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Definitions

A signed graph (G, σ) is a graph together with an assign-
ment σ of signs to the edges called signature.
A switching at a vertex v is to reserve the sign of each edge
incident to v.
Two signatures σ1 and σ2 on G are equivalent if one can be
obtained from the other by a sequence of switchings.

Definition
The packing number of a signed graph (G, σ), denoted ρ(G, σ), is de-
fined to be the maximum number of signatures σ1, σ2, · · · , σl such that
each σi is switching equivalent to σ and the sets of negative edges are
pairwise disjoint.
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Packing number

(K4,−) (K4, σ1) (K4, σ2) (K4, σ3)

Figure: A 3-packing of (K4,−)
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Packing number

Theorem
Given a non negative integer k, for a signed graph (G, σ), we have
ρ(G, σ) ≥ k + 1 if and only if (G, σ)→ SPCo

k .

Figure: SPCo
d for d ∈ {0, 1, 2, 3}
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Motivation

In packing number, we consider one signature σ and its
equivalent signatures. But how about k signatures σ1, σ2, · · · ,
σk (not necessarily switching equivalent) and ask whether
there exist signatures σ′1, σ

′
2, · · · , σ′k, where σ′i is a switching

of σi, such that the sets of negative edges E−
σ′

i
are pairwise

disjoint.

In particular, if we choose these k signatures to be switch-
ing equivalent to σ, then separating k signatures implies
ρ(G, σ) ≥ k.
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Motivation

It is known that there exists signed planar graph whose
packing number is 1, which follows from the results of Kar-
doš and Narboni. Thus for a general planar graph separat-
ing two signatures is not always possible even if σ1 = σ2.

We want to give some sufficient conditions for a planar graph
to have two disjoint signatures.

Theorem
For planar graph G without 4-cycle and any two signatures σ and π,
there are switchings σ′ and π′ of σ and π, respectively, such that E−σ′ ∩
E−π′ = ∅.
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Sketch of the proof

Let G be a smallest counterexample with minimum number
of edges.

For any subgraph of G and two signatures σ and π, we could
separate them.

Find some properties of graph G.

Show the contradiction by discharging.
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Notation

For two signatures σ and π on G, and for an edge uv ∈ E(G),
let sσπ(uv) = {σ(uv)π(uv)} ⊆ {+,−} × {+,−}.

For a vertex u define Sσπ(u) = {sσπ(e)|e ∈ Eu}, where Eu is
the set of edges incident to u.

Let S∗ = {++,+−,−+}. We say a vertex v is saturated by
σ and π if S∗ ⊆ Sσπ(v).

If all the vertices of a path(resp. face) in G are of degree 4,
then we call it a light path(resp. face) in G.
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Properties of graph G

G is 2-connected.

Let uv ∈ E(G) and G′ = G − uv. For any two signatures σ
and π on G, we have switchings σuv and πuv of σ and π on G′,
such that E−σuv

∩ E−πuv
= ∅. Then both u and v are saturated

with respect to σuv and πuv on G′.

The minimum degree of G is at least 4. So for any 3-degenerated
graph, we could separate two signatures.

Let P be a light path of G, e ∈ P and G′ = P − e. we have
switchings σe and πe of σ and π on G′, such that E−σe

∩E−πe
= ∅.

Then by switching the vertices on P we can find switchings
σe′ and πe′ of σ and π, such that E−σe′

∩E−πe′
= e′, where e′ ∈ P.
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Properties of graph G

There is no three vertex disjoint light paths between two ver-
tices of G.

Suppose uv ∈ E(G), d(u) = 5 and d(v) = 4. Then there
is no other two disjoint uv-paths with all internal vertices of
degree 4.
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Discharging Part

We define a weight function:

∀v ∈ V(G), ω(v) = d(v)− 4;
∀f ∈ F(G), ω(f ) = d(f )− 4.

By Euler’s formula and Handshake lemma, we derive that∑
x∈V(G)∪F(G)

ω(x) = −8.

After applying discharging rules, we obtain that:

ω∗(x) ≥ 0 for all x ∈ V(G) ∪ F(G).

And the contradiction follows:
−8 =

∑
x∈V(G)∪F(G) ω(x) =

∑
x∈V(G)∪F(G) ω

∗(x) ≥ 0.
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Thank you!
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