
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 223 (2023) 209–216

1877-0509 © 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the XII Latin-American Algorithms, Graphs and Op-
timization Symposium
10.1016/j.procs.2023.08.231

10.1016/j.procs.2023.08.231 1877-0509

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the XII Latin-American Algorithms, Graphs and Optimization 
Symposium

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

XII Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS 2023)

The Problem of Discovery in Version Control Systems
Laurent Bulteaua,b, Pierre-Yves Davidc, Florian Hornb,d

aLaboratoire d’Informatique Gaspard Monge, Université Gustave Eiffel
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Abstract

Version Control Systems, used by developers to keep track of the evolution of their code, model repositories as Merkle graphs
of revisions. In order to synchronize efficiently between different instances of a repository, they need to determine the common
knowledge that they share. This process is called discovery.

In this paper, we provide theoretical definitions for the problem of discovery, establish some universal upper and lower bounds
on the amount of data that needs to be exchanged, as well as NP-hardness for a restricted variant (with only 2 round-trips). We also
present and analyze some algorithms that are used in extant VCSs, such as Mercurial and Git, and propose an algorithm based on
chain-decomposition.
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1. Introduction

Version Control Systems (VCSs) are tools that help developers follow the evolution of code over the lifetime of a
project. They allow multiple developers to interact concurrently with the source code and keep track of every version
of the project.

The first VCSs, Source Code Control System [1] and Revision Control System [2], tracked files separately and
locally: they allowed collaboration, but only on one site, and only one programmer at a time. Both systems allowed
users to check out earlier versions of the code (SCCS through regular deltas, RCS through reverse-deltas), although
the process could be painstakingly slow.

A second generation of VCSs, spanning from Concurrent Versioning System [3] through Subversion [4] introduced
a central repository containing all the versions of the files. This repository could be accessed remotely, allowing
programmers in different locations to work on the same project. Locks were also removed and replaced by merging
procedures, so multiple programmers could write code simultaneously.
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The current generation of VCSs, represented by tools like Git [5] and Mercurial [6], does away with the notions
of a central repository and current version. Instead, each developer has their own copy of a given repository, which is
structured as a Merkle graph, i.e. an acyclic graph in which each node includes the hash(es) of its parent(s).

This allows anyone to add freely to their own copy, adding revisions, creating new branches or merging existing
ones. They can also exchange nodes with another peer, pushing the revisions that they know and pulling those that
they do not.

In larger projects such as Linux (Git) or Firefox (Mercurial), these operations can be very time-consuming: repos-
itories can contain millions of revisions and grow daily by thousands of revisions, with peaks at several revisions per
second. At this scale, it becomes necessary to optimize the exchange of information. This requires different agents
to be able to determine efficiently which revisions they have in common. This is the problem of discovery, which
we study in this paper from an abstract point of view. VCSs have been an object of academic interest in recent
years [7, 8, 9, 10], although to the best of our knowledge, this article is the first to study this specific problem.

The remainder of this paper is organized as follows. In Section 2, we formally define our model for VCSs as
well as the computation model that we use to analyse discovery algorithms. Then, in Section 3, we present several
algorithms, including the ones used by Git and Mercurial. Section 4 studies the theoretical complexity of Graph
Discovery, in terms of the number and volume of exchanges between the local and remote agents. In Section 5, we
build test examples from large real-world repositories and analyze the performance of existing algorithms in terms of
round-trips and total query size.

2. Definitions

2.1. Merkle graphs

A directed graph G is a pair (V, E) where V is a set of nodes and E ⊆ V2 is a set of edges. It is a directed acyclic
graph (DAG) if it does not contain any cycles. If u → v is an edge of a DAG, we call u a parent of v and v a child of
u. The set of ancestors of u is the set recursively defined as the union of {u} with the ancestors of the parents of u (if
any). Similarly, the descendants of u is the union of {u} with the descendants of its children, if any. We write u →+ v
if u is an ancestor of v with u � v.

A node with two or more parents is a merge node and a node with no parents is a root. A node with two or more
children is a branchpoint and a node with no children is a head. A node with a single parent and a single child is
a linear node. A linear section is a (possibly empty) sequence of linear nodes where each node is the parent of its
successor, preceded by a base and followed by a tip which are non-linear nodes.

A Merkle graph is a DAG where nodes contain the hash of their parents (assuming hashes to be collision-free),
which must belong to the graph. A Merkle graph is therefore entirely determined by the set of its heads. Furthermore,
if two Merkle graphs G1 = (V1, E1) and G2 = (V2, E2) have a common node, it has the same parents in both graphs.
Formally, if v ∈ V1 ∩ V2, then for any u→ v ∈ E1, then u→ v ∈ E2.

In the remainder of this paper, whenever we use the term graph, we mean a Merkle graph. When discussing existing
algorithms, we sometimes use the terms repository and revision instead of graph and node.

2.2. Discovery Problem

We study the problem of GraphDiscovery, in which a local agent knows a graph G� = (V�, E�) and has to determine
its intersection with another graph known by a remote agent Gr = (Vr, Er). Formally, the common subgraph Gc has
vertex set Vc = V� ∩ Vr. It is defined as Gc = G�[Vc] = Gr[Vc] by definition of Merkle graphs.

Graph Discovery
Input: local graph G�, remote graph Gr

Output: the common subgraph Gc of G� and Gr.
The local agent, who runs the algorithm, does not have direct access to information about the remote graph. Instead,

it has to send network requests (prefixed by remote in our pseudo-code algorithms). Each algorithm may implement
a different set of requests, possibly involving non-trivial computations on the remote side. A commonly used request,
remote.known(X) with X ⊆ V�, returns the subset of remotely known nodes among X (i.e., X ∩ Vr = X ∩ Vc).
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In this article, we do not consider the classical complexity of Graph Discovery in terms of unit operations. We are
only interested in network requests, specifically two quantities: the number of separate requests (round-trips) and the
total size of the requests (queries), defined as the number of unique node identifiers sent in either direction.

Many algorithms start with a pre-processing step (e.g. an initial exchange of local and remote heads). We ignore
this step in our pseudo-code algorithm, as they add a lot of complexity for little theoretical gain, but keep them for the
experimental cases.

Although we focus on the theoretical study of the exact Discovery problem, an under-approximation, returning only
a subset of the common vertices (or equivalently, an over-estimation return a super-set of the unknown vertices), is
acceptable in practice. This case, which happens for example in Git, results in unnecessary node data being exchanged
between peers, although the Discovery phase only exchanges node identifiers.

3. Discovery Algorithms in Git and Mercurial

3.1. Git: default discovery

In Git, discovery is done by default in breadth-first fashion, starting with the local heads (Algorithm 1). The local
revisions are sorted in topological order1 as undecided, with children preceding their parents. Then local asks remote
which revisions they know over a channel with capacity 32, using a request remote.known returning the subset of
known nodes. When an answer is positive, the revision and all its ancestors are added to common and removed from
undecided. Furthermore, Git has a timeout threshold: if 256 successive revision are unknown to remote, it considers
that no other revisions are known to remote and returns the current common set (resulting in an under-approximation).

3.2. Git: skipping discovery

As timeouts occurred too often in larger projects, Git introduced a skipping variant of its discovery algorithm.
Instead of checking each revision in order to find the exact border of common, this version jumps over an ever growing
number of generations in order to find a known ancestor (this corresponds to the two-parameter ancestor function
line 22). This means that the skipping discovery may return an under-approximation of the set of common revisions
even if the timeout is not reached. We transcribe this algorithm in pseudo-code as Algorithm 2. Note that the candidates
are represented as a heap, rather than a queue, to ensure that candidates are always queried in topological order, even
if they may have been added in a different order.

3.3. Mercurial: tree discovery

We include in our analysis the Mercurial tree discovery algorithm in use until 2010. Informally, the local agent
asks for remote heads, and successively asks for linear sections (i.e. separated by merge nodes) in the remote graph as
long as both ends of the sections are unknown. Finally, it uses a binary search over the linear sections starting with a
known node to compute the precise border of the common subgraph.

In contrast with the gitaxian approach, tree discovery always answers the exact common set. It is also the only
algorithm in this article that works from the structure of the remote graph, rather than the local one. The tree discovery
algorithm performs well on cases with a small number of large linear section, but there were catastrophic cases where
several thousands round-trips were necessary to complete discovery (see Section 5).

3.4. Mercurial: set discovery

In 2011, Mercurial replaced its tree discovery algorithm with a set-based discovery algorithm, which samples
repeatedly the still undecided subset of the local repository (Algorithm 3).

It works by updating a partition of the local nodes in three sets: common, missing and undecided. In the begin-
ning, all local nodes are undecided. In the end, they are all either common or missing.

1 Git sorts by date, which may not be exactly topological, but their discovery algorithms ignore these cases and so shall we.
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Data: local, remote

1 common ← ∅
2 undecided ← sort(local.nodes)

3 while undecided � ∅ do
4 sample ← undecided[0:32]

5 present ← remote.known(sample)

6 for node ∈ sample do
7 if node ∈ present then
8 anc ← ancestors(node)

9 common.add(anc)

10 undecided.remove(anc)

11 timeout ← 0

12 else
13 undecided.remove(node)

14 timeout += 1

15 if timeout = 256 then
16 return common

17 return common

Algorithm 1: Git: default discovery

Data: local, remote

1 common ← ∅
2 undecided ← local.nodes

3 candidates ← ∅
4 for h in local.heads do
5 candidates.heappush((h,0))

6 while candidates � ∅ do
7 sample ← ∅
8 for i in range(32) do
9 sample.add(candidates.heappop())

10 present ← remote.known(sample)

11 for (node,i) ∈ sample do
12 if node ∈ present then
13 anc ← ancestors(node)

14 common.add(anc)

15 undecided.remove(anc)

16 candidates.remove(anc)

17 timeout ← 0

18 else
19 timeout += 1

20 if timeout = 256 then
21 return common

22 for a ∈ ancestors(node,� i
2 + 1�) do

23 candidates.heappush(a,� 3i
2 + 1�))

24 return common
Algorithm 2: Git: skipping discovery

Data: local, remote

1 common ← ∅
2 missing ← ∅
3 undecided ← local.nodes

4 while undecided is not empty do
5 sample ← sample set(undecided)

6 present = remote.known(sample)

7 for node ∈ sample do
8 if node ∈ present then
9 common.add(ancestors(node))

10 undecided.remove(ancestors(node))

11 else
12 missing.add(descendants(node))

13 undecided.remove(descendants(node))

14 return common
Algorithm 3: Mercurial set discovery

In each iteration of the while loop, the algorithm samples a non-empty subset of the undecided nodes, using the
sample set method, and asks remote whether they know these nodes. All nodes in the sample are thus sorted in
common or missing. Furthermore, thanks to the Merkle graph properties, the descendants of a missing node are also
missing, and the ancestors of a common node are also common. The termination of the algorithm follows from the
depletion of the undecided set. There are many possible variants of the Set-Discovery algorithm, depending on how
one implements sample set.
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Mercurial defines samplable nodes according to the following rules: all heads and roots of undecided are sam-
plable, and any other node is samplable if its height or depth (i.e., distance to some head or root) is a power of 2. In
each round, the set of samplable nodes is computed, and a random subset of size 200 is selected from it. If there are
less than 200 samplable nodes, additional random nodes from undecided are added.

4. Complexity bounds and chain-based algorithm

In this section we study the worst-case complexity of the discovery problem. Note that we assume that algorithms
must be name-agnostic: it is impossible to derive any non-topological information from an identifier.

Remark 1. In Graph Discovery, for any local node v, any exact algorithm needs to exchange at least one node u
such that either u is an ancestor of v in V� \ Vr, or u is a descendant of v in V� ∩ Vr.

First, we give a “classical” complexity analysis of the discovery problem restricted to only 2 round trips. We show
that finding a first query that would guarantee a limited number of overall node queries is NP-hard.

Theorem 1. Given G� and an integer q > 1, it is NP-hard to decide whether the discovery can be completed in two
rounds with at most q node queries in total.

For worst-case pairs of local and remote graphs, the total query size in the problem of discovery is linear:

Lemma 2. For any n, there exists a size-n local graph G�,n such that Graph Discovery needs a total query size of at
least n nodes in the worst case over all graphs Gr.

Proof. Let G�,n consist in n unrelated revisions. By Remark 1, since the nodes in V� do not have any ancestor or
descendent except themselves, they must all be part of the exchanged set. �

We note that the above bound is tight, since it is always possible to solve the Discovery problem with the single size-
n request remote.known(local.nodes). However, the graphs involved in this lower bound are not very interesting
from a practical point of view. There is also a universal logarithmic lower bound for any local graph of size n:

Lemma 3. For any fixed local graph G� with n nodes, GraphDiscovery needs a total query size of at least �log2(n+1)�
nodes in the worst case over all graphs Gr. This bound is tight.

Our main theorem for this section deals with a wider range of possible graphs, giving a tight bound for the total
number of revisions queried in terms of height and width of the graph.

A chain of a graph G is a sequence of nodes (v0, v1, . . . , vm) where each vi is an ancestor of vi+1. An antichain
is a set of nodes such that none of them is an ancestor of another. The maximal length of a chain in G is called the
height of G. The maximal size of an antichain is its width. We recall Dilworth Theorem [11], stating that the size of
the largest antichain in a DAG is equal to the minimal number of chains required to cover the graph.

Theorem 4. There is a family of graphs of arbitrary width w and height h for which any algorithm needs a total query
size of at least w�log2(h + 1)�.

There is a protocol that realizes discovery in w�log2(h+ 1)� total query size over �log2(h+ 1)� round-trips for each
graph of width w and height h.

Proof. We first give a construction of the set of graphs yielding this worst-case lower bound. Given w and h, Gw,h
�

is a
graph containing w disjoint paths of length h. As each path has size h, it follows from Lemma 3 that there needs to be
�log2(h+1)� queries related to that path. As the paths are disjoint, no information from one path can be useful to solve
the other paths. It follows that any protocol solving discovery for Gw,h

�
requires at least w�log2(h + 1)� total queries in

the worst case.
We describe an algorithm realizing discovery in w�log2(n + 1)� total query size over �log2(n + 1)� round-trips as

Algorithm 4 (see Figure 1 for an example). It consists in finding a minimal chain cover of the local nodes and then
searching for the border in each chain by dichotomy. Note that a chain may skip over some revisions that are covered
by other chains. It may even skip over the border, in which case one half of the chain will eventually belong to common
while the other will eventually belong to missing. �
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Data: local, remote

1 common ← ∅
2 chains ← chain cover(local.nodes)

3 while chains � ∅ do
4 request ← ∅
5 for chain ∈ chains do
6 request.add(middle(chain))

7 present ← remote.known(request)

8 for chain ∈ chains do
9 if chain = ∅ then

10 chains.remove(chain)

11 else if middle(chain) ∈ present then
12 common.add(chain.split to base())

13 chain ← chain.split to tip()

14 else
15 chain ← chain.split to base()

16 return common
Algorithm 4: chain discovery

Gr

G�

Fig. 1: The chain discovery algorithm. Left: a Merkle graph with an unknown (dotted) border. Right: a chain partition is computed (non-adjacent
vertices consecutive in the blue chain are linked by a dotted arc), and middle vertices of each chain are probed successively until the known and
unknown vertex sets (bottom and top shaded areas, respectively) cover the whole graph.

This chain discovery can be seen as an instance of set discovery, with a different way of sampling undecided

nodes. In particular, there might be cross-chain inferences where a result on one chain gives information on another.
However, the chain cover should not be computed anew in each loop, as the height of undecided may not be divided
by two when we split the chains.

Computing a minimal chain covering is quadratic in time, which makes the Chain Discovery algorithm intractable
in practice. However, Cáceres et al. [12] recently proposed a parameterized linear-time algorithm (i.e. linear for
constant width) for the similar minimum path cover problem, which should be competitive for small width graphs.
One may also maintain a chain cover problem through on-line insertions of the nodes. Since the nodes are inserted in
topological order, each new node can be assigned a chain (without editing past nodes), using at most O(w2) chains for
width-w graphs [13].

5. Experimental Results

We ran the Git, Mercurial and chain algorithms on large repositories to see how they behaved in practice. Our
study cases were created from copies of pypy, netbeans, mozilla-unified, and mozilla-try repositories, to see account
for different topologies. For each of them, we started from a specific repository state and then created 10 000 different
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Fig. 2: Distributions of the number of round-trips, total query size, and over-estimation ratio (for Git algorithms) for each algorithm. Boxes delimit
the second and third quartiles, and whiskers extend to the 5-95 percentiles. Overall, the current algorithms for Git and Mercurial (git skip and set
discovery) have similar performances with typically 1–10 round trips and 1 000–10 000 queried nodes. Git yields an overestimation of typically
1–20%.

pairs of local subgraphs by choosing a revision at random and keeping only its ancestors. Our results are presented in
Figure 2. We extended Git’s sample size from 32 to 200 to get a fairer comparison with Mercurial’s results.

Git’s algorithms make a trade-off between speed and accuracy, giving up when cases become complicated. This
helps keep the number of round-trips under control (visible in the top plot of Figure 2), but comes at the cost of a
potentially large number of missed common revisions (visible in the bottom plot of Figure 2). This can represent a
very large excess network use if already known revisions are later sent to the remote server. The skipping variant
alleviates some of these problems, reducing the overestimation ratio to less than 50% in most of the cases, but the
issue remains significant.

Mercurial’s set discovery also has very low number of round-trips while tree discovery regularly used thousands
(tens of thousands in the case of mozilla-try).

However, set discovery uses more total queries than tree discovery for pypy and netbeans. This is a direct conse-
quence of set discovery maximising the information fetched in each round-trip: most of the apparent advantage of
tree-discovery comes from ”wasted” capacity, as overhead costs mean that a request for a few revisions is not much
less costly than a request for 200 revisions.

Finally, we tested a naive implementation of the chain discovery algorithm, using a heuristic for chain decompo-
sition. This algorithm obtains very competitive results in terms of number of queries, but at the cost of additional
round-trips, as well as a time-consuming chain decomposition in the first place. We expect that larger queries (sam-
pling more nodes per chain) can give a better trade-off between round-trips and total queries.

As a final statistic, we tested former versions of Mercurial on hand-picked difficult cases. The current algorithm
adjusts dynamically the size of of the sample based on the number of heads and roots. Compared to fixed-size samples,
this policy yields a 92% round-trip gain, while a simple growing policy of +5% per round already gives a 71% gain.
On the other hand, larger samples lead to more queries per round trips, and overall there is an increase in total query
size in both cases (+1.5% with the simple version, +13% in the dynamic version).

6. Conclusion

With the third generation of VCSs, the problem of discovery has emerged as a significant issue for efficient handling
of larger repositories.

Mercurial’s latest algorithm, set discovery, has very good performances, with a number of round-trips in the single
digits. However, it should be noted that one reason for its performance is that requests can be arbitrarily large. In
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pathological cases with many heads and a wide boundary, these requests can include several thousands revisions ids.
This cannot always be done over http protocols, leading to a commensurate explosion on the number of round-trips.

It would be interesting to investigate new methods to reduce the cost of discovery for repositories with large width,
especially when there are many heads. Towards this goal, the constraint that only nodes can be exchanged could be
lifted: one can allow, for example, the agents to share hashes of larger sets of nodes, in order to check whether all
nodes in some set are known without sending each node one by one. Such an approach would be particularly useful
in cases with a large common subgraph between the local and remote agents.
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