Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

Vertex deletion and edge deletion problems for homomorphisms of signed graphs

Dimitri Lajou LaBRI, université de Bordeaux

> 5 May 2021 HOSIGRA 2021

Previously in HOSIGRA 2019

Our problems

Parameterized complexity

Overview

3 Our problems

4 Parameterized complexity

Previously in HOSIGRA 2019

Our problems

Parameterized complexity

Overview

2 Previously in HOSIGRA 2019

3 Our problems

Previously in HOSIGRA 2019

Our problems

Parameterized complexity

Signed graphs

Figure: A signed graph having the Petersen graph as underlying graph.

Brief definitions		
000000000		

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

Balance

Definition (Balance)

Let (G, σ) be a (simple) signed graph and W be a walk s_0, \ldots, s_n in G. The sign of W is

$$\sigma(W) = \sigma(s_0 s_1) \sigma(s_1 s_2) \dots \sigma(s_i s_{i+1}) \dots \sigma(s_{n-1} s_n)$$

We say that W is a *balanced walk* if $\sigma(W) = +$ and an *unbalanced walk* otherwise.

Definition (Balance signed graph)

A signed graph (G, σ) is *balanced* if and only if every closed walk of (G, σ) is balanced. It is *unbalanced* otherwise. A signed graph (G, σ) is *antibalanced* if and only if $(G, -\sigma)$ is balanced.

Brief	definitions	
000000000		

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

Switching

Definition (Switching)

Let (G, σ) be a signed graph and v be a vertex of G. To switch v is to create the signed graph (G, σ') where $\sigma'(e) = -\sigma(e)$ when e is incident to v and $\sigma'(e) = \sigma(e)$ otherwise.

(a) A signed graph (G, σ) .

(b) The signed graph (G, σ') obtained from (G, σ) by switching *d*.

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

Homomorphisms

Definition (Homomorphisms of undirected graphs)

A homomorphism from a graph G to a graph H is a function $\varphi: V(G) \rightarrow V(H)$ such that for every edge $uv \in E(G)$, $\varphi(u)\varphi(v) \in E(H)$. When there is a homomorphism from G to H, we note $G \rightarrow H$.

Definition (Sign-preserving homomorphisms)

A sign-preserving homomorphism from a signed graph (G, σ) to a signed graph (H, π) is a homomorphism φ from G to H such that for every edge $uv \in E(G)$, $\pi(\varphi(u)\varphi(v)) = \sigma(uv)$. When there is a sign-preserving homomorphism from (G, σ) to (H, π) , we note $(G, \sigma) \longrightarrow_{s}^{p} (H, \pi)$.

Previously in HOSIGRA 2019

Our problems

Parameterized complexity

Homomorphisms

Figure: A sign-preserving homomorphism φ such that $\varphi(a) = 1$, $\varphi(b) = 3$, $\varphi(c) = \varphi(e) = 4$ and $\varphi(d) = 5$.

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

Homomorphisms

Definition (Homomorphisms of signed graphs)

A homomorphism from a signed graph (G, σ) to a signed graph (H, π) is a homomorphism φ from G to H which maps balanced (resp. unbalanced) closed walks of (G, σ) to balanced (resp. unbalanced) closed walks of (H, π) . Equivalently, there is a homomorphism from (G, σ) to (H, π) if and only if there exists (G, σ') obtained by switching some vertices of (G, σ) , such that $(G, \sigma') \longrightarrow_{s}^{p} (H, \pi)$. When there is a homomorphism from (G, σ) to (H, π) , we note $(G, \sigma) \longrightarrow_{s} (H, \pi)$.

Brief	definitions	
0000	000000	

Previously in HOSIGRA 2019

Our problems

Parameterized complexity

Homomorphisms

Figure: A homomorphism φ such that $\varphi(a) = 1$, $\varphi(b) = \varphi(d) = 3$ and $\varphi(c) = \varphi(e) = 2$.

Brief	definitions
0000	00000

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

Cores

Definition (s-cores)

The *s*-core of a signed graph (H, π) is the smallest subgraph (C, π_C) of (H, π) for which $(H, \pi) \longrightarrow_s (C, \pi_C)$. An *s*-core is a signed graph (H, π) which is its own s-core.

Observation

If (C, π_C) is the s-core of (H, π) , then: $(G, \sigma) \longrightarrow_{\mathfrak{s}} (H, \pi)$ if and only if $(G, \sigma) \longrightarrow_{\mathfrak{s}} (C, \pi_C)$.

Previously in HOSIGRA 2019

Our problems

Parameterized complexity

Overview

3 Our problems

Previously in HOSIGRA 2019 0000 Our problems

Parameterized complexity 000000

HOSIGRA 2019

HOSIGRA 2019: joint work with F. Foucaud, H. Hocquard, V. Mitsou and T. Pierron.

Let (H, π) be a signed graph.

(*H*, π)-COLORING **Input:** A signed graph (*G*, σ). **Question:** Does (*G*, σ) \longrightarrow_{s}^{p} (*H*, π)?

Can we "modify" (G, σ) such that the instance becomes a positive instance?

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

HOSIGRA 2019

VERTEX DELETION (H, π) -COLORING **Input:** A signed graph (G, σ) , an integer k. **Parameter:** k. **Question:** Is there a set S of at most k vertices of (G, σ) such that $(G, \sigma) - S \longrightarrow_{s}^{p} (H, \pi)$?

EDGE DELETION (H, π) -COLORING **Input:** A signed graph (G, σ) , an integer k. **Parameter:** k. **Question:** Is there a set S of at most k edges of (G, σ) such that $(G, \sigma) - S \longrightarrow_{s}^{p} (H, \pi)$?

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

HOSIGRA 2019

LIMITED SWITCHINGS (H, π) -COLORING **Input:** A signed graph (G, σ) , an integer k. **Parameter:** k. **Question:** Is there a set S of k vertices of G such that the signed graph (G, σ') obtained from (G, σ) by switching every vertex of S satisfies $(G, \sigma') \longrightarrow_{s}^{p} (H, \pi)$?

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

Something is missing

What about modifications problems for **homomorphisms of signed graphs**?

SIGNED- (H, π) -COLORING Input: A signed graph (G, σ) . Question: Does $(G, \sigma) \longrightarrow_{s} (H, \pi)$?

Previously in HOSIGRA 2019

Our problems

Parameterized complexity

Overview

2 Previously in HOSIGRA 2019

Our problems

Brief	definitions	5
0000	000000	

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

Our problems

Let (H, π) be a signed graph.

VERTEX DELETION SIGNED- (H, π) -COLORING **Input:** A signed graph (G, σ) , an integer k. **Parameter:** k. **Question:** Is there a set S of at most k vertices of (G, σ) such that $(G, \sigma) - S \longrightarrow_{s} (H, \pi)$?

EDGE DELETION SIGNED- (H, π) -COLORING **Input:** A signed graph (G, σ) , an integer k. **Parameter:** k. **Question:** Is there a set S of at most k edges of (G, σ) such that $(G, \sigma) - S \longrightarrow_{s} (H, \pi)$?

Questions: P/NP-complete dichotomy? FPT algorithms?

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

Some already known complexities

Theorem (Brewster, Foucaud, Hell, Naserasr, Siggers)

Let (H, π) be a signed graph. The problem SIGNED- (H, π) -COLORING is in P if the s-core of (H, π) has at most two edges, and is NP-complete otherwise.

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

Some already known complexities

Theorem (Brewster, Foucaud, Hell, Naserasr, Siggers)

Let (H, π) be a signed graph. The problem SIGNED- (H, π) -COLORING is in P if the s-core of (H, π) has at most two edges, and is NP-complete otherwise.

This implies that if (H, π) is an s-core with at least three edges then VERTEX DELETION SIGNED- (H, π) -COLORING and EDGE DELETION SIGNED- (H, π) -COLORING are NP-complete even for k = 0.

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

Some already known complexities

Theorem (Brewster, Foucaud, Hell, Naserasr, Siggers)

Let (H, π) be a signed graph. The problem SIGNED- (H, π) -COLORING is in P if the s-core of (H, π) has at most two edges, and is NP-complete otherwise.

This implies that if (H, π) is an s-core with at least three edges then VERTEX DELETION SIGNED- (H, π) -COLORING and EDGE DELETION SIGNED- (H, π) -COLORING are NP-complete even for k = 0.

The only open questions are for the following s-cores: $H^1_{-}(\bullet)$, H^1_{rb} ($\bullet\bullet$), H^1_{b} ($\bullet\bullet$), H^1_{r} ($\bullet\bullet$), $H^{2b}_{-,-}(\bullet\bullet\bullet)$, $H^{2rb}_{-,-}(\bullet\bullet\bullet\bullet)$ and $H^{2-}_{r,b}$ ($\bullet\bullet\bullet$).

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

Undirected graphs cases

For $H^1_{-,-}(\bullet)$, $H^1_{rb}(\bullet)$ and $H^{2rb}_{-,-}(\bullet)$, the sign of the

edges do not matter. Hence:

- VERTEX DELETION SIGNED- H^1_- -COLORING is VERTEX COVER,
- EDGE DELETION SIGNED-H¹₋-COLORING boils down to counting the number of edges,
- VERTEX DELETION SIGNED- H_{rb}^1 -COLORING and EDGE DELETION SIGNED- H_{rb}^1 -COLORING are trivial (always answer yes),
- Vertex Deletion Signed- $\mathcal{H}^{2rb}_{-,-}$ -Coloring is Odd Cycle Transversal,
- Edge Deletion Signed- $H^{2rb}_{-,-}$ -Coloring is Edge Bipartization.

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

Undirected graphs cases

For $H^1_{-}(\bullet)$, H^1_{rb} ($\frown \bullet \frown$) and $H^{2rb}_{-,-}$ ($\bullet \frown \bullet$), the sign of the

edges do not matter. Hence:

- VERTEX DELETION SIGNED- H^1_- -COLORING is VERTEX COVER,
- EDGE DELETION SIGNED-H¹₋-COLORING boils down to counting the number of edges,
- VERTEX DELETION SIGNED- H_{tb}^1 -COLORING and EDGE DELETION SIGNED- H_{tb}^1 -COLORING are trivial (always answer yes),
- Vertex Deletion Signed- $\mathcal{H}^{2rb}_{-,-}$ -Coloring is Odd Cycle Transversal,
- Edge Deletion Signed- $H^{2rb}_{-,-}$ -Coloring is Edge Bipartization.

The only open questions are for the following s-cores: H_b^1 (\bigcirc), H_r^1 (\bigcirc), $H_{-,-}^{2b}$ (\bullet) and $H_{r,b}^{2-}$ (\bullet).

Brief definitions	Previously in HOSIGRA 2019	Our problems	F
00000000	00000	000000	C

Parameterized complexity 000000

Cases which reduces to sign-preserving homomrphisms

Brewster, Foucaud, Hell, Naserasr:

 $(G,\sigma) \longrightarrow_{s} \bigcirc$ if and only if $(G,\sigma) \longrightarrow_{s}^{p} \bigcirc \cdots \bigcirc$.

 Brief definitions
 Previously in HOSIGRA 2019
 Our problems
 Parameter

 000000000
 00000
 000000
 000000
 000000

Parameterized complexity

Cases which reduces to sign-preserving homomrphisms

Brewster, Foucaud, Hell, Naserasr:

$$(G,\sigma) \longrightarrow_{s} \bigcirc$$
 if and only if $(G,\sigma) \longrightarrow_{s}^{p} \bigcirc \cdots \bigcirc$

These problems are already solved.

 Brief definitions
 Previously in HOSIGRA 2019
 Our problems
 Parameterized complexity

 000000000
 00000
 000000
 000000
 000000

Cases which reduces to sign-preserving homomrphisms

Brewster, Foucaud, Hell, Naserasr:

$$(G,\sigma) \longrightarrow_{s} \bigcirc$$
 if and only if $(G,\sigma) \longrightarrow_{s}^{p} \bigcirc \cdots \bigcirc$

These problems are already solved.

The only open questions are for the following s-cores: $H^{2b}_{-,-}$ (•—••) and $H^{2-}_{r,b}$ (•••••••).

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 000000

The remaining cases are NP-complete

Theorem

The problem VERTEX DELETION SIGNED- (H, π) -COLORING is NP-complete when (H, π) is one of $H^{2b}_{-,-}$ (•—••) or $H^{2-}_{r,b}$

(♥♥ (``♥).

Theorem

The problem EDGE DELETION SIGNED- (H, π) -COLORING is NP-complete when (H, π) is one of $H^{2b}_{-,-}$ (• • •) or $H^{2-}_{r,b}$ (• • •)

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 00000

Overview

4 Parameterized complexity

Previously in HOSIGRA 2019

Our problems

Parameterized complexity 00000

Main result

Theorem

The problem VERTEX/EDGE DELETION SIGNED- (H, π) -COLORING is FPT when (H, π) is one of $H^{2b}_{-,-}$ (•—•) and $H^{2-}_{r,b}$ (••••).
 Brief definitions
 Previously in HOSIGRA 2019
 Our problems
 Parameterized complexity

 00000
 0000
 00000
 00000

VERTEX DELETION SIGNED- $H^{2b}_{-,-}$ -Coloring (•—•)

The problem can be reformulated as follows:

VERTEX DELETION SIGNED- $H_{-,-}^{2b}$ -COLORING **Input:** A signed graph (G, σ) and an integer k. **Parameter:** k **Question:** Is there a set S of at most k vertices of G such that $(G, \sigma) - S$ is a **bipartite balanced** signed graph?

The problem can be reformulated as follows:

VERTEX DELETION SIGNED- $H_{-,-}^{2b}$ -COLORING Input: A signed graph (G, σ) and an integer k. Parameter: kQuestion: Is there a set S of at most k vertices of G such that $(G, \sigma) - S$ is a bipartite balanced signed graph?

We need to solve two problems at the same time.

Adapt the FPT algorithm for:

ODD CYCLE TRANSVERSAL **Input:** A graph G and an integer k. **Parameter:** k **Question:** Is there a set S of at most k vertices of G such that G - S is a **bipartite** graph?

VERTEX DELETION SIGNED- $H_{r,b}^{2-}$ -Coloring ($\infty \approx$)

Step 1: Apply iterative compression.

VERTEX DELETION SIGNED- $H_{r,b}^{2-}$ -Coloring ($\infty \approx$)

Step 1: Apply iterative compression.

Step 2: Find some B_+ and B_- such that $(G, \sigma) - (B_+ \cup B_-) \longrightarrow_s$

VERTEX DELETION SIGNED- $H_{r,b}^{2-}$ -Coloring ($\infty \approx$)

Step 1: Apply iterative compression.

Step 2: Find some B_+ and B_- such that $(G, \sigma) - (B_+ \cup B_-) \longrightarrow_s$

Goal: Find a solution of size k among $V(G) - (B_+ \cup B_-)$ such that B_+ maps to \bigcirc and B_- maps to \bigcirc .

 Brief definitions
 Previously in HOSIGRA 2019
 Our problems
 Parameterized complexity

 000000000
 00000
 000000
 000000
 000000

VERTEX DELETION SIGNED- $H_{r,b}^{2-}$ -COLORING ($\infty \approx$)

Step 1: Apply iterative compression.

Step 2: Find some B_+ and B_- such that $(G, \sigma) - (B_+ \cup B_-) \longrightarrow_s$

Goal: Find a solution of size k among $V(G) - (B_+ \cup B_-)$ such that B_+ maps to \bigcirc and B_- maps to \bigcirc .

VERTEX DELETION SIGNED- $H_{r,b}^{2-}$ -COLORING ($\infty \approx$)

Step 1: Apply iterative compression.

Step 2: Find some B_+ and B_- such that $(G, \sigma) - (B_+ \cup B_-) \longrightarrow_s$

Goal: Find a solution of size k among $V(G) - (B_+ \cup B_-)$ such that B_+ maps to \bigcirc and B_- maps to \bigcirc .

VERTEX DELETION SIGNED- $H_{r,b}^{2-}$ -Coloring ($\infty \infty$)

VERTEX DELETION SIGNED- $H_{r,b}^{2-}$ -Coloring ($\infty \infty$)

VERTEX DELETION SIGNED- $H_{r,b}^{2-}$ -Coloring ($\infty \approx$)

Observation

Vertex Deletion Signed- $H^{2-}_{r,b}$ -Coloring (∞

Observation

Vertex Deletion Signed- $H^{2-}_{r,b}$ -Coloring (∞

Observation

VERTEX DELETION SIGNED- $H_{r,b}^{2-}$ -Coloring ($\infty \infty$)

Observation

VERTEX DELETION SIGNED- $H_{r,b}^{2-}$ -COLORING ($\infty \approx$)

Observation

A solution S is a (B_+, B_-) -separator.

We separate our problem into two sub-problems: the left part and the right part. Problem: how to find a good (B_+, B_-) -separator X?

Previously in HOSIGRA 2019

Our problems

Parameterized complexity

Thanks for your attention

(<i>H</i> , π)	VERTEX DELETION	Edge Deletion
	SIGNED- (H, π) -Coloring	SIGNED- (H, π) -COLORING
	Р	Р
$\mathbf{\bullet}$	NP-hard but FPT	NP-hard but FPT
•	NP-hard but FPT	Р
	NP-hard but FPT	NP-hard but FPT
• •	NP-hard but FPT	NP-hard but FPT
	NP-hard even for $k = 0$	NP-hard even for $k = 0$
•	NP-hard but FPT	NP-hard but FPT
\$\$	NP-hard even for $k = 0$	NP-hard even for $k = 0$
	NP-hard even for $k = 0$	NP-hard even for $k = 0$
89	NP-hard even for $k = 0$	NP-hard even for $k = 0$