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Classic homomorphism complexity

INSTANCE: Two graphs G and H.
QUESTION: is it true that G → H?

Homomorphism

Homomorphism is NP-complete, even when H = K3.

Theorem (Karp, 1972)

If FPT 6= W [1] and let C be a recursively enumerable class of graphs. Then,
Homomorphism for input graphs in C is polynomial if and only if all cores of
graphs in C have bounded tree-width.

Theorem (Grohe, 2007)

(Explicit lower bounds under ETH by Marx, 2010)
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Classic H-Colouring

INSTANCE: A graph G .
QUESTION: is it true that G → H?

H-Colouring

K3-Colouring is NP-complete.

Theorem (Karp, 1972)

H-Colouring is polynomial if H is bipartite or has a loop.
Otherwise, NP-complete.

Theorem (Hell, Nešeťril, 1990)

H-Colouring is polynomial if the core of H has at most one edge.
Otherwise, NP-complete.

Theorem (Hell, Nešeťril, 1990)
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List H-Colouring

INSTANCE: A graph G and a list function L : V (G )→ 2V (H).

QUESTION: is it true that G
L−→ H? (∀x ∈ V (G ), the image of x is in L(x))

H-List-Colouring

Let H be a reflexive graph. If H is an interval graph, H-List-Colouring is
polynomial. Otherwise, NP-complete.

Theorem (Feder, Hell, 1998)

Let H be a loop-free graph. If H is bipartite and the complement of a circular-
arc graph, H-List-Colouring is polynomial. Otherwise, NP-complete.

Theorem (Feder, Hell, Huang, 1999)

Let H be a graph. If H is a bi-arc graph, H-List-Colouring is polynomial.
Otherwise, NP-complete.

Theorem (Feder, Hell, Huang, 2003)
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List H-Colouring, continued

INSTANCE: A graph G and a list function L : V (G )→ 2V (H).

QUESTION: is it true that G
L−→ H? (∀x ∈ V (G ), the image of x is in L(x))

H-List-Colouring

Other nice studied cases:

Connected lists Feder-Hell, 1998 (Polynomial for reflexive chordal graphs)

Minimum Cost Homomorphisms Gutin-Hell-Rafiey-Yeo, 2008 (Polynomial for
reflexive proper interval graphs and irreflexive proper interval bigraphs)

Digraphs Hell-Rafiey, 2011 (Polynomial for Digraph Asteroidal Triple free
digraphs)

Minimum Cost Homomorphisms for digraphs Hell-Rafiey, 2012 (Polynomial
for digraphs with a MIN-MAX ordering)
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Instance restrictions - planar graphs

K3-Colouring is NP-complete, even when the input graph is planar.

Theorem (Garey, Johnson, 1979)

Remark: By the 4 Colour Theorem, if H contains a 4-clique, H-Colouring is
trivial for planar instances.

Whenever H has girth 5 and maximum degree at most 3, H-Colouring is
NP-complete, even when the input graph is planar.

Theorem (MacGillivray, Siggers, 2009)

Let C16 be the Clebsch graph. C16-Colouring is poly-time when the input
graph is planar.

Theorem (Naserasr, 2007)
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Girth dichotomy and hypothetical NP-completeness

If G is a planar graph with (odd-)girth at least 4k + 1, then G → C2k+1.

Conjecture (Jaeger, 1988 - Stockmeyer, Zhang, 2000)

Let k, g be positive integers. Either all planar graphs of (odd-)girth g are
C2k+1-colourable, or C2k+1-Colouring is NP-complete, even when the input
graph is planar.

Theorem (Esperet, Montassier, Ochem, Pinlou, 2013)
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Instance restrictions - bounded max. degree

K3-Colouring is NP-complete, even when the input graph has max. degree 4.

Theorem (Holyer, 1981)

Remark: By Brook’s theorem, Kk-Colouring is trivial for input graphs of max.
degree at most k .

Whenever H is loop-free and non-bipartite, there exists an integer b(H) such
that H-Colouring is NP-complete, even when the input graph has max.

degree b(H). Moreover, b(H) ≤ (2∆(H) + 1)2E(H).

Theorem (Siggers, 2009)

We have b(Kk) = O(k +
√
k) and for infinitely many values of k, this is tight.

Theorem (Emden-Weinert, Hougardy, Kreuter, 1998 + Molloy, Reed, 2001)
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Complexity dichotomy for CSPs

For any relational structure S , S-Colouring (i.e. S-CSP) is either NP-
complete or polynomial-time solvable.

Conjecture (Feder-Vardi, 1998 - Dichotomy Conjecture)

(Equivalently: dichotomy for digraphs, 2-edge-coloured graphs, and for MMSNP)
Ladner, 1975: unless P=NP, no dichotomy for NP.

Algebraic Dichotomy Conjecture: Let S be a relational structure. If S has a
weak near unanimity polymorphism, S-Colouring is polynomial. Otherwise,
NP-complete.

Conjecture (Bulatov, Krokhin, Jeavons, 2000 + Maroti, McKenzie, 2008)

The Algebraic Dichotomy Conjecture is true.

Theorem (Bulatov, 2017 + Zhuk, 2017)
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2-edge-coloured graph homomorphisms

Studied by Alon & Marshall, Brewster, Nešeťril & Raspaud...

Homomorphism f : G → H that preserves edge-colors (no re-signing!). We

write (G ,Σ)
ec−→ (H,Π).

Definition - Edge-coloured homomorphism of (G ,Σ) to (H,Π)

0

1

2

3 4

0

4 0

1

2 3

4
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Signed graph homomorphisms

Concept developed by Naserasr, Rollova, Sopena in 2012.

Homomorphism f : G → H such that there exists Σ′ ≡ Σ and
(G ,Σ′)

ec−→ (H,Π). We write (G ,Σ)
s−→ (H,Π).

Definition - Signed graph homomorphism of (G ,Σ) to (H,Π)

(G ,Σ′)

0

1

2

3 4

0

4

(G ,Σ)

0

1

2 3

4

(H,Π)

Note: we can assume target signature is fixed → no re-signing at target.
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Dichotomy for signed graphs

INSTANCE: A signed graph (G ,Σ).

QUESTION: does (G ,Σ)
s−→ (H,Π)?

(H,Π)-Colouring

UC2k : unbalanced 2k-cycle

UC2k-Colouring is NP-complete for every k ≥ 2
(even for inputs of max. degree 6)

Theorem (F., Naserasr, 2014)

If the core of (H,Π) has at most 2 edges, (H,Π)-Colouring is polynomial.
Otherwise, NP-complete.

Theorem (Brewster, F., Hell, Naserasr, 2016 + Brewster, Siggers, 2018+)
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Poly-time cases

INSTANCE: A signed graph (G ,Σ).

QUESTION: does (G ,Σ)
s−→ (H,Π)?

(H,Π)-Colouring

(H,Π)-Colouring is poly-time if:

(a) H is bipartite and Π ≡ ∅ ≡ E (H) (i.e. (H,Π) retracts to an edge);

(b) (H,Π) retracts to a single vertex with loop(s);

(c) H is bipartite and (H,Π) contains (retracts to) a negative digon.

Proposition

Florent Foucaud Complexity for signed graph homomorphisms 13 / 17



A tool to capture them all

Construction of targets that are invariant under re-signing

(Zaslavsky, Brewster and Graves, Klostermeyer and MacGillivray ...)

(H,Π)

P(H,Π)

→ For every Π′ ≡ Π, P(H,Π) contains (H,Π′) as a subgraph.

(G ,Σ)
s−→ (H,Π) if and only if (G ,Σ)

ec−→ P(H,Π).

Theorem
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Hard cases: bipartite graphs

If (H,Π) is digon-free and has an unbalanced even cycle, then (H,Π)-
Colouring is NP-complete. True even with the presence of (single) loops.

Theorem (Brewster, F., Hell, Naserasr)
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If (H,Π) is digon-free and has an unbalanced even cycle, then (H,Π)-
Colouring is NP-complete. True even with the presence of (single) loops.

Theorem (Brewster, F., Hell, Naserasr)

Indicator-construction: classic tool for reductions (see e.g. Hell-Nešeťril).

• Indicator: subgraph I with two distinguished vertices i , j .
• H∗: graph on V (H) with an edge uv iff f : I → H with f (i) = u, f (j) = v .
• ∗G : replace each edge of G by a copy of I .

I

i j

(H,Π) (H,Π)∗

G → H∗ ⇐⇒ ∗G → H

Proposition
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Hard cases: bipartite graphs

If (H,Π) is digon-free and has an unbalanced even cycle, then (H,Π)-
Colouring is NP-complete. True even with the presence of (single) loops.

Theorem (Brewster, F., Hell, Naserasr)

Proof: Use indicator-gadget on P(H,Π):

(H,Π) P(H,Π) I

i j

P(H,Π)∗
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Hard cases: odd cycles

(H,Π)-Colouring is NP-complete if (H,Π) is non-bipartite and:
(a) no loops, no digon;
(b) (single) loops but no digon;
(c) a digon and only one kind of (single) loops.

Theorem (Brewster, F., Hell, Naserasr)

Proof: Either
• P(H,Π) has a + odd cycle and no + loop (or vice-versa), or
• P(H,Π)∗ has an odd cycle and no loop
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Open problems

complexity of UC2k-Colouring for planar instances

hypothetical complexity for planar graphs with given girth

complexity of (H,Π)-Colouring for bounded max. degree instances

study complexity of (H,Π)-List-Colouring

...
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