Rebst and Babel
Resilient distributed cloud

Juliusz Chroboczek
IRIF
Université de Paris

1 july 2021

1/12



Distributed cloud
2010: J.-P. Smets tells me about the distributed cloud.

Important take-away: requires convex connectivity.

2/12



Reliability issues

Connexity vs. convexity

The internet remains (generally) connected.

A B Connected: forall X, Y,
>< there exists a path from X to Y.

CcC——D
But it is seldom convex.

A B Convex: forall X, Y,

>< there is a direct link from X to Y.

cC—D

Cloud algorithms require convexity.

3/12



Reliability issues are unavoidable

Quadratic behaviour

As the number of nodes in a

Nodes Links

network grows, the number of 10 45
links grows as 100 4950
n(n-1) n? 1000 499500

=T 10000 49995000

As the number of nodes grows, A B
failure of at least some links ><
becomes unavoidable. C D
It’s not the fault of the network providers.

No matter how reliable your provider,

in a large enough network some links will fail.

4/12



The re6st software stack

Re6st builds a resilient convex overlay.

Three layers :
— tunnelling software (GRE, OpenVPN, IPsec, etc.) ;

— re6st proper, builds enough tunnels for the network
to be connected ;

— Babel dynamic routing protocol, finds paths across
the network to make it convex.

Loose coupling between the three :
— easier to understand and debug;

— can use multiple off-the-shelf tunnelling protocols
(works around broken firewalls);

— can use off-the-shelf routing protocol
(routing protocols are hard, let’s go shopping).

5/12



Tunnelling protocol

A tunnelling protocol establishes network links across
the Internet.

Rebst is protocol-agnostic, can use OpenVPN, GRE,
IPsec, etc.:
— uses OpenVPN by default;

- can use different technologies when OpenVPN
doesn’t work (misconfigured firewalls);

— can use whatever technology is efficient or
fashionable.

6/12



Reb6st proper: tunnel establishment

Rebst proper establishes tunnels.
Very simple algorithm:

while true {
if num _neighbours < 20 {
p := random node()
establish new tunnel(p)

}

Tends towards a 20-regular random(ish) graph.

This graph is very well connected with very high
probability (Bollobas, 2001).

(Thanks to F. de Montgolfier.)

7/12



Dynamic routing: Babel

Babel is a dynamic routing protocol, finds best paths in
a network:

— fully documented (IETF standard);

- small implementation, easy to modify;
- flexible metrics;

- extensible.

(In principle, re6st could work with a different routing
protocol, e.g. OSPF, although we’d lose these nice
properties.)

8/12



Problem: suboptimal routing

Off-the-shelf Babel uses
— shortest routes on wired links;
— minimal loss routes on wireless links.

Nexedi’s network consists of wide area lossless tunnels.

@ If the link between Lille
and Marseilles is lost,

@ @ standard Babel will route

through Tokyo in 50% of
cases.

We need a way to distinguish Tokyo from Paris.
- No manual configuration;
- no extra hardware (GPS, etc.).

9/12



Solution: latency-based routing

Babel is an extensible protocol with flexible metric
computation: it is possible to write an extension that
uses a different metric (without impairing
interoperability).
Solution: measure latency (RTT):

— Lille-Paris has RTT =12 ms ;

— Lille-Tokyo has RTT = 300 ms.

We use Mills’s algorithm (with smoothing) :

few changes to Babel (asynchronous algorithm);

no manual configuration (geographic position, etc.);
no extra hardware (GPS, atomic clock, etc.);

no need for a real-time OS.

10/12



Latency-based routing: stability issues
When two parallel routes are available, latency-based
routing tends to oscillate between the two.
- Traffic follows the
AL A-B-D route;

- latency of A-B-D

B‘/ Tha increases:

— traffic switches to
\ / A-C-D;
D - latency of A-C-D
increases...

The solution is to apply a non-linear map to latencies,
and to apply a fair amount of hysteresis.
Oscillations:

- every 10 minutes in the lab;

- in practice, never!

11/12



Conclusion

Resilient overlay for distributed cloud computing.

Three loosely coupled components:
— tunnelling protocols;

— re6st proper, randomly builds connected network;
— Babel: dynamic routing protocol:

— makes the network convex (full reachability);
- latency-based routing minimises latency.

https://re6st.nexedi.com/
https://www.irif.fr/~jch/software/babel/

Partnership between Academia and small business.

12/12


https://re6st.nexedi.com/
https://www.irif.fr/~jch/software/babel/

