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Abstract

In this paper, we address the problem of k-out-of-! exclu-
sion, a generalization of the mutual exclusion problem, in
which there are ! units of a shared resource, and any process
can request up to k units (1 ≤ k ≤ !). We propose the first
deterministic self-stabilizing distributed k-out-of-! exclusion
protocol in message-passing systems for asynchronous ori-
ented tree networks which assumes bounded local memory
for each process.

1. Introduction

The basic problem in resource allocation is the man-
agement of shared resources, such as printers or shared
variables. The use of such resources by an agent affects
their availability for the other users. In the aforementioned
cases, at most one agent can access the resource at any time,
using a special section of code called a critical section. The
associated protocols must guarantee the mutual exclusion
property [1]: The critical section can be executed by at
most one process at any time. The !-exclusion property [2]
is a generalization of mutual exclusion, where ! processes
can execute the critical section simultaneously. Thus, in
!-exclusion, ! units of a same resource (e.g., a pool of IP
addresses) can be allocated. This problem can be generalized
still further by considering heterogeneous requests, e.g.,
bandwidth for audio or video streaming. The k-out-of-!
exclusion property [3] allows us to deal with such requests;
requests may vary from 1 to k units of a given resource,
where 1 ≤ k ≤ !.

Contributions. In this paper, we propose a (deterministic)
self-stabilizing distributed k-out-of-! exclusion protocol for
asynchronous oriented tree networks. A protocol is self-
stabilizing [4] if, after transient faults hit the system and
place it in some arbitrary global state, the systems recovers
from this catastrophic situation without external (e.g. human)
intervention in finite time. Our protocol is written in the
message-passing model, and assumes bounded memory per

process. To the best of our knowledge, there is no prior
protocol of this type in the literature.
Obtaining a self-stabilizing solution for the k-out-of-!

exclusion problem in oriented trees is desirable, but also
complex. Our main reason for dealing with oriented trees is
that extension to general rooted networks is trivial; it consists
of running the protocol concurrently with a spanning tree
construction (for message passing systems), such as given
in [5], [6]. In the other hand, the complexity of the solution
comes from the fact that the problem is a generalization
of mutual exclusion. This is exacerbated by the difficulty
of obtaining self-stabilizing solutions in message-passing
system (the more realistic model), as underlined by the
impossibility result of Gouda and Multari [7].
Designing protocols for such problems on realistic sys-

tems often leads to obfuscated solutions. A direct conse-
quence is then the difficulty of checking, or analyzing the
solution. To circumvent this problem, we propose, here,
a step-by-step approach. We start from a “naive” non-
operating circulation of ! resource tokens. Incrementally, we
augment this solution with several other types of tokens
until we obtain a correct non fault-tolerant solution. We
then introduce an additional control mechanism that guar-
antees self-stabilization assuming unbounded local memory.
Finally, we modify the protocol to accommodate bounded
local memory.

Related Work. Two kinds of protocols are widely used
in the literature to solve the k-out-of-! exclusion prob-
lem: permission-based protocols, and !-token circulation.
All non self-stabilizing solutions currently in the literature
are permission-based. In a permission-based protocol, any
process can access a resource after receiving permissions
from all processes [3], or from the processes constituting its
quorum [8], [9]. There exist two self-stabilizing solutions for
k-out-of-! exclusion on the oriented rooted ring [10], [11].
These solutions are based on circulation of ! tokens, where
each token corresponds to a resource unit.

Outline. The remainder of the paper is organized as follows:
In Section 2, we define the computational model. We present



our solution in Section 3. We conclude in Section 4.

2. Preliminaries

Distributed Systems.We consider asynchronous distributed
systems having a finite number of processes. Every process
can directly communicate with a subset of processes called
neighbors. We denote by ∆p the number of neighbors of
a process p. We consider the message-passing model where
communication between neighboring processes is carried out
by messages exchanged through bidirectional links, i.e., each
link can be seen as two channels in opposite directions.
The neighbor relation defines a network. We assume that
the topology of the network is that of an oriented tree.
Oriented means that there is a distinguished process called
root (denoted r) and that every non-root process knows
which neighbor is its parent in the tree, i.e., the neighbor
that is nearest to the root.
A process is a sequential deterministic machine with

input/output capabilities and bounded local memory, and
that uses a local algorithm. Each process executes its local
algorithm by taking steps. In a step, a process executes two
actions in sequence: (1) either it tries to receive a message
from another process, sends a message to another process,
or does nothing; and then (2) modifies some of its variables.
1 The local algorithm is structured as infinite loop that
contains finitely many actions.
We assume that the channels incident to a process p are

locally distinguished by a label, a number in the range
{0 . . .∆p − 1}; by an abuse of notation, we may refer to a
neighbor q of p by the label of p’s channel to q. We assume
that the channels are reliable, meaning that no message can
be lost (after the end of the transient faults) and FIFO,
meaning that messages are received in the order they are
sent. We also assume that each channels initially contains
some arbitrary messages, but not more than a given bound
CMAX.2
A message is of the following form: 〈type, value〉. The

value field is omitted if the message does not carry any
value. A message may also contain more than one value.
A distributed protocol is a collection of n local algo-

rithms, one per process. We define the state of each process
to be the state of its local memory and the contents of its
incoming channels. The global state of the system, referred
to as a configuration, is defined as the product of the
states of processes. We denote by C the set of all possible
configuration. An execution of a protocol P in a system S
is an infinite sequence of configurations γ0γ1 . . . γi . . . such
that in any transition γi %→ γi+1 either a process take a step,

1. When there is ambiguity, we denote by xp the variable x in the code
of process p.
2. This assumption is required to obtain a deterministic self-stabilizing

solution working with bounded process memory; see [7].

or an external (w.r.t. the protocol) application modifies an
input variable. Any execution is assumed to be asynchronous
but fair: Every process takes an infinite number of steps in
the execution but the time between two steps of a process
is unbounded.

k-out-of-! Exclusion. In k-out-of-! exclusion, the existence
of ! units of a shared resource is assumed. Any process can
request at most k units of the shared resource, where k ≤
!. We say that a protocol satisfies the k-out-of-! exclusion
specification if it satisfies the following three properties:
- Safety: At any given time, each resource unit (n.b., here
a resource unit corresponds to a token) is used by at
most one process, each process uses at most k resource
units, and at most ! resource units are used.

- Fairness: If a process requests at most k resource
units, then its request is eventually satisfied (i.e. it can
eventually use the resource unit it requests using a
special section of code called critical section).

- Efficiency: As many requests as possible must be
satisfied simultaneously.

The above mentioned notion of efficiency is difficult to define
precisely. A convenient parameter was introduced in [11]
to formally characterize efficiency: (k, !)-liveness, defined
as follows. Assume that there is a subset I of processes
such that every process in I is executing its critical section
forever (i.e., it holds some resource units forever). Let α
be the total number of resource units held forever by the
processes in I . Let R be the set of processes not in I that
are requesting some resource units; for each q ∈ R, let rq

be the number of resource units being requested by q, and
assume that rq ≤ ! − α for all q ∈ R. Then, if R (= ∅, at
least one member of R eventually satisfies its request.

Waiting Time. The waiting time [12] is the maximum
number of times that all processes can enter in the critical
section before some process p, starting from the moment p
requests the critical section.

Interface. In any k-out-of-! exclusion protocol, a process
needs to interact with the application that requests the
resource units. To manage these interactions, we use the
following interface at each process:
- State ∈ {Req, In,Out}. State = Req means that the
application is requesting some resource units. State
switches from Req to In when the application is al-
lowed to access to the requested resource units. State
switches from In to Out when the requested resource
units are released into the system. The switching of
State from Req to In and from In to Out is managed
by the k-out-of-! exclusion protocol itself; while the
switching from Out to In is managed by the application.
Other transitions (for instance, In to Req) are forbidden.



- Need ∈ {0 . . .k}, the number of resource units cur-
rently being requested by the application.

- EnterCS(): function. This function is called by the
protocol to allow the application to execute the critical
section. From this call, the application has control of
the resource units until the end of the critical section
(we assume that the critical section is always executed
in finite, yet unbounded, time).

- ReleaseCS(): Boolean. This predicate holds if and
only if the application is not executing its critical
section.

Self-Stabilization [4]. A specification is a predicate over
the set of all executions. A set of configurations C1 ⊆ C is
an attractor for a set of configurations C2 ⊆ C if for any
γ ∈ C2 and any execution whose initial configuration is γ,
the execution contains a configuration of C1.

Definition 1 A protocol P is self-stabilizing for the specifi-
cation SP in a system S if there exists a non-empty subset
of L such that: (i) Any execution of P in S starting from
a configuration of L satisfies SP (Closure Property), and
(ii)L is an attractor for C (Convergence Property).

3. Protocol

In this section we present our self-stabilizing k-out-of-!
exclusion protocol for oriented trees (Algorithms 1 and 2).
Our solution uses circulation of several types of tokens. To
clearly understand the function of these tokens, we adopt a
step-by-step approach: we start from “naive” non-operating
circulation of ! resource tokens. Incrementally, we augment
this solution with several other types of tokens, until we
obtain a non-fault-tolerant solution. We then add an addi-
tional control mechanism that guarantees self-stabilization,
assuming unbounded local memory of processes. Finally, we
modify our protocol to work with bounded memory.

A Non-Fault-Tolerant Protocol. The basic principle of our
protocol is to use ! circulating resource tokens (the ResT
messages) following depth-first search (DFS) order: when
a process p receives a token from channel number i, and
if that token is retransmitted, either immediately or later,
it will be sent to its neighbor along channel number i + 1
(modulo ∆p). (This same rule will also be followed by all
the types of tokens we will later describe.) Figure 1 shows
the path followed by a token during depth-first circulation
in an oriented tree (recall that any non-root process locally
numbers the channel to its parent by 0). In this way, the
oriented tree emulates a ring with a designated leader (see
Figure 4), and we refer to the path followed by the tokens
as the virtual ring.
As explained Section 2, the requests are managed by

the variables State and Need. Each process also uses the
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Figure 1. Depth-first token circulation on oriented trees.

multiset3 variable RSet to collect the tokens; the collected
tokens are said to be “reserved.” While State = Req and
|RSet| < Need, a process collects all tokens it receives;
it also stores in RSet the number of the channel from
which it receives each token, so that when it is finally
retransmitted, it will continue its correct path around the
virtual ring. When State = Req and |RSet| ≥ Need, it
enters the critical section: State is set to In and the function
EnterCS() is called. Once the critical section is done (i.e.,
when State = In and the predicate ReleaseCS() holds)
State is set to Out, all tokens in RSet are retransmitted,
and RSet is set to ∅. When a process receives a token it
does not need, it immediately retransmits it.
Unfortunately, such a simple protocol does not always

guarantee liveness. Figure 2 shows a case where liveness
is not maintained. In this example, there are five resources
tokens (i.e., ! = 5) and each process can request up to three
tokens (i.e., k = 3). In the configuration shown on the left
side of the figure, processes a, b, c, and d request more
tokens than they will receive. This configuration will lead
to the deadlock configuration shown on the right side of the
figure: processes a, b, c, and d reserve all the tokens they
receive and never release them because their requests are
never satisfied.
We can prevent deadlock by adding a new type of token,

called the pusher (the message PushT). If the system is in a
legitimate state, there is exactly one pusher. It permanently
circulates through the virtual ring, and prevents a process
that is not in the critical section from holding resource tokens
forever. When a process receives the pusher, it releases all
its reserved tokens, unless if it is either in its critical section
(State = In) or is enabled to enter its critical section
(State = Req and |RSet| ≥ Need). In either case, it
retransmits the pusher.
The pusher protects the system from deadlock. However,

it can cause livelock; an example is shown in Figure 3, for
2-out-of-3 exclusion in a tree of three processes. In Config-
uration (i), every process is a requester: r and b request one
resource token and a requests two resource tokens. Also,
every process has a resource token in one of its incoming

3. N.b. a multiset can contain several identical items.
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Stater = Out
Needr = 0
RSetr = ∅

Statea = Req
Needa = 3
RSeta = ∅

Stateb = Req
Needb = 2
RSetb = ∅
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Needd = 2
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Stater = Out
Needr = 0
RSetr = ∅

Statea = Req
Needa = 3
RSeta = {0, 0}

Stateb = Req
Needb = 2
RSetb = {0}

Statec = Req
Needc = 2
RSetc = {0}

Stated = Req
Needd = 2
RSetd = {0}

Statee = Out
Neede = 0
RSete = ∅

Statef = Out
Needf = 0
RSetf = ∅

Stateg = Out
Needg = 0
RSetg = ∅

Figure 2. Possible deadlock.
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Algorithm 1 k-out-of-! exclusion on oriented trees, local algorithm for the root r

1: variables:
2: C, myC ∈ [0 . . . 2(n − 1)(CMAX + 1)]; Succ ∈ [0 . . . ∆r − 1]
3: RSet: multiset of at most k values taken in [0 . . . ∆r − 1]
4: Need∈[0 . . . k]; State∈{Req,In,Out}; Prio∈{⊥, 0, . . . , ∆r − 1}
5: R, Reset: Booleans; SToken, PT∈[0 . . . ! + 1]
6: SPush, SPrio, PPr ∈ [0 . . . 2]
7: repeat forever
8: for all q ∈ [0 . . . ∆r − 1] do
9: if (receive〈ResT〉 from q) ∧¬Reset then
10: if (State = Req) ∧ (|RSet| < Need) then
11: RSet ← RSet ∪ {q}
12: else
13: if q = ∆r − 1 then
14: SToken ← min(SToken + 1, ! + 1)
15: end if
16: send〈ResT〉 to q + 1
17: end if
18: end if
19: if (receive〈PushT〉 from q) ∧¬Reset then
20: if (Prio )=⊥) ∧ (State )= Req ∨ |RSet| < Need)∧

(State )= In) then
21: for all i ∈ RSet do
22: if i = ∆r − 1 then
23: SToken ← min(SToken + 1, ! + 1)
24: end if
25: send〈ResT〉 to i + 1
26: end for
27: RSet ← ∅
28: end if
29: if q = ∆r − 1 then
30: SPush ← min(SPush + 1, 2)
31: end if
32: send〈PushT〉 to q + 1
33: end if
34: if (receive〈PrioT〉 from q) ∧¬Reset then
35: if Prio =⊥ then
36: Prio ← q
37: else
38: send〈PrioT〉 to q + 1
39: end if
40: end if
41: if (receive〈ctrl, C, R, PT, PPr〉 from q) then
42: if (q = Succ) ∧ (myC = C) then
43: Succ ← Succ + 1
44: if Succ = 0 then
45: myC ← myC + 1
46: Reset ← (PT + SToken > !)∨

(PPr + SPrio > 1) ∨ (SPush > 1)
47: if Reset then
48: RSet ← ∅
49: Prio ←⊥
50: else

51: if PPr + SPrio < 1 then
52: send〈PrioT〉 to 0
53: end if
54: while PT + SToken < ! do
55: send〈ResT〉 to 0
56: SToken ← min(SToken + 1, ! + 1)
57: end while
58: if SPush < 1 then
59: send〈PushT〉 to 0
60: end if
61: end if
62: SToken ← 0
63: SPrio ← 0
64: SPush ← 0
65: PT ← 0
66: PPr ← 0
67: end if
68: PT ← min(PT + |RSet|q, ! + 1)
69: if Prio = q then
70: PPr ← min(PPr + 1, 2)
71: end if
72: send〈ctrl, myC, Reset, PT, PPr〉 to Succ
73: RestartTimer()
74: end if
75: end if
76: end for
77: if (State = Req) ∧ (|RSet| ≥ Need) then
78: State ← In
79: EnterCS()
80: end if
81: if (State = In) ∧ ReleaseCS() then
82: for all i ∈ RSet do
83: if i = ∆r − 1 then
84: SToken ← min(SToken + 1, ! + 1)
85: end if
86: send〈ResT〉 to i + 1
87: end for
88: RSet ← ∅
89: State ← Out
90: end if
91: if (Prio )=⊥) ∧ (State )= Req ∨ |RSet| ≥ Need) then
92: if Prio = ∆r − 1 then
93: SPrio ← min(SPrio + 1, 2)
94: end if
95: send〈PrioT〉 to Prio + 1
96: Prio ←⊥
97: end if
98: if TimeOut() then
99: send〈ctrl, myC, Reset, 0, 0〉 to Succ
100: RestartTimer()
101: end if
102: end repeat

channels, and none holds any resource token. Finally, the
pusher is in the channel from a to r behind a resource token.
Every process will collect the incoming resource token, and
the system will reach the Configuration (ii) where r and
b execute their critical section while a is still waiting for
a resource token and the pusher is reaching r. When r
receives the pusher, it retransmits it to b, while keeping its
resource token, as shown in Configuration (iii). Similarly, b
receives the pusher while executing its critical section, and
retransmits it immediately to r, as shown in Configuration
(iv), after which r retransmits the pusher to a (Configuration
(v)). Assume now that a receives the pusher while r and b
leave their critical sections. We obtain Configuration (vi):
a must release its resource tokens because of the pusher.

In Configuration (vii), r directly retransmits the resource
token it receives because it is not a requester. Finally, r
and b again become requesters for one resource token in
Configuration (viii), which is identical to Configuration (i).
We can repeat this cycle indefinitely, and process a never
satisfies its request.

To solve this problem, we add a priority token (message
PrioT) whose goal is to cancel the effect of the pusher.
If the system is in a legitimate state, there is exactly
one priority token. A process which receives the priority
token retransmits it immediately, unless it has an unsatisfied
request. In this case, the process holds the priority token
(the variable Prio is set from ⊥ to the channel number
from which the process receives the priority token) until its



Algorithm 2 k-out-of-! exclusion on oriented trees, local algorithm for the other process p

1: variables:
2: C, myC ∈ [0 . . . 2(n − 1)(CMAX + 1)]; Succ ∈ [0 . . . ∆p − 1]
3: RSet: multiset of at most k values taken in [0 . . . ∆p − 1]
4: Need∈[0 . . . k]; State∈{Req,In,Out}; Prio∈{⊥, 0, . . . , ∆p − 1}
5: R, Ok: Booleans; PT∈[0 . . . ! + 1]; PPr∈[0 . . . 2]
6: repeat forever
7: for all q ∈ [0 . . . ∆p − 1] do
8: if (receive〈ResT〉 from q) then
9: if (State = Req) ∧ (|RSet| < Need) then
10: RSet ← RSet ∪ {q}
11: else
12: send〈ResT〉 to q + 1
13: end if
14: end if
15: if (receive〈PushT〉 from q) then
16: if (Prio )=⊥) ∧ (State )= Req ∨ |RSet| < Need)∧

(State )= In) then
17: for all i ∈ RSet do
18: send〈ResT〉 to i + 1
19: end for
20: RSet ← ∅
21: end if
22: send〈PushT〉 to q + 1
23: end if
24: if (receive〈PrioT〉 from q) then
25: if Prio =⊥ then
26: Prio ← q
27: else
28: send〈PrioT〉 to q + 1
29: end if
30: end if
31: if (receive〈ctrl, C, R, PT, PPr〉 from q) then
32: Ok ← false
33: if (q = Succ) ∧ (myC = C) ∧ (Succ )= 0) then
34: Succ ← Succ + 1
35: Ok ← true
36: if R then
37: RSet ← ∅
38: Prio ←⊥

39: end if
40: end if
41: if (q = 0) then
42: Ok ← true
43: if myC )= C then
44: Succ ← min(1, ∆p − 1)
45: if R then
46: RSet ← ∅
47: Prio ←⊥
48: end if
49: end if
50: myC ← C
51: end if
52: if Ok then
53: PT ← min(PT + |RSet|q, ! + 1)
54: if Prio = q then
55: PPr ← min(PPr + 1, 2)
56: end if
57: send〈ctrl, myC, R, PT, PPr〉 to Succ
58: end if
59: end if
60: end for
61: if (State = Req) ∧ (|RSet| ≥ Need) then
62: State ← In
63: EnterCS()
64: end if
65: if (State = In) ∧ ReleaseCS() then
66: for all i ∈ RSet do
67: send〈ResT〉 to i + 1
68: end for
69: RSet ← ∅
70: State ← Out
71: end if
72: if (Prio )=⊥) ∧ (State )= Req ∨ |RSet| ≥ Need) then
73: send〈PrioT〉 to Prio + 1
74: Prio ←⊥
75: end if
76: end repeat

request is satisfied: the token will then be released when the
process enters its critical section. A process that holds the
priority token does not release its reserved resource tokens
when it receives the pusher: it only retransmits the pusher.
As we will show later, this guarantees that the process will
eventually satisfy its request.
Using these three types of tokens, we obtain a simple

non self-stabilizing k-out-of-! exclusion protocol. To make
it self-stabilizing, we need additional structure.

A Controller for Self-Stabilization. To achieve self-
stabilization, we introduce one more type of token, the
controller.
After a finite period of transient faults, some tokens may

have disappeared or may been duplicated. To restore correct
behavior, we need an additional self-stabilizing mechanism
that regulates the number of tokens in the network: to
achieve that, we use a mechanism similar to that introduced
in [13] for self-stabilizing !-exclusion protocol on a ring.
This mechanism is based on snapshot/reset technique.
The controller is a special token (message ctrl) that

counts the other tokens; when it returns to the root after
one full circulation, the root learns the number of tokens of

each type (resource, pusher, priority), and then adjusts these
numbers as necessary.
The controller can also be effected by transient faults.

We use Varghese’s counter flushing [14] method to enforce
depth first token circulation (DFTC) in the tree.
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Figure 4. Virtual Ring.



We now explain how the resource tokens are counted by
the controller. (It counts the other types of tokens similarly.)
We split the count of the resource tokens into two subcounts:
- The “passed” tokens. When a process holds some
resource tokens that came from channel i and receives
the controller from the channel i, it retransmits the
controller through channel i + 1 while keeping the
resource tokens: in this case, we say that the controller
passes these tokens in the virtual ring. Indeed, these
tokens were ahead the controller (in the virtual ring)
before the process received the controller, and are be-
hind afterward. The field PT of the controller message
is used to compute the number of the passed resource
tokens.

- The tokens that are never passed by the controller.
These tokens are counted in the variable SToken main-
tained at the root. At the beginning of any circulation
of the controller, the variable SToken is reset to 0.
Then, until the end of the circulation of the controller,
each time a resource token starts a new circulation (i.e.
the token leaves the root from channel 0), SToken is
incremented.

When the controller terminates its circulation, the number of
resource tokens in the network is equal to PT +SToken, and
the numbers of pusher tokens and priority tokens is likewise
known to the root. Three cases are then possible:
- The number of tokens is correct, that is, there are !
resource tokens, one pusher token, and one priority
token. In this case, the system is stabilized.

- There are too few tokens. In this case, the root creates
the number of additional tokens needed at the end of
the traversal; the system is then stabilized.

- There are too many tokens of some type. In this case, we
reset the network. We mark the controller token with
a special flag (the field R in the message ctrl). The
root transmits the marked controller, erases its reserved
tokens as well as all the tokens it receives until the
termination of the controller’s traversal. Upon receiving
the controller, every other process erases its reserved
tokens. When the controller finishes its traversal, there
is no token in the network. The root creates exactly
! resource tokens, one pusher token and one priority
token; and we are done.

Self-Stabilizing DFTC. Using the counter flushing tech-
nique, we design a self-stabilizing DFTC to implement the
controller. The principle of counter flushing is the following:
after transient faults, the token message can be lost. Hence,
the root must use a timeout mechanism to retransmit the
token in case of deadlock. The timeout is managed using
the function RestartTimer() (that allows it to reinitialize
the timeout) and the predicate TimeOut() (which holds when

a specified time interval is exceeded).4
Due to the use of the timeout, we must now deal with

duplicated messages. Furthermore, arbitrary messages may
exist in the network after faults (however they are assumed
to be bounded). To distinguish the duplicates from the valid
controller and to flush the system of corrupted messages,
every process maintains a counter variable myC that takes
values in {0 . . . 2(n−1)(CMAX+1)}, and marks each message
with that value. Every process also maintains a pointer Succ
to indicate to which process it must send the token. The
effects of the reception of a token message differs for the
root and the other processes:
- The root considers a token message as valid when the
message comes from Succ and is marked with a value
c such that myC = c. Otherwise, it simply ignores the
message, meaning it does not retransmit it. If it receives
a valid message, the root increments Succ (modulo
∆r) and retransmits the token with the flag value myC
to Succ so that the valid token follows DFS order.
If Succ = 0, this means that the token just finished
its previous circulation. As a consequence, the root
increments myC (modulo 2(n − 1)(CMAX + 1)) before
retransmitting the token.

- A non-root process p considers a message as valid in
two cases: (1) When it receives a token message from
its parent (channel 0) marked with a value c such that
myC (= c or (2) when it receives a token message from
Succ and the message is marked with a value c such
that myC = c. In case (1), p sets myC to c and Succ to
min(1, ∆p − 1) (n.b. in case of a leaf process Succ
is set to 0) before retransmitting the token message
marked with myC to Succ. In case (2), p increments
Succ (modulo ∆p) and then sends the token marked
with myC to Succ so that the valid token follows DFS
order. In all other cases, p considers the message to
be invalid. In the case of an invalid message coming
from channel 0 with myC = c, p does not consider
the message in the computation, but retransmits it to
prevent deadlock. In all other cases, p simply ignores
the message.

Using this method, the root increments its counter myC
infinitely often and, due to the size of the myC’s domain,
the myC variable of the root eventually takes a value that
does not exist anywhere else in the system (because the
number of possible values initially in the system is bounded
by 2(n− 1)(CMAX + 1)). In this case, the token marked with
the new value will be considered as valid by every process.
Until the end of that traversal, the root will ignore all other
token messages. At the end of the traversal, the system will
be stabilized.

Dealing with Bounded Memory. Due to the use of reset,

4. We assume that this time interval is sufficiently large to prevent
congestion.



the root does not need to know the exact number of tokens
at the end of the controller’s traversals. Actually, the root
must only know if the number of tokens is too high, or the
number of tokens it needs to add if the number is too low.
Hence, the counting variables can be bounded by !+1 for the
resource tokens and by 2 for the other types of token. The
fact that a variable is assigned to its maximum value will
mean that there are too many tokens in the network and so
a reset must be started. Otherwise, the value of the counting
variable will state whether there is a deficient number of
tokens, and in that case, how many must be added. For any
assignment to one of these bounded variables, the value is
set to the minimum between its new computed value and
the maximum value of its domain.

Results. For lack of space, the proofs of the two fol-
lowing results have been omitted. The reader can find
detailed proofs in the technical report inline at http://hal.
archives-ouvertes.fr/hal-00344193/fr/.

Theorem 1 The protocol given in Algorithms 1 and 2
is a self-stabilizing k-out-of-! exclusion protocol for tree
networks.

Theorem 2 Once the protocol proposed in Algorithms 1
and 2 is stabilized, the waiting time is ! × (2n − 3)2 in
the worst case.

4. Conclusion and Future Work

In this paper, we propose the first (deterministic) self-
stabilizing distributed k-out-of-! exclusion protocol for asyn-
chronous oriented tree networks. The proposed protocol uses
a realistic model, the message-passing model. The only
restriction we make is to assume that the channels initially
contain at most a bounded number of arbitrary messages,
where the bound is known. We make this assumption to
obtain a solution that uses bounded memory per process
(see the results in [7]). However, if we assume unbounded
process memory, our solution can be easily adapted to work
without assumptions on channels (following the method
of [15]).
The main interest in dealing with an oriented tree is that

solutions on the oriented tree can be directly mapped to
solutions for arbitrary rooted networks by composing the
protocol with spanning tree construction (e.g, [5], [6]).
There are several possible extensions of our work. On the

theoretical side, one can investigate whether the waiting time
of our solution (! × (2n − 3)2) can be improved. Possible
extension to networks where processes are subject to other
failure patterns, such as process crashes, remains open. On
the practical side, our solution is designed using a realistic
model and can be extended to arbitrary rooted networks.
Implementing our solution in a real network is a future
challenge.
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