| return (W, v)
end
end

© 00 N O 0k W=

Algorithm 3.3: Permutation Algorithm for prefix-independent games

All the m-concepts of Section 2.2 can be adapted for prefix-independent
conditions, most of the time with only minute differences. However, the in-
tuitions behind these concepts are gone: regions can be empty, w-values may
be different from the values of the w-strategies, and so forth. So, although
regions, strategies, and values are defined for any permutation (3.3.1), they
do not make much sense in general. On the other hand, the key properties of
live and/or self-consistent permutations still hold mutatis mutandis (3.3.2).
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We use them to prove the correctness of Algorithm 3.3, and study its com-
plexity (3.3.3). A direct consequence is that optimal strategies need exactly
as much memory as almost-sure strategies (3.3.4).

3.3.1 m-concepts for prefix independent conditions

As in the case of 2%—player reachability games, our first step is to normalise

the games we consider, by merging all the states of Win"}"*(A) into the sink
state ®, and all the states of Win)y™* (A) into the target state ©. The winning
condition W is modified accordingly: Reach ©® = W and Reach ® =— —W.

The definition of the 7-regions is also close to the case of reachability
games:

o Wil +1]={e}
o Wali] = Winy O D) g v ]

o W,[0] ={®}

Input: A prefix-independent game G and a permutation 7
Output: The 7-regions of G
Wik +1] —{@}
WI0] — {®}
for i=1,i<k,i++)do
| W) Win O 0 )\ U v ]
end
return W

S oA W N =

Procedure Metaregions (G, )

However, we need to compute an almost-sure region, in lieu of a deter-
ministic attractor: a random state m; may thus belong to a region W, [j] with
i < 7 (but not ¢ > j). In this case, the region W,[i] is empty.

Eve’s m-strategy o, is a spatial combination of residually almost-sure
strategies: in W,[i], she plays a residually almost-sure strategy with respect
to the objective W V Reach(U;>;{m;}).

Adam’s m-strategy 7, is a spatial combination of reset strategies: in W,[i],
he plays a bounded strategy of value n with respect to the objective W V
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Reach(U;>;{7;})), which is reset when the value of the prefix drops below 7.
By Proposition 3.7, if any region is visited infinitely often, Adam wins with
probability one, and Proposition 3.18 follows:

Proposition 3.18 Let m be a permutation, and 7, be the corresponding -
strateqy for Adam. For any initial state q and strateqy o of Eve, we have:

P7™ (=W V Reach®) =1

The vector of m-values for the states of Qg is computed from the %—player
reachability game &" defined as follows:

@=QrU{c}u{c}

o 8(m)(®) = d(m)(®)

* 8(m)(®) = 0(m)(®)

o d(m;)(m;) = 0(m;)(Wrlj])

For any 1 < i < k, v.[i] is the value of m; in &". The associated values
for the states are defined by: ¢ € Wy[i] = v.(¢) = v.[i]. Notice that if
m; € Waljl, o:(m) = v:[j], and not necessarily v, (m;) = v.[i]. By contrast
with the case of reachability game, it is not true in general that v, = v, . .

3.3.2 Liveness and self-consistency

The notions of (self-)consistency and liveness need no tinkering from reacha-
bility: Definitions 3.19, 3.21, and 3.23 are carbon copies of Definitions 2.27,
2.25, and 2.26. In the same way, we prove equivalents of the key properties:
Propositions 3.20 and 3.22 replace Propositions 2.28 and 2.31. An extra
proposition, Proposition 3.24, deals with displaced random states.

Definition 3.19 A permutation m over the set Qg is live if and only if for
any 1 <i <k, 6(m)(U;s;Wr[j]) > 0.

Proposition 3.20 Let w be a live permutation, and o, be the corresponding
w-strateqy for Eve. For any strateqy T of Adam, we have:

P7"(W V Reach®) =1
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Proof. Let ¢ be a state of Q, T be a strategy for Adam, and Stuck(i) be the
event “Inf(p) "W, [i] # O Alnf(p) N {m;, ..., 7} = 0”. By definition of o, for
any 1 <17 <k, we have P7™"(Stuck(i) A =W) = 0. By the liveness property,
for any 1 <4 <k, we have P7~7(m; € Inf(p) A Inf(p) N U Wr[j] = 0) = 0.
Proposition 3.20 follows. 0

Definition 3.21 A permutation 7 is consistent with a set of values v if and
only if for any two states m; and 7j in Qp, i < j = v(m) < v(7;).

Proposition 3.22 There is a live permutation consistent with the values of

g.

Proof. The permutation is chosen starting from 7, and going down to ;.
At each step, the state m; is chosen among the ones such that:

o v(m) =max{v(q) | ¢ € Qr \ {mis1,...,m}}
o 0(m;)(Uj»iWrli]) > 0

There is always such a state: otherwise, the set X of states whose value is
maximal in Q \ U;s;Wx[j] would be a trap for Adam, and the states of X
have value 1, in contradiction with the “normalised” hypothesis. 0

Definition 3.23 A permutation 7w is self-consistent if and only if it is con-
sistent with v.: for any two states m; and w; in Qp, i < j = v.[i] < v[j].

Proposition 3.24 Let m be a self-consistent permutation, and i and j be
two integers such that i < j and m; € Wy[j]. Then for all ¢ such that
6(ms) (Wall]) > 0, ox[i] = vx[j] = vr[{].

Proof. As m; € Wi[j], 6(m)(W,[{]) > 0 = ¢ > j. By self-consistency,
0> j = v.[l] > v.[j], so v.[i] > v.[j]. But, again by self-consistency,
v.[i] < v.[j]. So v.[i] = v.[j], and, o(m)(W,[{]) > 0 = v.[i] = v.[{].
Proposition 3.24 follows. 0

3.3.3 Correctness of Algorithm 3.3

Now that all the pieces are there, we can proceed to the main theorem:
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Theorem 3.25 Let G = (A, W) be a prefiz-independent game. A run of
Algorithm 3.3 on G terminates and returns the values of the states.

Proof. Theorem 3.25 is proved as Theorem 2.29, by two independent lemmas:
e there is a live and self-consistent permutation (Lemma 3.26);

e if a permutation 7 is live and self-consistent, then v, are the optimal
values for the regions W, (Lemma 3.27).

0

Lemma 3.26 There is a live and self-consistent permutation.

Proof. The first part of this proof was to show that there is a live permutation
7 consistent with the values of the game (Proposition 3.22). The point is
now to prove that the m-values are the values of G. These values are constant,
over the m-regions:

g€ Wing\/vReaChXJ(A) = V(q) Z mln{V(q) ‘ qeE X}

q ¢ Winy VRS A) = v(g) < max{v(r) | r € Qr\ X}

Thus, the relations between the values of the m-regions which follow from
(3.1) are exactly the relations between the values of the states in &". So
v = v, and Lemma 3.26 follows. 0

Lemma 3.27 If © is a live and self-consistent permutation, then the -
strategies are optimal and v, = V.

Proof. We fix an initial state ¢ and prove independently that v,_(q) > v(q)
and v, (¢) < v:(q). Let 7 be a strategy for Adam. We define an “expected
m-value” function f by f(n) = > co0x(s) - P77 (p, = s). This function is
waxing:

e a move of Eve consistent with o, remains in the same 7-region;

e a move of Adam sends the token to a state with greater or equal 7w-value
(self-consistency);

e the value of a random state m; such that m; € W,[i] is the average value
of its successors;
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e a random state 7; such that m; € W, [j] and ¢ < j sends the token to a
state with equal 7-value (Proposition 3.24).

Thus, f(n) < f(n +1). Furthermore, as f(n) < 1 — P{""(p, = ®), we
get lim f(n) < 1 — P7~"(Reach ®). By Proposition 3.20, P77 (Reach®) =
1 — v, +(q), so v:(q) = f(0) < lim, o f(n) < v,, -(q). As 7T is an arbitrary
strategy for Adam, we get v, > 0.

Likewise, for a strategy o for Eve, we define the function g by g(n) =
> scox(8) - P77 (p, = s). This function is waning:

e a move of Eve sends the token to a state with lower or equal w-value
(self-consistency);

e a move of Adam consistent with 7, remains in the same 7-region;

e the value of a random state m; such that m; € W,[i] is the average value
of its successors;

e a random state m; such that m; € W, [j] and ¢ < j sends the token to a
state with equal 7-value (Proposition 3.24).

Thus, g(n) > g(n + 1). Furthermore, as g(n) > P7™(p, = ©), we get
lim g(n) > P7™(Reach ®). By Proposition 3.18, P7™ (Reach ®©) = v, (q),
so v.(q) = ¢g(0) > lim,, oo g(n) > vs-.(q). As o is an arbitrary strategy for
Eve, we get v, < v,.

It follows that v, = v, = v,, so o, and 7, are optimal strategies, and
v, = v. This concludes the proof of Lemma 3.27. O]

Theorems 3.28 and 3.29 are direct consequences of Theorem 3.25:

Theorem 3.28 Let G be a prefix-independent game. If there is an algorithm
computing the almost-sure region of Fve in time t(G), then Algorithm 3.3
computes the values of G in time |Qgr + 1|! - (|9] + ¢(9)).

Proof. In Procedure Metaregions, the time-consuming operations are the
computation of the almost-sure regions (in time ¢(G)) and the computation
of the attractor (in time |§|). FEach is done |sr| times in each call, and
in the worst case, Algorithm 3.3 calls Procedure Metaregions |Qg|! times.
Theorem 3.28 follows. U
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Theorem 3.29 Let 20 be a class of prefix-independent winning conditions.
If the qualitative problems of 20-games belong to the complexity class IC, then
the quantitative problems belong to the classes NP and co-NPX.

Proof. There is a non-deterministic variant of Algorithm 3.3 which guesses
the correct permutation instead of searching for it. The verification can then
be done in polynomial time with |Qg| calls to a K-oracle. O

3.3.4 Optimal strategies

One of the assets of Algorithm 3.3 is that we can derive optimal strategies
from a live and self-consistent permutation, so Theorem 3.30 follows from
Lemma 3.27:

Theorem 3.30 Prefiz-independent games are optimally determined.

Furthermore, the strategy o, is defined as a spatial composition of resid-
ually almost-sure strategies, and does not use more memory than its compo-
nents:

Theorem 3.31 Let W be a prefiz-independent winning condition. If Eve
has pure (resp. semi-randomised, randomised) qualitative strategies with fi-
nite memory Y, she has pure (resp. semi-randomised, randomised) optimal
strategies with finite memory Y.

Notice that Theorem 3.31 does not hold without the hypothesis that WV is
prefix-independent, even for regular winning conditions: a counter-example
is the weak parity game of Figure 3.2.

Figure 3.2: Optimal strategies require memory in weak parity games
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In this game, the value of the initial state is .5: if Eve sends the token
once to the left, and then always to the right, the lowest occurring colour
has equal chances to be 1 or 2. However, this value cannot be achieved by
means of a positional strategy:

e if Eve has a positive probability to send the token to the left, the lowest
occurring colour is almost surely 1;

e if Eve never sends the token to the right, the lowest occurring colour
is surely 3.

There are positional almost-sure winning strategies for both players in 2%—
player weak parity games [GZ05]. Optimal strategies for weak parity games
with d colours may require up to d — 1 memory states, even in 1%—player
games.

3.4 Valediction

We showed that prefix-independent games are optimally determined, and
provided a general algorithm computing the values of any prefix-independent
games with a single non-deterministic guess and a qualitative algorithm.

The determinacy result is very sensitive to each of our hypotheses, as
demonstrated by Figure 3.1. However, the quantitative determinacy of Borel
games may still be extended, by the qualitative determinacy to begin with,
and by similar questions for arbitrary values.



Chapter 4

Muller Games

“You can’t have a strateqy against telepaths: you have to act randomly. You
have to not know what you’re going to do next. You have to shut your eyes
and run blindly. The problem is: how can you randomise your strateqy, yet
move purposefully towards your goal?”

Solar Lottery
Philip K. Dick

With this chapter, we go back to the origins of infinite games: Church’s
original synthesis problem amounts to solving Muller games. Muller games
subsume the other classical normal forms of regular games such as parity,
Rabin, and Streett games.

The Muller condition is prefix-independent, so they provide us with an
application of the results of Chapter 3.

We apply our results on prefix-independent conditions to the setting of
Muller games, where the winner depends only on the states that are visited
infinitely often. They subsumes other classical normal forms of regular games
such as parity, Rabin, and Streett games

The qualitative problems of Muller games can usually! be solved in poly-
nomial space [McN93, NRY96]. However, this complexity is not necessarily
tight, depending on how the winning condition is represented. As in Chap-
ter 2, we present in Figure 4.1 an example of Muller game to demonstrate
several interesting notions.

! As long as deciding the winner of a limit set is in PSPACE.

68
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§={{a,b,c,d},{a,b,c},{a,b},{b,c,d, e}, {b,c,e},{b,d e}, {c d e}, {e}}

Figure 4.1: Muller game example: the game & = (4, §)

We first present, in Section 4.1, a polynomial algorithm for the qualita-
tive problems of explicit Muller games. Section 4.2 describes the notion of
Zielonka tree of a coloured Muller condition, and shows how to use it to de-
fine a reduction to parity conditions. This tree is again central in Section 4.3,
which defines a recursive PSPACE algorithm for 2%—player Muller games. The
analysis of this algorithm also provide upper bounds in memory for pure as
well as randomised strategies. We use then the Zielonka DAG in Section 4.4
to show that these bounds are tight.

4.1 Explicit games

Our first result about Muller games is a polynomial algorithm computing
the winning regions of explicit Muller games. The explicit representation of
a Muller condition F consists simply in the sequence Fj - - - F;, of all the sets
in F. Notice that this definition precludes the use of a (non-trivial) colouring
function: the winner problem of coloured Muller games, which we study in
the next sections, is PSPACE-complete.

We introduce the notions of semi-alternation and sensibleness for explicit
Muller games, and show that any explicit game can be translated in poly-
nomial time into a semi-alternating and sensible game (4.1.1). We use then
these notions to describe a polynomial algorithm for explicit Muller games
(4.1.2).
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4.1.1 Normal form

We first define three properties of explicit Muller games. A game is:

1. semi-alternating if there is no transition between two states of Adam
(but there can be one between two states of Eve);

2. sensible if each set in F is an end-component of A;
3. ordered for inclusion if i < j = F; 2 F;.

Our algorithm for explicit Muller games, Algorithm 4.1, relies on the fact
that its input satisfies these three properties. However, this does not restrict
the generality of our result, since any explicit Muller game can be transformed
in polynomial time into an equivalent semi-alternating, sensible, and ordered
game of polynomial size. The semi-alternation transformation consists in
replacing each state ¢ € Q4 of Adam by a pair of states r € Qg,s € Q4,
as in Figure 4.2. Each set containing ¢ in the winning condition is modified
accordingly: F « (Aq.(r,s))F. This is where the classical alternation trans-
formation fails: adding a state to each transition leads to an exponential
blow-up in the size of the winning condition.

Ny e
TN N

(a) Original arena (b) Semi-alternating arena

Figure 4.2: Semi-alternating arena construction

A game can be made sensible by removing from F all the sets that are
not end-components of A: by Lemma 1.3, whatever the strategies of Eve and
Adam, the limit of the play is an end-component with probability one. This
modification is thus transparent with respect to stochastic concepts —the
sure and heroic regions do change, however. Finally, ordering the sets for
inclusion can be done in quadratic time.
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The games of the form (A, {Q}), where Eve wins if and only if the token
visits all the states infinitely often, play an important part in our solution to
explicit Muller games. These games, which have also been studied in routing
problems [DK00, TK02], are easy to solve and there is always only one winner
in the whole game:

Proposition 4.1 Let A be a 2%—player arena, and G be the explicit Muller
game (A,{Q}). Either, for any state q € Q, Eve’s attractor to q is equal to
Q, and Fve wins almost-surely everywhere in G, or there is a state ¢ € Q
such that Attrg({q}, A) # Q, and Adam wins surely everywhere in G.

Proof. In the first case, Eve can win almost-surely by playing the uniform
strategy uni 4: infinite visits to all the states of Q ensues [CAAHO04]. In
the second case, Adam can win surely with any trapping strategy out of
Attrg({q}, A): if the token ever gets out of Attrg({q},.A), it never goes
back. 0J

Following Proposition 4.1, we say that “Eve wins (A, {Q})” if she wins
almost-surely from any state of Q, and that “Adam wins (A, {Q})” if he wins
surely from any states of Q. This could be misleading if we were to consider
the sure region of Eve or the heroic region of Adam, but we do not.

4.1.2 Algorithm

Our algorithm takes as input a semi-alternating, sensible 2%—player explicit
Muller game whose winning condition is ordered for inclusion; it returns the
positive region of Eve and the almost-sure region of Adam. Each set in F is
considered at most once, starting with the (smallest) set ;. At each step,
the operation of a set F; modifies the arena and the winning condition in one
of the following ways:

If Adam wins (Az,, {F;}), Fi is removed from F.

If Eve wins (Az,{F;}), and F; is a trap for Adam in A, Eve’s
attractor to F; in A, Attrg(F;, A), is removed from A (and added to the
winning region of Eve), and all the sets intersecting Attrg(F;, A) are removed
from F.

If Eve wins (A,z,, {¥;}), and F; is not a trap for Adam in A, a new
state F;, described in Figure 4.3, is added to A with the following attributes:

e [, is a state of Adam;
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e the predecessors of F; are all the states of Eve in F;;

e the successors of [; are the successors outside F; of the states of Adam
in F;.

Furthermore, the state [; is added to all the supersets of F; in F, and F;
itself is removed from F.

Ok Ok

M = {{a, b}, {a, b, C}} M = {{av b, c, {a7 [b}}}

(a) Before (b) After

Figure 4.3: Removal of a set in an explicit Muller condition

The important case, from an intuitive point of view, is the last one: it
corresponds to a “threat” of Eve to win by visiting exactly the states of F;.
Adam has to answer by getting out, but he can choose his exit from any of
his states. Notice that it would not do to simply replace the whole region F;
by the state F;: as in Figure 4.3, Adam may be able to avoid a state of F; in
a larger arena, even if he is incapable of doing so in A|,.

As only one state is added each step, the number of states in the game is
bounded by |A| 4 |F|. The whole procedure is described as Algorithm 4.1.

In the proof of correctness, we use typewriter fonts to denote the mod-
ified arena and condition, and cafligraph fonts to denote the original game.
Furthermore, we denote by F|z, the intersection of F and P(F;), i.e. the
sets of F that are also subsets of F;. We can now proceed to the three main
lemmas:
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Input: An explicit Muller game (A, F)
Output: Win’,“°(A) and Win%* (A)
1 A= (Q7 QE7 QA7 QRa T, P) — -’4 = (Q7 QEa QAa QRa Tap)?

2 F— F;

3 Wg «— @;

4 while F # () do

5 F; < pop(F);

6 if Eve wins (Aj,, {F;}) then

7 if F; is a trap for Adam in A then

8 remove Attrg(F;, A) from A and add it to Wg;
9 remove all the sets intersecting Attrg(F;, A) from F;
10 else

11 add a state F; to Qu;

12 add transitions from F; N Qg to [F;;

13 add transitions from F; to T(F; N Q4) \ Fi;

14 add F; to all the supersets of F; in F;

15 end

16 end

17 end

18 return Wy N 9. QN 9
Algorithm 4.1: Polynomial algorithm for explicit Muller games

Lemma 4.2 If, in the course of a run of Algorithm 4.1, the game (Aj,, {F;})
1s winning for Eve at line 6, then Fve wins almost-surely everywhere in the
game ("4|]:i7 ‘FU:Z)

Proof. Let H',...,H* = F; be the sets of Fjz such that (A, {H'}) was
winning for Eve in the run of Algorithm 4.1. Notice that F; itself is one of
these states, say H*. The 07’s denote her corresponding almost-sure strate-
gies. We build a strategy o for Eve in A|x,, whose memory states are stacks
of pairs (H’, p’). At any time, p/ is a play of Ay; which can be extended by
the current state . The initial memory state is (H*, ), and the operation of
o when the memory state is (H’,w) and the current state is q is described
below:

1. If ¢ ¢ H’, the top pair is removed, and the procedure restarts at step
1 with the new memory. Notice that it may involve further pops if ¢
still does not belong to the top set.
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2. If ¢ is a state of Eve, and o/(wq) is a new state H", the memory is
modified as follows: w becomes wqH", and a new pair (H", ¢) is pushed
at the top of the stack. The procedure restarts at step 2. with the new
memory. Notice that it may involve further pushes if o”(q) is also a
new state.

3. The new memory state is (H’, wq); if ¢ belongs to Eve, she plays o7 (wq).

We claim that ¢ is almost-sure for Eve in the game (A z, F|z). Let p be a
play consistent with o, and H’ the highest set that is never unstacked. We
denote by p’ the (infinite) limit of the “play” part. As p’ is consistent with
o7, Inf(p’) = W with probability one. Furthermore, Inf(p) 2 Inf(p’) N Q and
Inf(p) C H’. So, Inf(p) = H? with probability one, and Lemma 4.2 follows.
O

For Adam, the problem is a little more complex: we need two lemmas,
whose proofs are mutually recursive:

Lemma 4.3 If, in the course of a run of Algorithm 4.1, the game (Aj,, {F;})
is winning for Adam at line 6, then Adam wins surely everywhere in the game

("4|»T'i7 ‘E»T_z>

Lemma 4.4 If, in the course of a a run of Algorithm 4.1, the game (Ag,, {F})
s winning for Fve at line 6, then Adam wins surely everywhere in the game

(A7, Fiz \{Fi}).

Proof. We start with the (simpler) proof of Lemma 4.4. Let H!, ..., H* be
the maximal sets, with respect to inclusion, of F|#. There is a sure strategy
77 for Adam in each H’: if Adam won (A, {H'}), it is a winning strategy for
the game (Ajpy, Fipi) (recursive use of Lemma 4.3); if Eve won (Aj, {H}),
it is a strategy for the game (Ajpi, Fins \ H?) (recursive use of Lemma 4.4).
The strategy 7 for Adam in (Az, {F|z}) uses k top-level memory states to
switch between the {77},<;<x. Adam remains in a top-level memory state j
only as long as the token is in H’. As soon as it gets out, he updates it to (j
mod k) + 1. His actions when the top-level memory state is j are described
below:

e if he won (A, {H’}), he plays 77;

o if Eve won (A, {H'}), he plays 77 unless he can get out of 7.
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We claim that 7 is surely winning for Adam in (Az,, F|z). Any play p
consistent with 7 falls in exactly one of the three following categories:

e The top-level memory of 7 is not ultimately constant; thus Inf(p) is
not included in any of the H?’s, and p is winning for Adam.

e The top-level memory of 7 is ultimately constant at j, and (A, {H})
was winning for Adam; p is ultimately a play of Ay consistent with
79, s0 p is winning for Adam.

e the top-level memory of 7 is ultimately constant at j, and (Aj, {H})
was winning for Eve; p is ultimately a play of A}y, consistent with 77,
so Eve can win only by visiting all the states of H?. But H’ is not
a trap for Adam, and the definition of 7 implies that Adam leaves as
soon as possible. So, at least one of the states of H/ was not visited,
and p is winning for Adam.

This completes the proof of Lemma 4.4. The proof of Lemma 4.3 is more
involved, due to the necessity to avoid at least one of the states of F;. By
Proposition 4.1 there is a state ¢ in F; such that X = Attrg({q}, Aj,) is not
equal to Ap,. Tt follows from the definition of Ap, that neither F; N X nor
Fi\ X is empty. Adam’s strategy is then exactly the same than in the proof
of Lemma 4.4, with the provision that Adam never moves from F; \ X to X:
this guarantees that the token cannot visit infinitely often all the states of
F;, and completes the proof of Lemma 4.3. O

The correctness of Algorithm 4.1 follows from Lemmas 4.2, 4.3, and 4.4:
the first one guarantees that the states in Wy Q are winning for Eve, and the
last one that the states remaining at the end of Algorithm 4.1 are winning
for Adam.

About complexity, there are at most |F| loops in a run, and the most
time-consuming operation is to compute the winner of the games (A, {F;}),
which are quadratic in [A| < (]A| 4 |F]). Thus, the worst-case time com-
plexity of Algorithm 4.1 is O(|F| - (| A] + |F|)?), which completes the proof
of Theorem 4.5:

Theorem 4.5 The winner problem of explicit 2%—player Muller games be-
longs to PTIME.

We can use Theorem 3.29 to directly derive a complexity class for the
quantitative problems of explicit games:
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Theorem 4.6 The value problem of explicit 2%—player Muller games belongs
to NP and co-NP.

Notice that these complexity results depend on the fact that there is
no colouring function: even in the very restricted case of the win-set repre-
sentation [McN93|, where the only difference is the introduction of a set of
irrelevant states, the winner problem becomes PSPACE-hard [HDO05].

4.2 Solution through reductions

A first approach to the solution of 2%—player Muller games uses successive
reductions from the well-studied problem of 2-player parity® games (4.2.1).
1

It is possible to reduce the qualitative solution of 23-player parity games to

this problem (4.2.2), and Muller conditions to parity conditions (4.2.3).

4.2.1 Solving 2-player parity games

The complexity of 2-player parity games is one of the central questions in
game theory. One of the motivation is the link between these games and
logics: there is a polynomial reduction from p-calculus to 2-player parity
games, and vice versa. Another one is that parity games admit positional
strategies (under some hypothesis, they are even the only games to admit
pure and positional strategies [CN06]).

Theorem 4.7 ([EJ91], [Mos91]) In a 2-player parity game, both players
have positional winning strategies.

An immediate consequence is that parity game can be solved with NP or
co-NP algorithm, by guessing a strategy for one or the other player.

Theorem 4.8 The problem of the winner in 2-player parity games belongs
to NP and to co-NP.

It is even possible to adapt the strategy improvement for 2%—player reach-

ability games, in a discrete fashion [VJ00]. The resulting algorithm is poly-
nomial for 1-player games, and conjectured to be also polynomial for 2-player

games. It is also possible to solve parity games with a recursive algorithm

2“Priority” would be a much better name.
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like the one we describe in Section 4.3. Other approaches introduced small
progress measure [Jur00| (later extended to Rabin and Streett games in
[PP06]), or mixed these with a round of exhaustive exploration of small
subarenas [JPZ06, Sch07].

4.2.2 2%-player parity games to 2-player parity games

It is possible to reduce qualitative problems for 2%—player Muller games to the
winner problem of 2-player games: see [JKH02| for Biichi and co-Biichi con-
ditions, [CJHO3] for parity conditions, and [CAAHO05| for Rabin and Streett
conditions. The principle is to replace the random states with a gadget where
Adam and Eve “barter” for the right to choose the next state. For example,
Figure 4.4 presents the reduction of [CJHO03] for parity games.

Figure 4.4: Parity gadget: from 2%—player to 2-player

Each visit to a random state is replaced by this “gadget”, where Adam
chooses first a rank ¢, and Eve can:

e cither visit to a 2¢ — 1 priority and decide the next state;
e or visit to a 2i priority and let Adam decide the next state.

This reduction is polynomial, and preserves the winning region (Eve’s
winning region corresponds to her almost-sure region, and Adam’s region to
his positive region). Furthermore, the positional strategies of the reduced
game translate as positional strategies in the original game. Theorem 4.9
and 4.10 follow:
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Theorem 4.9 Ina 2%—player parity game, both player have positional strate-
gies.

Theorem 4.10 The qualitative problems of 2%—player parity games are in
NP N co-NP

4.2.3 Muller conditions to parity conditions

Muller conditions can be translated as parity conditions by adding infor-
mation to the states. The first data structure considered to this effect was
the Latest Appearance Records (LAR) of McNaughton, which were used by
Gurevich and Harrington as memory for winning strategies in Muller games
|[GH82]. Thomas use them in [Tho95| to reduce Muller games to parity
games. However, the size of the LAR structure is totally insensitive to the
actual winning condition. Zielonka’s insightful construction [Zie98| repre-
sents a Muller condition by a split tree whose nodes are labelled by sets of
colours, focusing on the alternation between the sets winning for Eve and
those winning for Adam:

Definition 4.11 (Zielonka tree [Zie98]|) The Zielonka tree of a Muller
condition F over C, denoted Zr ¢, is the rooted tree with the following prop-
erties:

e cach node is labelled by a set of colours, and two different siblings have
different labels; if the label of a node is winning for Fve, the node be-
longs to Eve, otherwise it belongs to Adam;

o the root of Zrc is labelled by C;

e ifn is a node labelled by C C C, and C4, ...,y are the maximal subsets
of C such that C € F & C; € F, then the children of n are labelled by
the C;’s.

Hunter and Dawar derive a DAG from this tree (the Zielonka DAG), by
identifying the nodes with the same labels [HDO5].

The Zielonka tree and DAG of §, from Figure 4.1, are represented in
Figure 4.5(a).

Dziembowski, Jurdzinski, and Walukiewicz presented in [DJW97] a reduc-
tion from Muller games to parity games using the branches of the Zielonka
tree as data structure. Their construction builds a parity game G from a
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abede abede
be cde @/
abd| |acd] |bed bed| |be| |ce abd| |acd| |bed| |be| |ce
a b ] a b 0
(a) ZS,QI (b) D&@

Figure 4.5: Zielonka representations of §

Muller game G = (A, F). The states of G are pairs (¢, b), with ¢ a state of
A, and b a branch of Zz¢. The support of ¢ and b is the lowest node where
x(q) appears. The colour of a state (g, b) is the depth of the support of ¢ and
bin Zzc. There is a transition from (¢, b) to (¢/,b’) if and only if there is a
transition from ¢ to ¢’ in G, and b’ goes through the next child of the support
of ¢ and b. A transition, taken from the translation of &, is represented in
Figure 4.6.

A play p is winning in G if and only if its projection on Q is winning in
G. The size of G is polynomial in the size of the game if the condition is
represented by its Zielonka tree, so the complexity of these games is in NP N
co-NP :

Theorem 4.12 The qualitative problems of 2%—player Muller games whose
winning condition are represented by their Zielonka tree belong to NP and
co-NP.

Furthermore, if we define /£ as the number of branches of the Zielonka
tree:

Definition 4.13 (Number ¢ of a Muller condition) Let F be a Muller
condition on C, and Cy - - - Cy be the mazimal subsets of C such that C € F <
C; € F. We denote by F; the Muller condition Fc,, and we define the number
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(a) x(q) =a
Figure 4.6: Coloration and transitions of the generalized LAR reduction

Cx inductively as follows:
1 if Zrc does not have any subtrees,

k
br = Zlﬂ if C € F otherwise.

i=1

Figure 4.7: Computation of (g

Both players have winning strategies with memory ¢z: by keeping the
current branch of in memory, a player can determine where the token would
be in G, and play accordingly.

Theorem 4.14 Let F be a Muller condition over C, A be an arena on C,
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and q be a state of Q. If either player has a winning strateqy from q, they
have a pure winning strateqy with memory {r.

4.3 Recursive algorithm

However, the Zielonka tree is not more succinct than any of the representa-
tions we presented, and the reduction uses thus an exponential space in these
cases. However, it is possible to simulate this reduction on the fly, in space
polynomial in the size of the arena. This approach is recursive, and has been
implemented first by Dziembowski, Jurdzinski, and Walukiewicz for 2-player
Muller games (and infinite arenas) in [DJW97|. The special case of 2-player
Streett games was studied in [Hor05], and extended to 2%—player games in
[Hor07a]. Chatterjee later extended the extension to 21-player Muller games
in [Cha07c].

The recursive calls of this recursive algorithm corresponds to the struc-
ture of the Zielonka tree: the final solution is the one we get at the root,
and solving a node require to solve its children. However, we do not need
to remember the structure of the tree, and computing the children of a node
in the Zielonka tree can be done in polynomial space regardless of the repre-
sentation of the Muller condition, as long as deciding the winner of a set of
colours can be done in PSPACE.

As Muller conditions are prefix-independent, we use the results of Chap-
ter 3, to describe only a partial algorithm. The role of the players in this
algorithm depends on who wins if all the colours are visited: if it is Eve, we
compute a subset of Adam’s positive region; if it is Adam, we compute a
subset of Eve’s winning region. In order to get the actual regions, we use the
fix-point algorithm, and the switching algorithm if needed.

The study of the Zielonka tree Zz ¢ of a Muller condition F on C enables
us to define two asymmetric numbers mz and 7z, which are tight bounds for
the memory needed in F-games (Theorems 4.16 and 4.18).

Definition 4.15 (Number m of a Muller condition) Let F be a Muller
condition on C, and C; ...Cy be the maximal subsets of C such that C € F <
C; € F. We denote by F; the Muller condition Fc,, and we define the number
mzr inductively as follows:
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1 if Zrc does not have any subtrees,

max{1l,mgz,mzg,...,mz} ifC ¢ F (Adam node),
mr =

k
Zmﬂ if C € F (Eve node).
i=1

Theorem 4.16 ([DJW97, Cha07c]) Let F be a Muller condition over C.
In any A on C, if Eve has a winning strategqy in the game (A, F), she has
a pure winning strateqy with memory mg. Furthermore, there is a 2-player
arena Ar where Eve has a winning strategy in the game (Ax, F), and none
of her pure strategies with memory less than mg is winning.

Definition 4.17 (Number r of a Muller condition) Let F be a Muller
condition on C such that the root of the Zielonka tree Zr ¢ has { leaf and k
non-leaf children. We denote by C; . ..Cy the labels of the non-leave children,
and by F; the Muller condition Fic,. The number rr is defined inductively as
follows:

(1 if Zrc does not have any subtrees,
max{1l,rx,75,....,Tr} ifC¢&F (Adam node),
k
o eri if C € F (Eve node) and ¢ = 0,
Zil
Zrﬂ"‘l if C € F (Eve node) and ¢ > 1.
\ =1

Theorem 4.18 ([Hor09]) Let F be a Muller condition over C. In any A on
C, if Eve has a winning strategy in the game (A, F), she has a randomised
winning strateqy with memory rg. Furthermore, there is a 2-player arena
Az where Eve has a winning strategy in the game (Agx, F), and none of her
randomised strategies with memory less than rx is winning.

In the remainder of this chapter, we prove simultaneously Theorems 4.16
and 4.18. The study of the recursive algorithm of this section provide the
upper bounds, while the lower bounds are proved in Section 4.4.

All the descriptions and properties of this section refer to a generic game
G = (A, F) over the set of colours C. In order to simplify sentences, we
suppose that the root of Zz ¢ belongs to Eve. The case where Adam owns
the root works exactly in the same way, exchanging the roles of Eve and
Adam.
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(a) mg

Figure 4.8: Computation of mg¢ and rg

4.3.1 Partial algorithm

The partial algorithm itself is recursive: it involves the solution of sub-games,
in the sense that the arena is a sub-arena of A, and the winning condition
corresponds to a subtree of Zrc. Let us start with some notations: we
denote by C; ...Cy the labels of the children of the root. For each of them,
Fi is the restriction of F to C;, and D; is the set C \ C;. These notations are
summarised on Figure 4.9, which represents the top of Zrc.

Figure 4.9: Generic top of a Zielonka Tree

Intuitively, in order to win, Adam must eventually stay clear of at least
one of the D;’s, while winning with respect to the sub-condition F;. Other-
wise, Eve can win either in one of the sub-conditions, or by visiting cyclically
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each of the D;’s. For each i, the algorithm computes A; = A\ Attrg(D;, ().A)
and the Adam’s almost-sure region in (A;, F;). If one of these regions is not
empty, it is returned. Otherwise, the algorithm returns (). This algorithm is
described as Algorithm 4.2.

Input: A Muller game G = (A, F) such that C € F
Output: A (non-empty) subset of Win%~°(A)
forall i € {1,..,/} do

if Win''(A4;) # 0 then

return Win%,"'(A4,);

end
end
return ()

[

N o oA W

Algorithm 4.2: Partial algorithm for Muller games

Notice that in line 3, the recursive call computes the almost-sure winning
region of Adam in (A;, ;). Actually, we just need a partial algorithm for
Adam with respect to F;, but, as Adam wins the root of Zg, ¢,, we cannot
use directly Algorithm 4.2. So, we use his almost-sure winning region, in the
spirit of the switching algorithm (Algorithm 3.2). In terms of complexity, it
means that we use a fix-point computation in each recursive call.

4.3.2 Non-empty output: spatial composition

When the output X of Algorithm 4.2 is non-empty, we have to show that it
belongs to the positive region of Adam. Let ¢ be the last value of i in the
run. X is thus the almost-sure region of Adam in (A;, F;). We claim that X
belongs to Adam’s almost-sure region in G. Let 7; be an almost-sure strategy
for Adam from X in (A4;, F;), and consider what happens if a play of G starts
in X and Adam plays 7;:

e X is a trap for Eve in A;, which is itself a trap for her in A, so the
token remains surely in X;

e 7; is almost-sure for Adam in (A4;, F;), so the set of colours visited
infinitely often almost surely does not belong to F;.
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As F; is the restriction of F to C;, and x(A;) C C;, it follows that the set of
colours visited infinitely often almost-surely does not belong to F. So 7; is
almost-sure for Adam from X in G, X belongs to his almost-sure region in G,
and consequently, to his positive region. Notice that, although X is almost-
sure for Adam in G, the region returned by the fix-point is only positive,
since the iteration involves a positive attractor.

Furthermore, as Adam has pure (randomised) strategies with memory at
most mz (rz) for each condition F;, he has pure (randomised) strategies
with memory mz = maxi<;<¢mz (17 = maxi<;<( %) for F.

4.3.3 Empty output: temporal composition

When the output of Algorithm 4.2 is empty, we need to show that Eve wins
almost-surely everywhere in G. The first remark is that Eve wins positively
everywhere in each game (A;, F;). By the positive-almost property, she also
wins almost-surely everywhere in each game (A4;, F;). For each 1 < i < ¢,
let o; be an almost-sure strategy for Eve in (A;, ;). The strategy o uses a
top-level memory with values in 1.../ to switch between these strategies. If
the top level memory is equal to i, Eve plays as follows:

e in A;, play according to o;;
e in Attrg(D;, A) \ D;, play the attractor strategy to D;;

e in D;, move to any state of A and update the top-level memory to 4
mod ¢ +1.

Let p be a play consistent with o. It falls in exactly one of these three
cases:

1. the top-level memory is not ultimately constant;
2. the top level memory is ultimately constant at i, and Inf(p) C A;;
3. the top level memory is ultimately constant at ¢, and Inf(p) ¢ A;.

In the first case, each of the D; is visited infinitely often, so Eve wins
surely; in the second case, p is ultimately a play of (A;, F;) consistent with
0;, so Eve wins almost surely; finally, by Proposition 1.5, the last case almost
never occurs. Thus, ¢ is almost surely winning. Furthermore, if Eve has
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pure strategies with memory at most mg, for each condition F;, she has pure
strategies with memory mz = >, _,., mgz for F.

If some of the children are leaves, we can define a randomised strat-
egy with less memory. Indeed, if Zz, ¢, is reduced to a leaf belonging to
Adam, Eve cannot win in (A;, F;), so her attractor to D; covers A en-
tirely. Instead of defining a different attractor strategy to each of these
sets (which is necessary in pure strategies), we can define a generic strat-
egy 09, which consists in always choosing the next state at random. As
each attractor covers the whole arena, there is always the off-chance that the
choices of Adam forces the token to the desired set. This is the core idea
of [CdAHO04]|, which shows that Eve has positional strategies for upward-
closed Muller conditions. If all the children are leaves, o can directly re-
place o, as Chatterjee showed in [Cha07b]. When some children are leaves,
and others are not, the problem is to decide when the memory should be
updated, as the strategy must guarantee that all the corresponding D;’s
are visited infinitely often. Our solution is to randomise this update: each
time Adam’s top-level memory is 0, it has equal chances to remain 0 and
to be updated to 1. The probability that the token visits a D; is still posi-
tive: Adam just needs to do the correct moves and to remain in the correct
memory state long enough. If the top-level memory is O infinitely often,
the probability that the all the D;’s corresponding to a leaf are visited in-
finitely often is one. So, if Eve has randomised strategies with memory at
most 7z, for each condition F;, she has randomised strategies with memory
e = {15, | Z£.c, is not a leaf} + 1 if at least one of the Zz, ¢, is a leaf.

4.4 Lower bounds for Muller conditions

In this section, we prove the lower bounds in Theorems 4.16 and 4.18. We first
define a class of sub-DAGs, the cropped DAGSs of the Zielonka DAG, which
have a strong relation with the numbers mz and rz (4.4.1), and then derive
from them 2-player arenas which follow roughly their structure (4.4.2). We
show that these arenas are winning for Eve, and define “branch strategies” for
Adam (4.4.3). Any pure strategy with less than mz states, and any random
strategy with less than 77 memory states fails against at least one of the
branch strategies of Adam (4.4.4). Finally, we show that for many Muller
conditions, the bounds m# and rz still hold when the arena is polynomial in
the number of colours(4.4.5).
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4.4.1 Cropped DAGs

The relation between the numbers mz and 77 and the shape of Dx¢ is
asymmetrical: they depend directly on the number of children of Eve’s nodes,
and not at all on the number of children of Adam’s nodes. The notion of
cropped DAG is the next logical step: a sub-DAG where Eve’s nodes keep all
their children, while each node of Adam keeps only one child. Definition 4.19
formalises this idea:

Definition 4.19 A DAG &€ is a cropped DAG of a Zielonka DAG Dz if
and only if

o The nodes of £ are a subset of the nodes of Dgc. Furthermore, the
owner and label of a node in € are its owner and label in D c.

o There is only one node without predecessor in £, which we call the root
of €. It is the root of Drc, if it belongs to Eve; otherwise, it is one of
its children.

o The children of a node of Eve in £ are exactly its children in D .

e A node of Adam has exactly one child in £, chosen among his children
in Drc, providing there is one. If it has no children in Dxc, it has no
children in £.

A cropped DAG has the general form of a Zielonka DAG: the nodes belong
to either Eve or Adam, they are labelled by sets of states, and the label of a
child is always a strict subset of the label of his parents. However, a cropped
DAG is not necessarily the Zielonka DAG of a(nother) Muller condition: in
the case of ‘cardinal parity with three colours” —Figure 4.10— a cropped
DAG contains at least two nodes on the “singleton” level, and each node
labelled with a doubleton has only one child, while in a Zielonka DAG, a
singleton node must have two parents.

On the other hand, when it comes to computing m and rz, it is enough
to know who owns a state to decide which case of Definitions 4.15 and 4.17
is relevant. It is thus possible to define the numbers m¢ and r¢ of a cropped
DAG €& in exactly the same way.

In fact, these numbers have a more intuitive meaning in the case of a
cropped DAG &: mg (and r¢ when the leaves belong to Eve) is the number
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(a) Zielonka DAG of cardinal par- (b) cropped DAG
ity 3

Figure 4.10: Cropped DAGs are not Zielonka DAGs

of branches in £. When Adam owns the leaves, r¢ is the number of branches
in £ without the leaves.

There is also a direct link between the cropped DAGs of a Zielonka DAG
Dy c and the numbers mz and 77: in a cropped DAG, there is one child for
each internal node of Adam; in the recursive definition of m# and r, there is
a maximum over the values of the children. Proposition 4.20 follows directly:

Proposition 4.20 Let F be a Muller condition over the set of colours C,
and Dxc be its Zielonka DAG. Then for any cropped DAG & of Drc, we
have meg < mx and rg < rg. Furthermore, there two cropped DAGs £ and
E* such that mgr = mg and re« = rr.

4.4.2 From cropped DAGs to arenas

From any cropped DAG &£ of D¢, we define an arena A¢ which follows
roughly the structure of £: the token starts from the root, goes towards the
leaves, and then restarts from the root. In her nodes, Eve can choose to
which child she wants to go. Adam’s choices, on the other hand, consists in
either stopping the current traversal or allowing it to proceed.

We present first two “macros”’, depending on a subset of C. They are
represented in Figure 4.11, and are the only occasions where colours are
visited in Ag: all the other states are colourless.
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e In Pick™(C'), Adam can visit any subset of colours in C;

e in Pick(D), he must visit exactly one colour in D.

Figure 4.11: Pick™(C) and Pick(D)

Eve’s states in the arena Ag are in bijection with the nodes of £. Likewise,
each outgoing transition corresponds to a child of the corresponding node.
But the successors of these states are not themselves in bijection with the
nodes of Adam: if a single node of Adam A is the child of two different
nodes of Eve E and F', we must use the construction of Figure 4.13 twice:
one for ¥ — A and one for F' — A. In states corresponding to leaves, Eve
has no decision to take; Adam can visit any colours in the label of the leaf
(Pick* procedure). The token is then sent back to the root. These cases are
described in Figure 4.12.

. P
Al AQ Az E—Al E—A2 E—A3 root

(a) Node “E” (b) Leaf “E”

Figure 4.12: Eve chooses where to go ...
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Adam’s options on a given node, on the other hand, do not involve the
choice of a child: by Definition 4.19, Adam’s nodes in £ have but one child.
Instead, he can either stop the current traversal, or, if the current node is
not a leaf, allow it to proceed to its only child.

If he chooses to stop, Adam has to visit some coloured states before the
token is sent back to the root. The available choices depend on the labels of
both the current and the former nodes — which is why there are as many
copies of Adam’s nodes in Ag as they have parents in £. If the parent is
labelled by E, and the current node by A, the token goes through Pick*(FE)
and Pick(E£\ A). Adam can thus choose any number of colours in E, as long
as he chooses at least one outside of A.

Notice that if Adam does not stop the traversal, the token is sent to the
unique state corresponding to the child of the current node. This is why the
size of these arenas are roughly DAG-sized, instead of tree-sized.

(E) 'Pick”(E).
Pick(E \ 4),
@ root

(a) Edge “E” - “A” when “A” is a node (b) Edge “E” - “A” when “A” is a leaf

Figure 4.13: ...and Adam chooses when to stop.

4.4.3 Strategies in the DAG game

We first describe a winning strategy o for Eve in the game (Ag, F). Its
memory states are the branches of £, and do not change during a traversal.
Her moves in the memory state b = EjA; ... E,(A,) follow the branch b:
in the state F;, Eve chooses the successor corresponding to the transition
E; — A;. Notice that Adam cannot diverge from the branch, as his nodes
have at most one child. When he chooses to stop the traversal, Eve updates
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her memory. If he stops at the ith step, while Eve is in the memory state
b= F1A;...Ei(Ay). There are two cases:

e if E; has zero or one child in £, the memory is unchanged;

e otherwise, the new memory branch has F1A; ... E;A as a prefix, where
A is the next child of F;, or the first one if A; was the last.

Proposition 4.21 The strateqy o is surely winning for FEve in the game

(“457f>'

Proof. Let p be a play consistent with . We denote by ¢ the smallest integer
such that Adam stops infinitely often a traversal at the ith step.

After a finite prefix, the first 2/ — 1 nodes in the memory branch are con-
stant, and we denote them by F;A;Es...FE;. From this point on, whatever
Adam does, he can only choose colours in F;. Furthermore, each time he
chooses 7, he must choose a state outside of the current A;, which changes
afterwards to the next, in a circular way.

So, in the end, Inf(p) C E;, and, for any child A of E; in &, Inf(p) € A.
Thus p is winning for Eve. Proposition 4.21 follows. 0

Obviously, Adam has no winning strategy in Ag. However, we describe
the class of branch strategies for him, whose point is to punish any attempt
of Eve to win with less than mz or r memory states. There is one such
strategy 7, for each branch b in £ (whence the name), and the principle is
that 7, stops the traversal as soon as Eve deviates from b:

Definition 4.22 The branch strategy T, for Adam in Ag, corresponding to
the branch b = E1A1Ey ... E(Ay) in &, is a positional strateqy whose moves
are described below.

e In a state E — A such that 30, E = E; N A # A;: stop the traversal and
visit the colours of A;;

e in a state E— A such that 3i, E = E;NA = A;: send the token to Fiyq;
e in the state E, — Ay: visit Ep;

e in the leaf E;: visit E,.
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Notice that no move is given for a state £ — A such that Vi, £ # E;. The
reason is that these states are not reachable from the root when Adam plays
Ty, S0, in the limit, what he does in these states doesn’t matter. Notice also
that when Adam chooses to stop a traversal in a state E; — A, he can visit
exactly the colours of A;: as A and A; are maximal subsets of F;, there is at
least one state in A; \ A that he can pick in the Pick(E; \ A) area.

We informally describe one last strategy for Adam: the passive strategy,
in which he never stops a traversal before it reaches a leaf, and then plays at
random in the Pick / Pick™ part.

4.4.4 Winning against branch strategies

Let 0 = (M, o™ 0%) be a pure strategy for Eve. We define the branch of a
memory state m € M as the unique branch that the token follows if it starts
in the root while Eve is in the memory state m and Adam plays a passive
strategy.

Proposition 4.23 Let 0 = (M, o™, o) be a pure winning strategy for Fve
in (Ag, F). Then o has memory at least mg.

Proof. The principle of the proof is that Eve needs a different memory state
to deal with each of the mg branch strategies of Adam.

Let b = F1A;...E/(Ay) be a branch of £ and 7, be the corresponding
branch strategy for Adam. We consider the unique play p consistent with o
and 7,. By definition of 7, the set of colours visited in a traversal of p is one
of the A;’s, or E, if and only if the branch of the current memory state is b.

Suppose now that there is no memory state whose branch is b. As A; D
Ay D+ D Ap1(D Ay), the set of colours visited infinitely often in the play
is one of the A;’s, and Adam wins. This is in contradiction with the fact that
o is winning. It follows that for each branch b of £, there must be a memory
state in M whose branch is b. As there is only one branch per memory state,
and there are mg branches, it follows that there are at least mg memory
states in M. This concludes the proof of Proposition 4.23. 0

By Proposition 4.20, there is a cropped DAG &£ of Dz such that mg =
mg. So, in general, Eve needs pure strategies with memory mg in order to
win games whose winning condition is F. As we saw in Section 4.3 that she
has such strategies, it completes the proof of Theorem 4.16.
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The notion of “branch of a memory state” carries to the case of randomised
strategies, but not its unicity: even if Eve starts in the same memory state
and Adam plays with a passive strategy, the random decisions can lead to
different branches. We consider thus the set of branches of a memory state
m: they are the branches that have a positive probability to be traversed
when Eve is in the memory state m and Adam plays with a passive strategy.

Proposition 4.24 Let 0 = (M, o™, o) be an almost-sure winning strategy
for Eve in (Ag, F). Then o has memory at least re.

Proof. Again, the idea is that the memory states are necessary to deal with
the branch strategies. However, as we will see, a single memory state can
sometimes deal with several branch strategies.

Let b = F1A;...E/(Ay) be a branch of £ and 7, be the corresponding
branch strategy for Adam. Consider what happens if Eve plays ¢ and Adam
plays 7,. By definition of 7,, the set of colours visited in a traversal of p is
one of the A;’s, or Ey if and only if Eve plays along b. So, as ¢ wins against
Ty, there is at least one memory state m such that b is a branch of m.

Contrary to what happens in the pure case, m can have other branches
than b, as long as they lead to visits to A,, and not another A; i.e. when the
other branches are siblings or nephews to b. Consequently, a memory state
m is suitable against 7, if

e b is a branch of m, and

e [ A, ... E,is a prefix of all the branches of m

It follows that a single memory state can be suitable against two strate-
gies 7, and 7y corresponding to the branches b = F1A;... E,A, and b =
E A} ... E}, A} only if they are siblings:

o (=1

There are r¢ equivalence classes for this relation in £. Hence, there must
be at least r¢ memory states in M. Proposition 4.24 follows. 0

By Proposition 4.20, there is a cropped DAG & of Dz ¢ such that rg = 7.
So, in general, Eve needs randomised strategies with memory 7z in order to
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win games whose winning condition is F. As we saw in Section 4.3 that he
had such strategies, it completes the proof of Theorem 4.18.

In their original proof for pure strategies, the authors of [DJW97| use
cropped trees, in lieu of our cropped DAG. Our result is thus a little better,
since Zielonka DAGs are more compact than Zielonka trees. For example,

in a “matching priority” winning condition of rank k, the size of the tree is
O(2%), while the DAG is of size O(k).

4.4.5 Arenas of polynomial size

In general, the size of a cropped DAG is exponential in the number of colours.
The question of whether the mz and r= bounds hold when the arenas are of
polynomial size is still open. It does in several special cases: for example, the
arenas for the “cardinal-guessing condition”, used in [DJW97| and [Maj03] to
prove global lower bounds for pure and random strategies are polynomial. It
also holds for matching priority, Streett, matching conjunction, and cardinal
parity. In each case, there is a witness arena of polynomial size where the
plays consists in a succession of basic loops with parameters, which are chosen
by Adam:

Matching priority: The parameter is a rank ¢. Eve must choose whether
she visits +i or —i (Figure 4.14(a)). The size of the arena is linear in
the maximal rank.

Streett: The parameters are two integers ¢ and j. Eve visits either —¢ and
+j, or +i and —j (Figure 4.14(b)) a request for one of these and a
response for the other. The size of the arena is quadratic in in the
maximal rank.

Matching conjunction and cardinal parity: The parameters are two in-
tegers ¢ and j. Eve can choose to visit either +i, —z, +7, or —j. Adam
can then choose to visit either colour in the other pair (Figure 4.14(c)).
The size of the arena is quadratic in in the maximal rank.

Finally, the only condition for which we did not found a polynomial arena
was the majority condition — although Figure 4.14(a) shows that strategies
whose memory is polynomial in the size of the arena are not enough. It
is interesting to notice that it is the only condition we considered where
the difference of cardinality between a node and one of its children is not
bounded: in all the others, the change always depends on only one colour.
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(a) Matching priority loop (b) Streett loop
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(c) Matching conjunction / cardinal parity loop

Figure 4.14: Polynomial-size arenas

4.5 Discussion

We found a polynomial algorithm for explicit Muller games, which provided
us with a nice application for our results of Chapter 3. Using the standart
equivalence, this algorithm can be used to decide the emptiness of explicit
Muller tree automata. It would be interesting to know whether other prob-
lems on these automata can be solved in a similar fashion.

Our main result, the tight bound on the necessary memory for randomised
strategies, raises four natural questions:

e Does these bounds still hold for arenas of polynomial size?

e Is it possible to find such bounds for any regular game, circumventing
the product with an automata recognising the winning condition?
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e Does our upper bound still hold for semi-randomised strategies?

e What are the links in terms of memory between our two models of
randomised strategies with memory?



Chapter 5

Finitary winning in w-regular
games

“In the long run, we’re all dead.”
John Maynard Keynes

Every w-regular specification (indeed, every specification) can be decom-
posed into a safety part and a liveness part [AS85]. The safety part ensures
that the component will not do anything “bad” (such as violate an invariant)
within any finite number of transitions. The liveness part ensures that the
component will do something “good” (such as proceed, or respond, or termi-
nate) within some finite number of transitions. Liveness can be violated only
in the limit, by infinite sequences of transitions, as no bound is stipulated on
when the “good” thing must happen. This infinitary, classical formulation of
liveness has both strengths and weaknesses. A main strength is robustness, in
particular, independence from the level of detail of the transitions. Another
one is simplicity, allowing liveness to serve as an abstraction for complicated
safety conditions. For example, a component may always respond in a num-
ber of transitions that depends, in some complicated manner, on the exact
size of the stimulus. Yet, for correctness, we may be interested only that the
component will respond “eventually”. On the other hand, this also points
to a weakness of the classical definition of liveness: it can be satisfied by
components that in practice are quite unsatisfactory because no bound can
be put on their response time. It is for this reason that alternative, stronger
formulations of liveness have been proposed. One of these is finitary liveness

97
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[AH98, DJP03|, which requires the existence of a bound b such that every
stimulus is followed by a response within b transitions. Notice that this is
quite different from a specification which would insist on a response within
a known bound b, as considered for example in [KPV07]. In the finitary
case, the bound b may be arbitrarily large, but the response time must not
grow forever from one stimulus to the next. In this way, finitary liveness still
maintains the robustness (independence of step granularity) and simplicity
(abstraction of complicated safety) of traditional liveness, while removing
unsatisfactory implementations.

In this chapter, we study games with finitary winning conditions. The
motivation is the same as for finitary liveness. Consider, for example, the
synthesis of an elevator controller as a strategy in a game where one player
represents the environment (i.e., the pushing of call buttons on various floors,
and the pushing of target buttons inside the elevators), and the other player
represents the elevator control (i.e., the commands to move an elevator up or
down, and the opening and closing of elevator doors). Clearly, one objective
of the controller is that whenever a call button is pushed on a floor, then
an elevator will eventually arrive, and whenever a target button is pushed
inside an elevator, then the elevator will eventually get to the corresponding
floor. Note that this objective is formulated in an infinitary way (the key
term is “eventually”). This is because, for robustness and simplicity, we
do not wish to specify for each state the exact number of transitions until
the objective must be met. However, a truly unbounded implementation
of elevator control (where the response time grows from request to request,
without bound) would be utterly unsatisfactory. A finitary interpretation of
the objective prohibits such undesirable control strategies: there must exist
a bound b such that the controller meets every call request, and every target
request, within b transitions.

This chapter, whose results come from a joint work with Krishnendu
Chatterjee and Thomas A. Henzinger [CHH09, CHHO8|, focuses on two types
of objectives: the finitary parity condition, in Section 5.1; and the finitary
Streett condition in Section 5.2.

5.1 Finitary Parity Games

We first consider the finitary version of the parity condition, which allow us to
express finitary versions of the w-regular conditions. It also subsumes finitary
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reachability, finitary Biichi, and finitary co-Biichi objectives as special cases.

In the classical, infinitary parity objective, Eve wins by ensuring that
every odd priority that repeats infinitely often is followed by a smaller even
priority “eventually” (arbitrarily many transitions later). The finitary parity
condition, by contrast, insists on the existence of a bound b such that every
odd priority that repeats infinitely often is followed by a smaller even priority
within b transitions. The finitary parity objective is strictly stronger than
the classical parity objective, as is illustrated by the example of Figure 5.1.

1 2 0

)

Figure 5.1: Finitary parity is not parity

In this parity arena, Eve wins with respect to the classical parity condi-
tion: the lowest colour of a play can be 0 if Adam chooses infinitely often
to go right, or 2 if he eventually remains forever in the middle state, but
it cannot by 1. However, Adam can win with respect to the finitary parity
condition, by staying ¢ times in the middle state the ith time he gets there
from the left state: with this strategy, the distances grows without bound.

The finitary parity condition is formally defined through the notion of
the parity distance sequence of an infinite play:

Definition 5.1 (Parity distance sequence of a play p) Let (A, x) be a
parity arena, and p be a play of A. The parity distance sequence of p, denoted
by (Pdist(p,1)):en is defined as follows: Pdist(p, i) is the smallest j such that
X(pitj) is even and smaller or equal than x(p;). Notice that if x(p;) is even,
Pdist(p, ) is equal to 0.

Intuitively, the distance for a position 7 in a play with an odd priority at
position ¢, denotes the shortest distance to a stronger even priority in the
play. We assume the standard convention that the infimum of the empty set
is oo.
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Definition 5.2 Let (A, x) be a parity arena. A play p of A is winning for
Fve in the finitary parity game (A, x) if and only if lim sup, Pdist(p, ) < oo.

By contrast, a play is winning for Eve in the infinitary parity game if
there is only a finite number of positions with an infinite distance.

We present an algorithm computing the winning regions of a finitary
parity game. Its correctness argument also proves directly the determinacy
for these games, and establishes the existence of positional winning strategies
for Eve; unsurprisingly, Adam needs infinite memory to win. This algorithm
is polynomial time, and computes the winning region of a finitary parity
games with n states and m transitions in time O(n?-m). This is in contrast
to classical, infinitary parity games, for which the best known algorithms
have time complexity O(nl3) - m) [Sch07] or n°V™ [JPZ06].

We use two other notions of parity in our proofs: the well known weak
parity condition (5.1.1) and a new bounded parity condition (5.1.2). Our al-
gorithm for finitary parity games is obtained by iteratively solving bounded
parity games, and the solution of bounded parity games is obtained by iter-
atively solving weak parity games (5.1.3).

5.1.1 Weak parity games

The notion of “weak” condition has been introduced by Staiger and Wagner
in [SW74]. Weak conditions are w-regular conditions that do not distinguish
between plays with the same set of occurring colours:

Definition 5.3 Let A be an arena on C and F be a subset of P(C). A play
p of A is winning for Eve in the Staiger-Wagner game (A, F) if and only if
Occ(p) € F.

This can be related with Muller conditions, which do not distinguish
between plays with the same set of infinitely occurring colours. Staiger-
Wagner games are thus often called weak Muller games. Likewise, we can
define weak Streett games on Streett arenas, and weak parity games on parity
arenas. In this section, we are mostly interested by this last case, where the
winner is decided by the parity of the minimum priority occurring in the

play:

Definition 5.4 Let (A, x) be a parity arena. A play p of A is winning for
Eve in the weak parity game (A, x) if and only if min x(Occ(p)) is even.
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We informally describe a recursive algorithm computing the winning re-
gions of a 2-player weak parity game. The input is a 2-player arena (A, ),
with A = (Q, Qp,Qa,7) and x : @ — [0...k]. The recursion step depends
on the lowest colour i which appears in y(A):

e If i is even, we start by computing the attractor of Eve to the states
with priority i: these states clearly belong to the winning region of Eve.
Furthermore, A; = A\ Attrg(x (i), A) is a trap for Eve, and thus a
subarena. We can recursively compute Win's (Ajy, x) and Win® (A1, x).
The winning regions of Eve and Adam in G are Attrg(x~'(7), A) U
Win's (Ay, x) and Win® (Ay, x)-

e If i is odd, we compute the attractor of Adam to the states with pri-
ority i: these states clearly belong to the winning region of Adam.
Furthermore, A; = A\ Attr4(x~'(4),.A) is a trap for Adam, and thus a
subarena. We can recursively compute Win' (A1, x) and Win% (A1, x).
The winning regions of Eve and Adam in G are Win% (A, x) and
Attrp(x (i), A) U Win%f (A1, x).

The formal description of the complete algorithm can be found in [LT00].
At first sight, the time complexity appears to be O(k-|7|). However, [Cha06|
provides a detailed running time analysis and shows that, with adequate data
structures, it runs in time O(|7]). Notice that as each attractor is defined on
a different domain, they can be combined into positional winning strategies
for both players. Theorem 5.5 summarises the results on games with weak
parity objectives:

Theorem 5.5 (Weak parity games[LT00, Cha06]) Let (A, x) be a 2-
player parity arena. The following assertions hold:

1. (Determinacy). We have Wins (A, x) = Q \ Win% (A, x).
2. (Strategy complexity). Both players have positional winning strategies.

3. (Time complexity). The sets Win'%g (A, x) and Win% (A, x) can be com-
puted in time O(|7T)).
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5.1.2 Bounded parity games

We use the bounded parity condition as an intermediate step in our scheme
to solve finitary parity games. This condition requires that whenever an odd
priority is visited, then now or later a lower even priority is visited. The
formal definition of the bounded parity condition uses the parity distance
sequence: Eve must ensure that it takes only finite values. Adam wins if
there is a position with an infinite distance:

Definition 5.6 Let (A, x) be a parity arena. A play p of A is winning for
FEve in the bounded parity game (A, x) if and only if Vi, Pdist(p, 1) < oc.

We first show that we can use a fix-point algorithm to compute the win-
ning regions of bounded parity games, using an algorithm for weak parity
games as a partial algorithm (Definition 3.12, page 56):

Lemma 5.7 Let (A, x) be a 2-player parity arena. The following assertions
hold:

1. Adam’s winning region for the weak parity condition is a subset of
his winning region for the bounded parity condition: Win% (A,x) C
Win'% (A, x).

2. If Eve wins from each state in Q for the weak parity condition, she wins
from each state in Q for the bounded parity condition: Win's (A, x) =
Q= Win% (A4, x) = Q.

Proof.

1. Consider a play p winning for Adam with respect to the weak par-
ity condition, and denote by ¢ the lowest colour occurring in p: @ =
min(Occ(p)). Let j be a position such that p; = i. By Definition 5.1,
Pdist(p,j) = oo. Thus p is winning for Adam with respect to the
bounded parity condition.

2. By Theorem 5.5, Eve has a positional winning strategy o with respect
to the weak parity condition. Let p be a play consistent with o. By
contradiction, assume that there is a position i such that y(p;) is odd
and Vi < j <i+|Q|, x(p;) is odd or greater than x(p;). There is a cycle
¢ and a path w from p; to ¢ in A% such that all the colours appearing
in ¢ and w are greater than x(p(i)). The play p;wc® is consistent with
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o, and winning for Adam with respect to the weak parity condition.
This is in contradition with the fact that ¢ is winning for Eve with
respect to this condition. Thus, for any play p consistent with o, for
any position k, we have Pdist(p, k) < |Q|, so p is winning for Eve with
respect to the bounded parity condition. It follows that ¢ is winning
for Eve with respect to the bounded parity condition.

OJ
The existence of positional winning strategies for Eve means that instead

of asking for finite distance, we can ask that the distance is bounded by |Q)|:

Corollary 5.8 For any 2-player parity arena (A, x), we have:

Wing (A, x) = {q€ Q| 3o,Vr,Vi,Pdist(p]7,i) < oo}
= {q € Q| 3o, V7, Vi, Pdist(py",4) < |Q|}

We can thus use a fix-point algorithm to solve bounded games, as in
Algorithm 5.1. By Lemma 3.13, the resulting complexity is |Q| times the
complexity of the partial algorithm: O(|Q] - |7]).

Input: A parity arena (A, x)

Output: The winning regions Win% (A, x) and Win% (A, x)
1 Wa=10

2 B=A

3 while Win*} (B, x) # 0 do

4 WA — WA U AttrA(WinZ‘P(B, X), B)

5 B« B\ Attr4(Win% (B, x), B)

6 end

7 return (B, W,)

Algorithm 5.1: Winning regions of a 2-player bounded parity game

Notice that the existence of positional winning strategies for Adam in
weak parity games does not carry over to bounded parity games: Theo-
rem 3.17 holds only for prefix-independent games. Indeed, there are arenas
where Adam wins, but not with any positional winning strategy: consider, for
example, the arena of Figure 5.1. On the other hand, the proof of Lemma 5.7
shows that Eve’s positional winning strategies for the weak parity condition
were still winning for the bounded parity condition.

Theorem 5.9 summarises our results on bounded parity games:
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Theorem 5.9 (Bounded parity games) Let (A, x) be a 2-player parity
arena. The following assertions hold:

1. (Determinacy). We have Win% (A, x) = Q \ Win'{ (A, x).

2. (Strategy complexity). Eve has positional winning strategies, which
bound the sequence distance to |Q).

3. (Time complexity). The sets Win% (A, x) and Win® (A, x) can be com-
puted in time O(|Q| - |T]).

5.1.3 Solving games with finitary parity objectives

The relations between the winning regions of bounded and finitary parity con-
ditions are exactly the opposite of the relations between weak and bounded
parity:

Lemma 5.10 For any 2-player parity arena (A, x), the following assertions
hold:

1. Eve’s winning region for the bounded parity condition is a subset of
her winning region for the finitary parity condition: Win% (A, x) C
Wing; (A, x).

2. If Adam wins from all the state in Q for the bounded parity condition,
then he wins from all the states in Q for the finitary parity condition:
Win% (A4, x) = Q = Win{ (A4, x) = Q.

Proof.
1. This is a direct consequence of Corollary 5.8.

2. Let 7 be a winning strategy for Adam with respect to the bounded
parity condition. We define the strategy 7’ as follows:
Step 1: Set a counter ¢ to 1 and 7 to its initial memory.
Step 2: Play the strategy 7 until the parity distance is equal to c.
Step 3: Increment c.

Step 4: Reset the memory for 7 and go to to step 2.
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Let p be a play consistent with 7/. We denote by w, the factor cor-
responding to the cth iteration of 7. Notice that if w, is infinite, the
{wg | d > ¢} are not defined. However, w, is consistent with 7, and
would be winning for Eve with respect to the bounded parity condition
if it was infinite. Thus, each w, is finite, and p is the concatenation of
the {w. | ¢ > 1}. It follows that p and 7" are winning for Adam with
respect to the finitary parity condition.

O

Algorithm 5.2 uses Algorithm 5.1 as a partial algorithm for Fve, for a
resulting complexity is |Q| times the complexity of the partial algorithm:

O(|Qf? - |T1).

Input: A parity arena (A, x)

Output: The winning regions Win%; (A, x) and Win (A, x)
1 WE = (Z)

2 B=A

3 while Win% (B, x) # 0 do

5 B« B\ Attrg(Win (B, x), B)

6 end

7 return (Wg, B)

Algorithm 5.2: Winning regions of a 2-player finitary parity game.

Theorem 5.9 summarises our results on finitary parity games:

Theorem 5.11 (Finitary parity games) For any 2-player parity arena
(A, x), the following assertions hold:

1. (Determinacy). We have WinZ (A, x) = Q \ Win'{ (A, x).

2. (Strategy complexity). Fve has memoryless winning strategies. In gen-
eral, Adam has no strategy with finite memory.

3. (Time complexity). The sets Win% (A, x) and Win’{ (A, x) can be com-
puted in time O(|Q* - |T).

An interesting point is that the algorithm for 2-player bounded parity
games is also a partial algorithm for 2%—player finitary games. It can be used
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to compute the sure region of Eve, interpreting the random states as states
of Adam:

Lemma 5.12 For any 2%—player parity arena (A, x), the following asser-
tions hold:

1. Eve’s sure region for the bounded parity condition is a subset of her pos-
itwe winning region for the finitary parity condition: Wing’v(/l, x) C
Wing “°(A, x).

2. If all the state in Q belongs to Adam’s heroic region for the bounded
parity condition, then he almost surely wins from all the states in Q for

the finitary parity condition: Win% (A, x) = Q = Win'T* (4, x) = Q.

Proof.

1. Lemma 5.10 states that Win " (A, x) € WinZ”(A, x), and, for any
winning condition, the sure winning region of Eve is a subset of her
positive winning region.

2. A pure strategy 7' can be defined in a way similar to the 2-player
case. However, as 7 is a heroic strategy, it is possible that Adam’s
attempts to get a given distance fails. In this case, he tries again,
without incrementing the counter:

Step 1: Set a counter ¢ to 1 and 7 to its initial memory.

Step 2: Play the strategy 7 until either the parity distance is equal to
c or a random move deviates from the prescription of 7.

Step 3: Increment c if and only if the distance is equal to the current
value c.

Step 4: Reset the memory for 7 and goto to step 2.

Let z be the smallest positive probability in A. For any value ¢ of the
counter, the probability that the counter gets incremented is greater
than 2°19l. It follows that the probability that the counter gets “stuck”
at a finite value is zero, so 7’ is almost surely winning. Notice that the
same arguments proves that the uniform strategy uni 4 is also almost-
sure.



CHAPTER 5. FINITARY WINNING IN w-REGULAR GAMES 107

O

Once again, Eve has positional positive winning strategies. We can also
compute the almost-sure winning region of Eve, and derive the existence
of positional almost sure winning strategies, with the help of the switching
algorithm (Algorithm 3.2) and Theorem 3.17.

5.2 Finitary Streett Games

Although finitary versions of any regular condition can be reduced to fini-
tary parity, we consider in this section the special calse of finitary Streett
objectives. Indeed, infinitary Streett games are of particular interest in sys-
tem design, as they correspond to strong fairness constraints [MP92|. The
finitary Streett objectives, therefore, give the finitary formulation of strong
fairness.

The definition of the finitary Streett condition is even more natural than
the finitary parity one: Eve wins if she answers all the requests appearing in-
finitely often within an unspecified bound b. Figure 5.2, for example, describe
a request-service situation:

Figure 5.2: A request-service game

There are two requests —1 and —2, which are served by the corresponding
responses +1 and +2. Whenever a request occurs, further requests of the
same type are disabled until the request is served; then these requests are
enabled again. The controller (Eve) needs to make decisions in the case where
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two requests are unserved at the same time: she has to choose which one to
serve. Clearly, no matter what the players do, the resulting play is winning
for Eve with respect to the classical Streett condition. However, consider the
two following strategies for Eve:

Stack strategy Answering first the most recent request, she goes ,/ from
the left O, and \, from the right O.

Queue strategy Answering first the most ancient request, she goes \, from
the left O, and  from the right O.

With the stack strategy, the number of transitions between an occurrence
of ()1 and the next occurrence of R; can be ultimately unbounded. Hence
the stack strategy is not a winning strategy with respect to the finitary
Streett objective. The queue strategy, by contrast, ensures not only that
every request that is received infinitely often is served, but it also ensures
that the number of transitions between the arrival of a request and its serve
is at most 6. It is thus winning with respect to the finitary Streett condition.

We define the finitary Streett condition through the notion of Streett dis-
tance sequence, which is a natural extension of the parity distance sequence:

Definition 5.13 (Streett distance sequence of a play p) Let (A,S) be
a Streett arena of order k, and p be a play of A. The distance sequence of p
for the pair (—h, +h), denoted by (Sdist"(p,1))ien is defined as follows:
ho_ 0 if x(pi) # —Mh;
SUSCPD = intfj > 0 x(pis) = +h} i x(po) = —h
The Streett distance sequence of p, denoted (Sdist(p,?))ien, is defined by
Sdist (p, 1) = max,{Sdist"(p, 1)}.

The distance for a position i in a play where one or more requests occurs
at position i is the number of steps before each request has been satisfied.

Definition 5.14 Let (A,S) be a Streett arena of order k. A play p of A
belongs to finitaryStreett (A, S) if and only if lim sup, Sdist(p, i) < co.

We present an algorithm computing the winning regions of a finitary
Streett game of degree k with n states and m transitions in time O(n?-m k-
2F). Hence, the winner problem can be decided in EXPTIME. We also show that
it is PSPACE-hard. For comparison, the winner problem for (infinitary) Streett
games is co-NP-complete [EJ88|, and the winning regions can be computed in
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time O(n* - k!-m) [Hor05|. We also prove, that Eve has strategies with finite
memory: k - 2 memory states are enough, and 2l5) is sometimes necessary.
This can be compared with infinitary Streett games, where the lower and
upper bounds are k!. Once again, Adam may need infinite memory in order
to win.

We use one other Streett condition in our proofs, which is called Request-
Response condition, and fulfils the same role as the bounded parity condition
(5.2.1). Here also, our algorithm for finitary Streett games is a fix-point using
an algorithm for Request-Response games as partial algorithm (5.2.2).

5.2.1 Request-Response games

Request-Response conditions are a special case of w-regular conditions, intro-
duced by Wallmeier, Hiitten, and Thomas in [WHTO03|. They are defined on
Streett arenas, and a play is winning for Eve if and only if for each pair, when-
ever a request is visited, then now or later a response is visited. Although
they were not defined this way, Request-Response conditions can easily be
expressed through the Streett distance sequence:

Definition 5.15 Let (A, S) be a Streett arena of order k. A play p of A
belongs to Request — Response(A,S) if and only if Vi, Sdist(p, i) < co.

The authors of [WHTO03] propose a solution to Request-Response games,
which involves a reduction to generalised Biichi games. Starting from a
2-player Streett arena (A,S) of degree k, with A = (Q, Qp, Qa,7), an
expanded arena is built over the vertex set S’ := S x {0, 1}*: the bit vector
signals which of the k conditions have an open request. The generalised Biichi
condition requires that each bit assumes infinitely often the value 0. Winning
strategies with memory k in the reduced game can be translated as strategies
with memory & - 2¥ in the original Request-Response game. Moreover, it is
easy to see that the canonical “round robin” strategy bounds the Streett
distance sequence of a play to |Q| - k: at any moment, the “next response”
is reached in less than |Q| moves, and it can take k such response before the
current, request is served. These results are summarised as Theorem 5.16:

Theorem 5.16 (Request-Response games [WHTO03]) Let (A,S) be a
2-player Streett arena. The following assertions hold:

1. (Determinacy). We have Win'i (A, S) = Q \ Win5(A, S).
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2. (Strategy complexity). Eve has winning strategies with memory k - 2F
which bound the Streett distance sequence to |Q|-k. Adam has winning
strategies with memory 2F.

3. (Time complexity). The sets Win (A, S) and Win'g (A, S) can be com-
puted in time O(|Q] - |T| - 4% - k?).

Note that, as the Request-Response condition is suffix-closed, Request-
Response games could be solved by a fix-point scheme applied to a partial
algorithm for Adam. Inspired by the results of (5.1.2), we sought to use the
solution of weak Streett games in this role — this would yield a PSPACE algo-
rithm for Request-Response games. However, if the weak Streett condition
is indeed harder than the Request-Response condition, it does not comply
to the other rule: there are arenas, like the one of Figure 5.3, where Adam
wins nowhere with respect to the weak Streett condition, and still manages
to win somewhere with respect to to Request-Response condition.

(G

1

q1 (& q1

q2 T2

Figure 5.3: Win*{(G) = 0 A Win"}(G) # 0

5.2.1.1 Complexity and Memory

We give now some precision about the complexity of Request-Response games
in terms of complexity classes. The reduction of [WHTO3] yields the mem-
bership of the winner problem to EXPTIME. Proposition 5.17 shows that it is
also PSPACE-hard.
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Proposition 5.17 The problem of the winner in Request-Response games is
PSPACE-hard.

Proof. Inspired by the reduction of [NSWO02| for weak Streett games, we
propose the following reduction from QBF to Request-Response games. Let
F be the formula “3Jz,Vy,3z, (x Vy VZ)AZT Vy Vv Z). We reduce it to
the Streett arena of Figure 5.4. There is a Streett pair for each literal: the
request is in lowercase, and the response in uppercase. Furthermore, X is a
request for all the pairs, and —X is a response for all the pairs but X. It is

clear that Eve can win if and only if F' is true. O
-X
-Y
x Y z
el el .
_ _ _ =X
T ] z
Y
-7

Figure 5.4: Request-Response games are PSPACE-hard

In the case of 1-player games with states of Eve, the problem is NP-
complete:

Proposition 5.18 The winner problem of 1-player Request-Response games
with states of Fve is NP-hard.

Proof. We reduce the formula (x VgV Z) A(ZT VyV Z) to the Streett arena
of Figure 5.5. We use the same Streett pairs than in Figure 5.4. In order
to win, Eve must choose the dual of a satisfying valuation, then the correct
literal in each clause, and finally the satisfying valuation itself. O
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Figure 5.5: 1-player Request-Response games with states of Eve are NP-hard

Proposition 5.19 The winner problem of 1-player Request-Response games
with states of Fve is in NP.

Proof. 1f Eve can win, she can do so by first following a path of length at most
nk, and then visiting all the states of a strongly connected component. Both
can be guessed non-deterministically in polynomial time. Proposition 5.19
follows. 0J

On the other hand, for 1-player games with states of Adam, the problem
is polynomial:

Proposition 5.20 The winner problem of 1-player Request-Response games
with states of Adam is in PTIME.

Proof. We propose a polynomial procedure to compute the winning regions
in a 1-player game where the states belong to Adam:

Step 1: For each pair 4, compute the set X; = Q; \ Attra(R;, A).

Step 2: Let X be the union of the X;’s. The winning region of Eve is
Q \ Attrus(X,.A), and the winning region of Adam is Attr(X,.A).
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O

Theorem 5.21 subsumes our results:

Theorem 5.21 Deciding the winner in 2-player Request-Response games
can be done in EXPTIME and is PSPACE-hard. In the case of 1-player games
with states of Eve, it is NP-complete. In the case of 1-player games with states
of Adam, it is polynomial.

Lemma 5.22 provides lower bounds for the memory:

Lemma 5.22 For any k, there is a 2-player Streett arena (A,S) of order
2k such that Eve wins, but has no winning strategy with less than 2 memory
states; there is a (A, S) of order 2k such that Adam wins, but has no winning
strateqy with less than 2% memory states.

Proof. Both witness arenas for k£ = 3 are represented in Figure 5.6. Although
there are no literals here, we use the same pairs than in Figure 5.4. In
Figure 5.6(a), Eve must mimic the moves of Adam to answer all the request
he makes. In Figure 5.6(b), all the requests are made to begin with, and Eve
answers to k of them. Adam must request exactly the same ones to ensure
that Eve cannot win with her last choice. 0

5.2.2 Solving games with finitary Streett objectives

All the arguments of (5.1.3) can be adapted for the case of finitary Streett
games, using Request-Response conditions in lieu of bounded parity condi-
tions.

For a given Streett arena (.4, S), the winning regions of the players under
the Request-Response and the finitary Streett conditions have the same re-
lation than the winning regions of a parity arena under the bounded parity
and the finitary parity conditions:

Lemma 5.23 Let (A,S) be a 2-player Streett arena. The following asser-
tions hold:

1. Eve’s winning region for the Request-Response condition is a subset of
her winning region for the finitary Streett condition: Win's(A,S) C
WinP (A4, S).
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(a) Eve (b) Adam

Figure 5.6: Both players need ol5] memory in Request-Response games

2. If Adam wins from all the state in Q for the Request-Response con-
dition, then he wins from all the states in Q for the finitary Streett
condition: Win's (A, S) = Q@ = Win'f(4,8) = Q.

Proof.
1. This is a direct consequence of Theorem 5.16.

2. Let 7 be a winning strategy for Adam with respect to the Request-
Response condition. We define the strategy 7’ as follows:
Step 1: Set a counter ¢ to 1 and 7 to its initial memory.
Step 2: Play the strategy 7 until the Streett distance is equal to c.

Step 3: Increment c.
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Step 4: Reset the memory for 7" and go to to step 2.

Let p be a play consistent with 7/. We denote by w, the factor cor-
responding to the cth iteration of 7. Notice that if w, is infinite, the
{wg | d > ¢} are not defined. However, w, is consistent with 7, and
would be winning for Eve with respect to the Request-Response condi-
tion if it was infinite. Thus, each w, is finite, and p is the concatenation
of the {w, | ¢ > 1}. It follows that p and 7" are winning for Adam with
respect to the finitary Streett condition.

O

We can thus solve finitary Streett games, be they 2-player or 2%—player,
with fix-point arguments, using a Request-Response solver as a partial algo-
rithm. Theorem 5.24 follows:

Theorem 5.24 (finitary Streett games) Let (A,S) be a 2-player Streett
arena. The following assertions hold:

1. (Determinacy). We have Win%(A,S) = @\ Win'f (A4, S).

2. (Strategy complexity). Eve has winning strategies with memory k -
2% which ultimately bound the Streett distance sequence to |Q| - k. In
general, Adam has no winning strategies with finite memory.

3. (Time complexity). The sets WinZ (A, S) and Win'f (A, S) can be com-
puted in time O(|QJ? - |T| - 4% - k?).

All the usual qualitative variations of these results still hold for 2%—player
Streett arenas. As in the case of finitary parity games, Adam has positional
randomised winning strategies.

Most of the complexity results we got for Request-Response games carry
to the case of finitary Streett games. In particular, a PSPACE algorithm for
Request-Response games would immediately lead to a PSPACE algorithm for
finitary Streett games.

Theorem 5.25 The problem of the winner in 2-player finitary Streett games
belong to EXPTIME. It is also PSPACE-hard. In the case of 1-player games, it
18 polynomial.
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Proof. The reduction of Figure 5.4 can be easily adapted, by adding a tran-
sition from the last state to the first. In this game, Adam can wait for
as long as he wishes with an open request between two successive rounds.
Notice that this is not possible in Figure 5.5, since the all the states be-
longs to Eve. Indeed, for any 1-player Streett arena with states of Eve
(A, 8), Win'P(A,8) = Win¥(A,S). As the winner problem of 1-player
Streett games is polynomial, so is the winner problem of 1-player finitary
Streett games. The algorithm for 1-player arenas with states of Adam can
easily be adapted for the finitary Streett condition. U

Likewise, the lower bounds in memory derive from the ones for Request-
Response games:

Lemma 5.26 For any k, there is a 2-player Streett arena (A,S) of order
2k such that Eve wins, but has no winning strategy with less than 2 memory
states.

Proof. The arena of Figure 5.6 can also be adapted for finitary games, by
adding a transition from the last state to the first. O

5.3 Perspectives

Our contribution to the study of finitary games unearthed a quite complete
set, of complexity bounds for the various problems induced by finitary games.

The polynomial algorithm for finitary parity is especially pleasing: from
a verification point of view, it offers a much cheaper alternative to classical
parity games, while removing only pathological behaviours that are often
unsatisfactory to begin with.

It would be nice, of course, to get the exact complexity of finitary Streett
games, through either a PSPACE algorithm or a proof of EXPTIME-hardness.
Our most promising prospect, however, is to refine the analysis of finitary
games, by taking in account not only the mere satisfaction of the winning
condition but also the quantitative aspect of minimising the delay between
the requests and the subsequent responses, in the spirit of [HTWO08].



Chapter 6

Conclusion

“School’s out for summer
School’s out forever”

School’s Out
Alice Cooper

In Chapter 2, we have described a new approach to the fundamental
problem of reachability games, linking the complexity to an intuitive param-
eter, the number of random vertices. Furthermore, the complexity of our
permutation algorithm is comparable to the best known deterministic algo-
rithms, and the “permutation improvement” scheme makes it a candidate
for polynomiality. The obvious problem now would be to find a polynomial
algorithm computing the values of 2%—player reachability games. However,
this problem is harder than the winner problem in 2-player parity games.
An interesting, yet more reasonable objective would be to prove that our
permutation improvement algorithm is polynomial on lé—player games.

We considered then in Chapter 3 the general case of prefix-independent
conditions, and proved their optimal determinacy. We also adapt our per-
mutation algorithm to compute the values of any prefix-independent games
with a single non-deterministic guess and a qualitative algorithm. It is well
known that Borel games in general are not optimally determined , but it
does not mean that quantitative determinacy is the best we can do: we do
not know any counter-examples for qualitative determinacy.

We came back in Chapter 4 to the origins of infinite games with the ven-
erable case of Muller games. A first result was the membership of the winner

117



CHAPTER 6. CONCLUSION 118

problem in explicit games to PTIME, and we would like to check whether
this result can be adapted for other tree automata problems. Our main re-
sult, however, is the tight bound on the necessary memory for randomised
strategies. We also got smaller witness arenas for the lower bounds, leading
naturally to the question of the resilience of these bounds in the case of are-
nas of polynomial size. Another logical extension would be to get memory
bounds for any w-regular winning condition: even Muller games are a normal
form, whose cost may be reduced in some cases.

A question that arose during this study was the problem of the correct
definition of a randomised strategy with memory: by contrast with the case of
pure strategy, there is not an obvious “standard” notion, and we have shown
that semi-randomised strategies and strategies with random memory really
are two different models. This gives perspectives in two directions: first,
does our upper bound for Muller games hold for semi-randomised strategies;
second, how do these two models relate together, and with other models of
randomised strategies with memory, e.g. strategies where the move and the
update are independent.

Lastly, the finitary games we studied in Chapter 5 came more from the
model-checking tradition: quite often, a really infinitary controller with un-
bounded delays is unacceptable. Our polynomial algorithm for parity games
yields an efficient approach for any finitary w-regular game, through the
Zielonka tree reduction. We also studied the finitary version of strong fair-
ness, with the case of finitary Streett games. Our reduction to request-
response games suggests a new way to consider these games, where a play
yields a reward instead of a winner, in the spirit of [HTWO08|.
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