
I. Guessarian Workshop Schemes

Program Schemes: Early results

I. Guessarian

Workshop on Higher-Order Recursion Schemes &
Pushdown Automata

LIAFA 1/25

I. Guessarian Workshop Schemes

OUTLINE

Origins

Algebraic semantics

Classes of interpretations

LIAFA 2/25

I. Guessarian Workshop Schemes

Origin

IANOV 1958

The logical schemes of algorithms

Inspired two mainstreams of research

Category Theory (first paper Elgot 1968? 1970?)

Logic and Universal Algebra (first paper Scott
1969? 1971?)

Origins LIAFA 3/25

I. Guessarian Workshop Schemes

Algebraic and Category
theory approach

Elgot(1971) Algebraic Theories and Program Schemes

Semantics of Loop-Free diagrams using categories

Algebraic Theories

semantics of iterative and recursive program
schemes

unique fixed points in initial algebras

ADJ group: Goguen Thatcher Wagner Wright,
Elgot, Bloom, Meseguer, Tindell, Esik, . . .

Origins LIAFA 4/25

I. Guessarian Workshop Schemes

Ianov Flow Diagrams

stop

b

f g

tt ff

Figure: A Flow Diagram

Semantics

– operational
(computation rule) ??

– mathematical ??

Origins LIAFA 5/25

I. Guessarian Workshop Schemes

Mathematical semantics

Algebraic, Denotational, Fixpoint,. . .
Goals:

give precise meaning to programs

prove equivalences and properties of programs

Decisive step: Scott (1971) The Lattice of Flow
Diagrams

Algebraic meaning for iterative program schemes à la
Ianov

Algebraic semantics LIAFA 6/25

I. Guessarian Workshop Schemes

Semantics
complete lattice of (finite and infinite) flow diagrams
meaning of a program (with iterations): a least
fixed point

b

f g

tt ff

stop

b

f g

tt ff

stop

stop

b

f g

tt ff

⊥

⊥

⊥
Figure: Meaning of a flow diagram (unfoldings)

Algebraic semantics LIAFA 7/25

I. Guessarian Workshop Schemes

Fixed point theorems
Theorem (Knaster, Tarski, Kantorovich, . . . ?)

A monotone function F : D −→ D on a complete lattice
D has a least fixed point µx .f (x) = inf{x |f (x) ≤ x}.

More appropriate: (D,≤) Scott domain

every directed set has a least upper bound
every bounded set has a least upper bound
every element in D is the least upper bound of a
directed set of finite elements (algebraic domain)

If f continuous on D Scott domain, then:

µx .f (x) = sup{f n(⊥)|n ∈ N}

Algebraic semantics LIAFA 8/25

I. Guessarian Workshop Schemes

Interpretation

Assume a set F of function symbols, an interpretation is
a Scott domain D where all function symbols in F are
interpreted as continuous functions fi : Dn −→ D (n the
arity of f).

The notion of interpretation is expressed by a second
order formula.

Algebraic semantics LIAFA 9/25

I. Guessarian Workshop Schemes

Scott induction
Scott induction:

IF f : D −→ D continuous , D Scott domain and R

“well-behaved” property. THEN:
[

∀x
(

R(x)⇒ R(f (x))
)]

=⇒ R(µx .f (x))

Example

Let X = f (X) and µX .f (X) = sup{f n(⊥)} = f ∞

Let Y = g(Y) and µY .g(Y) = sup{g n(⊥)} = g∞

hypotheses: f (⊥) ≤ g(⊥) and f (g(X)) ≤ g(f (X))

Then:
[

f (X) ≤g(X)⇒ f (g(X)) ≤g(f (X) ≤g(g(X))
]

=⇒ f (g∞) ≤ g(g∞)

Algebraic semantics LIAFA 10/25

I. Guessarian Workshop Schemes

Scott ... or Park... or...?
Park 1970
Fixpoint Induction and Proofs of program Properties

meaning of recursive schemes as least fixpoints

proofs of properties of schemes by fixpoint induction

considers also greatest fixpoints

Nivat 1975

On the Interpretation of Recursive Polyadic Program
Schemes

Example:
[

f (⊥) ≤ g(⊥) and f (g(X)) ≤ g(f (X))
]

⇒ ∀n f n(⊥) ≤ g n(⊥) =⇒ f ∞ ≤ g∞

Algebraic semantics LIAFA 11/25

I. Guessarian Workshop Schemes

Semantics in the 70s

Many researchers worked on the algebraic, logic and
automata theory approach to semantics:
Nivat, Park, Scott, Strachey, Luckham, Paterson,
Plaisted, Milner, Ashcroft, Hennessy, Winskell,
Milne, Morris, Strong, de Bakker, de Roever,
Courcelle, Berry, Kotts, Downey, Engelfriet,
Indermark, Damm, Fehr, Arnold, Dauchet,
Guessarian, Gallier, Manna, Chandra, Vuillemin,
Cadiou, Raoult, Burstall, Darlington, Andreka,
Nemeti, Tiuryn, and even Knuth.

Algebraic semantics LIAFA 12/25

I. Guessarian Workshop Schemes

Initial algebra (free algebra,
Herbrand model)

PROGRAM
abstract
−→ PROGRAM SCHEME









y

solve in free algebra

function
morphism
←− Infinite tree

computed
by PROGRAM

Algebraic semantics LIAFA 13/25

I. Guessarian Workshop Schemes

Iterative program scheme
X=f(X,Y) Y=a

f
af

f
a

a
.
..

Regular (level 0) tree

Algebraic semantics LIAFA 14/25

I. Guessarian Workshop Schemes

Recursive program scheme
F(x)=f(F(g(x)),x)

f
f

f

.

..

x
g

g
g

x

x

Algebraic (level 1) tree

Algebraic semantics LIAFA 15/25

I. Guessarian Workshop Schemes

Level 2 program schemes

F (x) = ϕ(g , h)(x)

ϕ(F1, F2)(x) = f (ϕ(F1 ◦ g , F2 ◦ h)(x), F1 ◦ F2(x))

Correspond to procedures with procedures
as parameters

Algebraic semantics LIAFA 16/25

I. Guessarian Workshop Schemes

Level 2 tree of the previous
example

f
f

f

.

..

g
g

x

x

x

g
h

h

2

2
3

3h

Tree of a level 2 program

Algebraic semantics LIAFA 17/25

I. Guessarian Workshop Schemes

Semantics

The initial algebra semantics of a
deterministic program scheme is an
infinite tree which is the least fixed
point of the system of equations
associated with the program
scheme. It can be considered as
the value of the program in the
“Herbrand” interpretation.

Algebraic semantics LIAFA 18/25

I. Guessarian Workshop Schemes

Algebraic trees

An infinite tree T is algebraic iff it is the solution of a
deterministic level 1 system of equations of the form:
ϕi(x1, . . . , xi) = ti where all function symbols in F ∪ Φ
are level 1, i.e. of type Dn −→ D , n ∈ N

Theorem (Courcelle)

T is algebraic iff the set of its branches is a deterministic
context-free language.

Algebraic semantics LIAFA 19/25

I. Guessarian Workshop Schemes

Program schemes
equivalence

Two program schemes are equivalent iff they compute
the same function in every interpretation: this implies
that they compute the same function in the Herbrand
interpretation, i.e. that the associated algebraic trees are
equal.

Theorem (Sénizergues)

The equivalence problem for deterministic recursive
program schemes is solvable.

Other more interesting equivalences (unfortunately more
complex).

Algebraic semantics LIAFA 20/25

I. Guessarian Workshop Schemes

Higher order schemes

Fixed point semantics can be adapted by using more
complex signatures: each level n tree is the image by
a canonical morphism of a regular level (n+1) tree
additional problem:

non-deterministic programs are studied
we must distinguish “call by name” OI and “call by
value” IO.

Engelfriet-Schmidt, Damm, ...

Algebraic semantics LIAFA 21/25

I. Guessarian Workshop Schemes

Classes of interpretations

Equivalence: P, P ′ program schemes , T , T ′ the
associated trees,

P ≈ P ′ ⇐⇒ T = T ′

Too restrictive: relax the demand that P and P ′ should
compute the same function for every interpretation.

C a class of interpretations: P ≈C P ′ iff P and P ′

compute the same function for every interpretation in C.

Classes of interpretations LIAFA 22/25

I. Guessarian Workshop Schemes

≈C equivalence modulo C

Captures more interesting equivalences.

Even harder to study.

wishes
≈C is decidable

≈C is always provable by induction: i.e. C is
algebraic

C is first-order definable

Classes of interpretations LIAFA 23/25

I. Guessarian Workshop Schemes

Algebraic classes

To prove T ≈C T ′ it suffices to prove T ≤C T ′ and
T ′ ≤C T

Definition: T ≤C T ′ iff for every interpretation I in C ,
TI ≤ T ′I (TI function computed by T in I).

Intuition: C is algebraic iff ≤C is always provable by
induction. Formally, t finite tree:

t ≤C sup
n∈N

t ′n iff ∃n t ≤C t ′n

Classes of interpretations LIAFA 24/25

I. Guessarian Workshop Schemes

Some results

D (the class of discrete interpretations) is algebraic
and ≤D is decidable

any first-order definable class is algebraic.

relational classes are algebraic, i.e.

R ⊂ FTrees × FTrees then
CR = {I | ∀ t, t ′ ∈ R tI ≤I t ′I} is algebraic.

THANKS FOR YOUR ATTENTION

Classes of interpretations LIAFA 25/25

	Origins
	Algebraic semantics
	 Classes of interpretations

