CHAPTER 10

GRAPHS AND TREES

Graphs are used in many domains. Some examples are:

e network conception and management,

e routing in VLSI circuits, or more general routing problems (e.g. finding
shortest paths),

e task scheduling in parallel systems.

And, from a more theoretical standpoint, many data structures can be modelled
as graphs.

This chapter gives the basic definitions for directed or undirected graphs, using
as an example the proof of the celebrated Euler theorem. As a special case of
graphs this chapter introduces the concept of a ‘tree’, probably one of the most
useful concepts for a computer scientist.

Claude Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, (1976).
Kenneth Ross, Charles Wright, Discrete Mathematics, Prentice Hall, London
(1988).

10.1 Graphs

10.1.1 Definitions
We define two types of graph, directed graphs and undirected graphs.

Definition 10.1 A directed graph is a quadruple (V, E, «, ) where:

e V is a (possibly infinite) set of vertices (or nodes),

e F is a set of edges, disjoint from V,

e « and [ are two mappings from E to V associating with each edge e its
initial vertex (also called origin) «(e) and its terminal or end vertex (also called
target) 5(e). a(e) and B(e) are called the endpoints of edge e.
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184 10. Graphs and trees

The fact that an edge has an origin and a target enables us to orient edges.
Normal transit will go from the origin towards the target. Several edges may
have the same origin and the same target; such graphs are thus sometimes called
multigraphs.

ExaMPLE 10.2

€
Figure 10.1

Figure 10.1 is a directed graph with two vertices, v and v, and three edges, e,
es and ez, with

e1 and e; have the same origin and the same target.

Definition 10.3 An undirected graph is a graph in which we cannot distinguish
the origin and the target of an edge. It is a triple (V, E,¢), where § associates
two not necessarily distinct vertices with each edge.

ExaMPLE 10.4

€

OO

Figure 10.2

Figure 10.2 is an undirected graph with two vertices, v and v’, and two edges,
e1 and eq, with

d(e1) = {v,v'},
d(ea) = {v}.
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A graph (directed or undirected) is said to be finite if it has a finite number of
vertices and edges, i.e. if both sets V and E are finite.

A directed graph can always be transformed into an undirected graph by ‘for-
getting’ the edge orientations. If G = (V, F, a, ) is a directed graph then (V| E., §)
is an undirected graph denoted by v(G), where d(e) = {a(e), B(e)}.

Conversely, if a graph is undirected, it may be transformed into a directed
graph by assigning an arbitrary direction to each edge:

o Ifd(e) = {v}, then a(e) = v = S(e).
o Ifd(e) = {v,v'}, with v # ¢', then we may let (a(e) = v and B(e) = ') or
(a(e) =" and B(e) = v).

Clearly, there are several ways of orienting a graph.

Definition 10.5 If G is an undirected graph, then a directed graph G’ is an
orientation of G if v(G') = G.

10.1.2 Isomorphic graphs

Sometimes, the actual name of a vertex or an edge of a graph does not really
matter and we may consider that two graphs differing only in the names of their
vertices and their edges are in fact identical. The notion of isomorphism formally
expresses this idea.

Two directed graphs G = (V, E,a, ) and G' = (V', E',d/, ') are said to be
isomorphic if there are two bijections hyi,: V' — V' and heqq: E — E’ such
that

Ve€ E,  o(heag(e)) = huta(a(e)) and B (hedg(€)) = hora(B(€))-

Two undirected graphs G = (V,E,0) and G' = (V' E’,d’) are said to be
isomorphic if there are two bijections hyie: V. — V' and hegy: £ — E’ such
that

/ _ {hvtx(v)} 1f 6(6) - {U}’
Ve€ B, 0'(hedg(e)) = {{hm(@),hm(v’)} if 5(e) = {v,v'}.

Given two (directed or undirected) graphs G and G’ whose sets of vertices and
of edges, respectively, are the pairwise disjoint sets V, F and V', E’, the disjoint
union of G and G’ is the graph whose set of vertices is V U V', whose set of edges
is FU E’ and in which the edges and vertices are connected exactly as in graphs
G and G'.

In some cases we may wish to construct the disjoint union of two graphs while
their sets of vertices and edges are not disjoint; we will nevertheless be able to
construct this disjoint union by substituting an isomorphic graph for one of the
two graphs.
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10.1.3 Simple graphs

In a graph, directed or undirected, a loop is an edge e, both endpoints of which are
equal. This can be formally stated as follows: for a directed graph, a(e) = 5(e)
and, for an undirected graph, d(e) is a singleton.

A directed or undirected graph is said to contain multiple edges when several
edges are allowed between pairs of vertices, i.e. there may be edges e and ¢’ with
a(e) = a(e’) and 5(e) = B(€') for directed graphs, and d(e) = (e’) for undirected
graphs.

If a directed graph G = (V, E, «, 5) has no multiple edges, we may identify the
set F of its edges with a subset of the Cartesian product V x V. Indeed, in this
case, the mapping (a, 8) : E — V x V is injective.

A directed or undirected graph is said to be simple if it contains neither loops
nor multiple edges. If an undirected graph G = (V| E,¢) is simple, we may
identify the set of its edges with a subset of the set P2(V') of two-element subsets
of V. Indeed, since G has no loop, then for any edge e, d(e) has two elements
and, because G has no multiple edges, the mapping § : E — Po(V) is injective.

10.1.4 Subgraphs and partial graphs

Intuitively, a partial graph is obtained from graph G by deleting some edges, and
a subgraph is obtained from G by deleting some vertices, together with any edge
whose origin or target is one of the deleted vertices.

Let G = (V, E,«, ) be a directed graph. The directed graph G' = (V' E’, o/,
B') is a partial graph of G if

e V' =V,
° E’' C E and
o VecFE' df(e)=ale)and f'(e) = pB(e).

It is a subgraph of G if

i Vv’ cv,
e FE ={ecFE/{ale),B(e)} CV'} and
o VecFE' df(e)=ale)and f'(e) = B(e).

It is a subpartial graph if it is a subgraph of a partial graph.

Let G = (V,E,§) and G’ = (V', E’,¢") be undirected graphs. The undirected
graph G' = (V' E’,¢") is a partial graph of G if V! =V, E' C E, and Ve € E’,
d'(e) = d(e). It is a subgraph of G if V! C V|, E' = {e € E/d(e) C V'}, and
Ve € E',§'(e) = d(e). It is a subpartial graph if it is a subgraph of a partial
graph.

EXERCISE 10.1 Show that graph G’ is a subpartial graph of G if and only if it is

a partial graph of a subgraph of G. Show that a subgraph and a partial graph of a
subpartial graph of G are also subpartial graphs of G. &
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10.1.5 Degree of a vertex

Z In the present subsection, we consider only graphs such that for any vertex
the number of edges leading into that vertex or going out of that vertex is
finite; all finite graphs clearly satisfy this requirement.

The degree d(v) of a vertex v of an undirected graph G = (V, E, ) is equal to
the number of edges e such that §(e) = {v, v’} with v # v’ plus twice the number
of edges e such that §(e) = {v}. If d(e) = {v}, edge e will be counted twice in
the degree of v! The degree d(v) of a vertex v of a directed graph is equal to the
number of edges e such that v = a(e) or v = S(e) (if a(e) = B(e), edge e will be
counted twice); in other words, the degree of a vertex is the sum of the number of
ingoing edges and the number of outgoing edges. The indegree d~(v) of a vertex
v of a directed graph G is equal to the number of edges e such that 5(e) = v.
The outdegree d*(v) is equal to the number of edges e such that a(e) = v. We
thus have, for a directed graph, d(v) = d*(v) +d~ (v).

Proposition 10.6 The sum of the degrees of all vertices of a finite undirected
graph is equal to twice the number of its edges.

Proof. 1f §(e) = {v,v'}, with v # v’ then edge e is counted once in the degree
of v and once in the degree of v’. If §(e) = {v}, then edge e is counted twice in
the degree of v. Each edge is thus counted twice in the sum of the degrees of the
vertices. O

EXERCISE 10.2 Show that in a finite directed graph, the sum of the indegrees of all
vertices is equal to the sum of the outdegrees of these vertices. To what other number
is this sum also equal? O

EXERCISE 10.3 Let G be a finite undirected graph with n vertices and m edges, where
n > 1 and m > 0. For any integer k € IN, let ng be the number of vertices of degree
k; let K be the maximum of the degrees of the vertices (i.e. nx > 0 and ny = 0 for
k> K).

1. Show that
K K
Z kn, = 2m and Z ne = n.

2. Show that K < 2m; give an example where equality holds.
3.  Show that if G has neither loops nor multiple edges, then K < n — 1; give an
example where equality holds. &

EXERCISE 10.4 Let G be a finite simple undirected graph with n vertices (n > 1).

1. Show that the degree of a vertex is always strictly less than n.

2. Prove that there cannot simultaneously be a vertex of degree 0 and a vertex of
degree n — 1.

3.  Deduce that there are at least two vertices having the same degree. &
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EXERCISE 10.5 Let G = (V, E, ) be an undirected simple finite graph. We assume that
G contains no triangles: a triangle consists of three distinct vertices v1,v2,vs € V and
three edges e1,e2,e3 € E with §(e1) = {v2,v3}, d(e2) = {vi,v3} and d(ez) = {v1,v2}.
Two vertices are said to be adjacent if they are connected by an edge.

1.  Show that for two distinct adjacent vertices = and y, the number n, of vertices of
V\{z,y} adjacent to  and the number n, of vertices of V'\ {z, y} adjacent to y satisfy
the inequality

Ny +ny < |V|—2.

2. Deduce, by induction on the number |V| of vertices, that the number |E| of edges
verifies

\45
< .
B < 6
10.1.6 Paths
In a directed graph G, a path is a sequence ¢ = eq,...,e, of edges such that

Vi e {l,...,n— 1}, B(e;) = a(ei+1). Vertex a(er) will be called the origin of
path ¢ and vertex f(e,) will be called the target of path c¢. A circuit is a path
such that S(e,) = a(e1). A path (or a circuit) is simple if it does not contain the
same edge twice. It is elementary if it does not contain two edges with the same
origin or the same target (it is hence a fortiori simple). In a finite directed graph,
a path or circuit is said to be an Euler path or circuit if it is simple and contains
all edges. It is said to be a Hamiltonian path or circuit if it is elementary and
goes through all vertices (i.e. Yo € V, Ji: v = a(e;) or v = [(e;)).
For undirected graphs, a chain is a sequence

C =179,€1,V1,€2,...,Upn—-1,€En,Un

of vertices and edges such that d(e;) = {v;—1,v;}. This chain is said to connect
vertices vy and wv,. A cycle is a chain such that vg = v,. If the sequence
Vg, €1,V1,€9,...,Un_1,€n, Uy, is a chain, the sequence v,,, e,,vp_1,...,€2,01, €1, Vg
is also a chain and it connects v,, to vg. A chain (or a cycle) is simple if it does
not contain the same edge twice and elementary if it does not contain the same
vertex twice, with the only exception being that vy and v, may be equal. In a
finite undirected graph, a chain (or a cycle) is an Euler chain (or a cycle) if it
is simple and contains all edges; it is a Hamiltonian chain (or a cycle) if it is
elementary and contains all vertices.

ExXAMPLE 10.7
1. In the graph of Figure 10.3:
° ei1esezey is a simple circuit, and
. eseieseges is an Euler path but is not a Hamiltonian path.
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€
e, €
O
€3
Figure 10.3
2. In the directed graph of Example 10.2:
° e1es is a simple circuit, a Hamiltonian circuit, but not an Euler circuit
and
. e1eses is an Euler path, non-elementary.
3. In the undirected graph of Example 10.4:
° v, e9,v is an elementary cycle,
. v,e2,v,e1,v" is a simple chain, non-elementary, and an Euler chain
and
o v/, e1,v,e2,v,e1,v is a non-simple cycle.

The next result is an immediate consequence of the definitions.

Proposition 10.8 Ifey,..., e, is a simple (resp. elementary, Euler, Hamilto-
nian) path (circuit) of a directed graph G, then

06(61), €1, a<62); €2,..., a(en)a €n, B(en)
is a simple (resp. elementary, Euler, Hamiltonian) chain (cycle) of v(G).

Conversely, if vg, e1,. .., en, v, is a simple chain, there is at least one orientation
of G such that ej,...,e, is a path: since d(e;) = {v;_1,v;}, it suffices to let
a(e;) = v;—1 and B(e;) = v;. The fact that the chain is simple implies that this
construction is always possible because there is no index j # ¢ with e; = e;.
Otherwise, if we had e; = e; = e, we would have d(e) = {vi—1,v;} = {vj_1,v,};
and it is easy to see that the above construction can be applied only when a(e) =
vi—1 = vj_1 and f(e) = v; = vj.

Proposition 10.9 If an undirected graph G contains two different simple
chains connecting the same two distinct vertices, then it contains a simple cycle.

/ / / /
Proof. Let ¢ = vy, e1,v1,...,Un_1,€n, v, and ¢’ = v(, €}, v],...,v,_4,€.,, v, be

two simple chains such that vy = v, # v,, = v],,. We prove by induction on n+n’
that the existence of such chains implies the existence of a simple cycle:

1. Since n > 1 (because vy # v,) and n’ > 1 (for the same reasons), the least
possible value of n +n’ is 2. In this case, ¢ = v,e,v’, ¢/ = v,e/,v', with e # €,
and v,e, v, €', v is a simple cycle.
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2. (a) If thesets E(c) = {e;/1 < i < n} and E(c') = {ej /1 < j < n'}
are disjoint, then vg,e1,v1,...,0n_1,€n,Up = V€0, 00, _1,..., V], €],0) is
a simple cycle.

(b)  If e = €], then v; = ], and two cases must be considered:

(b.1) Ifn' =1, thenv, =v] =vy and vy,...,v,_1, €p, v, is a simple
cycle. The case n =1 is similar.

(b.2) Otherwise the two chains vy, ea,...,Uy_1,€n, v, and v, €5, ...,
vl _q, €, v, with respective lengths n —1 and n’ — 1 again verify the

hypotheses, and thus G contains a simple cycle.
(c)  We are thus left with the case in which E(c) N E(c") # () and in which
e1 # e}. Hence, there exists i > 1 and j > 1 such that e; = €, hence v; 1 =
v}_l or V1 = vg. In the first case, the chains vg, e1,v1,...,V;—2,€i—1,Vi—1
and vy, €1, v, ..., V;_o,€;_1,v;_;, with respective lengths i —1 < n and j —
1 < n’, again verify the hypotheses, and G contains a simple cycle. In the sec-
ond case, the chains vg, €1, v1, ..., vi—2,€;-1,v;—1 and v(, €], v}, ..., V5 5, €; 4,
% _1,€5,v; , with respective lengths i — 1 < n and j < n, also verify the hy-
potheses and G contains a simple cycle. O

v

EXERCISE 10.6 Show that in an undirected graph, the shortest chain between two
distinct vertices is elementary. Does this also hold for the shortest path from a vertex
to another one in a directed graph? &

In an undirected graph, the distance d(v,v") between two vertices v and v’ is
defined as follows:
e Ifv=1'then d(v,v") =0.
e Ifv#4 then d(v,v") is equal to
- the length of the shortest chain connecting these two vertices, if such
a chain exists, or
- oo otherwise.

The characteristic properties of a distance are indeed verified:

e d(v,v")=0if and only if v =0/,

o dv,v)=d(,v),

o d(v,v") <d(v,v)+d(,v").

EXERCISE 10.7 Prove the triangular inequality d(v,v"”) < d(v,v") + d(v',v"). &

The diameter of an undirected graph is the maximum distance between two dis-
tinct vertices, i.e. sup{d(v,v’) /v,v" € V'}.

If a graph is directed, we may also define the distance between two vertices
as the length of the shortest path going from the first one to the second one.
But this is no longer a distance in the mathematical sense because, while it still
satisfies the triangular inequality, it is no longer symmetrical: it may well occur
that d(v,v") # d(v',v).
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EXERCISE 10.8 Let X = {0,1,2,3,4}. The Petersen graph is the undirected graph
defined as follows: its vertices are the pairs of elements of X, and two vertices are
connected by an edge if and only if they are two disjoint pairs of elements of X. For
instance, if {0,1}, {1,2} and {2,3} are vertices, there is an edge connecting {0,1} and
{2,3}, but there is no edge connecting {0, 1} and {1, 2}:

1. Determine the number of vertices, the number of edges, the degree of vertices and
the diameter of this graph.

2. Draw this graph and indicate for each vertex the two elements of X constituting
the pair that it contains. &

EXERCISE 10.9

1.  Let (V,E,«a, ) be a directed graph with n vertices v1,...,v,. It is associated with
the matrix M defined by: each entry M; ; of M (for 1 <i <nand 1< j < n)is the
number of edges of F with origin v; and target v; (i.e. a(e) = v; and S(e) = v;). Prove
by induction that for any integer k > 0, the matrix M* has as its (i, j)th entry the
number of distinct paths of length k between v; and v;.

2. Can you generalize this result to an undirected graph? &

EXERCISE 10.10 In Z? we define the 4-distance ds and the 8-distance ds as follows:

da((2,y), (2", 9)) =z — 2’|+ ly — ¥,
ds((z,y), (2, y)) = max(|lz — 2|, |y — ']) -

1. Define the two undirected graphs G4 and Gg having Z? as the set of vertices, and
where the distances above defined in terms of lengths of chains coincide with d4 and ds
respectively.

2. Draw the subgraphs of G4 and Gg corresponding to the set of the sixteen vertices
(z,y) where 0 <z <3et 0 <y <3. &

10.1.7 Connectivity

A directed graph is said to be strongly connected if for any pair (v, v’) of distinct
vertices there is a path going from v to v’.

An undirected graph is connected if for any pair (v,v’) of distinct vertices
there exists a chain connecting v and v’.

The connected component CCg(v) of a vertex v of an undirected graph G is
equal to {v} together with the set of vertices v' of G such that there exists a
chain connecting v to v'.

Proposition 10.10 Ifv" € CCg(v) then CCq(v) = CCq(v').

Proof. We assume that v # o'. (If v = ¢/, the result is trivial.) If
v' € CCq(v) there is a chain ¢ connecting v and v' and a chain ¢’ connecting v’
and v. Let v € CCgq(v):

e Ifv” =w, then since ¢’ connects v' to v, we have that v’/ =v € CC(v').
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e Otherwise, there is a chain ¢” connecting v to v”; then ¢/¢” is a chain con-
necting v’ to v, and v € CCq(v").

Thus, CCq(v) € CCg(v"). The converse inclusion CCq(v') € CCgq(v) can be
proved in the same way. O

The following proposition follows immediately from the definitions.

Proposition 10.11 An undirected graph G = (V, E, §) is connected if and only
iftYv eV, V =CCg(v).

An isolated vertex is a vertex of degree 0. If a vertex v of G is isolated, then
CCq(v) = {v}. If G is a graph without loops, a vertex v of G is isolated if and
only if CCq(v) = {v}.

Proposition 10.12 Let G be a connected undirected graph. Let G’ be the
graph obtained by deleting an edge e with two distinct end vertices v’ and v”
(ie. §(e) = {v',v"} with v #v"). Then V = CCq (v') UCCgq (v").

Proof. Let v be any vertex of G. Because GG is connected, there exists a chain
V0, €1, V1, - -+, €n, Uy With v/ = vg and v,, = v. If edge e does not occur in that
chain, then v € CCg/(v"). Otherwise, let i be the largest index such that e; = a.
Then v; € {v/,v"} and v;,€;41,...,€n,v, is a chain of G’, and hence v = v,, €
CCG/(U”) U CCG/(U/). O

EXERCISE 10.11 Let C), be an undirected graph with n vertices consisting of a single
cycle, i.e.

V = {’Ul,.. .,'Un},

E={ei,...,en},

N {Uifl,vi} if i > 1,
o) = { {vn, 01} ifi=1.

1. Show that each vertex of C,, is of degree 2.

2. Show that if G is an undirected connected graph with n vertices all of which are
of degree 2, then G is isomorphic to C,,.

3.  Show that if G is an undirected graph with n vertices all of which are of degree
2, then G is a disjoint union of graphs Gy, ..., Gy, , where Gy, is isomorphic to C,,,
with nq1 + -+ +ng = n. &

10.1.8 An historical example: Konigsberg seven bridges

The old town of Kénigsberg in eastern Prussia (nowadays Kaliningrad, in Russia),
contains an island connected to the ‘mainland’ by seven bridges as shown in
Figure 10.4.
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Figure 10.4

Is it possible to take a walk through Konigsberg starting from some point and
travelling across all the bridges exactly once?

The problem is that of finding an Euler chain in the undirected graph shown
in Figure 10.5.

Figure 10.5

If, moreover, the walk ends at its starting point we will have an Euler cycle.
The answer to this problem can be obtained by the following theorem (proved
by Euler in 1766).

Theorem 10.13 An undirected finite graph G with no isolated vertex has an
Euler chain if and only if

(i) it is connected
(ii) it has zero or two odd degree vertices.

In the case in which there is no odd degree vertex, this Euler chain is a cycle.
In the case in which there are two odd degree vertices, they are the origin and
target of the chain.

Proof.
1. Assume that there is an Euler chain v, e1,v1,€9,...,0,_1,€pn, Un.
Because there is no isolated vertex,

V = U66E5(e> s
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and since £ = {eq,...,e,},
veEV <= di:v=nu.
G is thus connected.
Let v be any vertex; the number d(v) of edges with endpoint v is equal to

2% i /v; =v,1<i<n—1} +{ E iﬁz;zz
Indeed, for each i € {1,...,n — 1}, v; is the endpoint of the two distinct edges
e; and e;11. Moreover, vy is the endpoint of edge e; and v, is the endpoint of
edge e,. Note that if we have an edge e;, both endpoints v;_; and v; of which
are equal, this edge will be counted twice in the computation. We deduce the
following from this characterization of the degrees of the vertices:
- If vg = v, i.e. if there is an Euler cycle, then all vertices are of even
degree.
— If vg # v, then all vertices are of even degree except for the endpoints
vp and v,, of the chain.

2.  Consider a connected graph with zero or two vertices of odd degree. We
show that it has an Euler chain.

Note first that we may add or delete on the graph any number of loops without
modifying either the parity of the degrees of the vertices or the existence of Euler
chains. If we add or if we delete on graph G an edge e with d(e) = {v}, we
increase or decrease the degree of v by 2. Moreover, if we add to graph G an edge
e with §(e) = {v}, thus obtaining a graph G’, then vg,e1,...,€;-1,0, €41, ..., Un
is an Euler chain of G if and only if vg,eq,...,e;_1,v,€,v,€;41, ..., v, is an Euler
chain of G’; and we have a similar result if v = vg or if v = v,,.

We may then reason by induction on the number of edges of a graph without
loops.

If this number is 0, the property holds vacuously. If this number is 1, the
unique edge e of this graph is such that d(e) = {v,v'}, with v # v/, and v, e, v’ is
an Euler chain.

Let GG be a graph with n + 1 edges:

(a) If all vertices have an even degree, we consider any edge e whose endpoints
are v and v'. Let G’ be the partial graph obtained by deleting this edge. Both
vertices v and v now have an odd degree. G’ must be connected. Indeed, let
CC¢(v) be the connected component of v in G’. Firstly, v € CCgq (v); otherwise
CC¢r(v) would be a graph with a single vertex of odd degree, which is impossible



Graphs 195

(because the sum of the degrees of a graph is always even). There thus exists
a chain ¢ connecting v and v" in G’. We now show that CCq (v) contains all
vertices of G'. Let v” be any vertex. Because G is connected, there exists in G
a chain connecting v and v”. If this chain uses edge e, we substitute the chain
¢ for edge e. We thus have a chain of G’ connecting v and v”. Because G’ is
connected and has two odd degree vertices v and v’, there exists an Euler chain
¢ connecting v’ and v, and v, e, ¢ is thus an Euler cycle of G.
(b) Let v and v’ be the two vertices of odd degree of G, let e be an edge such
that v € §(e) and let v” be the vertex such that d(e) = {v,v”}. Let G’ be the
graph obtained by deleting this edge. The degree of v in G’ is even.
(b.1) If the degree of v" in G is odd (i.e. v" = ') then the degree of v"" in
G’ is even.
(b.1.1) If G’ is connected, there exists an Euler cycle ¢ going from v
to v, and ¢, e, v’ = v” is an Euler chain of G.
(b.1.2) Otherwise, by Proposition 10.12, CC¢q (v) and CCgq (V') are
two connected graphs, and all their vertices have even degrees. There
exists an Euler cycle ¢ from v to v in CCg/ (v) and an Euler cycle ¢
from v to v' in CCq (v'). Then ¢, e, is an Euler chain in G.
(b.2) If the degree of v” in G is even (i.e. v/ # v) then the degree of v in
G’ is odd and v € CCq (v'), because v and v’ are the only two vertices of
odd degree in G’.
(b.2.1) If G’ is connected, there is an Euler chain ¢ of G’ connecting
v and v’, and v, e, ¢ is an Euler chain in G.
(b.2.2) Otherwise, all vertices of CCq(v) have an even degree. There
exists an Euler cycle ¢ of CCg/(v) connecting v and v and an Euler
chain ¢ of CCg/ (v") connecting v and v'. Then ¢, e, ¢ is an Euler
chain of G connecting v and v’. O

10.1.9 Graph colouring

A colouring of an undirected graph G = (V| E, ) without a loop is a mapping
~v:V — C', where C is a finite set of ‘colours’, such that

Ve,d(e) = {v,v'} = v(v) #y(v')

(i.e. two different vertices connected by an edge cannot have the same colour).
The chromatic number of a graph is the minimum number of colours needed to
colour it.
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ExaAMPLE 10.14 Let E be a set of students and X be a set of exams. For each
exam x in X, the set of students registered for that exam is S(x). Each student
can take at most one exam per day. What is the minimum length of the exam
session?

Let G be the graph whose set of vertices is X. Two vertices  and z’ are
connected by an edge if and only if S(x) N .S(z") # (). The minimal length of the
session is the chromatic number of this graph.

10.1.10 Planar graphs

A (directed or undirected) graph is said to be planar if it can be drawn in the
plane without any edges crossing.

REMARK 10.15 A graph, and even a planar graph, can be drawn in many ways.
Figure 10.6 shows two possible drawings for the planar graph Kj.

a
C
Figure 10.6

The two graphs in Figure 10.7 are not planar.

Ks3

Figure 10.7

A famous problem that has been solved recently is the four-colour problem:
is the chromatic number of a planar graph always less than or equal to 47 The
answer is ‘yes’.

ExXERCISE 10.12 Find a planar graph with chromatic number 4. &
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10.2 Trees and rooted trees

Trees and rooted trees are particular cases of graphs. Trees are usually undirected
graphs, and rooted trees are usually directed graphs. However, in computer
science, the term ‘tree’ often means rooted tree, and sometimes very particular
rooted trees.

10.2.1 Trees

Definition 10.16 A tree is an undirected connected graph without a simple
cycle.

If an undirected graph contains at least one edge e, it contains a cycle v, e, v’, e, v,
where d(e) = {v,v'}. But this cycle is not simple. This is why the definition of
trees involves simple cycles.

Proposition 10.17 Let G be a finite graph, let n be the number of its ver-
tices, let m be the number if its edges and let p be the number of its connected
components. Then G is without a simple cycle if and only if m —n +p = 0.

Proof.
1.  m —n+pis always non-negative. We show this by induction on the number
of edges:

. It is true for a graph with no edges because if that graph has n vertices

then it has n connected components.
. Let e be an edge of G connecting v and v’ (which are thus in the same
connected component) and let us delete edge e from G. The graph G’ thus
obtained has n’ = n vertices, m’ = m—1 edges and p’ connected components
with p’ = p or p’ = p+ 1; hence p > p’ — 1. By the induction hypothesis,
m' —n'+p >0,andm—-n+p>m—n+p —1=m'—n' +p.
2.  Assume that G contains a simple cycle ¢, and let us show that m —n + p
> 0. Let e be any edge of this cycle, with d(e) = {v,v'} (v may be equal to v).
There thus exists a chain ¢ connecting v’ and v that does not use edge e.

Let G’ be the graph obtained by deleting from G this edge e. We have for
G’ that m’ = m — 1 and that n’ = n. We also have that p’ = p because the
number of connected components is not modified: if two vertices are connected
by a chain of G using edge e, they are connected by the chain of G’ obtained
by substituting for each occurrence of e the chain ¢’ which is in G’. Hence
m—-n+p=m'+1—-n"+p" >m'—n'+p >0.

3. Conversely, we show that if m —n 4+ p > 0, then G has a simple cycle. We
again show this by induction on the number of edges:
° If m = 0, we have shown in 1 that m — n + p > 0 could not occur.



198 10. Graphs and trees

. Let G’ be the graph obtained by deleting from G an arbitrary edge
e. We have shown in 1 that in this case m —n+p > m' —n’ + p’ and that
p'=porp =p+1
- If m" —n +p > 0, then, by the induction hypothesis, G’
contains a simple cycle, and hence so does G.
- If m" —n’ +p =0, then, because m —n + p > 0, we have that
m—n+p > m'—n’+p', which implies p’ = p. In other words, deleting
edge e does not modify connected components. As the endpoints v
and v’ of e are in the same connected component of GG, they are in the
same connected component of G'. There thus exists a simple chain ¢
connecting v and v’ (see Exercise 10.6) and not using edge e. Adding
edge e to this chain, we have a simple cycle. a

Theorem 10.18 Let G be an undirected graph with n vertices (n > 2). The
following properties are equivalent:

(G is connected and has no simple cycles.

G has no simple cycles and has n — 1 edges.

G is connected and has n — 1 edges.

G has no simple cycles; if we add an edge to it we form a simple cycle.

G is connected; if we delete an edge from it, it is no longer connected.

Yo, 0" € S, (v #v'), there exists a unique simple chain connecting v and v’.

A O

Proof.

(1 = 2) Because G is connected, p = 1. If G has no simple cycles then m—n+1 =
0 and the number of edges m of G is n — 1.

(2 = 3) If G has no simple cycles, m —n+p =0, and if m =n — 1 then p =1
and thus G is connected.

(3 = 4) If G is connected and has n — 1 edges then m —n + p = 0 and thus G
has no simple cycles. If we add an edge it remains connected and (m’ —n'+p’) =
(m+1—mn+p)>0. We have thus exhibited a simple cycle.

(4 = 5) If G were not connected we might add an edge to it without creating
any cycles: it suffices to add an edge connecting two vertices of two distinct
connected components. If deleting one edge yields another connected graph, we
have m’ —n’ +p  =m —1—n+p =0, and hence m —n +p > 0, and G would
have a simple cycle.

(5 = 6) Let v and v’ be two vertices of G. Because G is connected there exists a
chain connecting v and v’. If there were two such chains, by Proposition 10.9 the
graph would contain a simple cycle and we might thus delete one edge without
destroying connectedness.
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(6 = 1) G is connected. If it contained a simple cycle, we might find two distinct
chains connecting two vertices. O

EXERCISE 10.13 Show that if we delete an edge from a tree then the remaining two
connected components are trees. &

Proposition 10.19 A tree with n vertices (n > 2) has at least two vertices
with degree 1.

Proof. In a graph, the sum of the degrees of the vertices is equal to twice the
number of edges. In a tree, the number of edges is n — 1 and the sum of the
degrees of the vertices is thus equal to 2n — 2. Since a tree is a connected graph,
there are no vertices of degree 0. Let k be the number of vertices of degree 1.
There are thus n — k vertices of degree at least equal to 2, and the sum of the
degrees of the vertices is greater than or equal to k + 2(n — k) = 2n — k. As
2n — 2 > 2n — k, we have k > 2. O

EXERCISE 10.14 Show that if a tree G has exactly two vertices of degree 1, then all
other vertices are of degree 2. Deduce that GG consists of a single elementary chain. <

Proposition 10.20 A finite graph has a partial graph which is a tree if and
only if it is connected.

Proof. If a graph has a connected partial graph, it is connected. If a graph is
connected and if we may delete an edge while preserving connectedness, we delete
this edge. When no more edges can be deleted, we will have obtained a tree, by
point 5 of Theorem 10.18. O

EXERCISE 10.15 Prove (by induction) that a tree can always be drawn in the plane
in such a way that the edges form linear segments without cross-sections, except at the
endpoints; in particular, it is planar. &

10.2.2 Rooted trees

Definition 10.21 A rooted tree is a directed graph G such that v(G) is a tree
and all vertices of G have indegree 1, except for a single vertex, called the root,
whose indegree is 0.

Proposition 10.22 If G is a finite tree, then for any vertex v of G, there exists
an orientation of G which is a rooted tree with root v.

Proof. By induction on the number of vertices of G. The result is clear if the
tree G has only one vertex. Otherwise, let v be any vertex of a tree G and let
e be an edge with endpoints v and v’. Deleting this edge yields two connected
graphs G(v) and G(v"), which are still trees. We assign an orientation to these
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two trees in such a way that their respective roots are v and v, and we orient
edge e from v to v’. We thus have a rooted tree with root v. In fact, for any
vertex v” different from v and v’ of G(v) U G(v'), the indegree of v" is equal to
its indegree in the rooted tree constructed from G(v) or from G(v'), i.e. 1. The
indegree of v’ is 1 and the indegree of v is 0. O

Proposition 10.23 Let G be a rooted tree and let v be one of its vertices.
Let G(v) be the subgraph of G whose set of vertices is {v} augmented by all the
vertices that are the target of a path with origin v. Then G(v) is a rooted tree
with root v.

Proof. By the construction of G(v), v(G(v)) is connected. Moreover, v(G(v))
contains no simple cycle; otherwise, this simple cycle would also belong to v(G),
which is impossible because (G) is a tree. 7(G(v)) is thus a tree.

By the construction of G(v), any vertex v' of G(v) different from v is the target
of an edge whose origin is in G(v). This edge is the only edge of G with endpoint
v'. The indegree of v in G(v) is thus 1. If the indegree of v were also equal to 1
in G(v), there would exist an edge with target v and with origin in G(v). There
would also exist in G a simple circuit going through v, and there would thus exist
in G a simple cycle, which is impossible. O

Theorem 10.24 (Konig’s lemma) Let G be an infinite rooted tree all of whose
vertices have a finite outdegree. Then G has an infinite path originating at the
root.

Proof. Let eq,...,e, be the edges of G whose common origin is the root of G.
One among the rooted trees G(5(e;)) for ¢ = 1,...,n is thus infinite. (These
rooted trees are defined in Proposition 10.23.) Let ¢ be such that G(8(e;)) is
infinite, and let €] = e;. Assume now that we have defined a path eée}...e such
that G(B(e],)) is infinite and let €Y, ..., e} be the edges with origin 3(e},). Again,
we will find a j such that G(8(e’)) is infinite and we will let e;, ., = €. Since we
may repeat this construction indefinitely it indeed yields an infinite path in the
rooted tree G. O

Konig’s lemma is often applied in different forms that are consequences of
the above theorem. Two such consequences are given in Proposition 10.25 and
Proposition 10.26 below.

Proposition 10.25 Let G = (V,E,«,3) be a directed graph such that any
vertex v has a finite outdegree d*(v).

If a vertex v of this graph is the origin of infinitely many finite paths, it must
also be the origin of an infinite path.
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Proof. Let C be the infinite set of the paths with origin v. For n > 0, let C,
be the set of paths with origin v and length n so that C' = J,,.,Cyn. Also let
Co = {v} and C" = Cy U C. We define the set R C C’ x C' by (¢,) € R if and
only if
e eitherc=v e (Cyand € C,
e or there exists n > 0 and e € E such that ¢ € C,, and ¢ = ce.

We then show that the graph G’ = (C',R,a’,3’) with &/(¢,¢’) = ¢ and
B'(c,c’) = ¢ is a rooted tree. The indegree of v is 0 and its outdegree is d (v).

The indegree of ¢ € C is 1 and its outdegree is equal to d*(v'), where v’ is the
target of the path c.

By Konig’s lemma, this rooted tree has an infinite path v,cq,co,..., ¢y ... with
c1 = ey, ¢iy1 = cie;+1. Hence we deduce that ejes---e,--- is an infinite path
with origin v in graph G. O

EXERCISE 10.16 Let A be a finite alphabet and let L be a subset of A*. Show that if
L is infinite, there exists at least one infinite string agaiaz - - - ay - - - of letters of A such
that Vn > 0, 3w, € A* 1 ao - - - apwy, € L. &

Proposition 10.26 Let E,, be a finite non-empty set, for any integer n > 0,
and assume that

(i) n#m=— E,NE,=1.
Let R be a binary relation on E = U,,>oE),, such that:

(ii) Ife R €' then there exists n such that e € E,, and €' € E, ;.
(iii) Vn > 0, Ve' € Epy1, Je€ E, :e R €.

Then there exists an infinite sequence eg, €1, ..., €y, ... such thatVn > 0, e, € E,
and e, Repq1.

Proof. Consider (F, R) as a directed graph. By (ii), the outdegree of an element
of E,, is at most equal to the number of elements of F,, ;1. It is thus finite. By (i),
U,>o En is infinite. By (iii), each element of E,,y; is the target of a path whose
origin is in Fy. There thus exist infinitely many paths whose origin is in Ey, and
since Ej is finite there exists an element ey of Ejy that is the origin of infinitely
many finite paths. By Proposition 10.25, it also is the origin of an infinite path
going through the sequence of vertices eg,eq,...,e,,..., which is the required
sequence. g

EXERCISE 10.17 Let V be a subset of IN x IN with the following properties:

(i) For any n > 0, the set {m € IN/ (n,m) € S} is finite.

(i) For any n > 0, there exists an injection f, : {0,1,...,n} — IN such that Vi €
{0,1,...,n}, (4, fn(3)) € V.

Prove that there exists an injection f : IN — IN such that Vi € IN, (¢, f(i)) € V. O
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10.2.3 Ordered rooted trees

Let G be a rooted tree and let v be one of its vertices. Vertex v’ is said to be a
child of v if there is an edge with origin v and target v’. If v is not the root of
the rooted tree, v has indegree 1: there thus exists exactly one edge e with v as
target. The origin vertex of this edge e will be called the parent of v. It is easy
to show that any vertex v is the parent of its children.

A rooted tree is said to be ordered if, for any vertex v, the set of children of v
is endowed with a total ordering. When drawing such a rooted tree in the plane
(usually, counterintuitively, with the root at the top of the graph and the children
below their parent), this total ordering on the children of a same parent will be
materialized by writing them from left to right. This is why such rooted trees are
called ‘ordered’. The trees that we have studied in Chapter 3 are ordered rooted
trees which may be empty, i.e. they may have empty sets of vertices and edges.

A complete binary tree is an ordered rooted tree in which each vertex either
has two children (respectively called the left child and the right child) or none.
A vertex without a child is called a leaf.

ExAaMPLE 10.27 Two different ordered binary trees that represent the same
rooted tree are shown in Figure 10.8.

Figure 10.8

EXERCISE 10.18
1.  Show that a finite complete binary tree has an odd number of vertices.
2. Show that a complete binary tree with 2n — 1 vertices has n leaves. &



