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homomorphism: a vertex mapping f such 

that an edge/arc uv implies that f(u)f(v) 

is an edge/arc of the same type.

chromatic number (c(m,n)): minimum 

|H| such that G ® H. 

*vertex images=colors
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(m,n)-mixed graph whose non-adjacent 

vertices are connected by a special 2-path

w
a(m,n)

(F)=maxCŒF{#vertices in C: C is (m,n)-clique}
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Our result (Bandopadhyay, Das, 

Nandi and Sen)

Theorem: For the family P of planar graphs 

w
a(m,n)

(P) = 3(2m+n)2+(2m+n)+1 , for all (m,n)π(0,1). 

Theorem: For the family Ptf of triangle-free planar graphs 

w
a(m,n)

(Ptf) = (2m+n)
2+2, for all (m,n)π(0,1). 

Theorem: For the family SP of series-parallel graphs 

w
a(m,n)

(SP) = 3(2m+n)+1, for all (m,n)π(0,1). 
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Lemma: For triangulated planar ( m, n )-absolute 

clique G with domination number 1 
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for all (m,n)π(0,1). 
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