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Problem Descripti®

Minimum Discriminating Code (MIN-D1sc-CODE)
Input: A bipartite graph G = (U UV, E)
Output: A minimum-size subset U* C U such that
o U*NN(v) #0 for all v € V, and
o U*NN(v) #U*N N(v') for every pair v,v' € V, v #v'.
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Figure: MIN-D1sc-CODE
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Problem Description

Geometric Minimum Discriminating Code (G-MIN-Disc-CODE)

Input: Points P and objects S
Output: To choose a subset S* C S of minimum cardinality
such that the subsets S} C S* covering p;, 1 = 1,2,...n satisfy

o S #0 for all 4, and
o 57 # 57 forall i # j.
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Figure: G-MIN-D1sc-CODE
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Di1SCRETE-G-MIN-Di1sc-CODE
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Figure: DISCRETE-G-MIN-D1sc-CODE

na Dey Discriminating Codes in Geometric Setups



Introduction and Be nd Problem Des
Problem Variants

Motivation
Contribution

Variations

CONTINUOUS-G-MIN-Disc-CODE
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Figure: CONTINUOUS-G-MIN-Disc-CODE
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Figure: Network sensing for difficult terrains
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Our Contribution

CONTINUOUS-G-MIN-Disc-CODE | DISCRETE-G-MIN-Disc-CODE
OBJECT TYPE
HARDNESS ALGORITHM HARDNESS ALGORITHM
Intervals - Polynomial NP-hard 2-factor
Unit intervals Open PTAS Open PTAS
Axis parallel unit squares | NP-hard (4 + e)-factor NP-hard (4 + e)-factor

Table: Our contribution
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NP-completeness for the general 1D case
A imation & i for eral 1D case

The One-Dimensional Case

Reduction

NP-hardness reduction from the 3-SAT-2[ problem.

Input: A collection of m clauses C' = {ci, ca, ..., ¢} where each
clause contains at most three literals, over a set of n Boolean
variables X = {1, z9,...,2,}, and each literal appears at most
twice.

Output: A truth assignment of X such that each clause is
satisfied.
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The One-Dimensional Case =S completg}aésgr (o the. gefleral e (? . -
A E hm for t eral 1D case
for the 1D unit interval c

Covering Gadget

A covering gadget 11 consists of three intervals I, J, K and four
points p1, po, p3 and py satisfying p1 € I, po € I N J,
pseINJNK and py € JN K.

K

P1 P2 p3 y2

Figure: A covering gadget II, and its schematic representation.
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The One-Dimensional Case NP-comple?:?nres.sr Hoxr the. grerne{a‘l D ca.s(? . -
/ E hm for t eral 1D case

Clause Gadget

Let ¢; be a clause of C. The clause gadget for ¢;, denoted
G.(c;), is defined by a covering gadget II(¢;) along with two
points pe,,p., placed in K\ {TU J}.

K
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Figure: A clause gadget G.(¢;), and its schematic representation.
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The One-Dimensional Case NP-gompllsicuess for the‘ grerneral D emse

A imation & hm for t eral 1D case

Gadgets

Variable Gadget

Let z; be a variable of X. The variable gadget for x;, denoted
Gy(z;), is defined by a covering gadget II(x;), and five points
pij, ce pgj placed consecutively in K \ {I U J}. It also contains
six intervals Ip , I , I3, I3, I, IZ.. The right end points will
depend on the formula.
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Figure: A variable gadget G, (z;).
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NP-completeness for the general 1D case

One-Dimensional C

Variable Gadgets Clause Gadgets
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Figure: Clause (27 V 22 V x3).
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NP-completeness for the general 1D case

The One-Dimensional Case ! /
The One-Dimensional Case PN - ——— - eral 1D case

A PTAS for the 1D unit interval cas

The 3-SAT-2! instance is satisfiable if and only if the minimum
discriminating code is of size 6n + 3m.
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NP-completeness for the general 1D case
A pproximation algorithm for the general 1D case

The One-Dimensional C

A PTAS for the 1D unit interval ca

Di1SCRETE-G-MIN-Disc-CODE with intervals is NP-complete.
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~ . . - NP-completeness for the neral 1D case
The One-Dimensional Case A2 - : - ‘

ximation algorithm for the general 1D case
A PTAS for the 1D unit interval case

2-factor approximation algorithm comes from edge-cover.

EDGE-COVER

Input: An undirected graph G = (V, E).
Output: A minimum cardinality subset £/ C E such that every
vertex is incident to at least one edge of E’.
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The One-Dimensional Case NP-comp c
e ne-pimensiona € A 2-approximation algorithm for the general 1D case

A PTAS for the 1D unit interval case

S9

S8

er
€1

24009008

)

S0 €y

93| 91| 95| 96 |97 95

9o ‘ 9 ‘ 92

Figure: (a) An input instance, (b) corresponding graph G = (V, E)

with Minimum Edge Cover highlighted.
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NP-completeness for the general 1D case
A 2-approximation algorithm for the general 1D case
A PTAS for the 1D unit interval case

The One-Dimensional Case

Minimum Discriminating Code = Edge Cover + Additional
Intervals

|Additional Intervals| < |Edge Cover|
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NP-completeness for the general 1D case
A 2-approximation alg m for the general 1D case
A PTAS for the 1D unit interval case

The One-Dimensional Case

The proposed algorithm produces a 2-factor approximation for
DISCRETE-G-MIN-Di1sc-CoODE in 1D, and runs in time

O(min(n?, m+/n)).
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The One-Dimensional Case al 1D case

n alg
'AS for the 1D unit interval cas

Observation (Unit Intervals)

Discriminating pairs of consecutive points in P is equivalant to
discriminating P.
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The One-Dimensional Case

N for the al 1D case
A PTAS for the 1D unit interval case

The shortest weight of an s-t path in the multipartite graph H
(created while processing blocks and free regions) is a lower
bound on the size of the optimum discriminating code for (P, S).

|SOL| < (1 + €)OPT.

D1SCRETE-G-MIN-DI1Sc-CODE in 1D for unit interval objects
has a PTAS with time complexity 0(20(1/62)122).

.

.
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ithm for the continuous problem

The Two-Dimensional Case orithm for the discrete problem

Hardness

A reduction from the P3-PARTITION-GRID problem.

P3-PARTITION-GRID

Input: A grid graph G.
Output:A partition of the vertices of G into disjoint Ps-paths,
where a P3-path is a path with three vertices.
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ithm for the continuo problem

The Two-Dimensional e A (¢ € gorithm for the d rete problem
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Figure: Reduction from P3;-PARTITION-GRID
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orithm for the continuous problem

The Two-Dimensional Case . X rithm for the discrete problem

A Ps-partition for G = (V, E) exists if and only if there exists a
AV . . S
set of =5— awis-parallel unit squares discriminating Pg.
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orithm for the continuous problem
The Two-Dimensional Case . € > orithm for the discrete problem

G-MIN-Disc-CoODE for axis-parallel unit squares is
NP-complete.
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The Two-Dimensional Case

Algorithm

SEGMENT-STABBING

Input: A set L of segments in 2D.

Output: A minimum-size set S of axis-parallel unit squares in
2D such that each segment is intersected exactly once by some
square of S.
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e) apx algorithm for the continuous problem

The Two-Dimensional s A (4 € x algorithm for the discrete problem

(a) (b)

Figure: Object for segment ¢ = [a, b], where (a) A(£) > 1 and (b)
A <1
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€)- apx algorithm for the continuous problem
The Two-Dimensional Case A (4 € D3 orithm for the discrete problem

Block representation

segmf“t = Seg-Hit x L-Hit x U-Hit
Blicifing (Continuous)
2-factor 2-factor (1 + €)-factor
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The Two-Dimensional Case

CONTINUOUS-G-MIN-Disc-CODE for azis-parallel unit squares
in 2D has a polynomial-time (4 + €)-factor approximation
algorithm, for every fixed ¢ > 0.
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. orithm for the continuous problem
The Two-Dimensional Case 4 x algorithm for the discrete problem

Di1SCRETE-G-MIN-Disc-CODE for azis-parallel unit squares in
2D has a polynomial-time (4 + €)-factor approximation
algorithm, for every fixed ¢ > 0..
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Open Problem

Is G-MIN-Disc-CobDE (both discrete and continuous) in P for
unit intervals?
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Conclusion

Thank You!
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