On \((m,n)\)-absolute clique number of planar graphs

Susobhan Bandopadhyay
Joint work with Sandip Das
Sagnik Sen & Soumen Nandi

NISER, Bhubaneswar

04/05/2021
This work
This work

Based on the paper:
This work

Based on the paper:

Colored mixed graphs
Colored mixed graphs
Colored mixed graphs

- Type1 ARC
Colored mixed graphs

- Type 1 ARC
- Type 2 ARC
Colored mixed graphs

- Type 1 ARC
- Type 2 ARC
- Type 1 EDGE
Colored mixed graphs

- Type1 ARC
- Type2 ARC
- Type1 EDGE
- Type2 EDGE

2 types of arcs & 2 types of edges...
Colored mixed graphs

- Type1 ARC
- Type2 ARC
- Type1 EDGE
- Type2 EDGE

(2,2)-colored mixed graph
Colored mixed graphs

- Type 1 ARC
- Type 2 ARC
- Type 1 EDGE
- Type 2 EDGE

(2,2)-mixed graph
Colored mixed graphs

(m,n)-mixed graph
Colored mixed graphs

(m,n)-mixed graph [generalization by Nešetřil and Raspaud, J. Combin. Theory Ser. B(2000)]

- m types of arcs
- n types of edges
Colored mixed graphs

- Type 1 ARC
- Type 2 ARC
- Type 1 EDGE
- Type 2 EDGE

homomorphism?
Colored mixed graphs

- Type1 ARC
- Type2 ARC
- Type1 EDGE
- Type2 EDGE
Colored mixed graphs

Homomorphism: A vertex mapping f such that an edge/arc uv implies that $f(u)f(v)$ is an edge/arc of the same type.
Colored mixed graphs

homomorphism: a vertex mapping f such that an edge/arc uv implies that $f(u)f(v)$ is an edge/arc of the same type.

chromatic number $(\chi_{(m,n)})$: minimum $|H|$ such that $G \rightarrow H$.
Colored mixed graphs

homomorphism: a vertex mapping \(f \) such that an edge/arc \(uv \) implies that \(f(u)f(v) \) is an edge/arc of the same type.

*vertex images=colors

chromatic number (\(\chi_{(m,n)} \)): minimum \(|H|\) such that \(G \rightarrow H \).
Special 2-path uvw
Special 2-path uvw

- uv, vw different types of edges
- vu, vw different types of arcs
- uv, wv different types of arcs
- In uv, vw exactly one is an edge
Special 2-path uvw

- uv, vw different types of edges
- uv, vw are arcs (maybe same type)
Special 2-path uvw

- uv, vw different types of edges
- uv, vw are arcs (maybe same type)
- uv, wv are different types of arcs

\[\begin{tikzpicture}[>=stealth, shorten >=1pt]
 \node (a) at (0,0) [circle,draw] {};
 \node (b) at (1,0) [circle,draw] {};
 \node (c) at (2,0) [circle,draw] {};
 \draw [->,dotted] (a) to (b);
 \draw [->] (b) to (c);
\end{tikzpicture} \quad \begin{tikzpicture}[>=stealth, shorten >=1pt]
 \node (a) at (0,0) [circle,draw] {};
 \node (b) at (1,0) [circle,draw] {};
 \node (c) at (2,0) [circle,draw] {};
 \draw [->] (a) to (b);
 \draw [->] (b) to (c);
 \node (d) at (1.5,0) [circle,draw] {};
 \draw [->,red] (d) to (b);
\end{tikzpicture} \]
Special 2-path uvw

- uv, vw different types of edges
- uv, vw are arcs (maybe same type)
- uv, wv are different types of arcs
- vu, vw are different types of arcs

![Diagram showing the special 2-path uvw with different types of edges and arcs.]
Special 2-path uvw

- uv, vw different types of edges
- uv, vw are arcs (maybe same type)
- uv, wv are different types of arcs
- vu, vw are different types of arcs
- in uv, vw exactly one is an edge

\[\text{Diagram:} \quad \begin{array}{c}
\begin{array}{c}
\circ \rightarrow \circ \circ \rightarrow \circ \\
\circ \circ \circ \rightarrow \circ \circ \circ \rightarrow \circ
\end{array}
\end{array} \]
Absolute \((m,n)\)-clique
Absolute \((m,n)\)-clique

\((m,n)\)-mixed graph whose non-adjacent vertices are connected by a special 2-path
Absolute (m,n)-clique

(m,n)-mixed graph whose non-adjacent vertices are connected by a special 2-path

$$
\omega_{a(m,n)}(F) = \max_{C \in F} \{ \#\text{vertices in } C: C \text{ is } (m,n)\text{-clique} \}$$
Known related results
Known related results

Theorem (Bensmail, Duffy and Sen, Graphs Combin., 2017): For the family O of outerplanar graphs
\[\omega_{a(m,n)}(O) = 3(2m+n)+1, \text{ for all } (m,n)\neq(0,1). \]

Theorem (Bensmail, Duffy and Sen 2017): For the family P of planar graphs
\[3(2m+n) \leq \omega_{a(m,n)}(P) \leq 9(2m+n)^2 + 2(2m+n) + 2, \text{ for all } (m,n)\neq(0,1). \]

Conjecture (Bensmail, Duffy and Sen 2017): For the family P of planar graphs
\[\omega_{a(m,n)}(P) = 3(2m+n)^2 + (2m+n) + 1, \text{ for all } (m,n)\neq(0,1). \]
Known related results

Theorem (Bensmail, Duffy and Sen, Graphs Combin., 2017): For the family O of outerplanar graphs
$$\omega_{a(m,n)}(O) = 3(2m+n)+1, \text{ for all } (m,n)\neq(0,1).$$

Theorem (Bensmail, Duffy and Sen, Graphs Combin., 2017): For the family P of planar graphs
$$3(2m+n)^2+(2m+n)+1 \leq \omega_{a(m,n)}(P) \leq 9(2m+n)^2+2(2m+n)+2, \text{ for all } (m,n)\neq(0,1).$$
Conjecture (Bensmail, Duffy and Sen, Graphs Combin., 2017): For the family P of planar graphs

$$\omega_{a(m,n)}(P) = 3(2m+n)^2 + (2m+n) + 1,$$

for all $(m,n) \neq (0,1)$.
Our result (Bandopadhyay, Das, Naandi and Sen)

Here we settle the conjecture.
Our result (Bandopadhyay, Das, Nandi and Sen)

Theorem: For the family P of planar graphs

$$\omega_{a(m,n)}(P) = 3(2m+n)^2+(2m+n)+1,$$

for all $(m,n)\neq(0,1)$.

Theorem: For the family P_{tf} of triangle-free planar graphs

$$\omega_{a(m,n)}(P_{tf}) = (2m+n)^2+2,$$

for all $(m,n)\neq(0,1)$.

Theorem: For the family SP of series-parallel graphs

$$\omega_{a(m,n)}(SP) = 3(2m+n)+1,$$

for all $(m,n)\neq(0,1)$.

time for proof...
Theorem: For the family P of planar graphs $\omega_{a(m,n)}(P) = 3(2m+n)^2+(2m+n)+1$, for all $(m,n)\neq(0,1)$.

Proof (sketch)
Theorem: For the family P of planar graphs $\omega_{a(m,n)}(P) = 3(2m+n)^2+(2m+n)+1$, for all $(m,n) \neq (0,1)$.

Proof (sketch)

- We will use the notion of Dominating Set (D) and Domination Number in this proof.
Theorem: For the family P of planar graphs
\[\omega_{a(m,n)}(P) = 3(2m+n)^2 + (2m+n) + 1, \text{ for all } (m,n) \neq (0,1). \]

Proof (sketch)

- We will use the notion of Dominating Set (D) and Domination Number in this proof.

- Goddard and Henning (*J. Graph. Th.*, 2002) showed that any planar graph with at least 10 vertices and diameter 2 has domination number at most 2.
Theorem: For the family P of planar graphs
\[\omega_{a(m,n)}(P) = 3(2m+n)^2+(2m+n)+1 , \] for all $(m,n) \neq (0,1)$.

Proof (sketch)

- We will use the notion of Dominating Set (D) and Domination Number in this proof.

- Goddard and Henning (J. Graph. Th., 2002) showed that any planar graph with at least 10 vertices and diameter 2 has domination number at most 2.

- We have to proof the theorem for domination number 1 and 2.
Theorem: For the family P of planar graphs $\omega_{a(m,n)}(P) = 3(2m+n)^2 + (2m+n) + 1$, for all $(m,n) \neq (0,1)$.

Proof (sketch)

- We adapt the technique of Nandy, Sen and Sopena (J. Graph Th., 2016) for our proof.
Theorem: For the family P of planar graphs
\[\omega_{a(m,n)}(P) = 3(2m+n)^2+(2m+n)+1 \], for all $(m,n) \neq (0,1)$.

Proof (sketch)

- We adapt the technique of Nandy, Sen and Sopena (J. Graph Th., 2016) for our proof.

Lemma: For triangulated planar (m, n)-absolute clique G with domination number 1
\[\omega_{a(m,n)}(G) \leq 3(2m+n)^2+(2m+n)+1 \], for all $(m,n) \neq (0,1)$.

3p+1
Theorem: For the family P of planar graphs $\omega_{a(m,n)}(P) = 3(2m+n)^2+(2m+n)+1$, for all $(m,n)\neq(0,1)$.

Proof (sketch)
Theorem: For the family P of planar graphs
\[\omega_{a(m,n)}(P) = 3(2m+n)^2 + (2m+n) + 1, \text{ for all } (m,n) \neq (0,1). \]

Proof (sketch)

For triangulated planar (m, n)–absolute clique G with domination number 2,
Theorem: For the family P of planar graphs $\omega_{a(m,n)}(P) = 3(2m+n)^2 + (2m+n) + 1$, for all $(m,n)\neq(0,1)$.

Proof (sketch)

For triangulated planar (m, n)-absolute clique G with domination number 2,

Lemma: $2 \leq |C| \leq 3(2m+n)^2$, where C is the common neighbor of x, y and $D=\{x, y\}$.
Theorem: For the family P of planar graphs $\omega_{a(m,n)}(P) = 3(2m+n)^2 + (2m+n) + 1$, for all $(m,n) \neq (0,1)$.

Proof (sketch)

For triangulated planar (m, n)-absolute clique G with domination number 2,

Lemma: $2 \leq |C| \leq 3(2m+n)^2$, where C is the common neighbor of x, y and $D = \{x, y\}$.

Lemma: If $3 \leq |C| \leq 3(2m+n)^2$ then,

$$\omega_{a(m,n)}(G) \leq 3(2m+n)^2 + (2m+n) + 1,$$

for all $(m,n) \neq (0,1)$.
Theorem: For the family P of planar graphs
\[\omega_{a(m,n)}(P) = 3(2m+n)^2 + (2m+n) + 1, \text{ for all } (m,n) \neq (0,1). \]

Proof (sketch)

For triangulated planar (m,n)-absolute clique G with domination number 2,

Lemma: $2 \leq |C| \leq 3(2m+n)^2$, where C is the common neighbor of x, y and $D=\{x, y\}$.

Lemma: If $3 \leq |C| \leq 3(2m+n)^2$ then,
\[\omega_{a(m,n)}(G) \leq 3(2m+n)^2 + (2m+n) + 1, \]
for all $(m,n) \neq (0,1)$.

Lemma: If $|C| = 2$ then,
\[\omega_{a(m,n)}(G) \leq 3(2m+n)^2 + (2m+n) + 1, \]
for all $(m,n) \neq (0,1)$.
Theorem: For the family P of planar graphs
\[\omega_{a(m,n)}(P) = 3(2m+n)^2+(2m+n)+1, \text{ for all } (m,n) \neq (0,1). \]

Proof (sketch)

Lemma: For triangulated planar (m, n)-absolute clique G with domination number 2
\[\omega_{a(m,n)}(G) \leq 3(2m+n)^2+(2m+n)+1, \]
\[\text{for all } (m,n) \neq (0,1). \]
Theorem: For the family P of planar graphs
\[\omega_{a(m,n)}(P) = 3(2m+n)^2 + (2m+n) + 1, \text{ for all } (m,n) \neq (0,1). \]

Proof (sketch)

Lemma: For triangulated planar (m, n)-absolute clique G with domination number 1
\[\omega_{a(m,n)}(G) \leq 3(2m+n)^2 + (2m+n) + 1, \text{ for all } (m,n) \neq (0,1). \]
Theorem: For the family P of planar graphs
\[\omega_{a(m,n)}(P) = 3(2m+n)^2 + (2m+n) + 1 \], for all $(m,n) \neq (0,1)$.

Proof (sketch)

Lemma: For triangulated planar (m, n)-absolute clique G with domination number 1
\[\omega_{a(m,n)}(G) \leq 3(2m+n)^2 + (2m+n) + 1 \],
for all $(m,n) \neq (0,1)$.

Lemma: For triangulated planar (m, n)-absolute clique G with domination number 2
\[\omega_{a(m,n)}(G) \leq 3(2m+n)^2 + (2m+n) + 1 \],
for all $(m,n) \neq (0,1)$.
Theorem: For the family P of planar graphs
\[\omega_{a(m,n)}(P) = 3(2m+n)^2 + (2m+n) + 1, \text{ for all } (m,n) \neq (0,1). \]

Proof (sketch)

Lemma: For triangulated planar (m,n)-absolute clique G
\[\omega_{a(m,n)}(G) \leq 3(2m+n)^2 + (2m+n) + 1, \]
\[\text{for all } (m,n) \neq (0,1). \]
Theorem: For the family P of planar graphs
\[\omega_{a(m,n)}(P) = 3(2m+n)^2+(2m+n)+1, \text{ for all } (m,n) \neq (0,1). \]

Proof (sketch)

Lemma: For triangulated planar (m, n)-absolute clique G
\[\omega_{a(m,n)}(G) \leq 3(2m+n)^2+(2m+n)+1, \]
\[\text{for all } (m,n) \neq (0,1). \]

Theorem (Bensmail, Duffy and Sen, Graphs Combin., 2017):
For the family P of planar graphs
\[3(2m+n)^2+(2m+n)+1 \leq \omega_{a(m,n)}(P), \text{ for all } (m,n) \neq (0,1). \]
Thank You