Congruence Preservation

L.

Irène Guessarian

Joint work with André Arnold & Patrick Cégielski & Serge Grigorieff LABRI & LACL & IRIF

November 9, 2020

I.

I.

Congruences

A **CONGRUENCE** on algebra $\mathcal{A} = \langle A, \star \rangle$ algebra with operations \star . is an equivalence relation \sim on A which is compatible with the operations, i.e.,

$$a \sim a' and b \sim b' \implies a \star b \sim a' \star b'$$

 $f: A \rightarrow A$ is **Congruence Preserving (CP)** iff for every congruence \sim ,

$$a \sim b \Longrightarrow f(a) \sim f(b)$$

L.

Congruence preserving functions

More generally,
$$\mathcal{A}=\langle A,\star
angle$$
 algebra

Definition

L.

 $f: A^n \to A$ is congruence preserving iff, for any congruence \sim on A:

$$\forall x_1, \ldots, x_n, y_1, \ldots, y_n \in A \bigwedge_{i=1}^{i=n} x_i \sim y_i \implies f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n)$$

Example: "Polynomial functions" = functions expressed by terms with variables x_1, \ldots, x_n and with constants in A. Anything else ?

Congruence Preservation on $\ensuremath{\mathbb{N}}$

I.

▲□ > ▲圖 > ▲ 画 > ▲ 画 >

臣

Congruence preservation on $\langle \mathbb{N}, + \rangle$

Non polynomial congruence preserving functions $\mathbb{N} \to \mathbb{N}$

$$f(x) = \lfloor e^{1/a}a^x x! \rfloor$$
 for $a \in \mathbb{N} \setminus \{0, 1\}$

third kind Bessel function g

L.

$$g(x) = \frac{\Gamma(1/2)}{2 \times 4^{x} \times x!} \int_{1}^{\infty} e^{-t/2} (t^{2} - 1)^{x} dt$$

Idem for $f(x) = \lceil e^{1/a}a^x x! \rceil$

What about other algebras ??

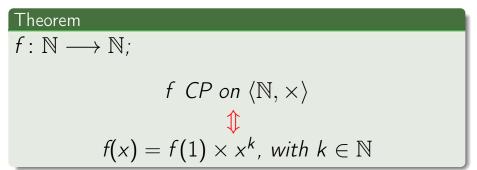
Affine complete algebras

I.

◆□ >
◆□ >
■ >

On other algebras

Abbrev: CP= congruence preserving On (\mathbb{N}, \times) : much simpler characterization



Affine complete algebras

Congruence preservation on a non commutative algebras

Theorem

L.

On the algebra of words with concatenation, $S = \langle \Sigma^*, \cdot \rangle$, $|\Sigma| \ge 3$, $f \ CP \iff f : x \mapsto w_0 x w_1 x w_2 \cdots x w_k$, $k \in \mathbb{N}, \ w_0, w_1, \dots, w_k \in \Sigma^*$.

An algebra is affine complete iff: for all $f: f CP \iff f$ polynomial. S, $\langle \mathbb{N}, \times \rangle$ are affine complete. $\langle \mathbb{N}, + \rangle$ is not affine complete

I.

÷.

・ロト ・御ト ・ヨト ・ヨト

Algebras of binary trees with labelled leaves

 Σ alphabet having at least 3 letters.

 $\mathcal{T}_{\mathcal{C}}$: complete trees generated by Σ , \star example \bigwedge_{a}

 $\begin{array}{c} \mathcal{T}: \text{ non complete trees} \\ \text{generated by } \emptyset, \ \Sigma, \ \star \\ & \text{example} \\ & \swarrow \\ & a \\ \end{pmatrix}$

I.

Tree algebras are affine complete

Theorem

L.

If $f: \mathcal{T}^n \to \mathcal{T}$ is CP then there exists a polynomial P such that f = P.

Proof uses only 2 basic types of congruences (to have same skeleton, graftings)

What if Σ has less that 3 letters ???