The CL-Yacc Manual

Juliusz Chroboczek

CL-Yacc is a LALR(1) parser generator for Common Lisp, somewhat like Yacc, GNU Bison,
Zebu, lalr.cl or lalr.scm.

Copyright (©) 2005-2008 by Juliusz Chroboczek.

Table of Contents

1 A complete example............... L.

2 Reference......
2.1 Running the parser.o e
2.2 Macro INterfaceo o
2.3 Functional interface i
2.4 CondIbIONS . ..ottt

2.4.1 Compile-time conditionst
2.4.2 Runtime conditionsuuiiniii e e

Acknowledgements

COPYINg . .

Chapter 1: A complete example 1

1 A complete example

CL-Yacc exports its symbols from the package yacc:
(use-package ’#:yacc)
A parser consumes the output of a lexer, that produces a stream of terminals. CL-Yacc
expects the lexer to be a function of no arguments (a thunk) that returns two values: the next

terminal symbol, and the value of the symbol, which will be passed to the action associated with
a production. At the end of the input, the lexer should return nil.

A very simple lexer that grabs tokens from a list:

(defun list-lexer (list)
#’ (lambda ()
(let ((value (pop list)))
(if (null value)
(values nil nil)
(let ((terminal
(cond ((member value >(+ - *x / [(] [)])) value)
((integerp value) ’int)
((symbolp value) ’id)
(t (error "Unexpected value ~S" value)))))
(values terminal value))))))

We will implement the following grammar:

expression ::= expression + expression
expression ::= expression - expression
expression ::= expression * expression
expression ::= expression / expression
expression ::= term

term ::=id

term ::= int

term ::= - term

term ::= (expression)

As this grammar is ambiguous, we need to specify the precedence and associativity of the
operators. The operators * and / will have the highest precedence, + and - will have a lower
one. All operators will be left-associative.

If no semantic action is specified, CL-Yacc provides default actions which are either #’1ist
or #’identity, depending on how a production is written. For building a Lisp-like parse tree
with this grammar, we will need two additional actions:

(eval-when (:compile-toplevel :load-toplevel :execute)
(defun i2p (a b ¢)
"Infix to prefix"
(list b a ¢))

(defun k-2-3 (a b c)
"Second out of three"
(declare (ignore a c))
b)

)

The parser definition itself:

(define-parser *expression-parserx

Chapter 1: A complete example 2

(:start-symbol expression)
(:terminals (int id + - * / [(] [)1))
(:precedence ((:left * /) (:left + -)))

(expression

(expression + expression #’i2p)
(expression - expression #’i2p)
(expression * expression #’i2p)
(expression / expression #’i2p)
term)

(term

id

int

(- term)

(I (I expression |)| #’k-2-3)))

After loading this code, the parser is the value of the special variable *expression-parser*
which can be passed to parse-with-lexer:

(parse-with-lexer (list-lexer ’(x * - - 2 + 3 % y)) *expression-parserx*)
= (+ (xX (- (-2))) (x37Y))

Chapter 2: Reference 3

2 Reference

2.1 Running the parser

The main entry point to the parser is parse-with-lexer.

parse-with-lexer lexer parser [Function]
Parse the input provided by the lexer lexer using the parser parser.

The value of lexer should be a function of no arguments that returns two values: the terminal
symbol corresponding to the next token (a non-null symbol), and its value (anything that
the associated actions can take as argument). It should return (values nil nil) when the
end of the input is reached.

The value of parser should be a parser structure, as computed by make-parser and define-
parser.

2.2 Macro interface

define-grammar name option... production... [Macro]
option ::= (keyword value)
production ::= (symbol rhs...)
rhs ::= symbol
rhs ::= (symbol... [action])
Generates a grammar and binds it to the special variable name. This has the side effect of
globally proclaiming name special.
Every production is a list of a non-terminal symbol and one or more right hand sides. Every
right hand side is either a symbol, or a list of symbols optionally followed with an action.
The action should be a non-atomic form that evaluates to a function in a null lexical envi-
ronment. If omitted, it defaults to #’identity in the first form of rhs, and to #’1ist in the
second form.

The legal options are:

:start-symbol
Defines the starting symbol of the grammar. This is required.

:terminals
Defines the list of terminals of the grammar. This is required.

:precedence
The value of this option should be a list of items of the form (associativity
. terminals), where associativity is one of :left, :right or :nonassoc, and
terminals is a list of terminal symbols. Associativity specifies the associativity
of the terminals, and earlier items will give their elements a precedence higher
than that of later ones.

define-parser name option... production... [Macro]
Generates a parser and binds it to the special variable name. This has the side effect of
globally proclaiming name special.
The syntax is the same as that of define-grammar, except that the following additional
options are allowed:

:muffle-conflicts
If nil (the default), a warning is signalled for every conflict. If the symbol
:some, then only a summary of the number of conflicts is signalled. If T, then no

Chapter 2: Reference 4

warnings at all are signalled for conflicts. Otherwise, its value should be a list
of two integers (sr rr), in which case a summary warning will be signalled unless
exactly sr shift-reduce and rr reduce-reduce conflicts were found.

:print-derives-epsilon
If true, print the list of nonterminal symbols that derive the empty string.

:print-first-terminals
If true, print, for every nonterminal symbol, the list of terminals that it may start
with.

:print-states
If true, print the computed kernels of LR(0) items.

:print-goto-graph
If true, print the computed goto graph.

:print-lookaheads
If true, print the computed kernels of LR(0) items together with their lookaheads.

2.3 Functional interface

The macros define-parser and define-grammar expand into calls to defparameter, make-
parser, make-grammar and make-production with suitable make-load-form magic to ensure
that the time consuming parser generation happens at compile time rather than at load time.
The underlying functions are exported in case you want to design a different syntax for grammars,
or generate grammars automatically.

make-production symbol derives &key action action-form [Function]
Returns a production for non-terminal symbol with right-hand-side derives (a list of symbols).
Action is the associated action, and should be a function; it defaults to #’1ist. Action-form
should be a form that evaluates to action in a null lexical environment; if null (the default),
the production (and hence any grammar or parser that uses it) will not be fasdumpable.

make-grammar &key name start-symbol terminals precedence productions [Function]
Returns a grammar. Name is the name of the grammar (gratuitious documentation). Start-
symbol, terminals and precedence are as in define-grammar. Productions is a list of pro-
ductions.

make-parser grammar &key discard-memos muffle-conflicts [Function]
print-derives-epsilon print-first-terminals print-states print-goto-graph
print-lookaheads
Computes and returns a parser for grammar grammar. discard-memos specifies whether
temporary data associated with the grammar should be discarded. Muffle-conflicts, print-
derives-epsilon, print-first-terminals, print-states, print-goto-graph and print-lookaheads are
as in define-parser.

2.4 Conditions

CL-Yacc may signal warnings at compile time when it finds conflicts. It may also signal an error
at parse time when it finds that the input is incorrect.

2.4.1 Compile-time conditions

If the grammar given to CL-Yacc is ambiguous, a warning of type conflict-warning will be
signalled for every conflict as it is found, and a warning of type conflict-summary-warning
will be signalled at the end of parser generation.

Chapter 2: Reference 5

conflict-warning kind state terminal [Condition]
Signalled whenever a conflict is found. Kind is one of :shift-reduce or :reduce-reduce.
State (an integer) and terminal (a symbol) are the state and terminal for which the conflict
arises.

conflict-summary-warning shift-reduce reduce-reduce [Condition]
Signalled at the end of parser generation if there were any conflicts. Shift-reduce and reduce-
reduce are integers that indicate how many conflicts were found.

yacc-compile-warning [Condition]
A superclass of conflict-warning and conflict-summary-warning, and a convenient place
to hook your own condition types.

2.4.2 Runtime conditions

If the output cannot be parsed, the parser will signal a condition of type yacc-parse-error. It
should be possible to invoke a restart from a handler for yacc-parse-error in order to trigger
error recovery, but this hasn’t been implemented yet.

yacc-parse-error terminal value expected-terminals [Condition]
Signalled whenever the input cannot be parsed. The symbol terminal is the terminal that
couldn’t be accepted; value is its value. Expected-terminals is the list of terminals that could
have been accepted in that state.

yacc-runtime-error [Condition]
A superclass of yacc-parse-error, and a convenient place to hook your own condition types.

Acknowledgements 6

Acknowledgements

I am grateful to Antonio Bucciarelli, Guy Cousineau and Marc Zeitoun for their help with
implementing CL-Yacc.

Copying

Copying

Copyright (©) 20052009 by Juliusz Chroboczek

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

Index

Index

C MAKE=PaTSET ...\ttt
conflict-SUMMmAry-warning....................... 5 make-production il
conflict-warning 5

D parse-with-lexer
define-grammar.....................l 3

define-parser............ ..ot 3 Y

M yacc-compile-warning............................

YACCTPATSE=@TTOTL .. \ttvteiiieeeantee e,
make—grammar...........coouiiiinnnnnnnnnnnennnnnn. 4 yacc-runtime-error................ ... il

	A complete example
	Reference
	Running the parser
	Macro interface
	Functional interface
	Conditions
	Compile-time conditions
	Runtime conditions

	Acknowledgements
	Copying
	Index

