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Abstract. The synthesis of a reactive system with respect to an ω-
regular specification requires the solution of a graph game. Such games
have been extended in two natural ways. First, a game graph can be
equipped with probabilistic choices between alternative transitions, thus
allowing the modeling of uncertain behavior. These are called stochastic
games. Second, a liveness specification can be strengthened to require
satisfaction within an unknown but bounded amount of time. These are
called finitary objectives. We study, for the first time, the combination
of stochastic games and finitary objectives. We characterize the require-
ments on optimal strategies and provide algorithms for computing the
maximal achievable probability of winning stochastic games with fini-
tary parity or Streett objectives. Most notably, the set of states from
which a player can win with probability 1 for a finitary parity objective
can be computed in polynomial time, even though no polynomial-time
algorithm is known in the nonfinitary case.

1 Introduction

The safety and liveness of reactive systems are usually specified by ω-regular
sets of infinite words. Then the reactive synthesis problem asks for constructing
a winning strategy in a graph game with two players and ω-regular objectives:
a player that represents the system and tries to satisfy the specification; and a
player that represents the environment and tries to violate the specification. In
the presence of uncertain or probabilistic behavior, the graph game is stochastic.
Such a stochastic game is played on a graph with three kinds of vertices: in player-
1 vertices, the first player chooses a successor vertex; in player-2 vertices, the
second player chooses a successor vertex; and in probabilistic vertices, a successor
vertex is chosen according to a given probability distribution. The result of
playing the game ad infinitum is a random walk through the graph. If player 1
has an ω-regular objective φ, then she tries to maximize the probability that the
infinite path that results from the random walk lies inside the set φ. Conversely,
player 2 tries to minimize that probability. Since the stochastic games are Borel
determined [15], and the ω-regular languages are Borel sets, these games have
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a unique value, i.e., there is a real v ∈ [0, 1] such that player 1 can ensure φ
with probability arbitrarily close to v, and at the same time, player 2 can ensure
¬φ with probability arbitrarily close to 1 − v. The computation of v is referred
to as the quantitative value problem for stochastic games; the decision problem
of whether v = 1 is referred to as the qualitative value problem. In the case of
parity objectives, both value problems lie in NP ∩ coNP [6], but no polynomial-
time solutions are known even if there are no probabilistic vertices. The NP ∩
coNP characterization results from the existence of pure (i.e., nonrandomized)
positional (i.e., memoryless) optimal strategies for both players. In the case of
Streett objectives, optimal player-1 strategies may require memory, and both
value problems are coNP-complete [3], which is again the same in the absence
of probabilistic vertices.

The specification of liveness for a reactive system by ω-regular sets such as
parity or Streett languages has the drawback that, while the synthesized system
is guaranteed to be live, we cannot put any bound on its liveness behavior. For
example, the liveness objective �(r → �q) ensures that every request r issued
by the environment is eventually followed by a response q of the synthesized
system, but the delay between each request and corresponding response may
grow without bound from one request to the next. This is an undesirable behav-
ior, especially in synthesis, where one controls the system to be built and where
one would like stronger guarantees. At the same time, it may be impossible to
put a fixed bound on the desired response time, because the achievable bound
usually is not known. For this reason, the time-scale independent notion of fini-
tary objectives was introduced [1]. The finitary version of the liveness objective
�(r → �q) requires that there exists an unknown bound b such that every re-
quest r is followed by a response q within b steps. The synthesized system can
have any response time, but its response time will not grow from one request to
the next without bound. Finitary versions can be defined for both parity and
Streett (strong fairness) objectives [4]. It should be noted that finitary objectives
are not ω-regular. While in games with ω-regular objectives, both players have
finite-memory strategies, to violate a finitary objective, player 2 may require in-
finite memory even if there are no probabilistic vertices [4]. Nonetheless, finitary
objectives are Borel sets, and thus have well-defined values in stochastic games.

Nonstochastic games with finitary parity and Streett objectives were first
studied in [4], and the results of [4] were later significantly improved upon by [12].
This work showed that finitary objectives are not only more desirable for synthe-
sis, but also can be far less costly than their infinitary counterparts. In particular,
nonstochastic games with finitary parity objectives can be solved in polynomial
time. In the present paper, we study for the first time stochastic games with
finitary objectives. As main results, we show that the qualitative value problem
for finitary parity objectives remains polynomial in the stochastic case, and the
quantitative value problem can be solved in NP ∩ coNP. For stochastic games
with finitary Streett objectives, we compute values in exponential time. Yet also
here we achieve a significant improvement by solving the qualitative value prob-
lem with an exponential term of 2d (where d is the number of Streett pairs)
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instead of nd · d! (where n is the number of vertices), which characterizes the
best known algorithm for nonstochastic games with infinitary Streett objectives.
Our results follow the pattern of extending properties of stochastic games with
infinitary parity and Streett objectives to stochastic games with finitary parity
and Streett objectives. However, in the finitary case, the proof techniques are
more complicated, because we need to consider infinite-memory strategies.

We now summarize our results in more detail and draw precise comparisons
with the two simpler cases of (i) stochastic games with infinitary (rather than
finitary) objectives and (ii) nonstochastic (rather than stochastic) games with
finitary objectives.

Comparison of finitary and infinitary parity objectives. In case of par-
ity objectives, pure memoryless optimal strategies exist for both players in
both nonstochastic (2-player) game graphs [9] and stochastic (21/2-player) game
graphs [6,17]. For finitary parity objectives on 2-player game graphs, a pure
memoryless optimal strategy exists for the player with the finitary parity ob-
jective, while the optimal strategy of the other player (with the complementary
objective) in general requires infinite memory [5]. We show in this work that
the same class of strategies that suffices in 2-player game graphs also suffices
for optimality in 21/2-player game graphs for finitary parity objectives and their
complements. The best known complexity bound for 2- and 21/2-player games
with parity objectives is NP ∩ coNP [9,6]. In case of 21/2-player games, the best
known complexity bound for the qualitative analysis is also NP ∩ coNP. The
solution of 2-player game graphs with finitary parity objectives can be achieved
in polynomial time (in O(n2 ·m) time [12,5] for game graphs with n states and m
edges). In this work we show that the quantitative analysis of 21/2-player game
graphs with finitary parity objectives lies in NP ∩ coNP, and the qualitative
analysis can be done in O(n4 ·m) time. To obtain a polynomial time solution for
the quantitative analysis of 21/2-player game graphs with finitary parity objec-
tives, one must obtain a polynomial-time solution for the quantitative analysis of
21/2-player game graphs with Büchi objectives (which is a major open problem).

Comparison of finitary and infinitary Streett objectives. In case of
Streett objectives with d pairs, strategies with d! memory is necessary and suf-
ficient for both 2-player game graphs and 21/2-player game graphs, and for the
complementary player pure memoryless optimal strategies exist [8,11,3]. For fini-
tary Streett objectives on 2-player game graphs, an optimal strategy with d · 2d

memory exists for the player with the finitary Streett objective, while the optimal
strategy of the other player (with the complementary objective) in general re-
quires infinite memory [5]. We show that the same class of strategies that suffices
for 2-player game graphs also suffices for optimality in 21/2-player game graphs
for finitary Streett objectives and their complements. The decision problems for
2- and 21/2-player games with Streett objectives are coNP-complete. The solution
of 2-player game graphs with finitary Streett objectives can be achieved in EXP-
TIME. In this work we show that both the qualitative and quantitative analysis
of 21/2-player game graphs with finitary Streett objectives can be achieved in
EXPTIME. The best known algorithm for 2-player game graphs with Streett
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objectives is O(nd · d!) [16], where as in case of 21/2-player game graphs with
finitary Streett objectives, we show that the qualitative analysis can be achieved
in time O(n4 · m · d · 2d). For the quantitative analysis, we present our results
for the more general class of tail (i.e., prefix-independent) objectives, and obtain
the results for finitary parity and Streett objectives as a special case.

2 Definitions

We consider several classes of turn-based games, namely, two-player turn-based
probabilistic games (21/2-player games), two-player turn-based deterministic
games (2-player games), and Markov decision processes (11/2-player games).

Notation. For a finite set A, a probability distribution on A is a function δ : A →
[0, 1] such that

∑
a∈A δ(a) = 1. We denote the set of probability distributions on

A by D(A). Given a distribution δ ∈ D(A), we denote by Supp(δ) = {x ∈ A |
δ(x) > 0} the support of δ.

Game graphs. A turn-based probabilistic game graph (21/2-player game graph)
G = ((S, E), (S1, S2, S©), δ) consists of a directed graph (S, E), a partition (S1,
S2, S©) of the finite set S of states, and a probabilistic transition function δ:
S© → D(S), where D(S) denotes the set of probability distributions over the
state space S. The states in S1 are the player-1 states, where player 1 decides the
successor state; the states in S2 are the player-2 states, where player 2 decides
the successor state; and the states in S© are the probabilistic states, where the
successor state is chosen according to the probabilistic transition function δ. We
assume that for s ∈ S© and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0, and we
often write δ(s, t) for δ(s)(t). For technical convenience we assume that every
state in the graph (S, E) has at least one outgoing edge. For a state s ∈ S, we
write E(s) to denote the set {t ∈ S | (s, t) ∈ E} of possible successors. The size
of a game graph G = ((S, E), (S1, S2, S©), δ) is

|G| = |S| + |E| +
∑

t∈S

∑

s∈S©

|δ(s)(t)|;

where |δ(s)(t)| denotes the space to represent the transition probability δ(s)(t)
in binary.

A set U ⊆ S of states is called δ-closed if for every probabilistic state
u ∈ U ∩ S©, if (u, t) ∈ E, then t ∈ U . The set U is called δ-live if for ev-
ery nonprobabilistic state s ∈ U ∩ (S1 ∪ S2), there is a state t ∈ U such that
(s, t) ∈ E. A δ-closed and δ-live subset U of S induces a subgame graph of G,
indicated by G � U .

The turn-based deterministic game graphs (2-player game graphs) are the spe-
cial case of the 21/2-player game graphs with S© = ∅. The Markov decision
processes (11/2-player game graphs) are the special case of the 21/2-player game
graphs with S1 = ∅ or S2 = ∅. We refer to the MDPs with S2 = ∅ as player-1
MDPs, and to the MDPs with S1 = ∅ as player-2 MDPs.
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Plays and strategies. An infinite path, or play, of the game graph G is an
infinite sequence ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all
k ∈ N. We write Ω for the set of all plays, and for a state s ∈ S, we write
Ωs ⊆ Ω for the set of plays that start from the state s.

A strategy for player 1 is a function σ: S∗·S1 → D(S) that assigns a probability
distribution to all finite sequences w ∈ S∗ ·S1 of states ending in a player-1 state
(the sequence represents a prefix of a play). Player 1 follows the strategy σ if in
each player-1 move, given that the current history of the game is w ∈ S∗ ·S1, she
chooses the next state according to the probability distribution σ(w). A strategy
must prescribe only available moves, i.e., for all w ∈ S∗, and s ∈ S1 we have
Supp(σ(w · s)) ⊆ E(s). The strategies for player 2 are defined analogously. We
denote by Σ and Π the set of all strategies for player 1 and player 2, respectively.

Once a starting state s ∈ S and strategies σ ∈ Σ and π ∈ Π for the two
players are fixed, the outcome of the game is a random walk ωσ,π

s for which
the probabilities of events are uniquely defined, where an event A ⊆ Ω is a
measurable set of paths. Given strategies σ for player 1 and π for player 2,
a play ω = 〈s0, s1, s2, . . .〉 is feasible if for every k ∈ N the following three
conditions hold: (1) if sk ∈ S©, then (sk, sk+1) ∈ E; (2) if sk ∈ S1, then
σ(s0, s1, . . . , sk)(sk+1) > 0; and (3) if sk ∈ S2 then π(s0, s1, . . . , sk)(sk+1) > 0.
Given two strategies σ ∈ Σ and π ∈ Π , and a state s ∈ S, we denote by
Outcome(s, σ, π) ⊆ Ωs the set of feasible plays that start from s given strategies
σ and π. For a state s ∈ S and an event A ⊆ Ω, we write Prσ,π

s (A) for the
probability that a path belongs to A if the game starts from the state s and
the players follow the strategies σ and π, respectively. In the context of player-1
MDPs we often omit the argument π, because Π is a singleton set.

We classify strategies according to their use of randomization and memory.
The strategies that do not use randomization are called pure. A player-1 strat-
egy σ is pure if for all w ∈ S∗ and s ∈ S1, there is a state t ∈ S such that
σ(w · s)(t) = 1. We denote by ΣP ⊆ Σ the set of pure strategies for player 1. A
strategy that is not necessarily pure is called randomized. Let M be a set called
memory, that is, M is a set of memory elements. A player-1 strategy σ can be
described as a pair of functions σ = (σu, σm): a memory-update function σu:
S×M → M and a next-move function σm: S1×M → D(S). We can think of strate-
gies with memory as input/output automaton computing the strategies (see [8]
for details). A strategy σ = (σu, σm) is finite-memory if the memory M is finite,
and then the size of the strategy σ, denoted as |σ|, is the size of its memory M,
i.e., |σ| = |M|. We denote by ΣF the set of finite-memory strategies for player 1,
and by ΣPF the set of pure finite-memory strategies; that is, ΣPF = ΣP ∩ ΣF .
The strategy (σu, σm) is memoryless if |M| = 1; that is, the next move does not
depend on the history of the play but only on the current state. A memory-
less player-1 strategy can be represented as a function σ: S1 → D(S). A pure
memoryless strategy is a pure strategy that is memoryless. A pure memoryless
strategy for player 1 can be represented as a function σ: S1 → S. We denote by
ΣM the set of memoryless strategies for player 1, and by ΣPM the set of pure
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memoryless strategies; that is, ΣPM = ΣP ∩ ΣM . Analogously we define the
corresponding strategy families ΠP , ΠF , ΠPF , ΠM , and ΠPM for player 2.

Counting strategies. We call an infinite memory strategy σ finite-memory
counting if there is a finite-memory strategy σ′ such that for all j ≥ 0 there
exists k ≤ j such that the following condition hold: for all w ∈ S∗ such that
|w| = j and for all s ∈ S1 we have σ(w · s) = σ′(suffix(w, k) · s), where for
w ∈ S∗ of length j and k ≤ j we denote by suffix(w, k) the suffix of w of length
k. In other words, the strategy σ repeatedly plays the finite-memory strategy
σ′ in different segments of the play and the switch of the strategy in different
segments only depends on the length of the play. We denote by nocount(|σ|) the
size of the memory of the finite-memory strategy σ′ (the memory that is used
not for counting), i.e., nocount(|σ|) = |σ′|. We use similar notations for player 2
strategies.

Objectives. An objective for a player consists of a Borel set of winning plays
Φ ⊆ Ω. In this paper we consider ω-regular objectives, and finitary parity and
finitary Streett objectives (all the objectives we consider in this paper are Borel
objectives).

Classical ω-regular objectives. We first present the definitions of various
canonical forms of ω-regular objectives and sub-classes of ω-regular objec-
tives. For a play ω = 〈s0, s1, s2, . . .〉, let Inf(ω) be the set {s ∈ S |
s = sk for infinitely many k ≥ 0} of states that appear infinitely often in ω.

1. Reachability and safety objectives. Given a set F ⊆ S of states, the reachabil-
ity objective Reach(F ) requires that some state in F be visited, and dually,
the safety objective Safe(F ) requires that only states in F be visited. For-
mally, the sets of winning plays are Reach(F ) = {〈s0, s1, s2, . . .〉 ∈ Ω | ∃k ≥
0. sk ∈ F} and Safe(F ) = {〈s0, s1, s2, . . .〉 ∈ Ω | ∀k ≥ 0. sk ∈ F}.

2. Büchi and co-Büchi objectives. Given a set F ⊆ S of states, the Büchi objec-
tive Buchi(F ) requires that some state in F be visited infinitely often, and
dually, the co-Büchi objective coBuchi(F ) requires that only states in F be
visited infinitely often. Thus, the sets of winning plays are Buchi(F ) = {ω ∈
Ω | Inf(ω) ∩ F �= ∅} and coBuchi(F ) = {ω ∈ Ω | Inf(ω) ⊆ F}.

3. Rabin and Streett objectives. Given a set P = {(E1, F1), . . . , (Ed, Fd)} of
pairs of sets of states (i.e, for all 1 ≤ j ≤ d, both Ej ⊆ S and Fj ⊆ S), the
Rabin objective Rabin(P ) requires that for some pair 1 ≤ j ≤ d, all states in
Ej be visited finitely often, and some state in Fj be visited infinitely often.
Hence, the winning plays are Rabin(P ) = {ω ∈ Ω | ∃1 ≤ j ≤ d. (Inf(ω) ∩
Ej = ∅ and Inf(ω) ∩ Fj �= ∅)}. Dually, given P = {(E1, F1), . . . , (Ed, Fd)},
the Streett objective Streett(P ) requires that for all pairs 1 ≤ j ≤ d, if
some state in Fj is visited infinitely often, then some state in Ej be visited
infinitely often, i.e., Streett(P ) = {ω ∈ Ω | ∀1 ≤ j ≤ d. (Inf(ω) ∩ Ej �=
∅ or Inf(ω) ∩ Fj = ∅)}.

4. Parity objectives. Given a function p: S → {0, 1, 2, . . . , d−1} that maps every
state to an integer priority, the parity objective Parity(p) requires that of the
states that are visited infinitely often, the least priority be even. Formally,
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the set of winning plays is Parity(p) = {ω ∈ Ω | min{p(Inf(ω))} is even}.
The dual, co-parity objective has the set coParity(p) = {ω ∈ Ω |
min{p(Inf(ω))} is odd} of winning plays. Parity objectives are closed un-
der complementation: given a function p : S → {0, 1, . . . , d−1}, consider the
function p+1 : S → {1, 2, . . . , d} defined as p+1(s) = p(s)+1, for all s ∈ S,
and then we have Parity(p + 1) = coParity(p).

Every parity objective is both a Rabin objective and a Streett objective. The
Büchi and co-Büchi objectives are special cases of parity objectives with two
priorities, namely, p: S → {0, 1} for Büchi objectives with F = p−1(0), and p:
S → {1, 2} for co-Büchi objectives with F = p−1(2). The reachability and safety
objectives can be turned into Büchi and co-Büchi objectives, respectively, on
slightly modified game graphs.

Finitary objectives. We now define a stronger notion of winning, namely,
finitary winning, in games with parity and Streett objectives.

Finitary winning for parity objectives. For parity objectives, the finitary winning
notion requires that for each visit to an odd priority that is visited infinitely
often, the distance to a stronger (i.e., lower) even priority be bounded. To define
the winning plays formally, we need the concept of a distance sequence.

Distance sequences for parity objectives. Given a play ω = 〈s0, s1, s2, . . .〉 and
a priority function p: S → {0, 1, . . . , d − 1}, we define a sequence of distances
distk(ω, p), for all k ≥ 0, as follows:

distk(ω, p) =

{
0 if p(sk) is even;
inf{k′ ≥ k | p(sk′ ) is even and p(sk′) < p(sk)} if p(sk) is odd.

Intuitively, the distance for a position k in a play with an odd priority at position
k, denotes the shortest distance to a stronger even priority in the play. We assume
the standard convention that the infimum of the empty set is ∞.

Finitary parity objectives. The finitary parity objective finParity(p) for a priority
function p requires that the sequence of distances for the positions with odd pri-
orities that occur infinitely often be bounded. This is equivalent to requiring that
the sequence of all distances be bounded in the limit, and captures the notion
that the “good” (even) priorities that appear infinitely often do not appear in-
finitely rarely. Formally, the sets of winning plays for the finitary parity objective
and its complement are finParity(p) = {ω ∈ Ω | lim supk→∞ distk(ω, p) < ∞}
and cofinParity(p) = {ω ∈ Ω | lim supk→∞ distk(ω, p) = ∞}, respectively. Ob-
serve that if a play ω is winning for a co-parity objective, then the lim sup of
the distance sequence for ω is ∞, that is, coParity(p) ⊆ cofinParity(p). How-
ever, if a play ω is winning for a (classical) parity objective, then the lim sup
of the distance sequence for ω can be ∞ (as shown in Example 1), that is,
finParity(p) � Parity(p).

Example 1. Consider the game shown in Figure 1. The square-shaped states are
player 1 states, where player 1 chooses the successor state, and the diamond-
shaped states are player 2 states (we will follow this convention throughout this



Stochastic Games with Finitary Objectives 41

2

s1

1

s0
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Fig. 1. A simple game graph

paper). The priorities of states are shown next to each state in the figure. If
player 1 follows a memoryless strategy σ that chooses the successor s2 at state
s0, this ensures that against all strategies π for player 2, the minimum priority
of the states that are visited infinitely often is even (either state s3 is visited
infinitely often, or both states s0 and s1 are visited finitely often). However,
consider the strategy πw for player 2: the strategy πw is played in rounds, and
in round k ≥ 0, whenever player 1 chooses the successor s2 at state s0, player 2
stays in state s2 for k transitions, and then goes to state s3 and proceeds to
round k +1. The strategy πw ensures that for all strategies σ for player 1, either
the minimum priority visited infinitely often is 1 (i.e., both states s0 and s1 are
visited infinitely often and state s3 is visited finitely often); or states of priority 1
are visited infinitely often, and the distances between visits to states of priority 1
and subsequent visits to states of priority 0 increase without bound (i.e., the limit
of the distances is ∞). Hence it follows that in this game, although player 1 can
win for the parity objective, she cannot win for the finitary parity objective.

Finitary winning for Streett objectives. The notion of distance sequence for parity
objectives has a natural extension to Streett objectives.

Distance sequences for Streett objectives. Given a play ω = 〈s0, s1, s2, . . .〉 and a
set P = {(E1, F1), . . . , (Ed, Fd)} of Streett pairs of state sets, the d sequences of
distances dist j

k(ω, P ), for all k ≥ 0 and 1 ≤ j ≤ d, are defined as follows:

dist j
k(ω, P ) =

{
0 if sk �∈ Fj ;
inf{k′ ≥ k | sk′ ∈ Ej} if sk ∈ Fj .

Let distk(ω, P ) = max{dist j
k(ω, P ) | 1 ≤ j ≤ d} for all k ≥ 0.

Finitary Streett objectives. The finitary Streett objective finStreett(P ) for
a set P of Streett pairs requires that the distance sequence be bounded
in the limit, i.e., the winning plays are finStreett(P ) = {ω ∈ Ω |
lim supk→∞ distk(ω, P ) < ∞}. We use the following notations for the comple-
mentary objective: cofinStreett(P ) = Ω \ finStreett(P ).

Tail objectives. An objective Φ is a tail objective if the objective is independent
of finite prefixes. Formally, an objective Φ is a tail objective if for all ω ∈ Ω, we
have ω ∈ Φ iff for all ω′ obtained by adding or deleting a finite prefix with ω we
have ω′ ∈ Φ (see [2] for details). The parity, Streett, finitary parity and finitary
Streett are independent of finite prefixes and are all tail objectives. Since tail
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objectives are closed under complementation, it follows that the complementary
objectives to finitary parity and Streett are tail objectives as well.

Sure, almost-sure, positive winning, and optimality. Given a player-1
objective Φ, a strategy σ ∈ Σ is sure winning for player 1 from a state s ∈ S if
for every strategy π ∈ Π for player 2, we have Outcome(s, σ, π) ⊆ Φ. A strategy
σ is almost-sure winning for player 1 from the state s for the objective Φ if for
every player-2 strategy π, we have Prσ,π

s (Φ) = 1. A strategy σ is positive winning
for player 1 from the state s for the objective Φ if for every player-2 strategy π,
we have Prσ,π

s (Φ) > 0. The sure, almost-sure and positive winning strategies
for player 2 are defined analogously. Given an objective Φ, the sure winning set
〈〈1〉〉sure(Φ) for player 1 is the set of states from which player 1 has a sure winning
strategy. Similarly, the almost-sure winning set 〈〈1〉〉almost (Φ) and the positive
winning set 〈〈1〉〉pos (Φ) for player 1 is the set of states from which player 1 has
an almost-sure winning and a positive winning strategy, respectively. The sure
winning set 〈〈2〉〉sure(Ω\Φ), the almost-sure winning set 〈〈2〉〉almost (Ω\Φ), and the
positive winning set 〈〈2〉〉pos(Ω\Φ) for player 2 are defined analogously. It follows
from the definitions that for all 21/2-player game graphs and all objectives Φ, we
have 〈〈1〉〉sure(Φ) ⊆ 〈〈1〉〉almost (Φ) ⊆ 〈〈1〉〉pos(Φ). Computing sure, almost-sure and
positive winning sets and strategies is referred to as the qualitative analysis of
21/2-player games [7].

Given objectives Φ ⊆ Ω for player 1 and Ω \ Φ for player 2, we define the
value functions 〈〈1〉〉val and 〈〈2〉〉val for the players 1 and 2, respectively, as the
following functions from the state space S to the interval [0, 1] of reals: for all
states s ∈ S, let 〈〈1〉〉val (Φ)(s) = supσ∈Σ infπ∈Π Prσ,π

s (Φ) and 〈〈2〉〉val (Ω \Φ)(s) =
supπ∈Π infσ∈Σ Prσ,π

s (Ω \ Φ). In other words, the value 〈〈1〉〉val (Φ)(s) gives the
maximal probability with which player 1 can achieve her objective Φ from state s,
and analogously for player 2. The strategies that achieve the value are called
optimal: a strategy σ for player 1 is optimal from the state s for the objective
Φ if 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,π

s (Φ). The optimal strategies for player 2 are
defined analogously. Computing values and optimal strategies is referred to as
the quantitative analysis of 21/2-player games. The set of states with value 1 is
called the limit-sure winning set [7]. For 21/2-player game graphs with ω-regular
objectives the almost-sure and limit-sure winning sets coincide [3].

Let C ∈ {P, M, F,PM ,PF} and consider the family ΣC ⊆ Σ of special strate-
gies for player 1. We say that the family ΣC suffices with respect to a player-1
objective Φ on a class G of game graphs for sure winning if for every game graph
G ∈ G and state s ∈ 〈〈1〉〉sure(Φ), there is a player-1 strategy σ ∈ ΣC such that
for every player-2 strategy π ∈ Π , we have Outcome(s, σ, π) ⊆ Φ. Similarly,
the family ΣC suffices with respect to the objective Φ on the class G of game
graphs for (a) almost-sure winning if for every game graph G ∈ G and state
s ∈ 〈〈1〉〉almost (Φ), there is a player-1 strategy σ ∈ ΣC such that for every player-
2 strategy π ∈ Π , we have Prσ,π

s (Φ) = 1; (b) positive winning if for every game
graph G ∈ G and state s ∈ 〈〈1〉〉pos (Φ), there is a player-1 strategy σ ∈ ΣC such
that for every player-2 strategy π ∈ Π , we have Prσ,π

s (Φ) > 0; and (c) optimality
if for every game graph G ∈ G and state s ∈ S, there is a player-1 strategy
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σ ∈ ΣC such that 〈〈1〉〉val (Φ)(s) = infπ∈Π Prσ,π
s (Φ). The notion of sufficiency for

size of finite-memory strategies is obtained by referring to the size of the memory
M of the strategies. The notions of sufficiency of strategies for player 2 is defined
analogously.

Determinacy. For sure winning, the 11/2-player and 21/2-player games coin-
cide with 2-player (deterministic) games where the random player (who chooses
the successor at the probabilistic states) is interpreted as an adversary, i.e.,
as player 2. We present the result formally as a Lemma. We use the fol-
lowing notation: given a 21/2-player game graph G = ((S, E), (S1, S2, S©), δ),
we denote by Ĝ = Tr2(G) the 2-player game graph defined as follows: Ĝ =
((S, E), (S1, S2 ∪ S©)).

Lemma 1. For all 21/2-player game graphs, for all Borel objectives Φ, the sure
winning sets for objective Φ for player 1 in the game graphs G and Tr2(G)
coincide.

Theorem 1 and Theorem 2 state the classical determinacy results for 2-player
and 21/2-player game graphs with Borel objectives. It follows from Theorem 2
that for all Borel objectives Φ, for all ε > 0, there exists an ε-optimal strategy σε

for player 1 such that for all π and all s ∈ S we have Prσ,π
s (Φ) ≥ 〈〈1〉〉val (Φ)(s)−ε.

Theorem 1 (Qualitative determinacy). The following assertions hold.

1. For all 2-player game graphs with state set S, and for all Borel objectives Φ,
we have 〈〈1〉〉sure(Φ) = S \ 〈〈2〉〉sure(Φ), i.e., the sure winning sets for the two
players form a partition of the state space [14].

2. The family of pure memoryless strategies suffices for sure winning with re-
spect to Rabin objectives for 2-player game graphs [9]; and the family of
pure finite-memory strategies suffices for sure winning with respect to Streett
objectives for 21/2-player game graphs [10], and sure winning strategies for
Streett objectives in general require memory.

Theorem 2 (Quantitative determinacy). The following assertions hold.

1. For all 21/2-player game graphs, for all Borel objectives Φ, and for all states
s, we have 〈〈1〉〉val (Φ)(s) + 〈〈2〉〉val (Φ)(s) = 1 [15].

2. The family of pure memoryless strategies suffices for optimality with respect
to Rabin objectives for 21/2-player game graphs [3]; and the family of pure
finite-memory strategies suffices for optimality with respect to Streett ob-
jectives for 21/2-player game graphs [3], and optimal strategies for Streett
objectives in general require memory.

We now present the main results of 2-player games with finitary parity and
Streett objectives.

Theorem 3 (Finitary parity games [12,5]). For all 2-player game graphs
with n states and m edges, and all priority functions p the following assertions
hold.
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1. The family of pure memoryless strategies suffices for sure winning with respect
to finitary parity objectives. There exist infinite-memory winning strategies π
for player 2 for the objective cofinParity(p) such that π is finite-memory count-
ing with nocount(|π|) = 2. In general no finite-memory winning strategies exist
for player 2 for the objective cofinParity(p).

2. The sure winning sets 〈〈1〉〉sure(finParity(p)) and 〈〈2〉〉sure(cofinParity(p)) can
be computed in O(n2 · m) time.

Theorem 4 (Finitary Streett games [12,5]). For all 2-player game graphs
with n states and m edges, and for all sets P = {(E1, F1), . . . , (Ed, Fd)} with d
Streett pairs, the following assertions hold.

1. There exist finite-memory winning strategies σ for player 1 for the objective
finStreett(P ) such that |σ| = d ·2d. In general winning strategies for player 1
for the objective finStreett(P ) require 2�

d
2 	 memory. There exist infinite-

memory winning strategies π for player 2 for the objective cofinStreett(P )
such that π is finite-memory counting with nocount(|π|) = d · 2d. In gen-
eral no finite-memory winning strategies exist for player 2 for the objective
cofinStreett(P ).

2. The sure winning sets 〈〈1〉〉sure(finStreett(P )) and 〈〈2〉〉sure(cofinStreett(P ))
can be computed in O(n2 · m · d2 · 4d) time.

Remark 1. Recall that Büchi and co-Büchi objectives correspond to parity ob-
jectives with two priorities. A finitary Büchi objective is in general a strict
subset of the corresponding classical Büchi objective; a finitary co-Büchi ob-
jective coincides with the corresponding classical co-Büchi objective. However,
it can be shown that for parity objectives with two priorities, the value func-
tions for the classical parity objectives and the finitary parity objectives are
the same; that is, for all 21/2-player game graphs G and all priority func-
tions p with two priorities, we have 〈〈1〉〉val (finParity(p)) = 〈〈1〉〉val (Parity(p))
and 〈〈2〉〉val (cofinParity(p)) = 〈〈2〉〉val (coParity(p)). Note that in Example 1, we
have s0 ∈ 〈〈1〉〉sure(Parity(p)) and s0 �∈ 〈〈1〉〉sure(finParity(p)). This shows that
for priority functions with three or more priorities, the sure winning set for
a finitary parity objective can be a strict subset of the sure winning set for
the corresponding classical parity objective on 2-player game graphs, that is,
〈〈1〉〉sure(finParity(p)) � 〈〈1〉〉sure(Parity(p)), and in general for 21/2-player game
graphs we have 〈〈1〉〉val (finParity(p)) ≤ 〈〈1〉〉val (Parity(p)).

3 Qualitative Analysis of Stochastic Finitary Games

In this section we present algorithms for qualitative analysis of 21/2-player games
with finitary parity and finitary Streett objectives. We first present a few key
lemmas that would be useful to prove the correctness of the algorithms.

Lemma 2. Let G be a 21/2-player game graph with the set S of states,
and let P = {(E1, F1), (E2, F2), . . . , (Ed, Fd)} be a set of d Streett pairs. If
〈〈1〉〉sure(finStreett(F )) = ∅, then the following assertions hold:
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1. 〈〈2〉〉almost (cofinStreett(F )) = S; and
2. there is an almost-sure winning strategy π for player 2 with nocount(|π|) =

d · 2d.

Proof. Let Ĝ = Tr2(G) be the 2-player game graph obtained from
G. If 〈〈1〉〉sure(finStreett(F )) = ∅ in G, then by Lemma 1 it fol-
lows that 〈〈1〉〉sure(finStreett(F )) = ∅ in Ĝ, and then by Theorem 1
we have 〈〈2〉〉sure(cofinStreett(F )) = S for the game graph Ĝ. If
〈〈2〉〉sure(cofinStreett(F )) = S in Ĝ, then it follows from the results of [5] that
there is a pure strategy π̂ in Ĝ that satisfies the following conditions.

1. For every integer b ≥ 0, for every strategy σ̂ of player 1 in Ĝ, and from
all states s, the play from s given strategies π̂ and σ̂ satisfies the following
condition: there exists position k and 1 ≤ j ≤ d, such that the state sk at the
k-th position is in Fj , and for all k ≤ k′ < k + b the state in k′-th position
does not belong to Ej , and k + b ≤ |S| · d · 2d · (b + 1).

2. nocount(|π̂|) = d · 2d.

We obtain an almost-sure winning strategy π∗ for player 2 in G as follows: set
b = 1, the strategy π∗ is played in rounds, and in round b the strategy is played
according to the following rule:

1. (Step 1). Start play according to π̂
(a) if at any random state the chosen successor is different from π̂, then go

to the start of step 1 (i.e., start playing like the beginning of round b);
(b) if for |S| · d · 2d · (b + 1) steps at all random states the chosen successor

matches π̂, then increment b and proceed to beginning of round b + 1.

We argue that the strategy π∗ is almost-sure winning. Observe that since π∗

follows π̂ in round b unless there is a deviation at a random state, it follows that
if the strategy proceeds from round b to b + 1, then at round b, there exists a
position where the distance is at least b. Hence if the strategy π∗ proceeds for
infinitely many rounds, then cofinStreett(F ) is satisfied. To complete the proof
we argue that π∗ proceeds through infinitely many rounds with probability 1.
For a fixed b, the probability that step 1.(b). succeeds at a given trial is at least
(

1
δmin

)|S|·d·2d·(b+1)
> 0, where δmin = min{δ(s)(t) | s ∈ S©, t ∈ E(s)} > 0. Hence

it follows that the probability that the strategy gets stuck in step 1.(a). for a
fixed b is zero. Since the probability of a countable union of measure zero set is
zero, it follows that the probability that the strategy gets stuck in step 1.(a). of
any round b is zero. Hence with probability 1 the strategy π∗ proceeds through
infinitely many rounds, and the desired result follows.

Lemma 2 states that for a finitary Streett objective if the sure winning set for
player 1 is empty, then player 2 wins almost-surely everywhere in the game
graph. Since parity objectives and finitary parity objectives are a special case of
Streett and finitary Streett objectives, respectively, the result of Lemma 2 also
holds for finitary parity objectives. This is formalized as the following lemma.
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Lemma 3. Let G be a 21/2-player game graph with the set S of states, and let p
be a priority function. If 〈〈1〉〉sure(finParity(p)) = ∅, then the following assertions
hold:

1. 〈〈2〉〉almost (cofinParity(p)) = S; and
2. there is an almost-sure winning strategy π for player 2 with nocount(|π|) = 2.

We now present the notions of attractors in 21/2-player games and the basic
properties of such attractors.

Definition 1 (Attractors). Given a 21/2-player game graph G and a set U ⊆ S
of states, such that G � U is a subgame, and T ⊆ S we define Attr1,©(T, U) as
follows:

T0 = T ∩ U ; and for j ≥ 0 we define Tj+1 from Tj as

Tj+1 = Tj ∪ {s ∈ (S1 ∪ S©) ∩ U | E(s) ∩ Tj �= ∅} ∪ {s ∈ S2 ∩ U | E(s) ∩ U ⊆ Tj}.

and A = Attr1,©(T, U) =
⋃

j≥0 Tj. We obtain Attr2,©(T, U) by exchanging
the roles of player 1 and player 2. A pure memoryless attractor strategy σA :
(A \ T ) ∩ S1 → S for player 1 on A to T is as follows: for i > 0 and a state
s ∈ (Ti \Ti−1)∩S1, the strategy σA(s) ∈ Ti−1 chooses a successor in Ti−1 (which
exists by definition).

Lemma 4 (Attractor properties). Let G be a 21/2-player game graph and
U ⊆ S be a set of states such that G � U is a subgame. For a set T ⊆ S of states,
let Z = Attr1,©(T, U). Then the following assertions hold.

1. G � (U \ Z) is a subgame.
2. Let σZ be a pure memoryless attractor strategy for player 1. There exists a

constant c > 0, such that for all strategies π for player 2 in the subgame
G � U and for all states s ∈ U

(a) We have PrσZ ,π
s (Reach(T )) ≥ c · PrσZ ,π

s (Reach(Z)); and
(b) if PrσZ ,π

s (Buchi(Z)) > 0, then PrσZ ,π
s (Buchi(T ) | Buchi(Z)) = 1.

We now present the second key lemma for the algorithms for the qualitative
analysis of 21/2-player finitary parity and finitary Streett games.

Lemma 5. Let G be a 21/2-player game graph with the set S of states, and let Φ
be a finitary parity or a finitary Streett objective with d pairs. If 〈〈1〉〉pos (Φ) = S,
then the following assertions hold:

1. 〈〈1〉〉almost (Φ) = S;
2. if Φ is a finitary parity objective, then memoryless almost-sure winning

strategies exist; and if Φ is a finitary Streett objective, then an almost-sure
winning strategy with memory d · 2d exists.

Proof. The proof proceeds by iteratively removing sure winning sets, and the
corresponding attractors from the graphs. Let G0 = G, and S0 = S. For i ≥ 0,
let Gi and Si be the game graph and the set of states at the i-th iteration. Let
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Zi = 〈〈1〉〉sure(Φ) in Gi, and Ai = Attr1,©(Zi, S
i). Let Gi+1 = G � (Si \ Ai),

and Xi =
⋃

j≤i Ai. We continue this process unless for some k we have Xk = S.
If for some game graph Gi we have Zi = ∅ (i.e., 〈〈1〉〉sure(Φ) = ∅ in Gi), then
by Lemma 5 we have that 〈〈2〉〉almost (Φ) = Si, where Φ is the complementary
objective to Φ. This would contradict that 〈〈1〉〉pos (Φ) = S. It follows that for
some k we would have Xk = S. The almost-sure winning strategy σ∗ for player 1
is defined as follows: in Zi play a sure winning strategy for Φ in Gi, and in
Ai \ Zi play a pure memoryless attractor strategy to reach Zi. The strategy
σ∗ ensures the following: (a) from Zi either the game stays in Zi and satisfies
Φ, or reaches Xi−1 (this follows since a sure winning strategy is followed in
Gi, and player 2 may choose to escape only to Xi−1); and (b) if Ai is visited
infinitely often, then Xi−1 ∪ Zi is reached with probability 1 (this follows from
the attractor properties, i.e., Lemma 4). It follows from the above two facts that
with probability 1 the game settles in some Zi, i.e., for all strategies π and all
states s we have Prσ∗,π

s (
⋃

i≤k coBuchi(Zi)) = 1. It follows that for all strategies
π and all states s we have Prσ∗,π

s (Φ) = 1. By choosing sure winning strategies in
Zi that satisfy the memory requirements (which is possible by Theorem 3 and
Theorem 4) we obtain the desired result.

Computation of positive winning set. Given a 21/2-player game graph G
and a finitary parity or a finitary Streett objective Φ, the set 〈〈1〉〉pos(Φ) in G can
be computed as follows. Let G0 = G, and S0 = S. For i ≥ 0, let Gi and Si be
the game graph and the set of states at the i-th iteration. Let Zi = 〈〈1〉〉sure(Φ)
in Gi, and Ai = Attr1,©(Zi, S

i). Let Gi+1 = G � (Si \Ai), and Xi =
⋃

j≤i Ai. If
Zi = ∅, then Si = 〈〈2〉〉almost (Φ) and S \Si = 〈〈1〉〉pos(Φ). The correctness follows
from Lemma 2.
Computation of almost-sure winning set. Given a 21/2-player game graph
G and a finitary parity or a finitary Streett objective Φ, the set 〈〈1〉〉almost (Φ)
in G can be computed as follows. Let G0 = G, and S0 = S. For i ≥ 0, let
Gi and Si be the game graph and the set of states at the i-th iteration. Let
Zi = 〈〈2〉〉almost (Φ) in Gi, and Ai = Attr2,©(Zi, S

i). Let Gi+1 = G � (Si \ Ai),
and Xi =

⋃
j≤i Ai. In other words, the almost-sure winning set for player 2 and

its attractor are iteratively removed from the game graph. If Zi = ∅, then in Gi

we have 〈〈1〉〉pos(Φ) = Si, and by Lemma 5 we obtain that 〈〈1〉〉almost (Φ) = Si.
That is we have Si = 〈〈1〉〉almost (Φ) and S \ Si = 〈〈2〉〉pos (Φ). We have the
following theorem summarizing the qualitative complexity of 21/2-player games
with finitary parity and finitary Streett objectives.

Theorem 5. Given a 21/2-player game graph G = ((S, E), (S1, S2, S©), δ)) with
n states and m edges, and given a finitary parity or a finitary Streett objective
Φ, the following assertions hold.

1. 〈〈1〉〉almost (Φ) = S \ 〈〈2〉〉pos (Φ) and 〈〈1〉〉pos(Φ) = S \ 〈〈2〉〉almost (Φ).
2. The family of pure memoryless strategies suffices for almost-sure and pos-

itive winning with respect to finitary parity objectives on 21/2-player game
graphs. If Φ is a finitary parity objective, then there exist infinite-memory
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almost-sure and positive winning strategies π for player 2 for the comple-
mentary infinitary parity objective Φ such that π is finite-memory counting
with nocount(|π|) = 2. In general no finite-memory almost-sure and positive
winning strategies exist for player 2 for Φ.

3. If Φ is a finitary Streett objective with d pairs, then there exists a finite-
memory almost-sure and positive winning strategy σ for player 1 such that
|σ| = d·2d. In general almost-sure and positive winning strategies for player 1
for the objective Φ require 2�

d
2 	 memory. There exist infinite-memory almost-

sure and positive winning strategies π for player 2 for the complementary
objective Φ such that π is finite-memory counting with nocount(|π|) = d · 2d.
In general no finite-memory almost-sure and positive winning strategies exist
for player 2 for Φ.

4. If Φ is a finitary parity objective, then the winning sets 〈〈1〉〉pos(Φ) and
〈〈2〉〉almost (Φ) can be computed in time O(n3 · m), and the sets 〈〈1〉〉almost (Φ)
and 〈〈2〉〉pos (Φ) can be computed in time O(n4 · m).

5. If Φ is a finitary Streett objective with d pairs, then the winning sets
〈〈1〉〉pos (Φ) and 〈〈2〉〉almost (Φ) can be computed in time O(n3·m·d2·4d), and the
sets 〈〈1〉〉almost (Φ) and 〈〈2〉〉pos(Φ) can be computed in time O(n4 ·m · d2 · 4d).

4 Quantitative Analysis of Stochastic Finitary Games

In this section we consider the quantitative analysis of 21/2-player games with
finitary parity and finitary Streett objectives. We start with notion of value
classes.

Definition 2 (Value classes). Given a finitary objective Φ, for every real
r ∈ [0, 1] the value class with value r is VC(Φ, r) = {s ∈ S | 〈〈1〉〉val (Φ)(s) = r}
is the set of states with value r for player 1. For r ∈ [0, 1] we denote by
VC(Φ, > r) =

⋃
q>r VC(Φ, q) the value classes greater than r and by VC(Φ, <

r) =
⋃

q<r VC(Φ, q) the value classes smaller than r.

Definition 3 (Boundary probabilistic states). Given a set U of states, a
state s ∈ U ∩ S© is a boundary probabilistic state for U if E(s) ∩ (S \ U) �= ∅,
i.e., the probabilistic state has an edge out of the set U . We denote by Bnd(U) the
set of boundary probabilistic states for U . For a value class VC(Φ, r) we denote
by Bnd(Φ, r) the set of boundary probabilistic states of value class r.

Observation. For a state s ∈ Bnd(Φ, r) we have E(s) ∩ VC(Φ, > r) �= ∅ and
E(s) ∩ VC(Φ, < r) �= ∅, i.e., the boundary probabilistic states have edges to
higher and lower value classes.

Reduction of a value class. Given a set U of states, such that U is δ-live, let
Bnd(U) be the set boundary probabilistic states for U . We denote by GBnd(U)

the subgame graph G � U where every state in Bnd(U) is converted to an absorb-
ing state (state with a self-loop). Since U is δ-live, we have GBnd(U) is a subgame
graph. We denote by GBnd(Φ,r) the subgame graph where every boundary proba-
bilistic state in Bnd(Φ, r) is converted to an absorbing state. For a tail objective
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Φ, we denote by GΦ,r = GBnd(Φ,r) � VC(Φ, r): this is a subgame graph since for a
tail objective Φ every value class is δ-live, and δ-closed as all states in Bnd(Φ, r)
are converted to absorbing states. We now present a property of tail objectives
and we present our results that use the property. Since tail objectives subsume
finitary parity and finitary Streett objectives, the desired results would follow
for finitary parity and finitary Streett objectives.

Almost-limit property for tail objectives. An objective Φ satisfies the
almost-limit property if for all 21/2-player game graphs and for all F, R ⊆ S
the following equalities hold:

{s ∈ S | 〈〈1〉〉val (Φ ∩ Safe(F )) = 1} = 〈〈1〉〉almost (Φ ∩ Safe(F ));

{s ∈ S | 〈〈1〉〉val (Φ ∪ Reach(R)) = 1} = 〈〈1〉〉almost (Φ ∪ Reach(R));

{s ∈ S | 〈〈2〉〉val (Φ ∩ Safe(F )) = 1} = 〈〈2〉〉almost (Φ ∩ Safe(F ));

{s ∈ S | 〈〈2〉〉val (Φ ∪ Reach(R)) = 1} = 〈〈2〉〉almost (Φ ∪ Reach(R)).

If Φ is a tail objective, then the objective Φ ∩ Safe(F ) can be interpreted as a
tail objective Φ ∩ coBuchi(F ) by transforming every state in S \ F as a loosing
absorbing state. Similarly, if Φ is a tail objective, then the objective Φ∪Reach(R)
can be interpreted as a tail objective Φ ∪ Buchi(R) by transforming every state
in R as winning absorbing state. From the results of [13] (Chapter 3) it follows
that for all tail objectives Φ we have

{s ∈ S | 〈〈1〉〉val (Φ)(s) = 1} = 〈〈1〉〉almost (Φ);

{s ∈ S | 〈〈2〉〉val (Φ)(s) = 1} = 〈〈2〉〉almost (Φ).

Hence it follows that all tail objective satisfy the almost-limit property. We
now present a lemma, that extends a property of 21/2-player games with ω-
regular objectives to tail objectives (that subsumes finitary parity and Streett
objectives).

Lemma 6 (Almost-sure reduction). Let G be a 21/2-player game graph and
Φ be a tail objective. For 0 < r < 1, the following assertions hold.

1. Player 1 wins almost-surely for objective Φ∪Reach(Bnd(Φ, r)) from all states
in GΦ,r, i.e., 〈〈1〉〉almost (Φ ∪ Reach(Bnd(Φ, r))) = VC(Φ, r) in the subgame
graph GΦ,r.

2. Player 2 wins almost-surely for objective Φ∪Reach(Bnd(Φ, r)) from all states
in GΦ,r, i.e., 〈〈2〉〉almost (Φ ∪ Reach(Bnd(Φ, r))) = VC(Φ, r) in the subgame
graph GΦ,r.

Proof. We prove the first part and the second part follows from symmetric ar-
guments. The result is obtained through an argument by contradiction. Let
0 < r < 1, and let

q = max{〈〈1〉〉val (Φ)(t) | t ∈ E(s) \ VC(Φ, r), s ∈ VC(Φ, r) ∩ S1},
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that is, q is the maximum value a successor state t of a player 1 state s ∈ VC(Φ, r)
such that the successor state t is not in VC(Φ, r). We must have q < r. Hence
if player 1 chooses to escape the value class VC(Φ, r), then player 1 gets to
see a state with value at most q < r. We consider the subgame graph GΦ,r.
Let U = VC(Φ, r) and Z = Bnd(Φ, r). Assume towards contradiction, there
exists a state s ∈ U such that s �∈ 〈〈1〉〉almost (Φ ∪ Reach(Z)). Then we have
s ∈ (U \ Z); and since Φ is a tail objective satisfying the almost-limit property
and s �∈ 〈〈1〉〉almost (Φ ∪ Reach(Z)) we have 〈〈2〉〉val (Φ ∩ Safe(U \ Z))(s) > 0.
Observe that in GΦ,r we have all states in Z are absorbing states, and hence the
objective Φ∩Safe(U \Z) is equivalent to the objective Φ∩coBuchi(U \Z), which
can be considered as a tail objective. Since 〈〈2〉〉val (Φ ∩ Safe(U \ Z))(s) > 0,
for some state s, it follows from Theorem 1 of [2] that there exists a state
s1 ∈ (U\Z) such that 〈〈2〉〉val (Φ∩Safe(U\Z)) = 1. Then, since Φ is a tail objective
satisfying the almost-limit property, it follows that there exists a strategy π̂ for
player 2 in GΦ,r such that for all strategies σ̂ for player 1 in GΦ,r we have
Prσ̂,π̂

s1
(Φ ∩ Safe(U \ Z)) = 1. We will now construct a strategy π∗ for player 2

as a combination of the strategy π̂ and a strategy in the original game G. By
Martin’s determinacy result (Theorem 2), for all ε > 0, there exists an ε-optimal
strategy πε for player 2 in G such that for all s ∈ S and for all strategies σ for
player 1 we have

Prσ,πε
s (Φ) ≥ 〈〈2〉〉val (Φ)(s) − ε.

Let r − q = α > 0, and let ε = α
2 and consider an ε-optimal strategy πε for

player 2 in G. The strategy π∗ in G is constructed as follows: for a history w
that remains in U , player 2 follows π̂; and if the history reaches (S \ U), then
player 2 follows the strategy πε. Formally, for a history w = 〈s1, s2, . . . , sk〉 we
have

π∗(w) =

{
π̂(w) if for all 1 ≤ j ≤ k. sj ∈ U ;
πε(sj , sj+1, . . . , sk) where j = min{i | si �∈ U}

We consider the case when the play starts at s1. The strategy π∗ ensures the
following: if the game stays in U , then the strategy π̂ is followed, and given the
play stays in U , the strategy π̂ ensures with probability 1 that Φ is satisfied and
Bnd(Φ, r) is not reached. Hence if the game escapes U (i.e., player 1 chooses to
escape U), then it reaches a state with value at most q for player 1. We consider
an arbitrary strategy σ for player 1 and consider the following cases.

1. If Prσ,π∗
s1

(Safe(U)) = 1, then we have Prσ,π∗
s1

(Φ ∩ Safe(U)) = Prσ,π̂
s1

(Φ ∩
Safe(U)) = 1. Hence we also have Prσ,π̂

s1
(Φ) = 1, i.e., we have Prσ,π∗

s1
(Φ) = 0.

2. If Prσ,π∗
s1

(Reach(S \ U)) = 1, then the play reaches a state with value for
player 1 at most q and the strategy πε ensures that Prσ,π∗

s1
(Φ) ≤ q + ε.

3. If Prσ,π∗
s1

(Safe(U)) > 0 and Prσ,π∗
s1

(Reach(S \ U)) > 0, then we condition on
both these events and have the following:
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Prσ,π∗
s1

(Φ) = Prσ,π∗
s1

(Φ | Safe(U)) · Prσ,π∗
s1

(Safe(U))

+ Prσ,π∗
s1

(Φ | Reach(S \ U)) · Prσ,π∗
s1

(Reach(S \ U))

≤ 0 + (q + ε) · Prσ,π∗
s1

(Reach(S \ U))

≤ q + ε.

The above inequalities are obtained as follows: given the event Safe(U), the
strategy π∗ follows π̂ and ensures that Φ is satisfied with probability 1 (i.e., Φ
is satisfied with probability 0); else the game reaches states where the value
for player 1 is at most q, and then the analysis is similar to the previous
case.

Hence for all strategies σ we have

Prσ,π∗
s1

(Φ) ≤ q + ε = q +
α

2
= r − α

2
.

Hence we must have 〈〈1〉〉val (Φ)(s1) ≤ r− α
2 . Since α > 0 and s1 ∈ VC(Φ, r) (i.e.,

〈〈1〉〉val (Φ)(s1) = r), we have a contradiction. The desired result follows.

Lemma 7 (Almost-sure to optimality). Let G be a 21/2-player game graph
and Φ be a tail objective. Let σ be a strategy such that

– σ is an almost-sure winning strategy from the almost-sure winning states
(〈〈1〉〉almost (Φ) in G); and

– σ is an almost-sure winning strategy for objective Φ ∪ Reach(Bnd(Φ, r)) in
the game GΦ,r, for all 0 < r < 1.

Then σ is an optimal strategy. Analogous result holds for player 2 strategies.

Proof. (Sketch). Consider a strategy σ satisfying the conditions of the lemma,
a starting state s, and a counter strategy π. If the play settles in a value-
class with r > 0, i.e., satisfies coBuchi(VC(Φ, r)), for some r > 0, then the
play satisfies Φ almost-surely. From a value class the play can leave the value
class if player 2 chooses to leave to a greater value class, or by reaching the
boundary probabilistic states such that average value of the successor states
is the value of the value class. Hence it follows that (a) either the event⋃

r>0 coBuchi(VC(Φ, r)) holds, and then Φ holds almost-surely; (b) else the event
Reach(〈〈1〉〉almost (Φ)∪ 〈〈2〉〉almost (Φ)) holds, and by the conditions on leaving the
value class it follows that Prσ,π

s (Reach(〈〈1〉〉almost (Φ)) | Reach(〈〈1〉〉almost (Φ) ∪
〈〈2〉〉almost (Φ))) ≥ 〈〈1〉〉val (Φ)(s). It follows that for all s ∈ S and all strategies π
we have Prσ,π

s (Φ) ≥ 〈〈1〉〉val (Φ)(s). The desired result follows.

It follows from Lemma 6 that for tail objectives, strategies satisfying the con-
ditions of Lemma 7 exist. It follows from Lemma 7 that optimal strategies for
player 1 for tail objectives (and hence for finitary parity and Streett objectives),
and optimal strategies for player 2 for the corresponding complementary objec-
tives is no more complex than the respective almost-sure winning strategies.
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Lemma 8. Let G = ((S, E), (S1, S2, S©), δ) be a 21/2-player game with a tail
objective Φ. Let P = (V0, V1, . . . , Vk) be a partition of the state space S, and let
r0 > r1 > r2 > . . . > rk be k-real values such that the following conditions hold:

1. V0 = 〈〈1〉〉almost (Φ) and Vk = 〈〈2〉〉almost (Φ);
2. r0 = 1 and rk = 0;
3. for all 1 ≤ i ≤ k − 1 we have Bnd(Vi) �= ∅ and Vi is δ-live;
4. for all 1 ≤ i ≤ k − 1 and all s ∈ S2 ∩ Vi we have E(s) ⊆ ⋃

j≤i Vj;
5. for all 1 ≤ i ≤ k − 1 we have Vi = 〈〈1〉〉almost (Φ ∪ Reach(Bnd(Vi))) in

GBnd(Vi);
6. let xs = ri, for s ∈ Vi, and for all s ∈ S©, let xs satisfy xs =

∑
t∈E(s) xt ·

δ(s)(t).

Then we have 〈〈1〉〉val (Φ)(s) ≥ xs for all s ∈ S. Analogous result holds for
player 2.

Proof. (Sketch). We fix a strategy σ such that σ is almost-sure winning from
〈〈1〉〉almost (Φ), and in every Vi, for 1 ≤ i ≤ k − 1, it is almost-sure winning for
the objective Φ ∪ Reach(Bnd(Vi)). Arguments similar to Lemma 7 shows that
for s ∈ S and for all π we have Prσ,π

s (Φ)(s) ≥ xs.

Algorithm for quantitative analysis. We now present an algorithm for quan-
titative analysis for 21/2-player games with tail objectives. The algorithm is a NP
algorithm with an oracle access to the qualitative algorithms. The algorithm is
based on Lemma 8. Given a 21/2-player game G = ((S, E), (S1, S2, S©), δ) with
a finitary parity or a finitary Streett objective Φ, a state s and a rational number
r, the following assertion hold: if 〈〈1〉〉val (Φ)(s) ≥ r, then there exists a partition
P = (V0, V1, V2, . . . , Vk) of S and rational values r0 > r1 > r2 > . . . > rk, such
that ri = pi

qi
with pi, qi ≤ δ

4·|E|
u , where δu = max{q | δ(s)(t) = p

q for p, q ∈
N, s ∈ S© and δ(s)(t) > 0}, such that conditions of Lemma 8 are satisfied,
and s ∈ Vi with ri ≥ r. The witness P is the value class partition and the
rational values represent the values of the value classes, and the precision of
the values can also be proved (we omit details due to lack of space). From the
above observation we obtain the algorithm for quantitative analysis as follows:
given a 21/2-player game graph G = ((S, E), (S1, S2, S©), δ) with a finitary par-
ity or a finitary Streett objective Φ, a state s and a rational r, to verify that
〈〈1〉〉val (Φ)(s) ≥ r, the algorithm guesses a partition P = (V0, V1, V2, . . . , Vk) of S

and rational values r0 > r1 > r2 > . . . > rk, such that ri = pi

qi
with pi, qi ≤ δ

4·|E|
u ,

and then verifies that all the conditions of Lemma 8 are satisfied, and s ∈ Vi with
ri ≥ r. Observe that since the guesses of the rational values can be made with
O(|G| · |S| · |E|) bits, the guess is polynomial in size of the game. The condition 1
and the condition 5 of Lemma 8 can be verified by any qualitative algorithms,
and all the other conditions can be checked in polynomial time. We now summa-
rize the results on quantitative analysis of 21/2-player games with tail objectives,
and then present the results for finitary parity and finitary Streett objectives.

Theorem 6. Given a 21/2-player game graph and a tail objective Φ, the follow-
ing assertions hold.
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1. If a family ΣC of strategies suffices for almost-sure winning for Φ, then the
family ΣC of strategies also suffices for optimality for Φ.

2. Given a rational number r and a state s, whether 〈〈1〉〉val (Φ)(s) ≥ r can be
decided in NPA, where A is an oracle for the qualitative analysis of Φ on
21/2-player game graphs.

Theorem 7. Given a 21/2-player game graph and a finitary parity or a finitary
Streett objective Φ, the following assertions hold.

1. The family of pure memoryless strategies suffices for optimality with respect
to finitary parity objectives on 21/2-player game graphs. If Φ is a finitary
parity objective, then there exist infinite-memory optimal strategies π for
player 2 for the complementary infinitary parity objective Φ such that π is
finite-memory counting with nocount(|π|) = 2. In general no finite-memory
optimal strategies exist for player 2 for Φ.

2. If Φ is a finitary Streett objective with d pairs, then there exists a finite-
memory optimal strategy σ for player 1 such that |σ| = d · 2d. In general
optimal strategies for player 1 for the objective Φ require 2�

d
2 	 memory. There

exist infinite-memory optimal strategies π for player 2 for the complementary
objective Φ such that π is finite-memory counting with nocount(|π|) = d · 2d.
In general no finite-memory optimal strategy exists for player 2 for Φ.

3. If Φ is a finitary parity objective, then given a rational r and a state s,
whether 〈〈1〉〉val (Φ)(s) ≥ r can be decided in NP ∩ coNP.

4. If Φ is a finitary Streett objective, then given a rational r and a state s,
whether 〈〈1〉〉val (Φ)(s) ≥ r can be decided in EXPTIME.

Remark 2. For 21/2-player games with finitary objectives, the qualitative anal-
ysis can be achieved in polynomial time, however, we only prove a NP ∩ coNP
bound for the quantitative analysis. It may be noted that for 21/2-player game
graphs, the quantitative analysis for finitary and nonfinitary Büchi objectives co-
incide. The best known bound for quantitative analysis of 21/2-player games with
Büchi objectives is NP ∩ coNP, and obtaining a polynomial time algorithm is a
major open problem. Hence obtaining a polynomial time algorithm for quanti-
tative analysis of 21/2-player games with finitary parity objectives would require
the solution of a major open problem.
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