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Problem Description

Minimum Discriminating Code (Min-Disc-Code)

Input: A bipartite graph G = (U ∪ V,E)
Output: A minimum-size subset U∗ ⊆ U such that

U∗ ∩N(v) 6= ∅ for all v ∈ V , and

U∗ ∩N(v) 6= U∗ ∩N(v′) for every pair v, v′ ∈ V , v 6= v′.

u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

Figure: Min-Disc-Code
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Problem Description

Geometric Minimum Discriminating Code (G-Min-Disc-Code)

Input: Points P and objects S
Output: To choose a subset S∗ ⊆ S of minimum cardinality
such that the subsets S∗i ⊆ S∗ covering pi, i = 1, 2, . . . n satisfy

S∗i 6= ∅ for all i, and

S∗i 6= S∗j for all i 6= j.

p1 p2 p3 p4

s1
s2

s3 s4

s5
s6

Figure: G-Min-Disc-Code
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Variations

Discrete-G-Min-Disc-Code

p1 p2 p3 p4

s1
s2

s3 s4

s5
s6

Figure: Discrete-G-Min-Disc-Code
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Variations

Continuous-G-Min-Disc-Code

p1 p2 p3 p4

s3

s2
s1

Figure: Continuous-G-Min-Disc-Code
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Motivation

Sensors

Sites

Figure: Network sensing for difficult terrains
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Our Contribution

Object Type
Continuous-G-Min-Disc-Code Discrete-G-Min-Disc-Code

Hardness Algorithm Hardness Algorithm

Intervals - Polynomial NP-hard 2-factor

Unit intervals Open PTAS Open PTAS

Axis parallel unit squares NP-hard (4 + ε)-factor NP-hard (4 + ε)-factor

Table: Our contribution
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NP-completeness for the general 1D case
A 2-approximation algorithm for the general 1D case
A PTAS for the 1D unit interval case

Reduction

NP-hardness reduction from the 3-SAT-2l problem.

3-SAT-2l

Input: A collection of m clauses C = {c1, c2, . . . , cm} where each
clause contains at most three literals, over a set of n Boolean
variables X = {x1, x2, . . . , xn}, and each literal appears at most
twice.
Output: A truth assignment of X such that each clause is
satisfied.
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Gadgets

Covering Gadget

A covering gadget Π consists of three intervals I, J , K and four
points p1, p2, p3 and p4 satisfying p1 ∈ I, p2 ∈ I ∩ J ,
p3 ∈ I ∩ J ∩K and p4 ∈ J ∩K.

I

J

K

Π

p1 p2 p3 p4

Figure: A covering gadget Π, and its schematic representation.
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Gadgets

Clause Gadget

Let ci be a clause of C. The clause gadget for ci, denoted
Gc(ci), is defined by a covering gadget Π(ci) along with two
points pci , p

′
ci placed in K \ {I ∪ J}.

I

J

K

p1 p2 p3 p4

Π(ci)

pci p′ci

Figure: A clause gadget Gc(ci), and its schematic representation.
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Gadgets

Variable Gadget

Let xj be a variable of X. The variable gadget for xj , denoted
Gv(xj), is defined by a covering gadget Π(xj), and five points
p1
xj , . . . , p

5
xj placed consecutively in K \ {I ∪ J}. It also contains

six intervals I0
xj , I

1
xj , I

2
xj , I

0
x̄j , I

1
x̄j , I

2
x̄j . The right end points will

depend on the formula.

Π(xi)

p1
xj

p2
xj

p3
xj

p4
xj

p5
xj

I0
xj

I1
xj

I2
xj

I0
x̄j

I1
x̄j

I2
x̄j

Figure: A variable gadget Gv(xj).
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Variable Gadgets Clause Gadgets

p1x1
p2x1

p3x1
p4x1

p5x1

Π(x1)

p1x2
p2x2

p3x2
p4x2

p5x2

Π(x2)

p1x3
p2x3

p3x3
p4x3

p5x3

Π(x3)

pc1 p′c1

Π(c1)

I0x1

I1x1

I2x1

I0x1

I1x1

I2x1

I0x2

I1x2

I2x2

I0x2

I1x2

I2x2

I0x3

I1x3

I2x3

I0x3

I1x3

I2x3

Figure: Clause (x̄1 ∨ x2 ∨ x3).
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Satisfiability

The 3-SAT-2l instance is satisfiable if and only if the minimum
discriminating code is of size 6n+ 3m.
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Theorem

Discrete-G-Min-Disc-Code with intervals is NP-complete.
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2-factor approximation algorithm comes from edge-cover.

Edge-Cover

Input: An undirected graph G = (V,E).
Output: A minimum cardinality subset E′ ⊆ E such that every
vertex is incident to at least one edge of E′.
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s0
s1

s2
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s4
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s6

s7
s8

s9

p1 p2 p3 p4 p5 p6 p7 p8

g0 g1 g2 g3 g4 g5 g6 g7 g8

(a)

v0 v1 v2 v3 v4 v5 v6 v7 v8

e9

e7
e0e1

e6

e8
e3

e2

(b)

Figure: (a) An input instance, (b) corresponding graph G = (V,E)
with Minimum Edge Cover highlighted.

Sanjana Dey Discriminating Codes in Geometric Setups



Introduction and Background
The One-Dimensional Case
The Two-Dimensional Case

Conclusion

NP-completeness for the general 1D case
A 2-approximation algorithm for the general 1D case
A PTAS for the 1D unit interval case

Final step

Minimum Discriminating Code = Edge Cover + Additional
Intervals

|Additional Intervals| ≤ |Edge Cover|
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Theorem

The proposed algorithm produces a 2-factor approximation for
Discrete-G-Min-Disc-Code in 1D, and runs in time
O(min(n2,m

√
n)).
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Observation (Unit Intervals)

Discriminating pairs of consecutive points in P is equivalant to
discriminating P .
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Lemma

The shortest weight of an s-t path in the multipartite graph H
(created while processing blocks and free regions) is a lower
bound on the size of the optimum discriminating code for (P, S).

Lemma

|SOL| ≤ (1 + ε)OPT .

Theorem

Discrete-G-Min-Disc-Code in 1D for unit interval objects
has a PTAS with time complexity O(2O(1/ε2)n2).
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Hardness

A reduction from the P3-Partition-Grid problem.

P3-Partition-Grid

Input: A grid graph G.
Output:A partition of the vertices of G into disjoint P3-paths,
where a P3-path is a path with three vertices.
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Figure: Reduction from P3-Partition-Grid
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Lemma

A P3-partition for G = (V,E) exists if and only if there exists a

set of 2|V |
3 axis-parallel unit squares discriminating PG.
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Theorem

G-Min-Disc-Code for axis-parallel unit squares is
NP-complete.
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Algorithm

Segment-Stabbing

Input: A set L of segments in 2D.
Output: A minimum-size set S of axis-parallel unit squares in
2D such that each segment is intersected exactly once by some
square of S.
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(a) (b)

Figure: Object for segment ` = [a, b], where (a) λ(`) ≥ 1 and (b)
λ(`) < 1
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Block representation

Segment

Stabbing
= Seg-Hit L-Hit U-Hit

2-factor 2-factor (1 + ε)-factor

× ×
(Continuous)
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Theorem

Continuous-G-Min-Disc-Code for axis-parallel unit squares
in 2D has a polynomial-time (4 + ε)-factor approximation
algorithm, for every fixed ε > 0.

Sanjana Dey Discriminating Codes in Geometric Setups



Introduction and Background
The One-Dimensional Case
The Two-Dimensional Case

Conclusion

A (4 + ε)-apx algorithm for the continuous problem
A (4 + ε)-apx algorithm for the discrete problem

Theorem

Discrete-G-Min-Disc-Code for axis-parallel unit squares in
2D has a polynomial-time (4 + ε)-factor approximation
algorithm, for every fixed ε > 0..
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Open Problem

Question

Is G-Min-Disc-Code (both discrete and continuous) in P for
unit intervals?
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Thank You!
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