Advanced Network Programming Project
DRAFT

Juliusz Chroboczek

30 April 2025
Updated on 8 May 2025

1. Introduction

The goal of this project is to implement a distributed read-only file system: every peer exports a
filesystem tree that is made available to all other peers. The tree exported by a peer may change
at any time, but a peer cannot modify the files exported by a different peer.

The protocol is a hybrid protocol:

- a central REST server serves as a rendez-vous point and as a channel to distribute crypto-
graphic keys;
— data transfer happens directly between peers, over UDP.

Every peer is identified by a name, which is an arbtrary string. Peer names are unique: the server
rejects duplicate registrations.
The protocol uses cryptographic techniques in three places:

- communication with the central server happens over HTTP protected by TLS (HTTPS);
— data stored on peers are represented as a Merkle tree;
- messages exchanged between peers are signed with cryptographic signatures.

2. Informal description of the protocol

Peer discovery A peer discovers other peers by contacting the server over a REST-like API. The
server maintains one or more socket addresses for every peer, as well as a cryptographic public
key.

Registration with the server Registration with the server happens in two steps: first, the client
sends its cryptographic signature to the server using a POST request over the HTTP API. It then
registers each of its IP addresses by sending a Hello request to the server.

After the client sends a Hello request to the server, the server will verify that the client is able
to receive requests by sending a Hello request to the client. If the client doesn’t reply to the Hello
request with a properly signed message, its address will not be published by the server.

Handshake Inorder to communicate, two peers exchange Hello and HelloReply messages. These
messages are protected by cryptographic signatures.

Data transfer Every peer maintains a content-indexed database of pieces of data: values are
arbitrary pieces of data, while keys are the SHA-256 hashes of the data. A peer requests pieces of
data by sending DatumRequest messages.

Since data are protected by end-to-end hashes in the form of a Merkle tree, Datum messages
do not need to be protected by a cryptographic signature.

3. Description of the client-server protocol

The server implements a REST-like protocol, which is notably used to locate other peers. The
server is provided, you only need to implement the client side.

Note that the client-server protocol does not include a request for registering with the server:
peers register over UDP, using a subset of the peer-to-peer protocol.

3.1. Peer list

In order to obtain the list of known peers, a client sends a GET request to the URL /peers/. The
server replies with a 200 reply with a list of peer names, one per line.

3.2. Registration

In order to register with the server, a peer ¢ makes a PUT request to the URL /peers/¢/key
with its 64-byte public key in the body. In order to prevent nickname hijacking, the key cannot
be changed after it has been registered.

The server expires peers after 30 minutes; the only way to change the key is to wait for the peer
to expire from the server.

3.3. Cryptographic keys
In order to obtain the public key of a peer ¢, a client sends a GET request to the URL /peers/¢/
key. The server replies with a 200 reply with the 64-byte key in the body.

3.4. Peer addresses

In order to discover the addresses of a peer ¢, a peer sends a GET request to the URL /peers/¢/
addresses. The server replies with a list of UDP socket addresses, one per line.

4. Peer-to-peer protocol

The server and all peers participate in a UDP-based peer-to-peer protocol. The protocol has a
strict request-response structure, but it is symmetric: requests can be sent by either peer at any
time. All messages have the following format:

0 1 2 3
012345678901234567890123456789°01
s e s s st B e e s e
| 1d
s E L s R s s B et St
| Type Length | Body...
s s st o B e S S Tt S e e e
| Signature...
s st et e e
The field Type indicates the type of the message; values 0 to 127 indicate requests, values 128 to
255 indicate replies. The field Id is arbitrary in requests, and is copied from the request to the
reply. The field Length indicates the length of the field Body.
The body is optionally followed by a cryptographic signature, as defined in Section 4.3. The

signature is 32 bytes long, and any extra bytes following the signature must be ignored.

4.1. Details of individual messages
4.1.1. Ping and Pong

The message Ping = 0 causes the peer to reply with amessage Ok = 128.

4.1.2. Error

The message Error = 129 may be sent in reply to any request, and is used to send a human-
readable error message. The message is encoded in UTF-8 in the body of the message.

4.1.3. Handshake

Before they can communicate, two peers perform a handshake by exchanging a pair of Hello = 1
and HelloReply = 130 messages. This exchange is compulsory: a peer may ignore messages from
a peer that didn’t handshake.

Hello and HelloReply messages have the following format:

0 1 2 3
012345678901234567890123456789°01
e e s S

| 1d

ottt —t—t—t—tot—t—t—t =ttt —t—t—t =ttt =t =ttt —t—t—t =ttt —t—+

| Type | Length | Extensions...

e e e s S e et S R R e

| Extensions (cont'd) | Name...
ottt —t—t—t—t—t—t—t—t =ttt —t—t =ttt —t—t =ttt =t ==ttt
| Signature...

e R st 2
The field Extensions is a 32-bit bitmap of supported protocol extensions (optional features), see .
The field Name contains the name of the sending peer.

In order to verify the signature of the sending peer, the receiver of a Hello message must contact
the server. For that reason, it may take up to a few seconds to send a HelloReply, and the sender
must use a large enough timeout before resending or giving up on a Hello message.

Associations expire after a timeout that is no less than 5 minutes. A peer that wishes to maintain
an association should send Ping messages every four minutes at most.

4.1.4. Root

The message RootRequest = 2 requests that the peer send its root hash, the hash of the datum
representing the root of its filesystem tree; this message has an empty body. The peer replies with
RootReply = 131, whose body contains the root hash as a strings of 32 bytes.

The Root message has the following format:

0 1 2 3
012345678901234567890123456789°01
s st e L e pat s

Id
i Ea s S e Kt B e =
| Type | Length | Hash...
s mt e s st S s st e L

4.1.5. Data

The message DatumRequest = 3 requests that a peer send a specific datum. The peer responds
with either a message of type Datum = 132 if it has the corresponding datum, or a message of
type NoDatum = 133 if it does not have a datum with the given hash.
The messages DatumRequest and NoDatum have the following format:
0 1 2 3

012345678901234567890123456789° 01
t—t—t—t—t—t—d—t—t—t—t—t—t—d ==ttt =t ===t =t —t—t— b=t ===t —t—+—+

Id
S i T s T et S B B h St L SIS S
| Type | Length Hash...

t—t—t—t—t—t—t—t—t—t—t—t =ttt —t—t—t—t—t—t—t—t—t—F =t =t —t—t—+—+—+—+

The message Datum has the following format:

0 1 2 3
012345678901234567890123456789°01

tot—+
| 1d

s St s Tt S e B Sl St dt ek L
| Type Length Hash...
ottt —t—t—t—t—t—t—t—t—t—t—t =ttt =t —t—t b=ttt — b=t =t —t—t—+—+
Fot—t—t—t—t—t—t—t—

| value...

Fot—t—t bbb —t—t—

| Signature

+

e St

In order to ensure the integrity of the data, it is required to verify not only that the hash in the
reply is equal to the hash in the request, but also to hash the data at the receiver and verify that
the hash correponds to the one encoded in the message.

4.1.6. NAT traversal

NAT traversal is performed using an intermediary node. A peer announces that it is willing to
act as an intermediary for NAT traversal by setting the bit 0 (the right-most bit) in the Extensions
field of its Hello or HelloReply message. The provided server sets this bit.

To be written.

4.2. Extension mechanism

The protocol is extensible: new messages can be added to the protocol. A peer indicates that it
understands messages outside of the base protocol by setting a bit in the Extensions field of the
Hello or HelloReply packet.

Currently, the following extensions are defined:

- 0 (right-most bit of the extensions field): this peer is willing to act as an intermediate node
for NAT traversal.

I act as the naming authority for the extensions space: if you need to define a new extension
for your project, please contact me by e-mail, and I will assign you an integer between 1 and 31
that identifies your extension.

4.3. Cryptographic signatures

Messages may be signed with an ECDSA signature. The signature covers the whole packet up to
the end of the Body field, i.e. bytes 0 through Length + 7 inclusive'.

Since elliptic curve operations are expensive, not all messages are signed. The following mes-
sages must be signed, and should be dropped by the receiver if they are not correctly signed:

- Hello, HelloReply,
- RootReply, and
- NoDatum.

Other messages need not be signed, since they either are not security-critical, or their contents
is protected by the Merkle tree. Since elliptic curve operations are expensive, DataRequest and
DataReply messages should not be signed. See Appendix A for details of the cryptographic algo-
rithms.

5. Data structures

Every peer exports a filesystem tree represented as a Merkle tree®. The Merkle tree contains four
kinds of nodes:

— chunk nodes, which conain a sequence of at most 1024 bytes of data;

— directory nodes, which have between 0 and 16 children, which represent a directory or part
of a directory.

- big nodes, which have between 2 and 32 children, and represent the concatenation of their
children (which may be chunk, directory or big nodes).

1. Which does not follow best practices: the signature should include the sender’s and receiver’s addresses in order to
bind the message.
2.https://en.wikipedia.org/wiki/Merkle_tree

https://en.wikipedia.org/wiki/Merkle_tree

The first byte of a datum (the body of a Datum message) indicates its type. This can have the
following values:

- Chunk = 0 indicates a chunk of data; the data immediately follows the type field;

— Directory = 1 indicates a directory or a directory fragment; the data that follows the type
field is constituted of a number n (0 < n < 16) directory entries of 64 bytes each having
the following structure:

— 32 bytes containing the filename, padded with 0 bytes if necessary’
— 32 bytes containing the hash of the datum containing the file contents.

- Big = 3 represents the concatenation of its children; a list of 2 to 32 hashes immediately
follows the type field.

6. Minimal solution

You are expected to write a program that participates in the protocol described above. Your pro-
gram may be written in the programming language of your choice, but must compile on a Debian
Linux machine without installation of additional software. At the very minimum, your program
should:

- register with the server and maintain its association for unbounded periods of time;
- make files available to other peers when not behind NAT;
- download files from a peer not behind NAT.

The efficiency of your implementation will be taken into account in the evaluation. For exam-
ple, I will take into account whether your implementation has a single packet in flight, whether it
uses a sliding window, and whether it implements a congestion control algorithm.

The functionality of your implementation will be taken into account in the evaluation. For
example, I will take into account whether your implementation is able to download single files
selected by the user, or whether it can only download a full filesystem tree.

Other features (NAT traversal, user interface etc.) will be taken into account in the evaluation,
but will probably not prevent you from getting a passing grade.

7. Suggested extensions

To be written.

8. Submission rules

You will submit your source code in a file called namel-name2.tar.gz, where namel and
name2 are your names. For example, if your names are Hugo Steinhaus and Stefan Banach, you
will submit a file called banach-steinhaus.tar.gz.

The file you submit will contain the following:

3. I know, I know, I should be using a type-value pair here.

— the complete source code of your program;
- atext file called README that indicates how to build and execute your program;
— areport in PDF format that indicates, among others:

— what part of the project has been implemented;
- what extensions have been implemented;
— the parts of the program that are not original (for which you received external help).

It is compulsory to clearly credit the sources of any help that you received: if you did receive
external help, you must give proper credit, or you will be accused of plagiarism. For example, if
you received help from a friend, you must indicate the name of the friend and which parts were
done with their help. If you copied code from an online resource, you must give a pointer to the
online publication. Note that an LLM (an “artificial intelligence chatbot”) is not an acceptable
source: if you receive help from an LLM, you must cite the original source that was used for
training the LLM.

A. Implementation of cryptographic signatures

An ECDSA public key is a pair of integers (x, y). A signature is a pair of integers (r,s). In this
project, we represent these pairs of integers as strings of 64 bytes, where the first 32 bytes represent
the first integer and the second 32 bytes represent the second one.

In the following paragraphs, we provide implementations of the necessary cryptographic prim-
itives in Go, Python and Java. You are welcome to write your code in a different language, but in
that case you will need to work out on your own how to implement the cryptographic primitives.

A.1. Implementation in Go

Preliminaires:

import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"math/big"

)

Generate a private key:

privateKey, err :=
ecdsa.GenerateKey(elliptic.P256(), rand.Reader)

Extract the public key from a private key:
publicKey, ok := privateKey.Public().(*ecdsa.PublicKey)

Format a public key as a string of 64 bytes:

formatted := make([]byte, 64)
publicKey.X.FillBytes(formatted[:32])
publicKey.Y.FillBytes(formatted[32:])

Parse a public key:

var x, y big.Int
X.SetBytes(data[:32])
y.SetBytes(data[32:])

publicKey := ecdsa.PublicKey{
Curve: elliptic.P256(),
X: &%,
Y: &y,

}

Compute the signature of a message:

hashed := sha256.Sum256(data)

r, s, err := ecdsa.Sign(rand.Reader, privateKey, hashed[:])
signature := make([]byte, 64)

r.FillBytes(signature[:32])

s.FillBytes(signature[32:])

Verify a signature:

var r, s big.Int

r.SetBytes(signature[:32])

s.SetBytes(signature[32:])

hashed := sha256.Sum256(data)

ok = ecdsa.Verify(publicKey, hashed[:], &r, &s)
A.2. Implementation in Python

Preliminaries:

import ecdsa
import hashlib

Generate a private key:

privateKey = ecdsa.SigningKey.generate(
curve=ecdsa.SECP256kl, hashfunc=hashlib.sha256,
)

Extract the public key:
publicKey = privateKey.get_verifying_key()

Format a public key:

publicKey.to_string()
Parse a public key:

publicKey = ecdsa.VerifyingKey.from string(
body, curve=ecdsa.SECP256kl, hashfunc=hashlib.sha256,
)

Compute the signature of a message:
signature = privateKey.sign(data)
Verify a signature:

ok = publicKey.verify(signature, data)

A.3. Implementation in Java

This part has never been tested, and may therefore contain errors.
Preliminaries:

import java.math.BigInteger;

import java.security.KeyPair;

import java.security.KeyPairGenerator;
import java.security.PrivateKey;
import java.security.PublicKey;

import java.security.SecureRandom;
import java.security.Signature;

Generate a private key:

ECGenParameterSpec ecSpec = new ECGenParameterSpec("secp256kl");
KeyPairGenerator g = KeyPairGenerator.getInstance("EC");
g.initialize(ecSpec, new SecureRandom());

KeyPair keypair = g.generateKeyPair();

PrivateKey privateKey = keypair.getPrivate();

Extract the public key
PublicKey publicKey = keypair.getPublic();
Format a public key:

BigInteger x = publicKey.getW().getAffineX();
BigInteger y publicKey.getW().getAffineY();
byte[] xbytes = x.toByteArray();

byte[] ybytes = x.toByteArray();

byte[] publicBytes = new byte[64];
System.arraycopy(xbytes, 0, publicBytes,

32 - xbytes.length, xbytes.length);
System.arraycopy(ybytes, 0, publicBytes,
64 - ybytes.length, ybytes.length);

Parse a public key:

KeyFactory kf KeyFactory.getInstance("EC");
byte[] xbytes = Arrays.copyOfRange(publicBytes, 0, 32);
byte[] ybytes Arrays.copyOfRange (publicBytes, 32, 64);
BigInteger x = BigInteger(xbytes);
BigInteger y = BigInteger(ybytes);
ECPublicKeySpec keyspec =

new ECPublicKeySpec(new ECPoint(x, y), ecSpec);
publicKey = kf.generatePublic(keyspec);

Compute the signature of a message:

Signature ecdsaSign =
Signature.getInstance("SHA256withECDSA");

ecdsaSign.initSign(privateKey);

ecdsaSign.update(data);

byte[] signature = ecdsaSign.sign();

Verify a sgnature:

Signature ecdsaVerify =
Signature.getInstance("SHA256withECDSA");

KeyFactory kf = KeyFactory.getInstance("EC");

ecdsaVerify.initVerify(publicKey);

ecdsaVerify.update(message);

boolean result =
ecdsaVerify.verify(Base64.getDecoder().decode(signature));

10

	Introduction
	Informal description of the protocol
	Description of the client-server protocol
	Peer list
	Registration
	Cryptographic keys
	Peer addresses

	Peer-to-peer protocol
	Details of individual messages
	Ping and Pong
	Error
	Handshake
	Root
	Data
	NAT traversal

	Extension mechanism
	Cryptographic signatures

	Data structures
	Minimal solution
	Suggested extensions
	Submission rules
	Implementation of cryptographic signatures
	Implementation in Go
	Implementation in Python
	Implementation in Java

