Diversity-aware routing

Juliusz Chroboczek
Univerité de Paris 7
jch@pps.jussieu.fr

17 March 2011
Interference in mesh networks

Mesh networks: multiple radio links in a single geographical area.

These links interfere.
Types of interference

Inter-flow interference (thanks to BP):

```
  CRS
 /   \
A     B
```

Intra-flow interference (thanks to Z):

```
A ─── B ─── C
```

BabelZ deals with intra-flow interference only. (For now?)
Due to intra-flow interference, throughput decreases with the number of hops:

- $A \rightarrow B$: 100%
- $A \rightarrow B \rightarrow C$: 50%
- $A \rightarrow B \rightarrow C \rightarrow D$: 25%
 ...
- 7 hops: < 10%

Throughput stabilises after 7–8 hops, at less than 10% of the link capacity.
Solving/minimising interference:
- hybrid (wired/wireless) networks;
- artificial obstacles;
- directional antennas;
- multiple radio frequencies.
Multiple frequencies : inter-flow

If nodes have multiple radios, it is possible to avoid interference:

Easier case:
Multiple frequencies: intra-flow

Easy case:

```
A ___ B ___ C
```

Difficult case:

```
A ----- B ___ C
```
Babel was carefully designed to allow
 – flexible metrics and
 – flexible route selection.

(As a matter of fact, RFC 6126 does not define any particular metric! Example metrics are provided in an appendix.)

BabelZ experimental branch:
 – sends channel information in route updates;
 – avoids intra interference;
 – inter interference is further work.
Links and routes

A **link** is a single hop:

\[A \longrightarrow B \]

A **route** is a sequence of links:

\[A \xrightarrow{l_1} B \xrightarrow{l_2} C \xrightarrow{l_3} D \]

We write “·” for **concatenation**:

\[r = l_1 \cdot l_2 \cdot l_3. \]
Metrics

A link l has a cost $\text{cost}(l) \in C$.
A route r has a metric $\text{metric}(r) \in M$.

Operations:

$\oplus : C \times M \rightarrow C$

$\preceq : M \times M$

Given a route r and a link l,

$$\text{metric}(l \cdot r) = \text{cost}(r) \oplus \text{metric}(m)$$

A route r is “better” than a route r' when

$$\text{metric}(r) \preceq \text{metric}(r')$$

The goal of the routing protocol is
to compute the set of routes of smallest metric.
Examples of metrics

Shortest-hop routing (RIP, OLSR-RFC):
- cost(l) = 1;
- $c \oplus m = c + m$;
- $m \leq m'$ when $m \leq m'$.

ETX (OLSR-ETX):
- cost(l) depends on (pre-ARQ) packet loss;
- $c \oplus m = c + m$;
- $m \leq m'$ when $m \leq m'$.
Examples of metrics (2)

Hybrid routing (Babel):
- as shortest-hop on wired links;
- as ETX on wireless links.

Maximise throughput:
- cost(l) is the throughput;
- $c \oplus m = \min(c, m)$;
- $m \preceq m'$ when $m \geq m'$.
Routing properties

Since there are so many metrics to choose from, what are the properties that a metric must satisfy. A metric MUST be strictly monotonic:

\[m \preceq c \cdot m \]

Intuitively, shorter routes are better than longer routes. A metric SHOULD be isotonic:

if \(m \preceq m' \) then \(c \cdot m \preceq c \cdot m' \).

If a metric is not isotonic, Babel still converges, but might do so nondeterministically.
Maximising diversity

In order to avoid intra-flow interference, maximise diversity:

- design metrics to be explicitly aware of diversity.

Three approaches implemented in BabelZ:

- avoid hopping on the same interface (no memory) (`-z 1`);
- avoid hopping on interfering frequencies, no memory (`-z 2`);
- avoid hopping on interfering frequencies, with memory (`-z 3`).
Avoid same interface

Very old idea:
prefer exiting through a different interface:

\[c \oplus m = c + m \quad \text{if the last hop of } r \text{ and } l \]
\[are the same interface \]

\[c \oplus m = \frac{1}{2} c + m \quad \text{otherwise} \]
Avoid interfering — no memory

Slight improvement: prefer a channel that doesn’t interfere with the last hop:

\[c \oplus m = c + m \quad \text{if the last hop of } r \text{ and } l \text{ interfere} \]
\[c \oplus m = \frac{1}{2}c + m \quad \text{otherwise} \]

Advantages:

- deals with the case when a single node has multiple radios at the same frequency;
- nice side effect: automatically prefers wired interfaces (they don’t interfere with anyone else).
Avoid interfering — with memory (1)

- $z \ 3$

Prefer a channel that interferes with none of the previous hops:

\[
c \oplus m = c + m \quad \text{if some hop in } r \text{ and } l \text{ interfere}
\]

\[
c \oplus m = \frac{1}{2} c + m \quad \text{otherwise}
\]

Improvement: deals with the situation when interference is not local, notably with JBOLs.
Implementing non-interference with memory requires knowing about the full set of channels taken by a node. This information is encoded as an extra sub-TLV within Babel’s update TLVs. It will be silently ignored by RFC 6126 Babel.
Isotonicity of non-interference

Isotonic:

\[
\text{if } m \preceq m' \text{ then } c \cdot m \preceq c \cdot m'
\]

Intuitively, it says that Liberal economics works.

All the diversity metrics are non-isotonic:

\[
\begin{array}{c}
A \quad 1 \\
B \quad 1 \\
\frac{1}{1.2} \quad C
\end{array}
\]

\[
\text{metric}(\text{--}) \preceq \text{metric}(\text{---}) \]

but

\[
\text{metric}(\text{--} \cdot \text{--}) \preceq \text{metric}(\text{--} \cdot \text{---})
\]
Next-hop routing

while(true) {
 if(there is a better route)
 switch to the better route
}

Because of strict monotonicity, this process converges to a local optimum. Isotonicity ensures that the local optimum is a global optimum.
Local and global optima

\[
\begin{align*}
A & \frac{1}{1} \quad B \quad \frac{1}{1.2} \quad C \\
\text{metric}(--) & \preceq \text{metric}(---) \\
\text{but} & \\
\text{metric}(---) & \succeq \text{metric}(--)
\end{align*}
\]

- \(B \) selects the \(-\) link; this is optimal for \(B \);
- this is not optimal for \(A \), which cannot improve its situation.

We have a local optimum that is not global.
Solutions to non-isotonicity

Non-isotonicity can be solved by using multiple routing tables in a single node:

– difficult to implement;
– not implemented yet (?).

In BabelZ, we ignore the problem.

BabelZ will converge to a local-only optimum in some cases.
Deal with it.
Conclusions and further work

BabelZ:
- almost ready to be merged into Babel trunk (but crashed yesterday);
- interoperates with RFC 6126 Babel;
- shown to work well in limited tests;
- first medium-scale test tomorrow?

Further work:
- fine-tuning;
- identify theoretical criteria for isotonicity;
- finalise the protocol and write it up.