Switchable 2-Colouring is Polynomial

Arnott Kidner
Joint work with Rick Brewster, Gary MacGillivray

University of Victoria

2021
A homomorphism from a \(m \)-edge coloured graph \(G \) to a \(m \)-edge coloured graph \(H \) is a function \(h: V(G) \rightarrow V(H) \) such that the image of an edge of colour \(\phi \) in \(G \) is an edge of colour \(\phi \) of \(H \).
A **homomorphism** from a m-edge coloured graph G to a m-edge coloured graph H is a function $h : V(G) \rightarrow V(H)$ such that the image of an edge of colour ϕ in G is an edge of colour ϕ of H.
A **homomorphism** from a m-edge coloured graph G to a m-edge coloured graph H is a function $h : V(G) \rightarrow V(H)$ such that the image of an edge of colour ϕ in G is an edge of colour ϕ of H.
Homomorphism

A homomorphism from a m-edge coloured graph G to a m-edge coloured graph H is a function $h : V(G) \rightarrow V(H)$ such that the image of an edge of colour ϕ in G is an edge of colour ϕ of H.

![Diagram](image-url)
Vertex Switch

Let G be a m-edge coloured graph, Γ be a group acting on the edge colours, and $\pi \in \Gamma$ be a permutation. We define switching at a vertex v with respect to π as follows. Replace each edge vw of colour ϕ by an edge vw of colour $\pi(\phi)$.
Let G be a m-edge coloured graph, Γ be a group acting on the edge colours, and $\pi \in \Gamma$ be a permutation.
Vertex Switch

Let G be a m-edge coloured graph, Γ be a group acting on the edge colours, and $\pi \in \Gamma$ be a permutation.

We define switching at a vertex v with respect to π as follows. Replace each edge vw of colour ϕ by an edge vw of colour $\pi(\phi)$.
Let G be a m-edge coloured graph, Γ be a group acting on the edge colours, and $\pi \in \Gamma$ be a permutation.

We define switching at a vertex v with respect to π as follows. Replace each edge vw of colour ϕ by an edge vw of colour $\pi(\phi)$.

[Diagram of the switching process]
Switch Equivalence

Two graphs m-edge coloured graphs G and H are switch equivalent with respect to a group Γ if there exists a sequence of switches that can be applied to vertices of G, after which the resulting graph is isomorphic to H.

It is important to note that the order of switches matters. This follows as Γ is not necessarily Abelian.
Switch Equivalence

Two graphs m-edge coloured graphs G and H are switch equivalent with respect to a group Γ if there exists a sequence of switches that can be applied to vertices of G, after which the resulting graph is isomorphic to H.

It is important to note that the order of switches matters. This follows as Γ is not necessarily Abelian.
Switch Equivalence Example
Switchable Homomorphism

A m-edge coloured graph G is switchably homomorphic to a m-edge coloured graph H with respect to a group Γ if there exists a sequence of switches at vertices of G such that the resulting graph has a homomorphism to H. This is denoted as $G \rightarrow \Gamma H$.
A m-edge coloured graph G is \textit{switchably homomorphic} to a m-edge coloured graph H with respect to a group Γ if there exists sequence of switches at vertices of G such that the resulting graph has a homomorphism to H. This is denoted as $G \rightarrow_{\Gamma} H$.
A m-edge coloured graph G is switchably homomorphic to a m-edge coloured graph H with respect to a group Γ if there exists sequence of switches at vertices of G such that the resulting graph has a homomorphism to H. This is denoted as $G \rightarrow_{\Gamma} H$.
Switchable Homomorphism

A m-edge coloured graph G is switchably homomorphic to a m-edge coloured graph H with respect to a group Γ if there exists sequence of switches at vertices of G such that the resulting graph has a homomorphism to H. This is denoted as $G \rightarrow_\Gamma H$.
Switchable Homomorphism

A m-edge coloured graph G is switchably homomorphic to a m-edge coloured graph H with respect to a group Γ if there exists sequence of switches at vertices of G such that the resulting graph has a homomorphism to H. This is denoted as $G \rightarrow_{\Gamma} H$.

![Diagram of graphs G and H with vertices v1 to v9 and edges colored in blue and red, showing a switchable homomorphism between the two graphs.]
Switchable Homomorphism

A m-edge coloured graph G is switchably homomorphic to a m-edge coloured graph H with respect to a group Γ if there exists sequence of switches at vertices of G such that the resulting graph has a homomorphism to H. This is denoted as $G \rightarrow_\Gamma H$.

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{A} \\
\text{B}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{C} \\
\text{D}
\end{array}
\end{array}
\end{array}

G \quad H
\]

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{v}_1 \\
\text{v}_2
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{v}_3
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{v}_4 \\
\text{v}_5
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{v}_6
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{v}_7 \\
\text{v}_8
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{v}_9
\end{array}
\end{array}
\end{array}
\end{array}

\]
Switchable Homomorphism

A \(m \)-edge coloured graph \(G \) is switchably homomorphic to a \(m \)-edge coloured graph \(H \) with respect to a group \(\Gamma \) if there exists sequence of switches at vertices of \(G \) such that the resulting graph has a homomorphism to \(H \). This is denoted as \(G \to_{\Gamma} H \).
Switchable Homomorphism

A m-edge coloured graph G is switchably homomorphic to a m-edge coloured graph H with respect to a group Γ if there exists sequence of switches at vertices of G such that the resulting graph has a homomorphism to H. This is denoted as $G \rightarrow_{\Gamma} H$.

\begin{center}
\begin{tikzpicture}
 \node[fill] (v1) at (0,0) {}; \node (v1) at (0,0) {v_1};
 \node[fill] (v2) at (1,0) {}; \node (v2) at (1,0) {v_2};
 \node[fill] (v3) at (2,0) {}; \node (v3) at (2,0) {v_3};
 \node[fill] (v4) at (0,1) {}; \node (v4) at (0,1) {v_4};
 \node[fill] (v5) at (1,1) {}; \node (v5) at (1,1) {v_5};
 \node[fill] (v6) at (2,1) {}; \node (v6) at (2,1) {v_6};
 \node[fill] (v7) at (0,2) {}; \node (v7) at (0,2) {v_7};
 \node[fill] (v8) at (1,2) {}; \node (v8) at (1,2) {v_8};
 \node[fill] (v9) at (2,2) {}; \node (v9) at (2,2) {v_9};
 \draw[blue, thick] (v1) -- (v2) -- (v3);
 \draw[red, thick] (v2) -- (v5) -- (v3);
 \draw[blue, thick] (v4) -- (v5) -- (v6);
 \draw[red, thick] (v5) -- (v8) -- (v6);
 \draw[blue, thick] (v7) -- (v8) -- (v9);
 \draw[red, thick] (v8) -- (v1) -- (v9);
 \node at (2.5,0) {G};
 \node at (2.5,2) {H};
 \node[fill] (A) at (4,0) {}; \node (A) at (4,0) {A};
 \node[fill] (B) at (5,0) {}; \node (B) at (5,0) {B};
 \node[fill] (C) at (4,1) {}; \node (C) at (4,1) {C};
 \node[fill] (D) at (5,1) {}; \node (D) at (5,1) {D};
 \draw[blue, thick] (A) -- (B) -- (D);
 \draw[red, thick] (A) -- (C) -- (B);
\end{tikzpicture}
\end{center}
Switchable Homomorphism

A m-edge coloured graph G is switchably homomorphic to a m-edge coloured graph H with respect to a group Γ if there exists a sequence of switches at vertices of G such that the resulting graph has a homomorphism to H. This is denoted as $G \rightarrow_{\Gamma} H$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{example_diagram.png}
\caption{Example of switchable homomorphism.}
\end{figure}
Switchable Homomorphism DP

Input: A m-edge coloured graph G.

Question: Does G admit a switchable homomorphism to H with respect to Γ?

We note that a 2-colouring of an m-edge coloured graph is a homomorphism to a monochromatic K_2.

Switchable Homomorphism Decision Problem (Γ − HOM(H))

Input: A m-edge coloured graph G.

Question: Does G admit a switchable homomorphism to H with respect to Γ?

We note that a 2-colouring of an m-edge coloured graph is a homomorphism to a monochromatic K_2.
Statement of Main Result

Theorem

Let H be a monochromatic K_2. Then for any finite group Γ, $\Gamma - \text{HOM}(H)$ is in P.
Some Observations

What can we say about $\Gamma - \text{HOM}(H)$ when H is a monochromatic K_2?

- G can be assumed to be bipartite.

- Γ can be assumed to be transitive.
Some Observations

What can we say about $\Gamma - \text{HOM}(H)$ when H is a monochromatic K_2?
Some Observations

What can we say about \(\Gamma - \text{HOM}(H) \) when \(H \) is a monochromatic \(K_2 \)?

- \(G \) can be assumed to be bipartite.
Some Observations

What can we say about $\Gamma - \text{HOM}(H)$ when H is a monochromatic K_2?

- G can be assumed to be bipartite.
- Γ can be assumed to be transitive.
Theorem

Let G be a m-edge coloured graph, $C(G)$ be the set of all cycles of G, and H be a monochromatic K_2. Then $G \rightarrow \Gamma H$ if and only if for each $C \in C(G)$, $C \rightarrow \Gamma H$.
Cycle Result

Theorem

Let G be a m-edge coloured graph, $\mathcal{C}(G)$ be the set of all cycles of G, and H be a monochromatic K_2. Then $G \rightarrow_{\Gamma} H$ if and only if for each $C \in \mathcal{C}(G)$, $C \rightarrow_{\Gamma} H$.
Agreeance Class Definition

Let G be a m-edge coloured graph, Γ be a group, and ϕ and ϕ' be edge colours of G. We define the relation \sim_{2^k} on the edge colours of G as $\phi \sim_{2^k} \phi'$ if and only if when C_{2^k} has $2^k - 1$ edges of colour ϕ and 1 edge of colour ϕ', it can be switched to be monochromatic of colour ϕ. This is an equivalence relation.

We denote the equivalence class with respect to \sim_{2^k} by $[\phi]_{2^k}$. And for an element $\phi' \in [\phi]_{2^k}$ we say ϕ' agrees with ϕ or that ϕ' belongs to the agreeance class of ϕ.

Let G be a m-edge coloured graph, Γ be a group, and ϕ and ϕ' be edge colours of G. We define the relation \sim_{2k} on the edge colours of G as $\phi \sim_{2k} \phi'$ if and only if when C_{2k} has $2k - 1$ edges of colour ϕ and 1 edge of colour ϕ', it can be switched to be monochromatic of colour ϕ. This is an equivalence relation.

We denote the equivalence class with respect to \sim_{2k} by $[\phi]_{2k}$. And for an element $\phi' \in [\phi]_{2k}$ we say ϕ' agrees with ϕ or that ϕ' belongs to the agreeance class of ϕ.
Theorem

For a group Γ and an edge colour ϕ, the agreeance class of ϕ is independent of cycle length. That is, $[\phi]^4 = [\phi]^2$ for all $k \in \{2, 3, ...\}$.
Agreement Class Statement

Theorem
For a group Γ and an edge colour ϕ, the agreement class of ϕ is independent of cycle length. That is, $[\phi]_4 = [\phi]_{2k}$ for all $k \in \{2, 3, \ldots \}$.
Suppose $\phi' \in [\phi]_4$. Our goal is to show $\phi' \in [\phi]_{2^k}$.
Suppose $\phi' \in [\phi]_4$. Our goal is to show $\phi' \in [\phi]_{2k}$.
Suppose $\phi' \in [\phi]_4$. Our goal is to show $\phi' \in [\phi]_{2k}$.
Suppose $\phi' \in [\phi]_4$. Our goal is to show $\phi' \in [\phi]_{2k}$.
Suppose $\phi' \in \phi^{2k+2}$. Our goal is to show $\phi' \in \phi^{2k}$.
Suppose $\phi' \in [\phi]_{2k+2}$. Our goal is to show $\phi' \in [\phi]_{2k}$.
Suppose $\phi' \in [\phi]_{2k+2}$. Our goal is to show $\phi' \in [\phi]_{2k}$.
Suppose $\phi' \in [\phi]_{2k+2}$. Our goal is to show $\phi' \in [\phi]_{2k}$.

\[
\begin{array}{c}
\text{u}_4 & \text{v}_4 & \text{w}_4 \\
\text{v}_3 & \text{v}_3 & \text{w}_3 \\
\text{u}_2 & \text{v}_2 & \text{w}_2 \\
\text{u}_1 & \text{v}_1 & \text{w}_1 \\
\end{array}
\]
Suppose $\phi' \in [\phi]_{2k+2}$. Our goal is to show $\phi' \in [\phi]_{2k}$.
Cotree Result

Theorem

Let G be a m-edge coloured graph, T be a spanning tree of G, and H be a monochromatic K_2. Then $G \rightarrow \Gamma H$ if and only if after G is switched such that T is monochromatic of colour ϕ, each cotree edge agrees with ϕ.
Theorem

Let G be a m-edge coloured graph, T be a spanning tree of G, and H be a monochromatic K_2. Then $G \rightarrow_{\Gamma} H$ if and only if after G is switched such that T is monochromatic of colour ϕ, each cotree edge agrees with ϕ.
Main result

Theorem

Let \(H \) be a monochromatic \(K_2 \). Then for any group \(\Gamma \), \(\Gamma - \text{HOM}(H) \) is in \(P \).

Determining if \(G \) is bipartite is \(O(|V(G)| + |E(G)|) \).

Building a monochromatic tree in \(G \) is \(O(|V(G)| + |E(G)|) \).

There are at most \(O(|E(G)|) \) cotree edges.

The agreeance classes depend only on \(\Gamma \) and can be found in advance.
Main result

Theorem

Let H be a monochromatic K_2. Then for any group Γ, $\Gamma - HOM(H)$ is in P.

Determining if G is bipartite is $O(|V(G)| + |E(G)|)$.

Building a monochromatic tree in G is $O(|V(G)| + |E(G)|)$.

There are at most $O(|E(G)|)$ cotree edges.

The agreeance classes depend only on Γ and can be found in advance.
Main result

Theorem

Let H be a monochromatic K_2. Then for any group Γ, $\Gamma - HOM(H)$ is in P.

Determining if G is bipartite is $O(|V(G)| + |E(G)|)$.
Main result

Theorem

Let H be a monochromatic K_2. Then for any group Γ, $\Gamma - \text{HOM}(H)$ is in P.

Determining if G is bipartite is $O(|V(G)| + |E(G)|)$.

Building a monochromatic tree in G is $O(|V(G)| + |E(G)|)$.
Main result

Theorem

Let H be a monochromatic K_2. Then for any group Γ, $\Gamma - HOM(H)$ is in P.

Determining if G is bipartite is $O(|V(G)| + |E(G)|)$.

Building a monochromatic tree in G is $O(|V(G)| + |E(G)|)$.

There are at most $O(|E(G)|)$ cotree edges.
Main result

Theorem

Let H be a monochromatic K_2. Then for any group Γ, $\Gamma - HOM(H)$ is in P.

Determining if G is bipartite is $O(|V(G)| + |E(G)|)$.

Building a monochromatic tree in G is $O(|V(G)| + |E(G)|)$.

There are at most $O(|E(G)|)$ cotree edges.

The agreeance classes depend only on Γ and can be found in advance.
Or is it?
Or is it?

What about \((m, n)\)-mixed graphs?
Mixed Graph Definition

Let m and n be non-negative integers. A (m,n)-mixed graph is a mixed graph whose edge set is partitioned into m colour classes and whose arc set is partitioned into n colour classes.
Mixed Graph Definition

Let m and n be non-negative integers. A (m,n)-mixed graph is a mixed graph whose edge set is partitioned into m colour classes and whose arc set is partitioned into n colour classes.
Mixed Graph Definition

Let \(m \) and \(n \) be non-negative integers. A \((m,n)\)-mixed graph is a mixed graph whose edge set is partitioned into \(m \) colour classes and whose arc set is partitioned into \(n \) colour classes.

Figure: A \((3, 2)\)-mixed graph
Some More Observations

What can we say about $\Gamma - H_{\text{HOM}}(H)$ when H is a monochromatic K_2?

- G can be assumed to be bipartite.
- Γ can be assumed to be transitive.
- G can be assumed to have only edges
Some More Observations

What can we say about \(\Gamma - \text{HOM}(H) \) when \(H \) is a monochromatic \(K_2 \)?
Some More Observations

What can we say about $\Gamma - \text{HOM}(H)$ when H is a monochromatic K_2?

- G can be assumed to be bipartite.
Some More Observations

What can we say about $\Gamma - \text{HOM}(H)$ when H is a monochromatic K_2?

- G can be assumed to be bipartite.

- Γ can be assumed to be transitive.
Some More Observations

What can we say about $\Gamma - \text{HOM}(H)$ when H is a monochromatic K_2?

- G can be assumed to be bipartite.
- Γ can be assumed to be transitive.
- G can be assumed to have only edges
Some More Observations

- What can we say about $\Gamma - \text{HOM}(H)$ when H is a monochromatic T_2?
- G can be assumed to be bipartite.
- Γ can be assumed to be transitive.
- G has only arcs.
Some More Observations

What can we say about $\Gamma - \text{HOM}(H)$ when H is a monochromatic T_2?
Some More Observations

What can we say about $\Gamma - \text{HOM}(H)$ when H is a monochromatic T_2?

- G can be assumed to be bipartite.
Some More Observations

What can we say about $\Gamma - \text{HOM}(H)$ when H is a monochromatic T_2?

- G can be assumed to be bipartite.

- Γ can be assumed to be transitive.
What can we say about $\Gamma - \text{HOM}(H)$ when H is a monochromatic T_2?

- G can be assumed to be bipartite.
- Γ can be assumed to be transitive.
- G has only arcs.
Putting it together

If Γ is a group acting on the n-colours and arc directions of a n-arc coloured oriented graph G, then we can model G as a $2n$-edge coloured graph.

Theorem

The problem of deciding whether a given (m,n)-mixed graph is switchable 2-colourable with respect to a finite group Γ is in P.

What about the agreeance classes?
Putting it together

If Γ is a group acting on the n colours and arc directions of a n-arc coloured oriented graph G, then we can model G as a $2n$-edge coloured graph.
Putting it together

If Γ is a group acting on the n colours and arc directions of a n-arc coloured oriented graph G, then we can model G as a $2n$-edge coloured graph.

Theorem

The problem of deciding whether a given (m, n)-mixed graph is switchable 2-colourable with respect to a finite group Γ is in P.
Putting it together

If Γ is a group acting on the n colours and arc directions of a n-arc coloured oriented graph G, then we can model G as a $2n$-edge coloured graph.

Theorem

*The problem of deciding whether a given (m, n)-mixed graph is switchable 2-colourable with respect to a finite group Γ is in P."

What about the agreeance classes?