
chapter 10

GRAPHS AND TREES

Graphs are used in many domains. Some examples are:

• network conception and management,

• routing in VLSI circuits, or more general routing problems (e.g. finding
shortest paths),

• task scheduling in parallel systems.

And, from a more theoretical standpoint, many data structures can be modelled

as graphs.

This chapter gives the basic definitions for directed or undirected graphs, using
as an example the proof of the celebrated Euler theorem. As a special case of

graphs this chapter introduces the concept of a ‘tree’, probably one of the most
useful concepts for a computer scientist.

Claude Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, (1976).

Kenneth Ross, Charles Wright, Discrete Mathematics, Prentice Hall, London
(1988).

10.1 Graphs

10.1.1 Definitions

We define two types of graph, directed graphs and undirected graphs.

Definition 10.1 A directed graph is a quadruple (V,E, α, β) where:

• V is a (possibly infinite) set of vertices (or nodes),

• E is a set of edges, disjoint from V ,

• α and β are two mappings from E to V associating with each edge e its
initial vertex (also called origin) α(e) and its terminal or end vertex (also called
target) β(e). α(e) and β(e) are called the endpoints of edge e.
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184 10. Graphs and trees

The fact that an edge has an origin and a target enables us to orient edges.

Normal transit will go from the origin towards the target. Several edges may
have the same origin and the same target; such graphs are thus sometimes called
multigraphs.

Example 10.2
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Figure 10.1

Figure 10.1 is a directed graph with two vertices, v and v′, and three edges, e1,
e2 and e3, with

α(e1) = α(e2) = v,

β(e1) = β(e2) = v′,

α(e3) = v′,

β(e3) = v.

e1 and e2 have the same origin and the same target.

Definition 10.3 An undirected graph is a graph in which we cannot distinguish
the origin and the target of an edge. It is a triple (V,E, δ), where δ associates

two not necessarily distinct vertices with each edge.

Example 10.4
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Figure 10.2

Figure 10.2 is an undirected graph with two vertices, v and v′, and two edges,

e1 and e2, with

δ(e1) = {v, v′},

δ(e2) = {v}.
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A graph (directed or undirected) is said to be finite if it has a finite number of

vertices and edges, i.e. if both sets V and E are finite.
A directed graph can always be transformed into an undirected graph by ‘for-

getting’ the edge orientations. IfG = (V,E, α, β) is a directed graph then (V,E, δ)

is an undirected graph denoted by γ(G), where δ(e) = {α(e), β(e)}.
Conversely, if a graph is undirected, it may be transformed into a directed

graph by assigning an arbitrary direction to each edge:

• If δ(e) = {v}, then α(e) = v = β(e).

• If δ(e) = {v, v′}, with v 6= v′, then we may let (α(e) = v and β(e) = v′) or
(α(e) = v′ and β(e) = v).

Clearly, there are several ways of orienting a graph.

Definition 10.5 If G is an undirected graph, then a directed graph G′ is an
orientation of G if γ(G′) = G.

10.1.2 Isomorphic graphs

Sometimes, the actual name of a vertex or an edge of a graph does not really

matter and we may consider that two graphs differing only in the names of their
vertices and their edges are in fact identical. The notion of isomorphism formally

expresses this idea.
Two directed graphs G = (V,E, α, β) and G′ = (V ′, E′, α′, β′) are said to be

isomorphic if there are two bijections hvtx:V −→ V ′ and hedg:E −→ E′ such

that

∀e ∈ E, α′(hedg(e)) = hvtx(α(e)) and β′(hedg(e)) = hvtx(β(e)).

Two undirected graphs G = (V,E, δ) and G′ = (V ′, E′, δ′) are said to be
isomorphic if there are two bijections hvtx:V −→ V ′ and hedg:E −→ E′ such
that

∀e ∈ E, δ′(hedg(e)) =

{

{hvtx(v)} if δ(e) = {v},
{hvtx(v), hvtx(v

′)} if δ(e) = {v, v′}.

Given two (directed or undirected) graphs G and G′ whose sets of vertices and
of edges, respectively, are the pairwise disjoint sets V,E and V ′, E′, the disjoint

union of G and G′ is the graph whose set of vertices is V ∪V ′, whose set of edges
is E ∪E′ and in which the edges and vertices are connected exactly as in graphs
G and G′.

In some cases we may wish to construct the disjoint union of two graphs while
their sets of vertices and edges are not disjoint; we will nevertheless be able to

construct this disjoint union by substituting an isomorphic graph for one of the
two graphs.
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10.1.3 Simple graphs

In a graph, directed or undirected, a loop is an edge e, both endpoints of which are
equal. This can be formally stated as follows: for a directed graph, α(e) = β(e)

and, for an undirected graph, δ(e) is a singleton.
A directed or undirected graph is said to contain multiple edges when several

edges are allowed between pairs of vertices, i.e. there may be edges e and e′ with

α(e) = α(e′) and β(e) = β(e′) for directed graphs, and δ(e) = δ(e′) for undirected
graphs.

If a directed graph G = (V,E, α, β) has no multiple edges, we may identify the
set E of its edges with a subset of the Cartesian product V × V . Indeed, in this

case, the mapping (α, β) : E −→ V × V is injective.
A directed or undirected graph is said to be simple if it contains neither loops

nor multiple edges. If an undirected graph G = (V,E, δ) is simple, we may

identify the set of its edges with a subset of the set P2(V ) of two-element subsets
of V . Indeed, since G has no loop, then for any edge e, δ(e) has two elements

and, because G has no multiple edges, the mapping δ : E −→ P2(V ) is injective.

10.1.4 Subgraphs and partial graphs

Intuitively, a partial graph is obtained from graph G by deleting some edges, and
a subgraph is obtained from G by deleting some vertices, together with any edge

whose origin or target is one of the deleted vertices.
Let G = (V,E, α, β) be a directed graph. The directed graph G′ = (V ′, E′, α′,

β′) is a partial graph of G if

• V ′ = V ,

• E′ ⊆ E and
• ∀e ∈ E′, α′(e) = α(e) and β′(e) = β(e).

It is a subgraph of G if

• V ′ ⊆ V ,
• E′ = {e ∈ E / {α(e), β(e)} ⊆ V ′} and

• ∀e ∈ E′, α′(e) = α(e) and β′(e) = β(e).

It is a subpartial graph if it is a subgraph of a partial graph.

Let G = (V,E, δ) and G′ = (V ′, E′, δ′) be undirected graphs. The undirected
graph G′ = (V ′, E′, δ′) is a partial graph of G if V ′ = V , E′ ⊆ E, and ∀e ∈ E′,

δ′(e) = δ(e). It is a subgraph of G if V ′ ⊆ V , E′ = {e ∈ E / δ(e) ⊆ V ′}, and
∀e ∈ E′, δ′(e) = δ(e). It is a subpartial graph if it is a subgraph of a partial

graph.

Exercise 10.1 Show that graph G′ is a subpartial graph of G if and only if it is
a partial graph of a subgraph of G. Show that a subgraph and a partial graph of a
subpartial graph of G are also subpartial graphs of G. ♦
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10.1.5 Degree of a vertex

Z
In the present subsection, we consider only graphs such that for any vertex
the number of edges leading into that vertex or going out of that vertex is

finite; all finite graphs clearly satisfy this requirement.

The degree d(v) of a vertex v of an undirected graph G = (V,E, δ) is equal to
the number of edges e such that δ(e) = {v, v′} with v 6= v′ plus twice the number

of edges e such that δ(e) = {v}. If δ(e) = {v}, edge e will be counted twice in
the degree of v! The degree d(v) of a vertex v of a directed graph is equal to the

number of edges e such that v = α(e) or v = β(e) (if α(e) = β(e), edge e will be
counted twice); in other words, the degree of a vertex is the sum of the number of

ingoing edges and the number of outgoing edges. The indegree d−(v) of a vertex
v of a directed graph G is equal to the number of edges e such that β(e) = v.
The outdegree d+(v) is equal to the number of edges e such that α(e) = v. We

thus have, for a directed graph, d(v) = d+(v) + d−(v).

Proposition 10.6 The sum of the degrees of all vertices of a finite undirected

graph is equal to twice the number of its edges.

Proof. If δ(e) = {v, v′}, with v 6= v′, then edge e is counted once in the degree

of v and once in the degree of v′. If δ(e) = {v}, then edge e is counted twice in
the degree of v. Each edge is thus counted twice in the sum of the degrees of the

vertices. ⊓⊔

Exercise 10.2 Show that in a finite directed graph, the sum of the indegrees of all
vertices is equal to the sum of the outdegrees of these vertices. To what other number
is this sum also equal? ♦

Exercise 10.3 Let G be a finite undirected graph with n vertices and m edges, where
n ≥ 1 and m ≥ 0. For any integer k ∈ IN, let nk be the number of vertices of degree
k; let K be the maximum of the degrees of the vertices (i.e. nK > 0 and nk = 0 for
k > K).

1. Show that
K
∑

k=0

knk = 2m and

K
∑

k=0

nk = n.

2. Show that K ≤ 2m; give an example where equality holds.
3. Show that if G has neither loops nor multiple edges, then K ≤ n − 1; give an
example where equality holds. ♦

Exercise 10.4 Let G be a finite simple undirected graph with n vertices (n > 1).

1. Show that the degree of a vertex is always strictly less than n.
2. Prove that there cannot simultaneously be a vertex of degree 0 and a vertex of
degree n− 1.
3. Deduce that there are at least two vertices having the same degree. ♦
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Exercise 10.5 Let G = (V,E, δ) be an undirected simple finite graph. We assume that
G contains no triangles: a triangle consists of three distinct vertices v1, v2, v3 ∈ V and
three edges e1, e2, e3 ∈ E with δ(e1) = {v2, v3}, δ(e2) = {v1, v3} and δ(e3) = {v1, v2}.
Two vertices are said to be adjacent if they are connected by an edge.

1. Show that for two distinct adjacent vertices x and y, the number nx of vertices of
V \{x, y} adjacent to x and the number ny of vertices of V \{x, y} adjacent to y satisfy
the inequality

nx + ny ≤ |V | − 2.

2. Deduce, by induction on the number |V | of vertices, that the number |E| of edges
verifies

|E| ≤
|V |2

4
. ♦

10.1.6 Paths

In a directed graph G, a path is a sequence c = e1, . . . , en of edges such that
∀i ∈ {1, . . . , n − 1}, β(ei) = α(ei+1). Vertex α(e1) will be called the origin of
path c and vertex β(en) will be called the target of path c. A circuit is a path

such that β(en) = α(e1). A path (or a circuit) is simple if it does not contain the
same edge twice. It is elementary if it does not contain two edges with the same

origin or the same target (it is hence a fortiori simple). In a finite directed graph,
a path or circuit is said to be an Euler path or circuit if it is simple and contains

all edges. It is said to be a Hamiltonian path or circuit if it is elementary and
goes through all vertices (i.e. ∀v ∈ V , ∃i : v = α(ei) or v = β(ei)).

For undirected graphs, a chain is a sequence

c = v0, e1, v1, e2, . . . , vn−1, en, vn

of vertices and edges such that δ(ei) = {vi−1, vi}. This chain is said to connect

vertices v0 and vn. A cycle is a chain such that v0 = vn. If the sequence
v0, e1, v1, e2, . . . , vn−1, en, vn is a chain, the sequence vn, en, vn−1, . . . , e2, v1, e1, v0
is also a chain and it connects vn to v0. A chain (or a cycle) is simple if it does
not contain the same edge twice and elementary if it does not contain the same
vertex twice, with the only exception being that v0 and vn may be equal. In a

finite undirected graph, a chain (or a cycle) is an Euler chain (or a cycle) if it
is simple and contains all edges; it is a Hamiltonian chain (or a cycle) if it is

elementary and contains all vertices.

Example 10.7

1. In the graph of Figure 10.3:

• e1e2e3e4 is a simple circuit, and

• e4e1e2e3e5 is an Euler path but is not a Hamiltonian path.
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Figure 10.3

2. In the directed graph of Example 10.2:
• e1e3 is a simple circuit, a Hamiltonian circuit, but not an Euler circuit

and
• e1e3e2 is an Euler path, non-elementary.

3. In the undirected graph of Example 10.4:

• v, e2, v is an elementary cycle,
• v, e2, v, e1, v

′ is a simple chain, non-elementary, and an Euler chain

and
• v′, e1, v, e2, v, e1, v

′ is a non-simple cycle.

The next result is an immediate consequence of the definitions.

Proposition 10.8 If e1, . . . , en is a simple (resp. elementary, Euler, Hamilto-
nian) path (circuit) of a directed graph G, then

α(e1), e1, α(e2), e2, . . . , α(en), en, β(en)

is a simple (resp. elementary, Euler, Hamiltonian) chain (cycle) of γ(G).

Conversely, if v0, e1, . . . , en, vn is a simple chain, there is at least one orientation
of G such that e1, . . . , en is a path: since δ(ei) = {vi−1, vi}, it suffices to let

α(ei) = vi−1 and β(ei) = vi. The fact that the chain is simple implies that this
construction is always possible because there is no index j 6= i with ej = ei.

Otherwise, if we had ei = ej = e, we would have δ(e) = {vi−1, vi} = {vj−1, vj};
and it is easy to see that the above construction can be applied only when α(e) =
vi−1 = vj−1 and β(e) = vi = vj .

Proposition 10.9 If an undirected graph G contains two different simple

chains connecting the same two distinct vertices, then it contains a simple cycle.

Proof. Let c = v0, e1, v1, . . . , vn−1, en, vn and c′ = v′0, e
′
1, v

′
1, . . . , v

′
n′−1, e

′
n′ , v′n′ be

two simple chains such that v0 = v′0 6= vn = v′n′ . We prove by induction on n+n′

that the existence of such chains implies the existence of a simple cycle:

1. Since n ≥ 1 (because v0 6= vn) and n′ ≥ 1 (for the same reasons), the least
possible value of n + n′ is 2. In this case, c = v, e, v′, c′ = v, e′, v′, with e 6= e′,
and v, e, v′, e′, v is a simple cycle.
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2. (a) If the sets E(c) = {ei / 1 ≤ i ≤ n} and E(c′) = {e′j / 1 ≤ j ≤ n′}
are disjoint, then v0, e1, v1, . . . , vn−1, en, vn = v′n′ , e′n′ , v′n′−1, . . . , v

′
1, e

′
1, v

′
0 is

a simple cycle.
(b) If e1 = e′1, then v1 = v′1, and two cases must be considered:

(b.1) If n′ = 1, then vn = v′1 = v1 and v1, . . . , vn−1, en, vn is a simple

cycle. The case n = 1 is similar.
(b.2) Otherwise the two chains v1, e2, . . . , vn−1, en, vn and v′1, e

′
2, . . . ,

v′n′−1, e
′
n′ , v′n′ with respective lengths n−1 and n′−1 again verify the

hypotheses, and thus G contains a simple cycle.

(c) We are thus left with the case in which E(c)∩E(c′) 6= ∅ and in which
e1 6= e′1. Hence, there exists i > 1 and j > 1 such that ei = e′j , hence vi−1 =

v′j−1 or vi−1 = v′j . In the first case, the chains v0, e1, v1, . . . , vi−2, ei−1, vi−1

and v′0, e
′
1, v

′
1, . . . , v

′
j−2, e

′
j−1, v

′
j−1 , with respective lengths i− 1 < n and j −

1 < n′, again verify the hypotheses, and G contains a simple cycle. In the sec-

ond case, the chains v0, e1, v1, . . . , vi−2, ei−1, vi−1 and v′0, e
′
1, v

′
1, . . . , v

′
j−2, e

′
j−1,

v′j−1, e
′
j , v

′
j , with respective lengths i− 1 < n and j ≤ n, also verify the hy-

potheses and G contains a simple cycle. ⊓⊔

Exercise 10.6 Show that in an undirected graph, the shortest chain between two
distinct vertices is elementary. Does this also hold for the shortest path from a vertex
to another one in a directed graph? ♦

In an undirected graph, the distance d(v, v′) between two vertices v and v′ is
defined as follows:

• If v = v′ then d(v, v′) = 0.
• If v 6= v′ then d(v, v′) is equal to

– the length of the shortest chain connecting these two vertices, if such
a chain exists, or

– ∞ otherwise.

The characteristic properties of a distance are indeed verified:

• d(v, v′) = 0 if and only if v = v′,

• d(v, v′) = d(v′, v),
• d(v, v′′) ≤ d(v, v′) + d(v′, v′′).

Exercise 10.7 Prove the triangular inequality d(v, v′′) ≤ d(v, v′) + d(v′, v′′). ♦

The diameter of an undirected graph is the maximum distance between two dis-
tinct vertices, i.e. sup{d(v, v′) / v, v′ ∈ V }.
If a graph is directed, we may also define the distance between two vertices

as the length of the shortest path going from the first one to the second one.

But this is no longer a distance in the mathematical sense because, while it still
satisfies the triangular inequality, it is no longer symmetrical: it may well occur
that d(v, v′) 6= d(v′, v).
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Exercise 10.8 Let X = {0, 1, 2, 3, 4}. The Petersen graph is the undirected graph
defined as follows: its vertices are the pairs of elements of X, and two vertices are
connected by an edge if and only if they are two disjoint pairs of elements of X. For
instance, if {0, 1}, {1, 2} and {2, 3} are vertices, there is an edge connecting {0, 1} and
{2, 3}, but there is no edge connecting {0, 1} and {1, 2}:

1. Determine the number of vertices, the number of edges, the degree of vertices and
the diameter of this graph.
2. Draw this graph and indicate for each vertex the two elements of X constituting
the pair that it contains. ♦

Exercise 10.9

1. Let (V,E, α, β) be a directed graph with n vertices v1, . . . , vn. It is associated with
the matrix M defined by: each entry Mi,j of M (for 1 ≤ i ≤ n and 1 ≤ j ≤ n) is the
number of edges of E with origin vi and target vj (i.e. α(e) = vi and β(e) = vj). Prove
by induction that for any integer k > 0, the matrix Mk has as its (i, j)th entry the
number of distinct paths of length k between vi and vj .
2. Can you generalize this result to an undirected graph? ♦

Exercise 10.10 In ZZ
2 we define the 4-distance d4 and the 8-distance d8 as follows:

d4
(

(x, y), (x′, y′)
)

= |x− x′|+ |y − y′| ,

d8
(

(x, y), (x′, y′)
)

= max
(

|x− x′|, |y − y′|
)

.

1. Define the two undirected graphs G4 and G8 having ZZ
2 as the set of vertices, and

where the distances above defined in terms of lengths of chains coincide with d4 and d8
respectively.
2. Draw the subgraphs of G4 and G8 corresponding to the set of the sixteen vertices
(x, y) where 0 ≤ x ≤ 3 et 0 ≤ y ≤ 3. ♦

10.1.7 Connectivity

A directed graph is said to be strongly connected if for any pair (v, v′) of distinct
vertices there is a path going from v to v′.

An undirected graph is connected if for any pair (v, v′) of distinct vertices

there exists a chain connecting v and v′.

The connected component CCG(v) of a vertex v of an undirected graph G is

equal to {v} together with the set of vertices v′ of G such that there exists a
chain connecting v to v′.

Proposition 10.10 If v′ ∈ CCG(v) then CCG(v) = CCG(v
′).

Proof. We assume that v 6= v′. (If v = v′, the result is trivial.) If
v′ ∈ CCG(v) there is a chain c connecting v and v′ and a chain c′ connecting v′

and v. Let v′′ ∈ CCG(v):

• If v′′ = v, then since c′ connects v′ to v, we have that v′′ = v ∈ CC(v′).
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• Otherwise, there is a chain c′′ connecting v to v′′; then c′c′′ is a chain con-

necting v′ to v′′, and v′′ ∈ CCG(v
′).

Thus, CCG(v) ⊆ CCG(v
′). The converse inclusion CCG(v

′) ⊆ CCG(v) can be

proved in the same way. ⊓⊔

The following proposition follows immediately from the definitions.

Proposition 10.11 An undirected graph G = (V,E, δ) is connected if and only

if ∀v ∈ V , V = CCG(v).

An isolated vertex is a vertex of degree 0. If a vertex v of G is isolated, then

CCG(v) = {v}. If G is a graph without loops, a vertex v of G is isolated if and
only if CCG(v) = {v}.

Proposition 10.12 Let G be a connected undirected graph. Let G′ be the
graph obtained by deleting an edge e with two distinct end vertices v′ and v′′

(i.e. δ(e) = {v′, v′′} with v′ 6= v′′). Then V = CCG′(v′) ∪ CCG′(v′′).

Proof. Let v be any vertex of G. Because G is connected, there exists a chain

v0, e1, v1, . . . , en, vn with v′ = v0 and vn = v. If edge e does not occur in that
chain, then v ∈ CCG′(v′). Otherwise, let i be the largest index such that ei = a.

Then vi ∈ {v′, v′′} and vi, ei+1, . . . , en, vn is a chain of G′, and hence v = vn ∈
CCG′(v′′) ∪ CCG′(v′). ⊓⊔

Exercise 10.11 Let Cn be an undirected graph with n vertices consisting of a single
cycle, i.e.

V = {v1, . . . , vn},

E = {e1, . . . , en},

δ(ei) =

{

{vi−1, vi} if i > 1,
{vn, v1} if i = 1.

1. Show that each vertex of Cn is of degree 2.

2. Show that if G is an undirected connected graph with n vertices all of which are
of degree 2, then G is isomorphic to Cn.

3. Show that if G is an undirected graph with n vertices all of which are of degree
2, then G is a disjoint union of graphs Gn1

, . . . , Gnk
, where Gni

is isomorphic to Cni
,

with n1 + · · ·+ nk = n. ♦

10.1.8 An historical example: Königsberg seven bridges

The old town of Königsberg in eastern Prussia (nowadays Kaliningrad, in Russia),
contains an island connected to the ‘mainland’ by seven bridges as shown in
Figure 10.4.
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Is it possible to take a walk through Königsberg starting from some point and
travelling across all the bridges exactly once?

The problem is that of finding an Euler chain in the undirected graph shown
in Figure 10.5.
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Figure 10.5

If, moreover, the walk ends at its starting point we will have an Euler cycle.

The answer to this problem can be obtained by the following theorem (proved

by Euler in 1766).

Theorem 10.13 An undirected finite graph G with no isolated vertex has an
Euler chain if and only if

(i) it is connected

(ii) it has zero or two odd degree vertices.

In the case in which there is no odd degree vertex, this Euler chain is a cycle.
In the case in which there are two odd degree vertices, they are the origin and

target of the chain.

Proof.

1. Assume that there is an Euler chain v0, e1, v1, e2, . . . , vn−1, en, vn.

Because there is no isolated vertex,

V = ∪e∈Eδ(e) ,
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and since E = {e1, . . . , en},

v ∈ V ⇐⇒ ∃i : v = vi.

G is thus connected.

Let v be any vertex; the number d(v) of edges with endpoint v is equal to

2× |{i / vi = v, 1 ≤ i ≤ n− 1}| +

{

+1 if v = v0,
+1 if v = vn.

Indeed, for each i ∈ {1, . . . , n − 1}, vi is the endpoint of the two distinct edges
ei and ei+1. Moreover, v0 is the endpoint of edge e1 and vn is the endpoint of

edge en. Note that if we have an edge ei, both endpoints vi−1 and vi of which
are equal, this edge will be counted twice in the computation. We deduce the

following from this characterization of the degrees of the vertices:
– If v0 = vn, i.e. if there is an Euler cycle, then all vertices are of even

degree.
– If v0 6= vn then all vertices are of even degree except for the endpoints

v0 and vn of the chain.

2. Consider a connected graph with zero or two vertices of odd degree. We
show that it has an Euler chain.

Note first that we may add or delete on the graph any number of loops without
modifying either the parity of the degrees of the vertices or the existence of Euler
chains. If we add or if we delete on graph G an edge e with δ(e) = {v}, we
increase or decrease the degree of v by 2. Moreover, if we add to graph G an edge
e with δ(e) = {v}, thus obtaining a graph G′, then v0, e1, ..., ei−1, v, ei+1, ..., vn
is an Euler chain of G if and only if v0, e1, ..., ei−1, v, e, v, ei+1, ..., vn is an Euler
chain of G′; and we have a similar result if v = v0 or if v = vn.

We may then reason by induction on the number of edges of a graph without
loops.

If this number is 0, the property holds vacuously. If this number is 1, the
unique edge e of this graph is such that δ(e) = {v, v′}, with v 6= v′, and v, e, v′ is
an Euler chain.

Let G be a graph with n+ 1 edges:

(a) If all vertices have an even degree, we consider any edge e whose endpoints
are v and v′. Let G′ be the partial graph obtained by deleting this edge. Both

vertices v and v′ now have an odd degree. G′ must be connected. Indeed, let
CCG′(v) be the connected component of v in G′. Firstly, v′ ∈ CCG′(v); otherwise
CCG′(v) would be a graph with a single vertex of odd degree, which is impossible
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(because the sum of the degrees of a graph is always even). There thus exists

a chain c connecting v and v′ in G′. We now show that CCG′(v) contains all
vertices of G′. Let v′′ be any vertex. Because G is connected, there exists in G
a chain connecting v and v′′. If this chain uses edge e, we substitute the chain

c for edge e. We thus have a chain of G′ connecting v and v′′. Because G′ is
connected and has two odd degree vertices v and v′, there exists an Euler chain

c′ connecting v′ and v, and v, e, c′ is thus an Euler cycle of G.

(b) Let v and v′ be the two vertices of odd degree of G, let e be an edge such

that v ∈ δ(e) and let v′′ be the vertex such that δ(e) = {v, v′′}. Let G′ be the
graph obtained by deleting this edge. The degree of v in G′ is even.

(b.1) If the degree of v′′ in G is odd (i.e. v′′ = v′) then the degree of v′′ in
G′ is even.

(b.1.1) If G′ is connected, there exists an Euler cycle c going from v
to v, and c, e, v′ = v′′ is an Euler chain of G.

(b.1.2) Otherwise, by Proposition 10.12, CCG′(v) and CCG′(v′) are
two connected graphs, and all their vertices have even degrees. There

exists an Euler cycle c from v to v in CCG′(v) and an Euler cycle c′

from v′ to v′ in CCG′(v′). Then c, e, c′ is an Euler chain in G.

(b.2) If the degree of v′′ in G is even (i.e. v′′ 6= v′) then the degree of v′′ in
G′ is odd and v′′ ∈ CCG′(v′), because v′′ and v′ are the only two vertices of

odd degree in G′.

(b.2.1) If G′ is connected, there is an Euler chain c of G′ connecting

v′′ and v′, and v, e, c is an Euler chain in G.

(b.2.2) Otherwise, all vertices of CCG′(v) have an even degree. There

exists an Euler cycle c of CCG′(v) connecting v and v and an Euler
chain c′ of CCG′(v′) connecting v′ and v′. Then c, e, c′ is an Euler

chain of G connecting v and v′. ⊓⊔

10.1.9 Graph colouring

A colouring of an undirected graph G = (V,E, δ) without a loop is a mapping
γ:V −→ C, where C is a finite set of ‘colours’, such that

∀e, δ(e) = {v, v′} =⇒ γ(v) 6= γ(v′)

(i.e. two different vertices connected by an edge cannot have the same colour).

The chromatic number of a graph is the minimum number of colours needed to
colour it.
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Example 10.14 Let E be a set of students and X be a set of exams. For each

exam x in X, the set of students registered for that exam is S(x). Each student
can take at most one exam per day. What is the minimum length of the exam
session?

Let G be the graph whose set of vertices is X. Two vertices x and x′ are
connected by an edge if and only if S(x) ∩ S(x′) 6= ∅. The minimal length of the

session is the chromatic number of this graph.

10.1.10 Planar graphs

A (directed or undirected) graph is said to be planar if it can be drawn in the
plane without any edges crossing.

Remark 10.15 A graph, and even a planar graph, can be drawn in many ways.

Figure 10.6 shows two possible drawings for the planar graph K4.

K4

a

b

c

d

a

b

c

d

Figure 10.6

The two graphs in Figure 10.7 are not planar.

K5K3,3

Figure 10.7

A famous problem that has been solved recently is the four-colour problem:
is the chromatic number of a planar graph always less than or equal to 4? The

answer is ‘yes’.

Exercise 10.12 Find a planar graph with chromatic number 4. ♦
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10.2 Trees and rooted trees

Trees and rooted trees are particular cases of graphs. Trees are usually undirected
graphs, and rooted trees are usually directed graphs. However, in computer

science, the term ‘tree’ often means rooted tree, and sometimes very particular
rooted trees.

10.2.1 Trees

Definition 10.16 A tree is an undirected connected graph without a simple
cycle.

If an undirected graph contains at least one edge e, it contains a cycle v, e, v′, e, v,

where δ(e) = {v, v′}. But this cycle is not simple. This is why the definition of
trees involves simple cycles.

Proposition 10.17 Let G be a finite graph, let n be the number of its ver-
tices, let m be the number if its edges and let p be the number of its connected

components. Then G is without a simple cycle if and only if m− n+ p = 0.

Proof.

1. m−n+ p is always non-negative. We show this by induction on the number
of edges:

• It is true for a graph with no edges because if that graph has n vertices
then it has n connected components.

• Let e be an edge of G connecting v and v′ (which are thus in the same
connected component) and let us delete edge e from G. The graph G′ thus

obtained has n′ = n vertices, m′ = m−1 edges and p′ connected components
with p′ = p or p′ = p + 1; hence p ≥ p′ − 1. By the induction hypothesis,

m′ − n′ + p′ ≥ 0, and m− n+ p ≥ m− n+ p′ − 1= m′ − n′ + p′.

2. Assume that G contains a simple cycle c, and let us show that m − n + p

> 0. Let e be any edge of this cycle, with δ(e) = {v, v′} (v′ may be equal to v).
There thus exists a chain c′ connecting v′ and v that does not use edge e.

Let G′ be the graph obtained by deleting from G this edge e. We have for
G′ that m′ = m − 1 and that n′ = n. We also have that p′ = p because the

number of connected components is not modified: if two vertices are connected
by a chain of G using edge e, they are connected by the chain of G′ obtained
by substituting for each occurrence of e the chain c′ which is in G′. Hence

m− n+ p = m′ + 1− n′ + p′ > m′ − n′ + p′ ≥ 0.

3. Conversely, we show that if m − n + p > 0, then G has a simple cycle. We

again show this by induction on the number of edges:

• If m = 0, we have shown in 1 that m− n+ p > 0 could not occur.
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• Let G′ be the graph obtained by deleting from G an arbitrary edge

e. We have shown in 1 that in this case m− n+ p ≥ m′ − n′ + p′ and that
p′ = p or p′ = p+ 1.

– If m′ − n′ + p′ > 0, then, by the induction hypothesis, G′

contains a simple cycle, and hence so does G.

– If m′ − n′ + p′ = 0, then, because m− n+ p > 0, we have that
m−n+p > m′−n′+p′, which implies p′ = p. In other words, deleting
edge e does not modify connected components. As the endpoints v

and v′ of e are in the same connected component of G, they are in the
same connected component of G′. There thus exists a simple chain c

connecting v and v′ (see Exercise 10.6) and not using edge e. Adding
edge e to this chain, we have a simple cycle. ⊓⊔

Theorem 10.18 Let G be an undirected graph with n vertices (n ≥ 2). The

following properties are equivalent:

1. G is connected and has no simple cycles.

2. G has no simple cycles and has n− 1 edges.

3. G is connected and has n− 1 edges.

4. G has no simple cycles; if we add an edge to it we form a simple cycle.

5. G is connected; if we delete an edge from it, it is no longer connected.

6. ∀v, v′ ∈ S, (v 6= v′), there exists a unique simple chain connecting v and v′.

Proof.

(1 =⇒ 2) BecauseG is connected, p = 1. IfG has no simple cycles thenm−n+1 =

0 and the number of edges m of G is n− 1.

(2 =⇒ 3) If G has no simple cycles, m− n+ p = 0, and if m = n− 1 then p = 1

and thus G is connected.

(3 =⇒ 4) If G is connected and has n− 1 edges then m− n+ p = 0 and thus G

has no simple cycles. If we add an edge it remains connected and (m′−n′+p′) =
(m+ 1− n+ p) > 0. We have thus exhibited a simple cycle.

(4 =⇒ 5) If G were not connected we might add an edge to it without creating
any cycles: it suffices to add an edge connecting two vertices of two distinct

connected components. If deleting one edge yields another connected graph, we
have m′ − n′ + p′ = m− 1− n+ p = 0, and hence m− n+ p > 0, and G would

have a simple cycle.

(5 =⇒ 6) Let v and v′ be two vertices of G. Because G is connected there exists a

chain connecting v and v′. If there were two such chains, by Proposition 10.9 the
graph would contain a simple cycle and we might thus delete one edge without
destroying connectedness.
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(6 =⇒ 1) G is connected. If it contained a simple cycle, we might find two distinct

chains connecting two vertices. ⊓⊔

Exercise 10.13 Show that if we delete an edge from a tree then the remaining two
connected components are trees. ♦

Proposition 10.19 A tree with n vertices (n ≥ 2) has at least two vertices

with degree 1.

Proof. In a graph, the sum of the degrees of the vertices is equal to twice the

number of edges. In a tree, the number of edges is n − 1 and the sum of the
degrees of the vertices is thus equal to 2n− 2. Since a tree is a connected graph,

there are no vertices of degree 0. Let k be the number of vertices of degree 1.
There are thus n − k vertices of degree at least equal to 2, and the sum of the

degrees of the vertices is greater than or equal to k + 2(n − k) = 2n − k. As
2n− 2 ≥ 2n− k, we have k ≥ 2. ⊓⊔

Exercise 10.14 Show that if a tree G has exactly two vertices of degree 1, then all
other vertices are of degree 2. Deduce that G consists of a single elementary chain. ♦

Proposition 10.20 A finite graph has a partial graph which is a tree if and
only if it is connected.

Proof. If a graph has a connected partial graph, it is connected. If a graph is
connected and if we may delete an edge while preserving connectedness, we delete

this edge. When no more edges can be deleted, we will have obtained a tree, by
point 5 of Theorem 10.18. ⊓⊔

Exercise 10.15 Prove (by induction) that a tree can always be drawn in the plane
in such a way that the edges form linear segments without cross-sections, except at the
endpoints; in particular, it is planar. ♦

10.2.2 Rooted trees

Definition 10.21 A rooted tree is a directed graph G such that γ(G) is a tree

and all vertices of G have indegree 1, except for a single vertex, called the root,
whose indegree is 0.

Proposition 10.22 If G is a finite tree, then for any vertex v of G, there exists
an orientation of G which is a rooted tree with root v.

Proof. By induction on the number of vertices of G. The result is clear if the

tree G has only one vertex. Otherwise, let v be any vertex of a tree G and let
e be an edge with endpoints v and v′. Deleting this edge yields two connected
graphs G(v) and G(v′), which are still trees. We assign an orientation to these
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two trees in such a way that their respective roots are v and v′, and we orient

edge e from v to v′. We thus have a rooted tree with root v. In fact, for any
vertex v′′ different from v and v′ of G(v) ∪ G(v′), the indegree of v′′ is equal to
its indegree in the rooted tree constructed from G(v) or from G(v′), i.e. 1. The

indegree of v′ is 1 and the indegree of v is 0. ⊓⊔

Proposition 10.23 Let G be a rooted tree and let v be one of its vertices.
Let G(v) be the subgraph of G whose set of vertices is {v} augmented by all the

vertices that are the target of a path with origin v. Then G(v) is a rooted tree
with root v.

Proof. By the construction of G(v), γ(G(v)) is connected. Moreover, γ(G(v))

contains no simple cycle; otherwise, this simple cycle would also belong to γ(G),
which is impossible because γ(G) is a tree. γ(G(v)) is thus a tree.

By the construction of G(v), any vertex v′ of G(v) different from v is the target

of an edge whose origin is in G(v). This edge is the only edge of G with endpoint
v′. The indegree of v′ in G(v) is thus 1. If the indegree of v were also equal to 1

in G(v), there would exist an edge with target v and with origin in G(v). There
would also exist in G a simple circuit going through v, and there would thus exist
in G a simple cycle, which is impossible. ⊓⊔

Theorem 10.24 (König’s lemma) Let G be an infinite rooted tree all of whose
vertices have a finite outdegree. Then G has an infinite path originating at the
root.

Proof. Let e1, . . . , en be the edges of G whose common origin is the root of G.
One among the rooted trees G(β(ei)) for i = 1, . . . , n is thus infinite. (These
rooted trees are defined in Proposition 10.23.) Let i be such that G(β(ei)) is

infinite, and let e′1 = ei. Assume now that we have defined a path e′1e
′
2...e

′
n such

that G(β(e′n)) is infinite and let e′′1 , . . . , e
′′
k be the edges with origin β(e′n). Again,

we will find a j such that G(β(e′′j )) is infinite and we will let e′n+1 = e′′j . Since we
may repeat this construction indefinitely it indeed yields an infinite path in the

rooted tree G. ⊓⊔

König’s lemma is often applied in different forms that are consequences of
the above theorem. Two such consequences are given in Proposition 10.25 and

Proposition 10.26 below.

Proposition 10.25 Let G = (V,E, α, β) be a directed graph such that any
vertex v has a finite outdegree d+(v).

If a vertex v of this graph is the origin of infinitely many finite paths, it must
also be the origin of an infinite path.
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Proof. Let C be the infinite set of the paths with origin v. For n > 0, let Cn

be the set of paths with origin v and length n so that C =
⋃

n>0
Cn. Also let

C0 = {v} and C ′ = C0 ∪ C. We define the set R ⊆ C ′ × C ′ by (c, c′) ∈ R if and
only if

• either c = v ∈ C0 and c′ ∈ C1,
• or there exists n > 0 and e ∈ E such that c ∈ Cn and c′ = ce.

We then show that the graph G′ = (C ′, R, α′, β′) with α′(c, c′) = c and
β′(c, c′) = c′ is a rooted tree. The indegree of v is 0 and its outdegree is d+(v).

The indegree of c ∈ C is 1 and its outdegree is equal to d+(v′), where v′ is the
target of the path c.

By König’s lemma, this rooted tree has an infinite path v, c1, c2, . . . , cn . . . with
c1 = e1, ci+1 = ciei+1. Hence we deduce that e1e2 · · · en · · · is an infinite path

with origin v in graph G. ⊓⊔

Exercise 10.16 Let A be a finite alphabet and let L be a subset of A∗. Show that if
L is infinite, there exists at least one infinite string a0a1a2 · · · an · · · of letters of A such
that ∀n ≥ 0, ∃wn ∈ A∗ : a0 · · · anwn ∈ L. ♦

Proposition 10.26 Let En be a finite non-empty set, for any integer n ≥ 0,

and assume that

(i) n 6= m =⇒ En ∩ Em = ∅.

Let R be a binary relation on E = ∪n≥0En such that:

(ii) If e R e′ then there exists n such that e ∈ En and e′ ∈ En+1.

(iii) ∀n ≥ 0, ∀e′ ∈ En+1, ∃e ∈ En : e R e′.

Then there exists an infinite sequence e0, e1, . . . , en, . . . such that ∀n ≥ 0, en ∈ En

and en R en+1.

Proof. Consider (E,R) as a directed graph. By (ii), the outdegree of an element

of En is at most equal to the number of elements of En+1. It is thus finite. By (i),
⋃

n>0
En is infinite. By (iii), each element of En+1 is the target of a path whose

origin is in E0. There thus exist infinitely many paths whose origin is in E0, and
since E0 is finite there exists an element e0 of E0 that is the origin of infinitely

many finite paths. By Proposition 10.25, it also is the origin of an infinite path
going through the sequence of vertices e0, e1, . . . , en, . . ., which is the required
sequence. ⊓⊔

Exercise 10.17 Let V be a subset of IN× IN with the following properties:

(i) For any n ≥ 0, the set {m ∈ IN / (n,m) ∈ S} is finite.
(ii) For any n ≥ 0, there exists an injection fn : {0, 1, . . . , n} → IN such that ∀i ∈
{0, 1, . . . , n}, (i, fn(i)) ∈ V .

Prove that there exists an injection f : IN → IN such that ∀i ∈ IN, (i, f(i)) ∈ V . ♦
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10.2.3 Ordered rooted trees

Let G be a rooted tree and let v be one of its vertices. Vertex v′ is said to be a
child of v if there is an edge with origin v and target v′. If v is not the root of
the rooted tree, v has indegree 1: there thus exists exactly one edge e with v as

target. The origin vertex of this edge e will be called the parent of v. It is easy
to show that any vertex v is the parent of its children.

A rooted tree is said to be ordered if, for any vertex v, the set of children of v
is endowed with a total ordering. When drawing such a rooted tree in the plane

(usually, counterintuitively, with the root at the top of the graph and the children
below their parent), this total ordering on the children of a same parent will be

materialized by writing them from left to right. This is why such rooted trees are
called ‘ordered’. The trees that we have studied in Chapter 3 are ordered rooted
trees which may be empty, i.e. they may have empty sets of vertices and edges.

A complete binary tree is an ordered rooted tree in which each vertex either
has two children (respectively called the left child and the right child) or none.

A vertex without a child is called a leaf.

Example 10.27 Two different ordered binary trees that represent the same

rooted tree are shown in Figure 10.8.

Figure 10.8

Exercise 10.18

1. Show that a finite complete binary tree has an odd number of vertices.
2. Show that a complete binary tree with 2n− 1 vertices has n leaves. ♦


