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homomorphism: a verfex mapping f such
that an edge/arc uv implies that f(u)f(v)
is an edge/arc ot the same fype.
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Special 2—path uvw

- uv, vw different fypes of edges
e UV, VW are arcs (maybe same Type)
- uv, wv are different types of arcs
- vu, vw are ditferent types of arcs
«in uv, vw exactly one is an edqge
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(m,n)—mixed graph whose non—adjacent
verfices are connected by a special 2—path

® (F)=max _(#verfices in C: C is (m,n)=cligue

a(m,n)
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Theorem (Bensmail, Duffy and Sen, Graphs Combin,, 2017): For
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® (P) = 3(zm+n)2+(2zm+n)+1, for all (m,n)=(0,1).
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- We will use the notion of Dominating set(D) and
Domination Number in this proof,

. 6oddard and Henning(J., Graph, Th., 2002) showed
that any planar graph with at least 10 vertices and
diameter 2 has domination number at most 2.

- We have fo proot fhe theorem for domination
number 1 and 2.
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Lemma: For friangulated planar ( m, n )—absolute
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Lemma: For friangulated planar ( m, n )—absolufe cliqgue a
(6) = 3(2m+n)*+(2zm+n)+1

for all (m,n)=(0,1).
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Theorem (Bensmail, qu:l{, and Sen, Graphs Combin,, 2017):
For the tamily P of planar graphs
s(zmtn)2+(zmtn)+1 < o - (P), for all (m,n)=(0,1).
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