Twin-width and generalized coloring numbers

Yiting Jiang

Université de Paris (IRIF), France and Zhejiang Normal University, China

Joint work with J. Dreier, J. Gajarsky, P. Ossona de Mendez, and JF. Raymond

HOSIGRA 2021

The *twin-width* of G is the minimum integer d such that G admits a d-contraction sequence G_n, \ldots, G_1 , which we dually see as a d-construction sequence:

- G_i with nodes V_1, \ldots, V_i , red and black edges;
- $G_i \rightarrow G_{i+1}$ by splitting some V_a into V_a and V_{i+1} ;
- black edge $V_aX \rightarrow$ black edges V_aX and $V_{i+1}X$;
- red edge $V_aX \to \text{cannot give both } V_aX \text{ and } V_{i+1}X \text{ black or } V_aX \text{ and } V_{i+1}X \text{ non-edges};$
- between V_a and V_{i+1} : anything;
- maximum degree in red is $\leq d$;
- $\mathbf{G}_n = G$ and has no red edge.

d-construction sequence of G

d-construction sequence of G

d-construction sequence of G

The *twin-width* of G (tww(G)): minimum d.

$$\operatorname{adm}_r(G) \leq \operatorname{scol}_r(G) \leq \operatorname{wcol}_r(G)$$

Excluding a biclique

Biclique free classes with bounded twin-width have bounded expansion (Bonnet, Geniet, Kim, Thomassé, Watrigant). These include

- proper minor closed classes of graphs
- some classes of expanders
- but not the class of cubic graphs because every class with bounded twin-width is small.

Excluding a biclique

Biclique free classes with bounded twin-width have bounded expansion (Bonnet, Geniet, Kim, Thomassé, Watrigant). These include

- proper minor closed classes of graphs
- some classes of expanders
- but not the class of cubic graphs because every class with bounded twin-width is small.

 \mathscr{C} has bounded expansion.

- $\Leftrightarrow \sup \{ \operatorname{wcol}_r(G) : G \in \mathscr{C} \} < \infty \text{ for every integer } r. \text{ (Zhu)}$
- \Leftrightarrow $\sup\{\mathrm{scol}_r(G): G \in \mathscr{C}\} < \infty$ for every integer r. (Zhu)
- \Leftrightarrow sup{adm_r(G) : $G \in \mathscr{C}$ } < ∞ for every integer r. (Dvořák)

Main Problem

 $b\omega(G)$ (biclique number): the maximum integer s such that $K_{s,s} \subseteq G$.

Problem

Bound generalized coloring numbers of graphs with biclique number s and twin-width at most d.

Results

Upper bounds:

- exponential upper bound for $scol_r \lesssim d^r s$ (and adm_r);
- deduce exponential upper bound for wcol_r by

$$\operatorname{wcol}_r(G) \le 2^{r-1} \max_{1 \le k \le r} \operatorname{scol}_k(G)^{r/k}$$

(but now $\operatorname{wcol}_r \lesssim (ds)^r$)

Results

Upper bounds:

- exponential upper bound for $scol_r \lesssim d^r s$ (and adm_r);
- deduce exponential upper bound for wcol_r by

$$\operatorname{wcol}_r(G) \le 2^{r-1} \max_{1 \le k \le r} \operatorname{scol}_k(G)^{r/k}$$

(but now $\operatorname{wcol}_r \lesssim (ds)^r$)

Lower bounds:

- with high-girth d/2-regular graphs, $d \ge 14$, and $r = 2^k$ we get $\mathrm{scol}_r \gtrsim (d/8)^r s$.
- with $K_n^{(r-1)}$ plus blowing we get $\operatorname{adm}_r \gtrsim (\log \log \log d)^{2r} s$;

Upper bound of scol_r

Theorem - [Dreier, Gajarsky, J, Ossona de Mendez, and Raymond]

For every graph G and every positive integer r we have

$$\operatorname{scol}_r(G) \le \left(3 + d \sum_{i=0}^{r-1} (d-1)^i\right) s \le (d^r + 3) s$$

where d = tww(G) and $s = \text{b}\omega(G)$.

Bounding for $scol_r$

Bounding for scol,

Bounding for scol_r

Bounding for $scol_r$

Bounding for $scol_r$

Bounding for scol,

Bounding for $scol_r$

Bounding for $scol_r$

Bounding for scol_r

$$|\operatorname{Sreach}[G, L, v]| \le 2s + (1 + d + \dots + d(d-1)^{r-2})s + (d(d-1)^{r-1})s$$

Bounding for $scol_r$

Bounding for $scol_r$

$$|\operatorname{Sreach}[G, L, v]| \le s + 2s + (1 + d + \dots + d(d-1)^{r-2} - 1)s + (d(d-1)^{r-1})s$$

Upper bound of scol_r

Thus

$$\operatorname{scol}_r(G) \le \left(3 + d \sum_{i=0}^{r-1} (d-1)^i\right) s \le (d^r + 3) s$$

Corollary

For every graph G and every positive integer r we have

$$\operatorname{scol}_r(G) \leq \begin{cases} 2 \operatorname{b}\omega(G) & \text{if } \operatorname{tww}(G) = 0, \\ 3 \operatorname{b}\omega(G) & \text{if } \operatorname{tww}(G) = 1, \\ 5 \operatorname{b}\omega(G) & \text{if } \operatorname{tww}(G) = 2, \\ 3(\operatorname{tww}(G) - 1)^r \operatorname{b}\omega(G) & \text{if } \operatorname{tww}(G) \geq 3. \end{cases}$$

Lower bounds of scol_r

Theorem - [Grohe, Kreutzer, Rabinovich, Siebertz, and Stavropoulos]

Let G be a d-regular graph of girth at least 4g + 1, where $d \ge 7$. Then for every $r \le g$,

$$\operatorname{scol}_r(G) \geq \frac{d}{2} \left(\frac{d-2}{4} \right)^{2^{\lfloor \log_2 r \rfloor} - 1}.$$

Lower bounds of $scol_r$ - 2-lifts

A 2-lift of G is a graph with vertex set $V(G) \times \{0, 1\}$ such that each edge xy of G gives a matching between (x, 0), (x, 1) and (y, 0), (y, 1).

Lower bounds of $scol_r$ - 2-lifts

A 2-lift of G is a graph with vertex set $V(G) \times \{0, 1\}$ such that each edge xy of G gives a matching between (x, 0), (x, 1) and (y, 0), (y, 1).

Lemma

If G' is obtained from G by a sequence of 2-lifts then

$$\operatorname{tww}(G') \le 2\operatorname{tww}(G).$$

Lower bounds of $scol_r$ - High girth by 2-lifts

Let G = (V, E) be an r-regular graph with n vertices and m = nr/2 edges, and let G' be the r-regular graph with $V(G') = V \times 2^E$ matching (x, X) with (y, Y) if $xy \in E$ and $X\Delta Y = \{xy\}$.

Lower bounds of $scol_r$ - High girth by 2-lifts

Let G = (V, E) be an r-regular graph with n vertices and m = nr/2 edges, and let G' be the r-regular graph with $V(G') = V \times 2^E$ matching (x, X) with (y, Y) if $xy \in E$ and $X\Delta Y = \{xy\}$.

Then

- \circ G' is obtained from G by a sequence of 2-lifts,
- girth(G') > 2 girth(G).

Repeat this and use the bound on scol_r for regular graphs with high girth.

Lower bounds of $scol_r$

Lemma

For every integer $\Delta \geq 7$ and every integers r and $g \geq 4r+1$ there exists a Δ -regular graph G with girth at least g, $2\Delta-1 \leq \operatorname{tww}(G) \leq 2\Delta$, and

$$\operatorname{scol}_r(G)) \geq \frac{\Delta}{2} \left(\frac{\Delta-2}{4}\right)^{2^{\lfloor \log_2 r \rfloor} - 1} \geq \frac{\operatorname{tww}(G)}{4} \left(\frac{\operatorname{tww}(G) - 4}{8}\right)^{2^{\lfloor \log_2 r \rfloor} - 1}.$$

Corollary

For every integer $d \ge 14$, every positive integer s, and every integer r of the form 2^k , there exists a graph G with $\mathrm{tww}(G) \le d$, $\mathrm{b}\omega(G) = s$, and

$$\operatorname{scol}_r(G) \ge \frac{ds}{4} \left(\frac{d-4}{8}\right)^{r-1} \ge 2 \left(\frac{\operatorname{tww}(G)-4}{8}\right)^r \operatorname{b}\omega(G).$$

THANK YOU FOR YOUR ATTENTION!