les exercices sont indépendants DOCUMENTS et calculettes interdits

Téléphones éteints et rangés dans vos sacs Rédigez les exercices de cette page sur une copie séparée Vous pouvez rédiger les exercices 1 et 4 2. sur l'énoncé

On rapelle les règles du calcul des séquents

- utilisation d'une hypothèse : $F \in \mathcal{F} \Longrightarrow \mathcal{F} \vdash F$
- augmentation des hypothèses : si $G \notin \mathcal{F}$ et $\mathcal{F} \vdash F$ alors $\mathcal{F} \cup \{G\} \vdash F$
- règle de détachement (ou modus ponens) : si $\mathcal{F} \vdash (F \supset F')$ et si $\mathcal{F} \vdash F$ alors $\mathcal{F} \vdash F'$
- règle de synthèse (ou retrait d'une hypothèse) : si $\mathcal{F}, F \vdash F'$ alors $\mathcal{F} \vdash (F \supset F')$
- règle de la double négation : $\mathcal{F} \vdash F$ si et seulement si $\mathcal{F} \vdash \neg \neg F$
- règle du raisonnement par l'absurde : si $\mathcal{F}, F \vdash F'$ et $\mathcal{F}, F \vdash \neg F'$, alors $\mathcal{F} \vdash \neg F$.
- Si $\mathcal{F} \vdash \forall xF$ et si t est substituable à x dans F, alors : $\mathcal{F} \vdash F[x := t]$ (règle d'instantiation).
- Si $\mathcal{F} \vdash F$ et si x n'est pas libre dans \mathcal{F} , alors : $\mathcal{F} \vdash \forall x F$ (règle de généralisation universelle).
- $\mathcal{F} \vdash \exists x F \text{ si et seulement si } \mathcal{F} \vdash \neg \forall x \neg F \text{ (définition de } \exists\text{)}.$

On pourra utiliser aussi les règles suivantes, énoncées ou démontrées en cours :

- si $\mathcal{F} \vdash (F \land F')$ alors $\mathcal{F} \vdash F$, (élimination de et1)
- si $\mathcal{F} \vdash (F \land F')$ alors $\mathcal{F} \vdash F'$, (élimination de et2)
- si $\mathcal{F}, G \vdash F$ et $\mathcal{F}, \neg G \vdash F'$ alors $\mathcal{F} \vdash (F \lor F')$ (introduction de ou).
- $\mathcal{F} \vdash G \land \exists x F$ si et seulement si $\mathcal{F} \vdash \exists x (G \land F)$, si x n'a aucune occurrence libre dans G (prénexe1)
- $\mathcal{F} \vdash \forall x (F \land G)$ si et seulement si $\mathcal{F} \vdash (\forall x F) \land G)$, si x n'a aucune occurrence libre dans G (prénexe2).

EXERCICE 1 Soit $\phi = \forall x \exists y \big(p(x) \land q(y) \big)$ et $\psi = \exists y \forall x \big(p(x) \land q(y) \big)$. On déduit ψ à partir de ϕ . Laquelle des déductions suivantes est correcte? Vous justifierez votre réponse en donnant le nom des règles appliquées à chaque étape de la déduction correcte, avec justification des hypothèses d'application de la règle si nécessaire, et en donnant un contrexemple pour l'étape fausse de la déduction fausse : votre contrexemple sera un modèle de la ligne précédant la ligne fausse, et ne sera pas un modèle de la ligne fausse.

1)
$$\phi \vdash \exists y \Big(p(x) \land q(y) \Big)$$
 (instantiation)
 $\phi \vdash p(x) \land \Big(\exists y q(y) \Big)$ ()
 $\phi \vdash \forall x \Big(p(x) \land \exists y q(y) \Big)$ ()
 $\phi \vdash \Big(\forall x p(x) \Big) \land \Big(\exists y q(y) \Big)$ ()
 $\phi \vdash \exists y \Big(\forall x p(x) \land q(y) \Big)$ ()
 $\phi \vdash \exists y \forall x \Big(p(x) \land q(y) \Big)$ ()

$$= 2 \left(p(x) \wedge q(y) \right)$$
 (Instantiation)

$$\phi \vdash \neg \forall y \neg \Big(p(x) \land q(y) \Big)$$
 (

$$\phi \vdash \neg\neg \Big(p(x) \land q(y)\Big)$$
 (

$$\phi \vdash \left(p(x) \land q(y)\right)$$
 (

$$\phi \vdash \forall x \Big(p(x) \land q(y) \Big)$$
 (

$$\phi \vdash \neg \forall y \neg \forall x \Big(p(x) \land q(y) \Big) \quad ($$

$$\phi \vdash \exists y \forall x \Big(p(x) \land q(y) \Big)$$
 (

EXERCICE 2 1. Montrer que $p \land q \vdash p \lor q$ en utilisant les règles du calcul des séquents.

2. Montrer que $p \land q \vdash p \lor q$ en utilisant la résolution.

EXERCICE 3 $(\forall x \exists y R(x, y, z)) \supset (\forall x \exists z Q(x, y, z)).$

- 1. Donner une forme prénexe de F. Donner une autre forme prénexe de la même formule?
- 2. Skolemiser les formules obtenues à la question 1.
- 3. f(x,y) est-il substituable à z? à y? Donner le résultat de la substitution si c'est substituable et la raison si ce n'est pas substituable.
- 4. f(z,a) est-il substituable à z? à y? Donner le résultat de la substitution si c'est substituable et la raison si ce n'est pas substituable. \diamondsuit

EXERCICE 4 1. Ecrire (dans le langage de Tarski et en utilisant les prédicats Cube et LeftOf de Tarski) des formules logiques F_1 , F_2 et F_3 traduisant que

- (i) Deux objets non comparables dans la relation "à gauche de" sont égaux
- (ii) Deux cubes quelconques ne sont jamais comparables dans la relation "à gauche de"
- (iii) Deux cubes quelconques sont égaux
- 2. Justifier les règles employées dans la déduction suivante par calcul des séquents, où l'on suppose que les séquents $\mathcal{F} \vdash F \supset G$ et $\mathcal{F} \vdash G \supset H$ sont prouvés (donner le nom de la règle utilisée à chaque étape).

1.
$$\mathcal{F} \vdash (F \supset G)$$
 (séquent prouvé)

2.
$$\mathcal{F} \vdash (G \supset H)$$
 (séquent prouvé)

3.
$$\mathcal{F}, F \vdash (F \supset G)$$
 (

4.
$$\mathcal{F}, F \vdash (G \supset H)$$
 (

5.
$$\mathcal{F}, F \vdash F$$
 (

6.
$$\mathcal{F}, F \vdash G$$
 (

7.
$$\mathcal{F}, F \vdash H$$
 (

8.
$$\mathcal{F} \vdash (F \supset H)$$

3. Montrer que $\{F_1, F_2\} \vdash F_3$

- 1) Par résolution (Indication : la forme clausale de $\neg F_3$ est cube(a) , cube(b) , \neg (a = b))
- 2) Par le calcul des séquents.

1)
$$\phi \vdash \exists y \Big(p(x) \land q(y) \Big)$$
 (instantiation) $\phi \vdash p(x) \land \Big(\exists y q(y) \Big)$ (prénexe1, y non libre dans $p(x)$) $\phi \vdash \forall x \Big(p(x) \land \exists y q(y) \Big)$ (généralisation, x non libre dans ϕ) $\phi \vdash \Big(\forall x p(x) \Big) \land \Big(\exists y q(y) \Big)$ (prénexe2, x non libre dans $\exists y q(y)$) $\phi \vdash \exists y \Big(\forall x p(x) \land q(y) \Big)$ (prénexe1, y non libre dans $\forall x p(x)$) $\phi \vdash \exists y \forall x \Big(p(x) \land q(y) \Big)$ (prénexe2, x non libre dans $q(y)$)

2) $\phi \vdash \exists y \Big(p(x) \land q(y) \Big)$ (instantiation) $\phi \vdash \neg \forall y \neg \Big(p(x) \land q(y) \Big)$ (définition de \exists) $\phi \vdash \neg \neg \Big(p(x) \land q(y) \Big)$ (double négation) $\phi \vdash \forall x \Big(p(x) \land q(y) \Big)$ (généralisation, x non libre dans ϕ) $\phi \vdash \neg \forall y \neg \forall x \Big(p(x) \land q(y) \Big)$ (généralisation, x non libre dans ϕ) $\phi \vdash \exists y \forall x \Big(p(x) \land q(y) \Big)$ (non justifié) $\phi \vdash \exists y \forall x \Big(p(x) \land q(y) \Big)$ (définition de \exists)

un contrex. parmi d'autres les entiers avec p(x) ssi $x \ge 0$ et q(x) ssi x = 0.

2. Forme clausale de $p \wedge q, \neg (p \vee q)$ est $p, q, \neg p, \neg q$.

1)
$$p \land q \vdash p \land q$$
 (hypothèse)
2) $p \land q \vdash p$ (élim et1)
3) $p \land q \vdash q$ (élim et2)
4) $p \land q, p \vdash p$ (augmentation sur 2))
5) $p \land q, \neg p \vdash q$ (augmentation sur 3))
6) $p \land q \vdash p \lor q$ (introd. de ou)

2. résolution immédiate à partir de la forme clausale $\frac{p}{}$

Q(x',y,z')) et

forme prénexe2 $(\forall x \exists z' \exists x' \forall y' (R(x', y', z) \supset Q(x, y, z'))$ (entre autres, ...)..

- 2. $(\forall y' \forall x' (R(a, y', z) \supset Q(x', y, f(y', x'))) \text{ et } (\forall x \forall y' (R(g(x), y', z) \supset Q(x, y, h(x)))$
- 3.f(x,y) est-il substituable à z? non (capture des variables x,y), à y? non (capture de la variable x)
- 4.f(z,a) est-il substituable à z ? oui, résultat : $(\forall x \exists y R(x,y,f(z,a))) \supset (\forall x \exists z Q(x,y,z))$. à y ? non (capture de la variable z)
 - 3. 1 et 2 non (capture de variable), 3 oui.

4.

$$F_1: \forall y \forall x \Big(\neg (leftof(x, y) \lor leftof(y, x)) \supset x = y \Big) = \forall y \forall x \Big(G \supset H \Big)$$

$$F_2: \forall y \forall x \Big((cube(x) \land cube(y)) \supset \neg (leftof(x, y) \lor leftof(y, x)) \Big) = \forall y \forall x \Big(F \supset G \Big)$$

$$F_3: \forall y \forall x \Big((cube(x) \land cube(y)) \supset y = x \Big)$$

2. Justification

3. La forme clausale de $F_1, F_2, \neg F_3$ est (sans les \forall)

 $leftof(x,y) \lor leftof(y,x) \lor x = y \ , \ \neg cube(x) \lor \neg cube(y) \lor \neg leftof(x,y) \ , \ \neg cube(x) \lor \neg cube(y) \lor \neg leftof(y,x) \ , \ cube(a) \ , \ cube(b) \ , \ \neg (a=b)$

3.1) De $\neg cube(x) \lor \neg cube(y) \lor \neg leftof(x, y)$ et cube(a) on déduit $\neg cube(y) \lor \neg leftof(a, y)$ De $\neg cube(y) \lor \neg leftof(a, y)$ et cube(b) on déduit $\neg leftof(a, b)$

De même on déduit de $\neg cube(x) \lor \neg cube(y) \lor \neg leftof(y,x)$ et cube(a) , cube(b), que $\neg leftof(b,a)$

puis de $\neg leftof(b,a)$, $\neg leftof(a,b)$, $leftof(x,y) \lor leftof(y,x) \lor x=y$, $\neg (a=b)$ on déduit la clause vide.

$$\{F_1,F_2\} \vdash \forall y \forall x \bigg(F \supset G\bigg) \quad \text{(hypothèse)}$$

$$\{F_1,F_2\} \vdash \forall x \bigg(F \supset G\bigg) \quad \text{(instantiation , } y \text{ substituable à } y \text{)}$$

$$\{F_1,F_2\} \vdash \bigg(F \supset G\bigg) \quad \text{(instantiation , } x \text{ substituable à } x \text{)}$$

$$\{F_1,F_2\} \vdash \forall y \forall x \bigg(G \supset H\bigg) \quad \text{(hypothèse)}$$

$$\{F_1,F_2\} \vdash \bigg(G \supset H\bigg) \quad \text{(instantiation , } y \text{ substituable à } y \text{)}$$

$$\{F_1,F_2\} \vdash \bigg(G \supset H\bigg) \quad \text{(instantiation , } x \text{ substituable à } x \text{)}$$

$$\{F_1,F_2\} \vdash \bigg(F \supset H\bigg) \quad \text{(question 2 , Exercice 4)}$$

$$\{F_1,F_2\} \vdash \forall x \bigg(F \supset H\bigg) \quad \text{(généralisation universelle car } x \text{ non libre dans } \{F_1,F_2\} \text{)}$$

$$\{F_1,F_2\} \vdash \forall y \forall x \bigg(F \supset H\bigg) \quad \text{(généralisation universelle car } y \text{ non libre dans } \{F_1,F_2\} \text{)}$$
 or
$$\forall y \forall x \bigg(F \supset H\bigg) \quad \text{est } F_3.$$