Streett Games on Finite Graphs™*

Florian Horn

LIAFA, Université Paris 7, France & LI7, RWTH Aachen, Germany

Abstract. Streett Games are an adequate model of strong fairness in
reactive systems. We show that solving these games is co-NP complete,
and that they require memory factorial in the size of the winning con-
dition, even when the size of the game is polynomial. Two algorithms,
computing the strategies of both players, are also presented.

1 Introduction

Problems of control related to distributed resources often use the concept of
fairness. It is underlying in classical problems such as the mutual exclusion. In
this problem, agents ask for access to a critical section, and then wait for their
turn until the scheduler grants them access. This is the notion of weak fairness:
a request must be continuously enabled to be sure that it is fulfilled.

These problems can also be specified with another kind of fairness, called
Request-Response fairness (RR for short) which is presented in [WHTO03]. In this
case, each request that is enabled once must eventually be fulfilled. RR-fairness
allows more compact specifications (translation to weak fairness is exponential),
but strategies for RR-games need exponential memory.

These notions of fairness are ill-adapted to online resources where both clients
and providers are multiple: at any time, a client can choose another provider and
drop his request. For example, a routing program, confronted with an overloaded
node, will just change the path of its packages. Such abandoned requests need
not to be addressed, yet a "good" controller must ensure that everyone gets a fair
amount of the ressource. The problem is then to differentiate a slow system from
an unfair one. The notion of strong fairness, or Streett condition, corresponds to
this kind of specification: a system is strongly fair if a request that is repeatedly
enabled must eventually be fulfilled. Requests that are enabled only a finite
number of times can be ignored without penalty.

Of course, infinite paths are of no practical use: the point is to decide in finite
time if a controller is strongly fair, i.e. whether a faithful client can be sure that
his request will eventually be fulfilled. The question of strong fairness in closed
systems has been studied in [Saf92] and [Sch02]. In [Zie98§], the author addresses
the problem of the more general Muller games on infinite graph. As for strategies,
it is known that Muller games and in particular Streett games require memory,
whereas parity games and Rabin games (Streett games for the other player) do
not. In [DJW97], the amount of memory needed for any given Muller condition

* Work supported by the EU-TMR network GAMES

is considered. A solution for Streett games through a reduction to parity games
is given in [BLV96]. This reduction uses the concept of Index of Appearance
Records presented in [MS95]. It leads to a factorial blow-up, with a parity game of
size n.k?.k!, with 2k colors, for n states and a condition of size k. The solution of
parity games is equivalent to model-checking for p-calculus and was extensively
studied. We will compare our results with the behaviour of the IAR reduction
using two main algorithms. One, unsing "Strategy Improvement" is presented
in [VJO00] has the best results with a polynomial complexity in practical cases,
but without theoretical proof of this behaviour. The other one, presented in [|
has the best proven complexity with O(n%?), where d is the number of colors in
the game. The complexity for the solution of Streett games is then (n.k2.k!)¥,
while with the strategy improvement, the (unproven) complexity is a polynom
in n.k?.k!. Finally, in [EJ88], a result about Rabin tree automata translates as
co-NP completeness for Streett games.

This paper presents two new contributions: first we show a family of games
where winning strategies require memory factorial in the size of the Streett con-
dition. The existence of such a family can already be established using [DJW97],
but our example does not entail an exponential blow-up. Second, we present
a better theoretical complexity for solving Streett games through a new algo-
rithm, that appears to be a specialized version of the one for infinite Muller
games in [Zie98]. Its worst case complexity is n*.k!. This is better than the use
of the TAR’s reduction with a O(n%/?) algorithm, but worse than the use of the
Strategy Improvement if it is indeed polynomial.

2 Definitions

2.1 Games and strategies

An infinite two-player game G consists of a finite! graph (Q, E) containing a
token. The token is always in one of the states and can only move along the edges.
In this article, the two players will be called Eve and Adam. @ is partitioned into
Eve’s states (Qg), represented as circles, and Adam’s states (Q4), represented
as squares. The owner of the state containing

the token chooses the next state. A An example of game graph is given in
play p = ¢1,q2,... is the infinite se- figure 1.

quence of states visited by the token,

thus respecting the edge relation: for all

i, (qi,qi+1) € E. We consider only in-

finite plays, and we assume that every

state has at least one sucessor. Finally

a game is defined by Wing(G) C Q¥,

the set of winning plays for Eve. All

the other plays are winning for Adam.

1 Although many results are still valid on infinite graphs.

5 Fig.1. A game graph

)
Definition3+—A4 subgume G’ of a game G is a game such that Q' C Q, E' =
E|g xq and Winly = Wing N Q™.

Remark 2. Our definition of a game imposes that every state has a successor, so
it does not hold that every subgraph is a subgame.

Usual problems about games are to compute the winning regions and the
corresponding strategies. In this section, we will describe several tools that will
be useful in this article. See [Tho95] and [Zie98] for more details.

A strategy for a player P is a function o from Q*Qp to @ respecting the
edge relation: (g, f(w.q)) € E. Informally, it decides which move P must take
after any finite play ending in a state belonging to P. A play p = q1,¢2,... is
consistent with a strategy o for P if Vi, q; € Qp = qiv1 = 0(q1 ... q;). A strategy
is winning if any play consistent with the strategy is in Winp. It is positional (or
memoryless) if the next move depend only on the current position of the token.
A strategy uses a memory m if it can be represented by a control automaton
with m states: at each step, the next move and the next control state depends
only on the current position of the token and the current control state.

The winning region for Eve (resp. Adam) is the set of states from where she
(resp. he) has a winning strategy. We write Wg(G) (resp. W4 (G)) to denote this
set.

A player often needs to reach or to avoid particular sets of states. We will
call AttrG (V) (read "the attractor of V for player P in the game G") the set
of states where P can force the token to reach the set V. The corresponding
"attractor strategy" is positional.

Definition 3. A trap T C Q for a player P is a subgame that P cannot leave:
VgeTNQp,V¢ €Q,(q,¢) e E=q €T.

Remark 4. The complement of an attractor for P is a trap for P.

Remark 5. Let T be a trap for a player (say Adam) in a game G, and o be a
strategy for Eve in that trap. Then the sets of plays consistent with ¢ in the
game G and in the subgame T are equal. In particular, a winning region for Eve
in the subgame T is still a winning region for her in G. Another crucial use for
our purpose is that a trap for Adam relatively to another trap for Adam is still
a trap in the general game.

2.2 Winning Conditions

Two kinds of winning conditions will be considered in this article. Both are prefiz
independent: for any prefix w € Q* and any play p € Q“, p and wp are winning
for the same player. Specifically, strategies do not depend on the initial memory.

Parity: In a parity game a coloring function associates an integer to each of the
states. To each play corresponds a set of colors appearing infinitely often. If the
greatest color in this set is even, then Eve wins. If not, Adam does.

Streett: A basic Streett condition is a pair of set of states (@, R). The set @
corresponds to requests, and R are the desired responses. A general Streett con-
dition is a conjunction of basic Streett conditions (Q;, R;)i=1..k. To win such
a game, Adam must force the token to visit infinitely often one of the requests
Q@; while the corresponding answer R; is visited only a finite number of time.
Conversely, Eve wins if for every request @; visited infinitely often, the corre-
sponding answer R; is visited infinitely often. Note that finite occurrences of
requests or responses are not considered: Streett games translate the notion of
strong fairness.

2.3 Index of appearance records (IAR)
The IAR reduction from [MS95|, applied to games in [BLV96], is described below:

Definition 6. An IAR for a Streett condition made of k basic conditions is a
tuple (m,e,) where 7 is a permutation over {1...k} (m € S;) and e, f are two
integers in {1...k}

IAR’s are used to reduce a Streett game to a parity game with the following
rules: the states of the parity game are @ x S x {1... k}z. The color of a state
(q,m,e, f) is ¢ = max(2e,2f — 1). To each transition (g,q’) of the Streett game
correspond all the transitions ((gq, 7, e, f), (¢, 7', €', f')) which respect:

— 7’ is obtained from 7 by shifting all the conditions fulfilled in ¢’ (i.e. ¢ € R;)
in the beginning of the permutation.

— e is the greatest position in 7 of a condition fulfilled in ¢’ (i.e. ¢ € R;).

— f is the greatest position in 7’ of a condition requested in ¢’ (i.e. ¢ € Q;).

The order m corresponds to the "age" of each condition, with the younger
ones in the beginning, and the older ones in the end. The "age" considered here
is the number of steps since the last time a condition was fulfilled. With this
definition, the winner of a play in the parity game is the winner of the projection
of this play on the original game. The size of the parity game is n.k!.k2.

3 Optimality of the k! memory

In this section, we describe a family of Streett games realizing the factorial
upper bound of the memory needed by Eve. The existence of such a family
could already be deduced from [DJW97]| where the game graph has exponential
size in the number of Streett pairs. Here we present a family of games where the
size has only a quadratic growth-rate.

As in the IAR reduction, the point is to give priority to the "oldest" condi-
tions, to ensure that each one is fulfilled often enough. Factorial memory natu-
rally appears as an order between the conditions that guides Eve’s decision.

3.1 A Family of Games Requiring Factorial Memory

We present a simple family of games (G,) en expressing the heart of the problem:
Adam asks for two conditions at the same time, and Eve can answer to only
one of them. After that, the token goes back to the beginning, and so on. The
corresponding graph is given in figure 2.

Qi={{ij},je{l...k}}

R; = {i}

Fig. 2. Game Gy,

These games can be solved by a strategy with k! memory. The natural strat-
egy oy is defined as follows :

— The memory state is identified to a permutation m € S
— In the state {i,j}, Eve moves to the state ¢ or j appearing first in 7
— The memory is updated by shifting the chosen state at the end of .

The permutation 7 behaves as a "priority queue": when Eve must choose
between two conditions, she favors the oldest one, and changes 7 such that this
condition now has the lowest priority.

The argument proving that o is winning is the following: each time a con-
dition is asked and not immediately fulfilled, it gets strictly lower in the priority
queue, and will get higher only when it is fulfilled. Thus no condition can be
infinitely often requested without being also infinitely often fulfilled.

3.2 Proof of the lower bound

Memory strategy for Adam The main item of this proof is to create a strategy
for Adam that forces Eve to go through the node X with k! different contents of
her memory. This strategy is built by iteration and for a given winning strategy
o. For the remainder of the proof we suppose that Eve plays accordingly to
this strategy. The initial step is the game G2 with two conditions: no positional
strategy can be winning. The iteration step is the object of this section, and uses
the concept of high-priority condition (HPC for short). Notice that, although we
prove that the behaviour of o has to be close to og’s one, we do not suppose
anything about o, except that it is winning.

Definition 7. A condition i is an HPC in the memory state p if for any play p
starting in p, the first occurence of any of the states {i,j} in p is followed by i.

By extension, we will say that i is an HPC after a finite play w if it is an
HPC in the memory state of Eve at the end of w.

Remark 8. The strategy o¢ has my as an HPC in each memory state .
Proposition 9. Let o be a winning strategy of Eve. The following hold:

« : Vi, Adam has a strategy 7; such that as long as i is not an HPC, then i will
be requested and never be answered in the play defined by o and ;.

B : If i is an HPC after a finite play, then it will stay an HPC until it is
requested (and fulfilled, by definition of an HPC).

~ : There can be only one HPC in a given memory state.

Proof. « :1If i is not an HPC, then by definition, there exists a play pconsistent
with o that leads to an unanswered request of i. Eve’s moves are defined by
0. The strategy 7; links each prefix of p ending in an Adam node to the next
state?.

2 This supposes that Adam can choose his move knowing o and the current state of
Eve’s memory, but it is not a problem since ¢ is winning against any moves of Adam.

0 : Let u, v, w be finite plays such that w = uv. Suppose that i is an HPC after
u and not after w. Then by definition, all plays starting by u have their first
occurence of a {i,j} followed by i, while this does not hold for w. Hence, in
v, there is at least one occurence of a {7, j} (the first one is followed by 1).

v : If i and j are both HPC’s, there is a contradiction if Adam requests {i,j}.

The main argument of the proof is that Adam can always play in order to
transform any condition ¢ into an HPC. He only needs to play according to the
strategy 7; defined in Proposition 9-a, which leads to a state where i is requested
and not fulfilled. He can do so repeatedly as long as ¢ is not an HPC. If i never
became an HPC, it would lead to a contradiction, as this would be a winning
play for Adam. Therefore, if Adam plays this way, i becomes eventually an HPC.
Once this is the case, Adam can choose not to request ¢ and play in the subgame

1, obtained from Gy, by removing the states {i,5} and i. G3.* is isomorphic to
G—1, and the projection of ¢ to it is winning. Proposition 9-3 states that ¢ will
be an HPC (w.r.t. Gy) as long as the token does not leave Gi*. By induction
hypothesis, Adam can force Eve to visit at least (k—1)! different memory states in
this subgame, all of them with ¢ as an HPC. Finally, Proposition 9-v implies that
for different 4, j, the two associated sets of memory states (of cardinal (k — 1)!)
are disjoint. This yields k! different memory states for any winning strategy for
Gj. The overall "memory strategy" for Adam is described below:

— Play according to the strategy 71 (requesting unanswered 1), until 1 is an
HPC.

— Then play in the subgame without 1 the memory strategy for this game to
force the memory to go through (k—1)! different states. Condition 1 remains
an HPC during this step.

— Repeat the same two steps for conditions 2, 3,..., k.

4 An algorithm to solve Streett games

The algorithm presented in this section is a specialized version of Zielonka’s in
[Zie98]. The point of this study is to get a better complexity than the IAR re-
duction, without relying on the practical behaviour of the Strategy Improvement
in [VJ00]. Another interresting point is that this algorithm yields a positional
strategy for the Rabin player. The existence of such a strategy is well known,
yet the reduction through IAR gives memory-dependant strategies for Adam in
simple cases.

4.1 Naive Approach

A first idea is to consider a Streett game as a conjunction of k! different parity
games, each of them representing a hierarchy of importance between the basic
Streett conditions. In this view, the parity condition for permutation = would
be defined by: Vg, cr(q) = max{2i|q€ Ry, } U{2j —1|q € Qr,}. A winning
region for Adam in one of these games is winning for him in the Streett one.

Q1= {b}, R = {B} Q2 = {a},R2 = {A}

QSI{C}7R3:0

Fig. 3. A game where the naive algorithm does not work

Unfortunately, the converse property for Eve does not hold: she may win each
parity game and still lose the Streett game, as shown in figure 3.

On this graph, Eve can win the games where (A, a) is more important than
(B,b), by staying in the left part, and the one where (B,b) is more important
than (A, a), by staying in the right part. The Streett game, however, is winning
for Adam, as Eve must cross ¢ to go from one part to the other. It proves that the
choice of the priority between the colors cannot be made a priori: the algorithm
in the next section reconsiders its choices for each subgame.

4.2 Algorithm

Idea: The main idea behind our algorithm is that Adam cannot win if Eve can
visit the R-part of each of the basic Streett conditions. The first step is thus
for Adam to choose a basic Streett condition, and avoid its R-part. In turn,
Eve must now avoid the @Q-part of the same condition in the remaining game.
Once both of them did that, we have defined a new game, with one less basic
condition. It is important to notice that Adam chooses the considered condition:
if the computation ends favourably for Adam, then the region is really winning
for him, while if Eve wins with this choice, Adam can change it. This algorithm
has a time complexity of O(n?*.k!): the n2* factor of the complexity comes from
two recursions on the number of states, while the k! part comes from the ability
of Adam to change its choice, which forces the algorithm to consider each of the
basic conditions as the first one.

Description: Each main iteration of the algorithm determines a part of the
winning region for Adam, and removes it from the game. This iterative process
ends when no more region for Adam is found. We show then that Eve is the
winner in the remaining region. We first give a description of the sub-algorithm
used to compute winning regions for Adam, the proof of correctness will be made
in the next section. This sub-algorithm will be run for each condition.

1. The set Attrgy(R;) is removed from the R;
game until the end of the computation for
this pair. This defines the subgame G; =
G\ Attrg(R;), which is a trap for Eve. A
decreasing sequence GY of subgames of G;
will now be computed, with the property
that all removed states are winning for Eve
in G;. The last G7 (when G7 = G is the
winning region for Adam in G.

Att’I”E (Rz)

Note that in Gg , Adam can win by visiting
infinitely often @Q;. Hence, Eve’s winning

J
region cannot be included in Attrii (Q:)-
2. In the same way, a new subgame is defined:

H = G\ Attrig (Q;). H! is a trap for

Adam in G7 (but not in G)

3. The pair (Q;, R;) does not appear in Hf
The algorithm can thus be used recursively R;
to compute the winning regions Wg(H;)
and Wa(H?).

4. The winning region Wg(H?) for Eve and
its G{ -attractor are removed from G{ . This
defines G{H. By remark 5, Gg“ is still a
trap for Eve in G. The algorithm restarts
with j = j+1 at step 3, unless G771 = G,

AttrE (Rz)

Remark 10. All subgames defined by this algorithm are traps for either Eve or
Adam. Remark 5 allow us to say that:

— The winning region for Adam in one of the Gg is still winning for him in G.
— The winning region for Eve in one of the Hj is still winning for her in G/
(and in G; by construction).

When the loop ends either Gg = Gg“ #) is winning for Adam (i.e., no
states were removed), or GJ = GIT! =) (i.e., Eve wins everywhere in H?). We
give now an informal sketch of proof: _ _

In the first case, the winning region for Eve in H is empty, hence G and
Attra(G?) are winning for Adam in G (see Remark 10). This means that we
found a winning region for Adam and we can rerun the whole algorithm on a

smaller game (see figure 4). Note that all the conditions will be considered again,
even the ones that had already been discarded (ending in case 2).

In the second case, all states in GY belong to a Wg(H?) or its attractor, so
Eve wins everywhere in GY (Remark 10 again). The algorithm proceeds with the
next condition. If none of the remaining conditions yields a winning region for
Adam, Eve wins in the whole game (see figure 5).

4.3 Proof and Complexity

Validity of the resulting strategies Each iteration of the algorithm removes
states of the game until either no state can be removed, or all the states have
been removed. ‘ ‘

Case 1: There exist i and j such that G} is not empty and H; is winning for
Adam. Thus the game is in a form similar to the one in figure 4.

] Gz NR;, =]
° Gg is a trap for Eve

. et} .
with Wa(H?) = H?

Fig. 4. Case 1: G{ is a winning region for Adam.
Here the sub-algorithm stopped at the third iteration, so j = 2

Adam wins everywhere in Gg with the following strategy?:

— In Attra(Q;), the attractor strategy.
— In H}/, the corresponding winning strategy for Adam.

Eve may then choose either to stay forever in Hf after a finite number of
moves or to cross Attra(Q;) (and @;) an infinite number of times. Whatever
her choice, Adam wins. By remark 10, G (and its attractor in G) is a winning
region for Adam in G. _

Case 2 : If no subgame H is fully winning for Adam, then Eve wins in the
whole game: in this case, the game is partitioned as in figure 5 for each i.

We now describe a winning strategy for Eve in G. It uses a top-level memory
of size k to switch between k substrategies o7 . .. oy, each using (k — 1)! memory.
The strategy o; is described below:

3 There are many winning strategies, but this one is the natural one corresponding to
the construction of the set

10

e Al stands for Attrgg (Wg(H?))

e Eve wins if the token stays
in one of the Wg (HZ)

e Adam can escape the A{E
only by going up (or to Ag(R;))

Fig. 5. Case 2: Eve wins everywhere in G;
Here the subalgorithm stopped at the fourth iteration, so j ranges over {0...3})

— In the subgames H;: the subgame strategy (with (k — 1)! memory).

— In the attractors of the subgames: the attractor strategy.

— In Attrg(R;): the attractor strategy.

— In R;: Eve updates her top-level memory to (i+1) mod k and applies ;).

The subgames’ strategies and their attractors are not global strategies: Adam
can escape a subgame or its attractor by jumping to the attractor of a subgame
with a lower exposant, or to Attrg(R;). But he has only two choices: either to
eventually stay in one of the subgames, or to cross each of the R; infinitely often.
Whatever his choice, Eve wins everywhere in G.

Time complexity The time complexity for this algorithm is O(k!n?*): the
algorithm removes at least one state in each iteration, and calls n copies of itself
with one less condition. The internal operations (Attr computation, mainly) are
all polynomial.

4.4 Conclusion

The algorithm in section 4.2 gives the winning regions in better theoretical time:
O(n*) instead of O(nk2). Adam’s strategy is indeed positional, as his strategy is
a compilation (regionwise) of attractor strategies. Finally, the new algorithm is
much more natural, dealing directly with attractors and memory states instead
of using a reduction to parity games. The drawback is in the comparison with the
Strategy Improvment algorithm: there are families where our algorithm is expo-
nential in n, while there are none yet for an algorithm using the IAR reduction
and the Strategy Improvment algorithm.

5 Conclusion
We have shown that the need for factorial memory in Streett games does not

depend on the exponential size of the graph. Our algorithm for Streett games
presented a way to solve them without refering to algorithms for parity games.

11

Another interresting point is that it gives a way to get a positional strategy for
the Rabin player that is more efficient than simply guessing it - though guessing
the right permutation still highly speed up the process We intend to implement
this algorithm in the Symprog program presented in [Wal03|, to get comparison
of time complexity with the TAR algorithm over real examples.

Acknowledgments. I wish to thank Wolfgang Thomas, for many fruitful
discussions that led to these results, and Anca Muscholl, for her constant help
in the presentation of this manuscript.

References

[BLV96]

[DIW9T7]
[EJ8S|
[EL85]
[Hun04]

[MS95]

[Saf92]

[Scho02]

[Tho95]
[VJ0O]
[Wal03]

[WHTO3]

(Zie98]

N. Buhrke, H. Lescow and J. Voge. Strategy Construction in Infinite Games
with Streett and Rabin Chain Winning Conditions. In TACAS, pages 207—
224, 1996.

S. Dziembowski, M. Jurdzinski and I. Walukiewicz. How Much Memory Is
Needed to Win Infinite Games? In LICS, pages 99-110, 1997.

E. A. Emerson and C. S. Jutla. The Complexity of Tree Automata and
Logics of Programs. In FOCS, pages 328-337, 1988

E. A. Emerson and C.-L. Lei. Modalities for Model Checking: Branching
Time Strikes Back. In POPL, pages 84-96, 1985

P. Hunter. co-NP-Completeness of Streett Games. Private communication,
2004

D. E. Muller and P. E. Schupp. Simulating Alternating Tree Automata by
Nondeterministic Automata: New Results and New Proofs of the Theorems
of Rabin, McNaughton and Safra. TCS, volume 141(1-2), pages 69-107, 1995
S. Safra. Exponential Determinization for w-Automata with Strong-Fairness
Acceptance Condition. In STOC, pages 275—282, 1992

S. Schwoon. Determinization and Complementation of Streett Automata.
In ALIG, volume 2500 of Lecture Notes in Computer Science, pages 79-91,
2002.

W. Thomas. On the Synthesis of Strategies in Infinite Games. In STACS,
volume 900 of LNCS, pages 1-13, 1995.

J. Vége and M. Jurdzinski. A Discrete Strategy Improvement Algorithm for
Solving Parity Games. In CAV', volume 1855 of LNCS, pages 202-215, 2000.
N. Wallmeier. Symbolische Synthese zustandsbasierter reaktiver Programme.
Diploma thesis, RWTH Aachen, 2003.

N. Wallmeier, P. Hutten and W. Thomas. Symbolic Synthesis of Finite-State
Controllers for Request-Response Specifications. In CIAA, volume 2759 of
LNCS, pages 11-22, 2003.

W. Zielonka. Infinite Games on Finitely Coloured Graphs with Applications
to Automata on Infinite Trees. T'CS, volume 200(1-2), pages 135-183, 1998

12

