Switchable 2-Colouring is Polynomial

Arnott Kidner Joint work with Rick Brewster, Gary MacGillivray

University of Victoria

2021

(ロ)、(型)、(E)、(E)、 E) の(()

◆□▶◆□▶◆≧▶◆≧▶ ≧ りへぐ

A homomorphism from a *m*-edge coloured graph *G* to a *m*-edge coloured graph *H* is a function $h: V(G) \rightarrow V(H)$ such that the image of an edge of colour ϕ in *G* is an edge of colour ϕ of *H*.

A homomorphism from a *m*-edge coloured graph *G* to a *m*-edge coloured graph *H* is a function $h: V(G) \rightarrow V(H)$ such that the image of an edge of colour ϕ in *G* is an edge of colour ϕ of *H*.

イロト イヨト イヨト

A homomorphism from a *m*-edge coloured graph *G* to a *m*-edge coloured graph *H* is a function $h: V(G) \rightarrow V(H)$ such that the image of an edge of colour ϕ in *G* is an edge of colour ϕ of *H*.

イロト 人間 ト イヨト イヨト

э

Vertex Switch

Let G be a m-edge coloured graph, Γ be a group acting on the edge colours, and $\pi \in \Gamma$ be a permutation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Vertex Switch

Let G be a m-edge coloured graph, Γ be a group acting on the edge colours, and $\pi \in \Gamma$ be a permutation.

We define switching at a vertex v with respect to π as follows. Replace each edge vw of colour ϕ by an edge vw of colour $\pi(\phi)$.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 目 ト

Vertex Switch

Let G be a m-edge coloured graph, Γ be a group acting on the edge colours, and $\pi \in \Gamma$ be a permutation.

We define switching at a vertex v with respect to π as follows. Replace each edge vw of colour ϕ by an edge vw of colour $\pi(\phi)$.

Switch Equivalence

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ へ つ </p>

Two graphs *m*-edge coloured graphs *G* and *H* are switch equivalent with respect to a group Γ if there exists a sequence of switches that can be applied to vertices of *G*, after which the resulting graph is isomorphic to *H*.

It is important to note that the order of switches matters. This follows as Γ is not necessarily Abelian.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

<ロ>

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 りへぐ

A *m*-edge coloured graph *G* is switchably homomorphic to a *m*-edge coloured graph *H* with respect to a group Γ if there exists sequence of switches at vertices of *G* such that the resulting graph has a homomorphism to *H*. This is denoted as $G \rightarrow_{\Gamma} H$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A *m*-edge coloured graph *G* is switchably homomorphic to a *m*-edge coloured graph *H* with respect to a group Γ if there exists sequence of switches at vertices of *G* such that the resulting graph has a homomorphism to *H*. This is denoted as $G \rightarrow_{\Gamma} H$.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Switchable Homomorphism Decision Problem $(\Gamma - HOM(H))$ Input: A *m*-edge coloured graph *G*. Question: Does *G* admit a switchable homomorphism to *H* with respect to Γ ?

We note that a 2-colouring of an *m*-edge coloured graph is a homomorphism to a monochromatic K_2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Statement of Main Result

Theorem Let H be a monochromatic K_2 . Then for any finite group Γ , $\Gamma - HOM(H)$ is in P.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

・ロト・日本・ キャー キャー ひゃく

What can we say about $\Gamma - HOM(H)$ when H is a monochromatic K_2 ?

(ロ)、(型)、(E)、(E)、 E) の(()

What can we say about $\Gamma - HOM(H)$ when H is a monochromatic K_2 ?

-G can be assumed to be bipartite.

What can we say about $\Gamma - HOM(H)$ when H is a monochromatic K_2 ?

- -G can be assumed to be bipartite.
- - Γ can be assumed to be transitive.

Cycle Result

Cycle Result

Theorem

Let G be a m-edge coloured graph, C(G) be the set of all cycles of G, and H be a monochromatic K_2 . Then $G \rightarrow_{\Gamma} H$ if and only if for each $C \in C(G)$, $C \rightarrow_{\Gamma} H$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Agreeance Class Definition

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let G be a m-edge coloured graph, Γ be a group, and ϕ and ϕ' be edge colours of G. We define the relation \sim_{2k} on the edge colours of G as $\phi \sim_{2k} \phi'$ if and only if when C_{2k} has 2k - 1 edges of colour ϕ and 1 edge of colour ϕ' , it can be switched to be monochromatic of colour ϕ . This is an equivalence relation.

We denote the equivalence class with respect to \sim_{2k} by $[\phi]_{2k}$. And for an element $\phi' \in [\phi]_{2k}$ we say ϕ' agrees with ϕ or that ϕ' belongs to the agreeance class of ϕ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
Agreeance Class Statement

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Agreeance Class Statement

Theorem

For a group Γ and an edge colour ϕ , the agreeance class of ϕ is independent of cycle length. That is, $[\phi]_4 = [\phi]_{2k}$ for all $k \in \{2, 3, ...\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(4日) (個) (主) (主) (三) の(の)

Suppose $\phi' \in [\phi]_4$. Our goal is to show $\phi' \in [\phi]_{2k}$.

Suppose $\phi' \in [\phi]_4$. Our goal is to show $\phi' \in [\phi]_{2k}$.

Suppose $\phi' \in [\phi]_4$. Our goal is to show $\phi' \in [\phi]_{2k}$.

(4日) (個) (目) (目) (目) (の)()

Suppose $\phi' \in [\phi]_{2k+2}$. Our goal is to show $\phi' \in [\phi]_{2k}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Suppose $\phi' \in [\phi]_{2k+2}$. Our goal is to show $\phi' \in [\phi]_{2k}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Suppose $\phi' \in [\phi]_{2k+2}$. Our goal is to show $\phi' \in [\phi]_{2k}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Suppose $\phi' \in [\phi]_{2k+2}$. Our goal is to show $\phi' \in [\phi]_{2k}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Ξ.

Cotree Result

<ロト < 個 ト < 臣 ト < 臣 ト 三 の < @</p>

Cotree Result

Theorem

Let G be a m-edge coloured graph, T be a spanning tree of G, and H be a monochromatic K_2 . Then $G \rightarrow_{\Gamma} H$ if and only if after G is switched such that T is monochromatic of colour ϕ , each cotree edge agrees with ϕ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

Theorem Let H be a monochromatic K_2 . Then for any group Γ , $\Gamma - HOM(H)$ is in P.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem Let H be a monochromatic K_2 . Then for any group Γ , $\Gamma - HOM(H)$ is in P.

Determining if G is bipartite is O(|V(G)| + |E(G)|).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem Let H be a monochromatic K_2 . Then for any group Γ , $\Gamma - HOM(H)$ is in P.

Determining if G is bipartite is O(|V(G)| + |E(G)|).

Building a monochromatic tree in G is O(|V(G)| + |E(G)|).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem Let H be a monochromatic K_2 . Then for any group Γ , $\Gamma - HOM(H)$ is in P.

Determining if G is bipartite is O(|V(G)| + |E(G)|).

Building a monochromatic tree in G is O(|V(G)| + |E(G)|).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

There are at most O(|E(G)|) cotree edges.

Theorem Let H be a monochromatic K_2 . Then for any group Γ , $\Gamma - HOM(H)$ is in P.

Determining if G is bipartite is O(|V(G)| + |E(G)|).

Building a monochromatic tree in G is O(|V(G)| + |E(G)|).

There are at most O(|E(G)|) cotree edges.

The agreeance classes depend only on Γ and can be found in advance.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Or is it?

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 → のへぐ

What about (m, n)-mixed graphs?

Mixed Graph Definition

◆□▶◆□▶◆≧▶◆≧▶ ≧ りへぐ

Mixed Graph Definition

Let m and n be non-negative integers. A (m,n)-mixed graph is a mixed graph whose edge set is partitioned into m colour classes and whose arc set is partitioned into n colour classes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Mixed Graph Definition

Let m and n be non-negative integers. A (m,n)-mixed graph is a mixed graph whose edge set is partitioned into m colour classes and whose arc set is partitioned into n colour classes

Figure: A (3,2)-mixed graph

Some More Observations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

-G can be assumed to be bipartite.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- -G can be assumed to be bipartite.
- - Γ can be assumed to be transitive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- -G can be assumed to be bipartite.
- - Γ can be assumed to be transitive.
- -G can be assumed to have only edges

Some More Observations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

-G can be assumed to be bipartite.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- -G can be assumed to be bipartite.
- - Γ can be assumed to be transitive.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- -G can be assumed to be bipartite.
- - Γ can be assumed to be transitive.
- -G has only arcs.

Putting it together

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Putting it together

If Γ is a group acting on the *n* colours and arc directions of a *n*-arc coloured oriented graph *G*, then we can model *G* as a 2*n*-edge coloured graph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
Putting it together

If Γ is a group acting on the *n* colours and arc directions of a *n*-arc coloured oriented graph *G*, then we can model *G* as a 2*n*-edge coloured graph.

Theorem

The problem of deciding whether a given (m, n)-mixed graph is switchable 2-colourable with respect to a finite group Γ is in P.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Putting it together

If Γ is a group acting on the *n* colours and arc directions of a *n*-arc coloured oriented graph *G*, then we can model *G* as a 2*n*-edge coloured graph.

Theorem

The problem of deciding whether a given (m, n)-mixed graph is switchable 2-colourable with respect to a finite group Γ is in P.

What about the agreeance classes?

