Discriminating Codes in Geometric Setups

Sanjana Dey

With Florent Foucaud, Subhas C Nandy and Arunabha Sen

May 6, 2021

The One-Dimensional Case The Two-Dimensional Case Conclusion Problem Description Problem Variants Motivation Contribution

Problem Description

Minimum Discriminating Code (MIN-DISC-CODE)

Input: A bipartite graph $G = (U \cup V, E)$ Output: A minimum-size subset $U^* \subseteq U$ such that

- $U^* \cap N(v) \neq \emptyset$ for all $v \in V$, and
- $U^* \cap N(v) \neq U^* \cap N(v')$ for every pair $v, v' \in V, v \neq v'$.

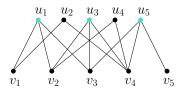


Figure: MIN-DISC-CODE

The One-Dimensional Case The Two-Dimensional Case Conclusion **Problem Description** Problem Variants Motivation Contribution

Problem Description

Geometric Minimum Discriminating Code (G-MIN-DISC-CODE)

Input: Points P and objects SOutput: To choose a subset $S^* \subseteq S$ of minimum cardinality such that the subsets $S_i^* \subseteq S^*$ covering p_i , i = 1, 2, ..., n satisfy

- $S_i^* \neq \emptyset$ for all i, and
- $S_i^* \neq S_j^*$ for all $i \neq j$.

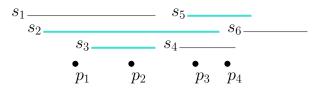
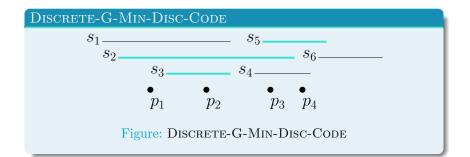


Figure: G-MIN-DISC-CODE

The One-Dimensional Case The Two-Dimensional Case Conclusion

Variations

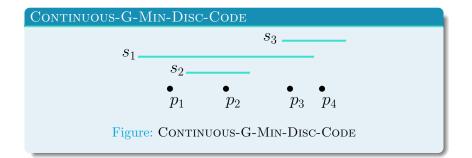
Problem Description **Problem Variants** Motivation Contribution



The One-Dimensional Case The Two-Dimensional Case Conclusion

Variations

Problem Description **Problem Variants** Motivation Contribution



The One-Dimensional Case The Two-Dimensional Case Conclusion

Motivation

Problem Description Problem Variants Motivation Contribution

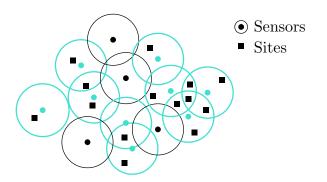


Figure: Network sensing for difficult terrains

The One-Dimensional Case The Two-Dimensional Case Conclusion Problem Description Problem Variants Motivation **Contribution**

Our Contribution

Object Type	Continuous-G-Min-Disc-Code		DISCRETE-G-MIN-DISC-CODE	
	HARDNESS	Algorithm	HARDNESS	Algorithm
Intervals	-	Polynomial	NP-hard	2-factor
Unit intervals	Open	PTAS	Open	PTAS
Axis parallel unit squares	NP-hard	$(4 + \epsilon)$ -factor	NP-hard	$(4 + \epsilon)$ -factor

Table: Our contribution

Reduction

NP-completeness for the general 1D case A 2-approximation algorithm for the general 1D case A PTAS for the 1D unit interval case

NP-hardness reduction from the 3-SAT-2l problem.

3-SAT-2l

Input: A collection of m clauses $C = \{c_1, c_2, \ldots, c_m\}$ where each clause contains at most three literals, over a set of n Boolean variables $X = \{x_1, x_2, \ldots, x_n\}$, and each literal appears at most twice.

Output: A truth assignment of X such that each clause is satisfied.

NP-completeness for the general 1D case A 2-approximation algorithm for the general 1D case A PTAS for the 1D unit interval case

Gadgets

Covering Gadget

A covering gadget Π consists of three intervals I, J, K and four points p_1, p_2, p_3 and p_4 satisfying $p_1 \in I, p_2 \in I \cap J$, $p_3 \in I \cap J \cap K$ and $p_4 \in J \cap K$.

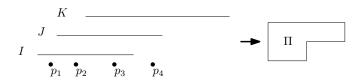


Figure: A covering gadget Π , and its schematic representation.

NP-completeness for the general 1D case A 2-approximation algorithm for the general 1D case A PTAS for the 1D unit interval case

Gadgets

Clause Gadget

Let c_i be a clause of C. The *clause gadget* for c_i , denoted $G_c(c_i)$, is defined by a covering gadget $\Pi(c_i)$ along with two points p_{c_i}, p'_{c_i} placed in $K \setminus \{I \cup J\}$.

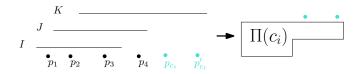


Figure: A clause gadget $G_c(c_i)$, and its schematic representation.

NP-completeness for the general 1D case A 2-approximation algorithm for the general 1D case A PTAS for the 1D unit interval case

Gadgets

Variable Gadget

Let x_j be a variable of X. The variable gadget for x_j , denoted $G_v(x_j)$, is defined by a covering gadget $\Pi(x_j)$, and five points $p_{x_j}^1, \ldots, p_{x_j}^5$ placed consecutively in $K \setminus \{I \cup J\}$. It also contains six intervals $I_{x_j}^0, I_{x_j}^1, I_{x_j}^2, I_{x_j}^0, I_{x_j}^1, I_{x_j}^2$. The right end points will depend on the formula.

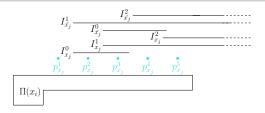


Figure: A variable gadget $G_v(x_j)$.

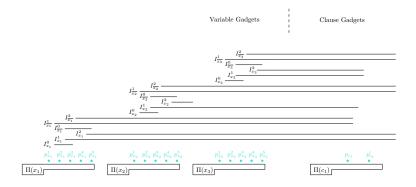


Figure: Clause $(\bar{x_1} \lor x_2 \lor x_3)$.

NP-completeness for the general 1D case A 2-approximation algorithm for the general 1D case A PTAS for the 1D unit interval case

Satisfiability

The 3-SAT-2*l* instance is satisfiable if and only if the minimum discriminating code is of size 6n + 3m.

NP-completeness for the general 1D case A 2-approximation algorithm for the general 1D case A PTAS for the 1D unit interval case

Theorem

DISCRETE-G-MIN-DISC-CODE with intervals is NP-complete.

NP-completeness for the general 1D case A 2-approximation algorithm for the general 1D case A PTAS for the 1D unit interval case

2-factor approximation algorithm comes from edge-cover.

Edge-Cover

Input: An undirected graph G = (V, E). Output: A minimum cardinality subset $E' \subseteq E$ such that every vertex is incident to at least one edge of E'.

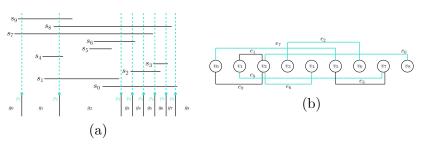


Figure: (a) An input instance, (b) corresponding graph G = (V, E) with Minimum Edge Cover highlighted.

NP-completeness for the general 1D case **A 2-approximation algorithm for the general 1D case** A PTAS for the 1D unit interval case

Final step

$\label{eq:minimum} \begin{array}{l} \mbox{Minimum Discriminating Code} = \mbox{Edge Cover} + \mbox{Additional} \\ \mbox{Intervals} \end{array}$

 $|Additional Intervals| \le |Edge Cover|$

NP-completeness for the general 1D case A 2-approximation algorithm for the general 1D case A PTAS for the 1D unit interval case

Theorem

The proposed algorithm produces a 2-factor approximation for DISCRETE-G-MIN-DISC-CODE in 1D, and runs in time $O(\min(n^2, m\sqrt{n})).$

NP-completeness for the general 1D case A 2-approximation algorithm for the general 1D case A PTAS for the 1D unit interval case

Observation (Unit Intervals)

Discriminating pairs of *consecutive* points in P is equivalant to discriminating P.

NP-completeness for the general 1D case A 2-approximation algorithm for the general 1D case A PTAS for the 1D unit interval case

Lemma

The shortest weight of an s-t path in the multipartite graph H (created while processing blocks and free regions) is a lower bound on the size of the optimum discriminating code for (P, S).

Lemma

 $|SOL| \le (1+\epsilon)OPT.$

Theorem

DISCRETE-G-MIN-DISC-CODE in 1D for unit interval objects has a PTAS with time complexity $O(2^{O(1/\epsilon^2)}n^2)$.

Hardness

A $(4 + \epsilon)$ -apx algorithm for the continuous problem A $(4 + \epsilon)$ -apx algorithm for the discrete problem

A reduction from the P_3 -PARTITION-GRID problem.

P_3 -Partition-Grid

Input: A grid graph G.

Output: A partition of the vertices of G into disjoint P_3 -paths, where a P_3 -path is a path with three vertices.

A $(4 + \epsilon)$ -apx algorithm for the continuous problem A $(4 + \epsilon)$ -apx algorithm for the discrete problem

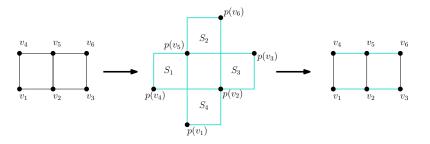


Figure: Reduction from P_3 -PARTITION-GRID

A $(4 + \epsilon)$ -apx algorithm for the continuous problem A $(4 + \epsilon)$ -apx algorithm for the discrete problem

Lemma

A P_3 -partition for G = (V, E) exists if and only if there exists a set of $\frac{2|V|}{3}$ axis-parallel unit squares discriminating P_G .

A $(4 + \epsilon)$ -apx algorithm for the continuous problem A $(4 + \epsilon)$ -apx algorithm for the discrete problem

Theorem

G-MIN-DISC-CODE for axis-parallel unit squares is NP-complete.

Algorithm

A $(4 + \epsilon)$ -apx algorithm for the continuous problem A $(4 + \epsilon)$ -apx algorithm for the discrete problem

Segment-Stabbing

Input: A set L of segments in 2D. Output: A minimum-size set S of axis-parallel unit squares in 2D such that each segment is intersected exactly once by some square of S.

A (4 + ϵ)-apx algorithm for the continuous problem A (4 + ϵ)-apx algorithm for the discrete problem

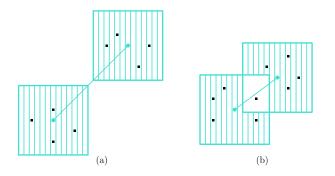


Figure: Object for segment $\ell = [a,b],$ where (a) $\lambda(\ell) \geq 1$ and (b) $\lambda(\ell) < 1$

A $(4 + \epsilon)$ -apx algorithm for the continuous problem A $(4 + \epsilon)$ -apx algorithm for the discrete problem

A $(4 + \epsilon)$ -apx algorithm for the continuous problem A $(4 + \epsilon)$ -apx algorithm for the discrete problem

Theorem

CONTINUOUS-G-MIN-DISC-CODE for axis-parallel unit squares in 2D has a polynomial-time $(4 + \epsilon)$ -factor approximation algorithm, for every fixed $\epsilon > 0$.

A $(4 + \epsilon)$ -apx algorithm for the continuous problem A $(4 + \epsilon)$ -apx algorithm for the discrete problem

Theorem

DISCRETE-G-MIN-DISC-CODE for axis-parallel unit squares in 2D has a polynomial-time $(4 + \epsilon)$ -factor approximation algorithm, for every fixed $\epsilon > 0$.

Open Problem

Question

Is G-MIN-DISC-CODE (both discrete and continuous) in ${\cal P}$ for unit intervals?

Thank You!

Discriminating Codes in Geometric Setups