
The Polipo Manual

Juliusz Chroboczek

Polipo is a caching web proxy designed to be used as a personal cache or a cache shared among
a few users.

Copyright c© 2003 – 2014 by Juliusz Chroboczek.

i

Table of Contents

1 Background . 1
1.1 The web and HTTP . 1
1.2 Proxies and caches . 1
1.3 Latency and throughput . 1
1.4 Network traffic . 1

1.4.1 Persistent connections . 2
1.4.2 Pipelining . 2
1.4.3 Poor Man’s Multiplexing . 2

1.5 Caching partial instances . 3
1.6 Other requests . 3

2 Running Polipo . 4
2.1 Starting Polipo . 4

2.1.1 Configuration . 4
2.1.2 Running as a daemon . 4
2.1.3 Logging . 5

2.2 Configuring your browser . 5
2.3 Stopping Polipo and getting it to reload . 5
2.4 The local web server . 5

2.4.1 The web interface . 6

3 Polipo and the network . 7
3.1 Client connections . 7

3.1.1 Access control . 7
3.2 Contacting servers . 8

3.2.1 Allowed ports . 8
3.3 Tuning at the HTTP level . 8

3.3.1 Tuning the HTTP parser . 8
3.3.2 Censoring headers . 8

3.3.2.1 Why censor Accept-Language . 9
3.3.3 Adjusting intermediate proxy behaviour . 9

3.4 Offline browsing . 9
3.5 Server statistics . 9
3.6 Tweaking server-side behaviour . 10
3.7 Poor Man’s Multiplexing . 10
3.8 Forbidden and redirected URLs . 11

3.8.1 Internal forbidden list . 11
3.8.2 External redirectors . 11
3.8.3 Forbidden Tunnels . 11

3.9 The domain name service . 12
3.10 Parent proxies . 13

3.10.1 HTTP parent proxies . 13
3.10.2 SOCKS parent proxies . 14

3.11 Tuning POST and PUT requests . 14
3.12 Tunnelling connections . 14

ii

4 Caching . 16
4.1 Cache transparency and validation . 16

4.1.1 Tuning validation behaviour . 16
4.1.2 Further tweaking of validation behaviour . 16

4.2 The in-memory cache . 17
4.3 The on-disk cache . 17

4.3.1 Asynchronous writing . 18
4.3.2 Purging the on-disk cache . 18
4.3.3 Format of the on-disk cache . 19
4.3.4 Modifying the on-disk cache . 19

5 Memory usage . 20
5.1 Chunk memory . 20
5.2 Malloc allocation . 20
5.3 Limiting Polipo’s memory usage . 20

5.3.1 Limiting chunk usage . 20
5.3.2 Limiting object usage . 20
5.3.3 OS usage limits . 21

Copying . 22

Variable index . 23

Concept index . 25

Chapter 1: Background 1

1 Background

1.1 The web and HTTP

The web is a wide-scale decentralised distributed hypertext system, something that’s obviously
impossible to achieve reliably.

The web is a collection of resources which are identified by URLs, strings starting with
http://. At any point in time, a resource has a certain value, which is called an instance of the
resource.

The fundamental protocol of the web is HTTP, a simple request/response protocol. With
HTTP, a client can make a request for a resource to a server, and the server replies with an
entity, which is an on-the-wire representation of an instance or of a fragment thereof.

1.2 Proxies and caches

A proxy is a program that acts as both a client and a server. It listens for client requests and
forwards them to servers, and forwards the servers’ replies to clients.

An HTTP proxy can optimise web traffic away by caching server replies, storing them in
memory in case they are needed again. If a reply has been cached, a later client request may,
under some conditions, be satisfied without going to the source again.

In addition to taking the shortcuts made possible by caching, proxies can improve perfor-
mance by generating better network traffic than the client applications would do.

Proxies are also useful in ways unrelated to raw performance. A proxy can be used to contact
a server that is not directly accessible to the client, for example because there is a firewall in the
way (see Section 3.10 [Parent proxies], page 13), or because the client and the server use different
lower layer protocols (for example IPv4 and IPv6). Another common application of proxies is
to modify the data sent to servers and returned to clients, for example by censoring headers
that expose too much about the client’s identity (see Section 3.3.2 [Censoring headers], page 8)
or removing advertisements from the data returned by the server (see Section 3.8 [Forbidden],
page 11).

Polipo is a caching HTTP proxy that was originally designed as a personal proxy, i.e. a proxy
that is used by a single user or a small group of users. However, it has successfully been used
by larger groups.

1.3 Latency and throughput

Most network benchmarks consider throughput, or the average amount of data being pushed
around per unit of time. While important for batch applications (for example benchmarks),
average throughput is mostly irrelevant when it comes to interactive web usage. What is more
important is a transaction’s median latency, or whether the data starts to trickle down before
the user gets annoyed.

Typical web caches optimise for throughput — for example, by consulting sibling caches
before accessing a remote resource. By doing so, they significantly add to the median latency,
and therefore to the average user frustration.

Polipo was designed to minimise latency.

1.4 Network traffic

The web was developed by people who were interested in text processing rather than in net-
working and, unsurprisingly enough, the first versions of the HTTP protocol did not make very
good use of network resources. The main problem in HTTP/0.9 and early versions of HTTP/1.0

Chapter 1: Background 2

was that a separate TCP connection (“virtual circuit” for them telecom people) was created for
every entity transferred.

Opening multiple TCP connections has significant performance implications. Obviously,
connection setup and teardown require additional packet exchanges which increase network
usage and, more importantly, latency.

Less obviously, TCP is not optimised for that sort of usage. TCP aims to avoid network
congestion, a situation in which the network becomes unusable due to overly aggressive traffic
patterns. A correct TCP implementation will very carefully probe the network at the beginning
of every connection, which means that a TCP connection is very slow during the first couple of
kilobytes transferred, and only gets up to speed later. Because most HTTP entities are small
(in the 1 to 10 kilobytes range), HTTP/0.9 uses TCP where it is most inefficient.

1.4.1 Persistent connections

Later HTTP versions allow the transfer of multiple entities on a single connection. A connection
that carries multiple entities is said to be persistent (or sometimes keep-alive). Unfortunately,
persistent connections are an optional feature of HTTP, even in version 1.1.

Polipo will attempt to use persistent connections on the server side, and will honour persistent
connection requests from clients.

1.4.2 Pipelining

With persistent connections it becomes possible to pipeline or stream requests, i.e. to send
multiple requests on a single connection without waiting for the replies to come back. Because
this technique gets the requests to the server faster, it reduces latency. Additionally, because
multiple requests can often be sent in a single packet, pipelining reduces network traffic.

Pipelining is a fairly common technique1, but it is not supported by HTTP/1.0. HTTP/1.1
makes pipelining support compulsory in every server implementation that can use persistent
connections, but there are a number of buggy servers that claim to implement HTTP/1.1 but
don’t support pipelining.

Polipo carefully probes for pipelining support in a server and uses pipelining if it believes
that it is reliable. Polipo also deeply enjoys being pipelined at by a client2.

1.4.3 Poor Man’s Multiplexing

A major weakness of the HTTP protocol is its inability to share a single connection between
multiple simultaneous transactions — to multiplex a number of transactions over a single con-
nection. In HTTP, a client can either request all instances sequentially, which significantly
increases latency, or else open multiple concurrent connections, with all the problems that this
implies (see Section 1.4.1 [Persistent connections], page 2).

Poor Man’s Multiplexing (PMM) is a technique that simulates multiplexing by requesting
an instance in multiple segments; because the segments are fetched in independent transactions,
they can be interleaved with requests for other resources.

Obviously, PMM only makes sense in the presence of persistent connections; additionally, it
is only effective in the presence of pipelining (see Section 1.4.2 [Pipelining], page 2).

PMM poses a number of reliability issues. If the resource being fetched is dynamic, it is quite
possible that it will change between segments; thus, an implementation making use of PMM
needs to be able to switch to full-resource retrieval when it detects a dynamic resource.

Polipo supports PMM, but it is disabled it by default (see Section 3.7 [PMM], page 10).

1 The X11 protocol fundamentally relies on pipelining. NNTP does support pipelining. SMTP doesn’t, while
ESMTP makes it an option. FTP does support pipelining on the control connection.

2 Other client-side implementations of HTTP that make use of pipelining include Opera, Mozilla, APT (the
package downloader used by Debian GNU/Linux) and LFTP.

http://www.opera.com/
http://www.mozilla.org
http://www.debian.org

Chapter 1: Background 3

1.5 Caching partial instances

A partial instance is an instance that is being cached but only part of which is available in
the local cache. There are three ways in which partial instances can arise: client applications
requesting only part of an instance (Adobe’s Acrobat Reader plugin is famous for that), a server
dropping a connection mid-transfer (because it is short on resources, or, surprisingly often,
because it is buggy), a client dropping a connection (usually because the user pressed stop).

When an instance is requested that is only partially cached, it is possible to request just the
missing data by using a feature of HTTP known as a range request. While support for range
requests is optional, most servers honour them in case of static data (data that are stored on
disk, rather then being generated on the fly e.g. by a CGI script).

Caching partial instances has a number of positive effects. Obviously, it reduces the amount of
data transmitted as the available data needn’t be fetched again. Because it prevents partial data
from being discarded, it makes it reasonable for a proxy to unconditionally abort a download
when requested by the user, and therefore reduces network traffic.

Polipo caches arbitrary partial instances in its in-memory cache. It will only store the initial
segment of a partial instance (from its beginning up to its first hole) in its on-disk cache, though.
In either case, it will attempt to use range requests to fetch the missing data.

1.6 Other requests

The previous sections pretend that there is only one kind of request in HTTP — the ‘GET’
request. In fact, there are some others.

The ‘HEAD’ request method retrieves data about an resource. Polipo does not normally use
‘HEAD’, but will fall back to using it for validation it if finds that a given server fails to cooperate
with its standard validation methods (see Section 4.1 [Cache transparency], page 16). Polipo
will correctly reply to a client’s ‘HEAD’ request.

The ‘POST’ method is used to request that the server should do something rather than merely
sending an entity; it is usually used with HTML forms that have an effect3. The ‘PUT’ method
is used to replace an resource with a different instance; it is typically used by web publishing
applications.

‘POST’ and ‘PUT’ requests are handled by Polipo pretty much like ‘GET’ and ‘HEAD’; however,
for various reasons, some precautions must be taken. In particular, any cached data for the
resource they refer to must be discarded, and they can never be pipelined.

Finally, HTTP/1.1 includes a convenient backdoor with the ‘CONNECT’ method. For more
information, please see Section 3.12 [Tunnelling connections], page 14.

Polipo does not currently handle the more exotic methods such as ‘OPTIONS’ and ‘PROPFIND’.

3 HTML forms should use the ‘GET’ method when the form has no side-effect as this makes the results cacheable.

Chapter 2: Running Polipo 4

2 Running Polipo

2.1 Starting Polipo

By default, Polipo runs as a normal foreground job in a terminal in which it can log random
“How do you do?” messages. With the right configuration options, Polipo can run as a daemon.

Polipo is run with the following command line:

$ polipo [-h] [-v] [-x] [-c config] [var=val...]

All flags are optional. The flag -h causes Polipo to print a short help message and to quit.
The flag -v causes Polipo to list all of its configuration variables and quit. The flag -x causes
Polipo to purge its on-disk cache and then quit (see Section 4.3.2 [Purging], page 18). The
flag -c specifies the configuration file to use (by default ~/.polipo or /etc/polipo/config).
Finally, Polipo’s configuration can be changed on the command line by assigning values to given
configuration variables.

2.1.1 Configuration

There is a number of variables that you can tweak in order to configure Polipo, and they
should all be described in this manual (see [Variable index], page 23). You can display the
complete, most up-to-date list of configuration variables by using the -v command line flag or
by accessing the “current configuration” page of Polipo’s web interface (see Section 2.4.1 [Web
interface], page 6). Configuration variables can be set either on the command line or else in the
configuration file given by the -c command-line flag.

Configuration variables are typed, and -v will display their types. The type can be of one of
the following:

• ‘integer’ or ‘float’: a numeric value;

• ‘boolean’: a truth value, one of ‘true’ or ‘false’;

• ‘tristate’: one of ‘false’, ‘maybe’ or ‘true’;

• ‘4-state’, one of ‘false’, ‘reluctantly’, ‘happily’ or ‘true’;

• ‘5-state’, one of ‘false’, ‘reluctantly’, ‘maybe’, ‘happily’ or ‘true’;

• ‘atom’, a string written within double quotes ‘"’);

• ‘list’, a comma-separated list of strings;

• ‘intlist’, a comma-separated list of integers and ranges of integers (of the form ‘n–m’).

The configuration file has a very simple syntax. All blank lines are ignored, as are lines
starting with a hash sign ‘#’. Other lines must be of the form

var = val

where var is a variable to set and val is the value to set it to.

It is possible to change the configuration of a running polipo by using the local configuration
interface (see Section 2.4.1 [Web interface], page 6).

2.1.2 Running as a daemon

If the configuration variable daemonise is set to true, Polipo will run as a daemon: it will fork
and detach from its controlling terminal (if any). The variable daemonise defaults to false.

When Polipo is run as a daemon, it can be useful to get it to atomically write its pid to a
file. If the variable pidFile is defined, it should be the name of a file where Polipo will write
its pid. If the file already exists when it is started, Polipo will refuse to run.

Chapter 2: Running Polipo 5

2.1.3 Logging

When it encounters a difficulty, Polipo will print a friendly message. The location where these
messages go is controlled by the configuration variables logFile and logSyslog. If logSyslog
is true, error messages go to the system log facility given by logFacility. If logFile is set,
it is the name of a file where all output will accumulate. If logSyslog is false and logFile is
empty, messages go to the error output of the process (normally the terminal).

The variable logFile defaults to empty if daemonise is false, and to ‘/var/log/polipo’
otherwise. The variable logSyslog defaults to false, and logFacility defaults to ‘user’.

If logFile is set, then the variable logFilePermissions controls the Unix permissions with
which the log file will be created if it doesn’t exist. It defaults to 0640.

The amount of logging is controlled by the variable logLevel. Please see the file ‘log.h’ in
the Polipo sources for the possible values of logLevel.

Keeping extensive logs on your users browsing habits is probably a serere violation of their
privacy. If the variable scrubLogs is set, then Polipo will scrub most, if not all, private infor-
mation from its logs.

2.2 Configuring your browser

Telling your user-agent (web browser) to use Polipo is an operation that depends on the browser.
Many user-agents will transparently use Polipo if the environment variable ‘http_proxy’ points
at it; e.g.

$ export http_proxy=http://localhost:8123/

Netscape Navigator, Mozilla, Mozilla Firefox, KDE’s Konqueror and probably other browsers
require that you configure them manually through their Preferences or Configure menu.

If your user-agent sports such options, tell it to use persistent connections when speaking to
proxies, to speak HTTP/1.1 and to use HTTP/1.1 pipelining.

2.3 Stopping Polipo and getting it to reload

Polipo will shut down cleanly if it receives SIGHUP, SIGTERM or SIGINT signals; this will normally
happen when a Polipo in the foreground receives a ^C key press, when your system shuts down,
or when you use the kill command with no flags. Polipo will then write-out all its in-memory
data to disk and quit.

If Polipo receives the SIGUSR1 signal, it will write out all the in-memory data to disk (but
won’t discard them), reopen the log file, and then reload the forbidden URLs file (see Section 3.8
[Forbidden], page 11).

Finally, if Polipo receives the SIGUSR2 signal, it will write out all the in-memory data to disk
and discard as much of the memory cache as possible. It will then reopen the log file and reload
the forbidden URLs file.

2.4 The local web server

Polipo includes a local web server, which is accessible on the same port as the one
the proxy listens to. Therefore, by default you can access Polipo’s local web server as
‘http://localhost:8123/’.

The data for the local web server can be configured by setting localDocumentRoot, which
defaults to /usr/share/polipo/www/. Setting this variable to ‘""’ will disable the local server.

Polipo assumes that the local web tree doesn’t change behind its back. If you change any
of the local files, you will need to notify Polipo by sending it a SIGUSR2 signal (see Section 2.3
[Stopping], page 5).

Chapter 2: Running Polipo 6

If you use polipo as a publicly accessible web server, you might want to set the variable
disableProxy, which will prevent it from acting as a web proxy. (You will also want to set
disableLocalInterface (see Section 2.4.1 [Web interface], page 6), and perhaps run Polipo in
a chroot jail.)

2.4.1 The web interface

The subtree of the local web space rooted at ‘http://localhost:8123/polipo/’ is treated
specially: URLs under this root do not correspond to on-disk files, but are generated by Polipo
on-the-fly. We call this subtree Polipo’s local web interface.

The page ‘http://localhost:8123/polipo/config?’ contains the values of all configuration
variables, and allows setting most of them.

The page ‘http://localhost:8123/polipo/status?’ provides a summary status report
about the running Polipo, and allows performing a number of actions on the proxy, notably
flushing the in-memory cache.

The page ‘http://localhost:8123/polipo/servers?’ contains the list of known servers,
and the statistics maintained about them (see Section 3.5 [Server statistics], page 9).

The pages starting with ‘http://localhost:8123/polipo/index?’ contain indices of the
disk cache. For example, the following page contains the index of the cached pages from the
server of some random company:

http://localhost:8123/polipo/index?http://www.microsoft.com/

The pages starting with ‘http://localhost:8123/polipo/recursive-index?’ contain re-
cursive indices of various servers. This functionality is disabled by default, and can be enabled
by setting the variable disableIndexing.

If you have multiple users, you will probably want to disable the local interface by setting the
variable disableLocalInterface. You may also selectively control setting of variables, indexing
and listing known servers by setting the variables disableConfiguration, disableIndexing
and disableServersList.

Chapter 3: Polipo and the network 7

3 Polipo and the network

3.1 Client connections

There are three fundamental values that control how Polipo speaks to clients. The variable
proxyAddress, defines the IP address on which Polipo will listen; by default, its value is the
loopback address "127.0.0.1", meaning that Polipo will listen on the IPv4 loopback interface
(the local host) only. By setting this variable to a global IP address or to one of the special
values "::" or "0.0.0.0", it is possible to allow Polipo to serve remote clients. This is likely
to be a security hole unless you set allowedClients to a reasonable value (see Section 3.1.1
[Access control], page 7).

Note that the type of address that you specify for proxyAddress will determine whether
Polipo listens to IPv4 or IPv6. Currently, the only way to have Polipo listen to both protocols
is to specify the IPv6 unspecified address ("::") for proxyAddress.

The variable proxyPort, by default 8123, defines the TCP port on which Polipo will listen.

The variable proxyName, which defaults to the host name of the machine on which Polipo
is running, defines the name of the proxy. This can be an arbitrary string that should be
unique among all instances of Polipo that you are running. Polipo uses it in error messages
and optionally for detecting proxy loops (by using the ‘Via’ HTTP header, see Section 3.3.2
[Censoring headers], page 8). Finally, the displayName variable specifies the name used in
user-visible error messages (default “Polipo”).

3.1.1 Access control

By making it possible to have Polipo listen on a non-routable address (for example the loopback
address ‘127.0.0.1’), the variable proxyAddress provides a very crude form of access control:
the ability to decide which hosts are allowed to connect.

A finer form of access control can be implemented by specifying explicitly a number of client
addresses or ranges of addresses (networks) that a client is allowed to connect from. This is
done by setting the variable allowedClients.

Every entry in allowedClients can be an IP address, for example ‘134.157.168.57’ or ‘::1’.
It can also be a network address, i.e. an IP address and the number of bits in the network prefix,
for example ‘134.157.168.0/24’ or ‘2001:660:116::/48’. Typical uses of ‘allowedClients’
variable include

allowedClients = 127.0.0.1, ::1, 134.157.168.0/24, 2001:660:116::/48

or, for an IPv4-only version of Polipo,

allowedClients = 127.0.0.1, 134.157.168.0/24

A different form of access control can be implemented by requiring each client to authen-
ticate, i.e. to prove its identity before connecting. Polipo currently only implements the most
insecure form of authentication, HTTP basic authentication, which sends usernames and pass-
words in clear over the network. HTTP basic authentication is required when the variable
authCredentials is not null; its value should be of the form ‘username:password’.

Note that both IP-based authentication and HTTP basic authentication are insecure: the
former is vulnerable to IP address spoofing, the latter to replay attacks. If you need to access
Polipo over the public Internet, the only secure option is to have it listen over the loopback
interface only and use an ssh tunnel (see Section 3.10 [Parent proxies], page 13)1.

1 It is not quite clear to me whether HTTP digest authentication is worth implementing. On the one hand,
if implemented correctly, it appears to provide secure authentication; on the other hand, and unlike ssh or
SSL, it doesn’t make any attempt at ensuring privacy, and its optional integrity guarantees are impossible to
implement without significantly impairing latency.

Chapter 3: Polipo and the network 8

3.2 Contacting servers

A server can have multiple addresses, for example if it is multihomed (connected to multiple
networks) or if it can speak both IPv4 and IPv6. Polipo will try all of a hosts addresses in turn;
once it has found one that works, it will stick to that address until it fails again.

If connecting via IPv6 there is the possibility to use temporary source addresses to increase
privacy (RFC 3041). The variable useTemporarySourceAddress controls the use of temporary
addresses for outgoing connections; if set to true temporary addresses are preferred, if set to
false static addresses are used and if set to maybe (the default) the operation system default
is in effect. This setting is not available on all operation systems.

3.2.1 Allowed ports

A TCP service is identified not only by the IP address of the machine it is running on, but also
by a small integer, the TCP port it is listening on. Normally, web servers listen on port 80,
but it is not uncommon to have them listen on different ports; Polipo’s internal web server, for
example, listens on port 8123 by default.

The variable allowedPorts contains the list of ports that Polipo will accept to connect to
on behalf of clients; it defaults to ‘80-100, 1024-65535’. Set this variable to ‘1-65535’ if your
clients (and the web pages they consult!) are fully trusted. (The variable allowedPorts is not
considered for tunnelled connections; see Section 3.12 [Tunnelling connections], page 14).

3.3 Tuning at the HTTP level

3.3.1 Tuning the HTTP parser

As a number of HTTP servers and CGI scripts serve incorrect HTTP headers, Polipo uses a
lax parser, meaning that incorrect HTTP headers will be ignored (a warning will be logged by
default). If the variable laxHttpParser is not set (it is set by default), Polipo will use a strict
parser, and refuse to serve an instance unless it could parse all the headers.

When the amount of headers exceeds one chunk’s worth (see Section 5.1 [Chunk memory],
page 20), Polipo will allocate a big buffer in order to store the headers. The size of big buffers,
and therefore the maximum amount of headers Polipo can parse, is specified by the variable
bigBufferSize (32 kB by default).

3.3.2 Censoring headers

Polipo offers the option to censor given HTTP headers in both client requests and server replies.
The main application of this feature is to very slightly improve the user’s privacy by eliminating
cookies and some content-negotiation headers.

It is important to understand that these features merely make it slightly more difficult to
gather statistics about the user’s behaviour. While they do not actually prevent such statistics
from being collected, they might make it less cost-effective to do so.

The general mechanism is controlled by the variable censoredHeaders, the value of which
is a case-insensitive list of headers to unconditionally censor. By default, it is empty, but I
recommend that you set it to ‘From, Accept-Language’. Adding headers such as ‘Set-Cookie’,
‘Set-Cookie2’, ‘Cookie’, ‘Cookie2’ or ‘User-Agent’ to this list will probably break many web
sites.

The case of the ‘Referer’2 header is treated specially because many sites will refuse to serve
pages when it is not provided. If censorReferer is false (the default), ‘Referer’ headers are
passed unchanged to the server. If censorReferer is maybe, ‘Referer’ headers are passed to the

2 HTTP contains many mistakes and even one spelling error.

Chapter 3: Polipo and the network 9

server only when they refer to the same host as the resource being fetched. If censorReferer
is true, all ‘Referer’ headers are censored. I recommend setting censorReferer to maybe.

Another header that can have privacy implications is the ‘Via’ header, which is used to
specify the chain of proxies through which a given request has passed. Polipo will generate ‘Via’
headers if the variable disableVia is false (it is true by default). If you choose to generate ‘Via’
headers, you may want to set the proxyName variable to some innocuous string (see Section 3.1
[Client connections], page 7).

3.3.2.1 Why censor Accept-Language

Recent versions of HTTP include a mechanism known as content negotiation which allows a
user-agent and a server to negotiate the best representation (instance) for a given resource. For
example, a server that provides both PNG and GIF versions of an image will serve the PNG
version to user-agents that support PNG, and the GIF version to Internet Explorer.

Content negotiation requires that a client should send with every single request a num-
ber of headers specifying the user’s cultural and technical preferences. Most of these headers
do not expose sensitive information (who cares whether your browser supports PNG?). The
‘Accept-Language’ header, however, is meant to convey the user’s linguistic preferences. In
some cases, this information is sufficient to pinpoint with great precision the user’s origins
and even his political or religious opinions; think, for example, of the implications of sending
‘Accept-Language: yi’ or ‘ar_PS’.

At any rate, ‘Accept-Language’ is not useful. Its design is based on the assumption that
language is merely another representation for the same information, and ‘Accept-Language’
simply carries a prioritised list of languages, which is not enough to usefully describe a literate
user’s preferences. A typical French user, for example, will prefer an English-language original
to a French (mis-)translation, while still wanting to see French language texts when they are
original. Such a situation cannot be described by the simple-minded ‘Accept-Language’ header.

3.3.3 Adjusting intermediate proxy behaviour

Implementors of intermediate caches (proxies) have found it useful to convert the media type
of certain entity bodies. A non-transparent proxy might, for example, convert between image
formats in order to save cache space or to reduce the amount of traffic on a slow link.

If alwaysAddNoTransform is true (it is false by default), Polipo will add a ’no-transform’
cache control directive to all outgoing requests. This directive forbids (compliant) intermediate
caches from responding with an object that was compressed or transformed in any way.

3.4 Offline browsing

In an ideal world, all machines would have perfect connectivity to the network at all times and
servers would never crash. In the real world, it may be necessary to avoid hitting the network
and have Polipo serve stale objects from its cache.

Setting proxyOffline to true prevents Polipo from contacting remote servers, no matter
what. This setting is suitable when you have no network connection whatsoever.

If proxyOffline is false, Polipo’s caching behaviour is controlled by a number of variables
documented in Section 4.1.2 [Tweaking validation], page 16.

3.5 Server statistics

In order to decide when to pipeline requests (see Section 1.4.2 [Pipelining], page 2) and whether
to perform Poor Man’s Multiplexing (see Section 1.4.3 [Poor Mans Multiplexing], page 2), Polipo
needs to keep statistics about servers. These include the server’s ability to handle persistent
connections, the server’s ability to handle pipelined requests, the round-trip time to the server,

Chapter 3: Polipo and the network 10

and the server’s transfer rate. The statistics are accessible from Polipo’s web interface (see
Section 2.4.1 [Web interface], page 6).

The variable ‘serverExpireTime’ (default 1 day) specifies how long such information remains
valid. If a server has not been accessed for a time interval of at least serverExpireTime,
information about it will be discarded.

As Polipo will eventually recover from incorrect information about a server, this value can
be made fairly large. The reason why it exists at all is to limit the amount of memory used up
by information about servers.

3.6 Tweaking server-side behaviour

The most important piece of information about a server is whether it supports persistent con-
nections. If this is the case, Polipo will open at most serverSlots connections to that server
(serverSlots1 if the server only implements HTTP/1.0), and attempt to pipeline; if not, Polipo
will hit the server harder, opening up to serverMaxSlots connections.

Another use of server information is to decide whether to pipeline additional requests
on a connection that already has in-flight requests. This is controlled by the variable
pipelineAdditionalRequests; if it is false, no additional requests will be pipelined. If it
is true, additional requests will be pipelined whenever possible. If it is maybe (the default),
additional requests will only be pipelined following small requests, where a small request one
whose download is estimated to take no more than smallRequestTime (default 5 s).

Sometimes, a request has been pipelined after a request that prompts a very large reply from
the server; when that happens, the pipeline needs be broken in order to reduce latency. A reply
is large and will cause a pipeline to be broken if either its size is at least replyUnpipelineSize
(default one megabyte) or else the server’s transfer rate is known and the body is expected to
take at least replyUnpipelineTime to download (default 15 s).

The variable maxPipelineTrain defines the maximum number of requests that will be
pipelined in a single write (default 10). Setting this variable to a very low value might (or
might not) fix interaction with some unreliable servers that the normal heuristics are unable to
detect.

The variable maxSideBuffering specifies how much data will be buffered in a PUT or POST
request; it defaults to 1500 bytes. Setting this variable to 0 may cause some media players that
abuse the HTTP protocol to work.

3.7 Poor Man’s Multiplexing

By default, Polipo does not use Poor Man’s Multiplexing (see Section 1.4.3 [Poor Mans Multi-
plexing], page 2). If the variable pmmSize is set to a positive value, Polipo will use PMM when
speaking to servers that are known to support pipelining. It will request resources by segments
of pmmSize bytes. The first segment requested has a size of pmmFirstSize, which defaults to
twice pmmSize.

PMM is an intrinsically unreliable technique. Polipo makes heroic efforts to make it at
least usable, requesting that the server disable PMM when not useful (by using the ‘If-Range’
header) and disabling it on its own if a resource turns out to be dynamic. Notwithstanding
these precautions, unless the server cooperates3, you will see failures when using PMM, which
will usually result in blank pages and broken image icons; hitting Reload on your browser will
usually cause Polipo to notice that something went wrong and correct the problem.

3 More precisely, unless CGI scripts cooperate.

Chapter 3: Polipo and the network 11

3.8 Forbidden and redirected URLs

The web contains advertisements that a user-agent is supposed to download together with the
requested pages. Not only do advertisements pollute the user’s brain, pushing them around
takes time and uses up network bandwidth.

Many so-called content providers also track user activities by using web bugs, tiny embed-
ded images that cause a server to log where they are requested from. Such images can be
detected because they are usually uncacheable (see Section 4.1 [Cache transparency], page 16)
and therefore logged by Polipo by default.

Polipo can be configured to prevent certain URLs from reaching the browser, either by
returning a forbidden error message to the user, or by redirecting such URLs to some other
URL.

Some content providers attempt to subvert content filtering as well as malware scans by tun-
nelling their questionable content as https or other encrypted protocols. Other content providers
are so clueless as to inject content from external providers into supposedly safe webpages. Polipo
has therefore the ability to selectively block tunneled connections based on hostname and port
information.

3.8.1 Internal forbidden list

The file pointed at by the variable forbiddenFile (defaults to ~/.polipo-forbidden or
/etc/polipo/forbidden, whichever exists) specifies the set of URLs that should never be
fetched. If forbiddenFile is a directory, it will be recursively searched for files with forbidden
URLs.

Every line in a file listing forbidden URLs can either be a domain name — a string that
doesn’t contain any of ‘/’, ‘*’ or ‘\’ —, or a POSIX extended regular expression. Blank lines
are ignored, as are those that start with a hash sign ‘#’.

By default, whenever it attempts to fetch a forbidden URL, the browser will receive a 403
forbidden error from Polipo. Some users prefer to have the browser display a different page or
an image.

If forbiddenUrl is not null, it should represent a URL to which all forbidden URLs will be
redirected. The kind of redirection used is specified by forbiddenRedirectCode; if this is 302
(the default) the redirection will be marked as temporary, if 301 it will be a permanent one.

3.8.2 External redirectors

Polipo can also use an external process (a Squid-style redirector) to determine which URLs
should be redirected. The name of the redirector binary is determined from the variable
redirector, and the kind of redirection generated is specified by redirectorRedirectCode,
which should be 302 (the default) or 301.

For example, to use Adzapper to redirect ads to an innocuous image, just set

redirector = /usr/bin/adzapper

3.8.3 Forbidden Tunnels

Polipo does by default allow tunnelled connections (see Section 3.12 [Tunnelling connections],
page 14), however sometimes it is desirable to block connections selectively.

Because polipo does only pass through tunnelled connections filtering is possible based on
hostname and port information only. Filtering based on protocol specific types of information
like pathname is not possible.

Obviously the web browser (and other software) must be configured to use polipo as tunneling
proxy for this to work. The tunnelled traffic is neither touched nor inspected in any way by

Chapter 3: Polipo and the network 12

polipo, thus encryption, certification and all other security and integrity guarantees implemented
in the browser are not in any way affected.

The file pointed at by the variable forbiddenTunnelsFile (defaults to
~/.polipo-forbiddenTunnels or /etc/polipo/forbiddenTunnels, whichever exists)
specifies the set of tunnel specifications that should be blocked.

Every line in a file listing forbidden Tunnels can either be a domain name — a string that
doesn’t contain any of ‘/’, ‘*’ or ‘\’ —, or a POSIX extended regular expression. Blank lines
are ignored, as are those that start with a hash sign ‘#’.

Entries in the form of regular expressions will be matched against tunnel reqeusts of the form
hostname:portnumber.

Tunnelled and blocked connections will be logged if the configuration variable logLevel is
set to a value such that ((logLevel & 0x80) !=0)

Example forbiddenTunnelsFile :

simple case, exact match of hostnames

www.massfuel.com

match hostname against regexp

\.hitbox\.

match hostname and port against regexp

this will block tunnels to example.com but also www.example.com

for ports in the range 600-999

Also watch for effects of ’tunnelAllowedPorts’

example.com\:[6-9][0-9][0-9]

random examples

\.liveperson\.

\.atdmt\.com

.*doubleclick\.net

.*webtrekk\.de

^count\..*

.*\.offerstrategy\.com

.*\.ivwbox\.de

.*adwords.*

.*\.sitestat\.com

\.xiti\.com

webtrekk\..*

3.9 The domain name service

The low-level protocols beneath HTTP identify machines by IP addresses, sequences of four 8-bit
integers such as ‘199.232.41.10’4. HTTP, on the other hand, and most application protocols,
manipulate host names, strings such as ‘www.polipo.org’.

The domain name service (DNS) is a distributed database that maps host names to IP
addresses. When an application wants to make use of the DNS, it invokes a resolver, a local
library or process that contacts remote name servers.

Polipo usually tries to speak the DNS protocol itself rather than using the system re-
solver5. Its precise behaviour is controlled by the value of dnsUseGethostbyname. If

4 Or sequences of eight 16-bit integers if you are running IPv6.
5 The Unix interface to the resolver is provided by the gethostbyname(3) library call (getaddrinfo(3) on recent

systems), which was designed at a time when a host lookup consisted in searching for one of five hosts in a

Chapter 3: Polipo and the network 13

dnsUseGethostbyname is false, Polipo never uses the system resolver. If it is reluctantly

(the default), Polipo tries to speak DNS and falls back to the system resolver if a name server
could not be contacted. If it is happily, Polipo tries to speak DNS, and falls back to the system
resolver if the host couldn’t be found for any reason (this is not a good idea for shared proxies).
Finally, if dnsUseGethostbyname is true, Polipo never tries to speak DNS itself and uses the
system resolver straight away (this is not recommended).

If the internal DNS support is used, Polipo must be given a recursive name server to speak
to. By default, this information is taken from the ‘/etc/resolv.conf’ file at startup; however,
if you wish to use a different name server, you may set the variable dnsNameServer to an IP
address6.

When the reply to a DNS request is late to come, Polipo will retry multiple times using an
exponentially increasing timeout. The maximum timeout used before Polipo gives up is defined
by dnsMaxTimeout (default 60 s); the total time before Polipo gives up on a DNS query will be
roughly twice dnsMaxTimeout.

The variable dnsNegativeTtl specifies the time during which negative DNS information
(information that a host doesn’t exist) will be cached; this defaults to 120 s. Increasing this
value reduces both latency and network traffic but may cause a failed host not to be noticed
when it comes back up.

The variable dnsQueryIPv6 specifies whether to query for IPv4 or IPv6 addresses. If
dnsQueryIPv6 is false, only IPv4 addresses are queried. If dnsQueryIPv6 is reluctantly,
both types of addresses are queried, but IPv4 addresses are preferred. If dnsQueryIPv6 is
happily (the default), IPv6 addresses are preferred. Finally, if dnsQueryIPv6 is true, only
IPv6 addresses are queried.

If the system resolver is used, the value dnsGethostbynameTtl specifies the time during
which a gethostbyname reply will be cached (default 5 minutes).

3.10 Parent proxies

Polipo will usually fetch instances directly from source servers as this configuration minimises
latency. In some cases, however, it may be useful to have Polipo fetch instances from a parent
proxy.

Polipo can use two protocols to speak to a parent proxy: HTTP and SOCKS. When config-
ured to use both HTTP and SOCKS proxying, Polipo will contact an HTTP proxy over SOCKS
— in other words, SOCKS is considered as being at a lower (sub)layer than HTTP.

3.10.1 HTTP parent proxies

The variable parentProxy specifies the hostname and port number of an HTTP parent proxy;
it should have the form ‘host:port’.

If the parent proxy requires authorisation, the username and password should be specified in
the variable parentAuthCredentials in the form ‘username:password’. Only Basic authenti-
cation is supported, which is vulnerable to replay attacks.

The main application of the parent proxy support is to cross firewalls. Given a machine, say
trurl, with unrestricted access to the web, the following evades a firewall by using an encrypted
compressed ssh link:

‘HOSTS.TXT’ file. The gethostbyname call is blocking, meaning that all activity must cease while a host lookup
is in progress. When the call eventually returns, it doesn’t provide a time to live (TTL) value to indicate
how long the address may be cached. For these reasons, gethostbyname is hardly useful for programs that
need to contact more than a few hosts. (Recent systems replace gethostbyname(3) by getaddrinfo(3), which
is reentrant. While this removes one important problem that multi-threaded programs encounter, it doesn’t
solve any of the other issues with gethostbyname.)

6 While Polipo does its own caching of DNS data, I recommend that you run a local caching name server. I am
very happy with pdnsd.

http://www.thekelleys.org.uk/dnsmasq/doc.html

Chapter 3: Polipo and the network 14

$ ssh -f -C -L 8124:localhost:8123 trurl polipo

$ polipo parentProxy=localhost:8124

3.10.2 SOCKS parent proxies

The variable socksParentProxy specifies the hostname and port number of a SOCKS parent
proxy; it should have the form ‘host:port’. The variant of the SOCKS protocol being used is
defined by socksProxyType, which can be either ‘socks4a’ or ‘socks5’; the latter value specifies
“SOCKS5 with hostnames”, and is the default.

The user name passed to the SOCKS4a proxy is defined by the variable socksUserName.
This value is currently ignored with a SOCKS5 proxy.

The main application of the SOCKS support is to use Tor to evade overly restrictive or
misconfigured firewalls. Assuming you have a Tor client running on the local host listening on
the default port (9050), the following uses Tor for all outgoing HTTP traffic:

$ polipo socksParentProxy=localhost:9050

3.11 Tuning POST and PUT requests

The main assumption behind the design of the HTTP protocol is that requests are idempotent:
since a request can be repeated by a client, a server is allowed to drop a connection at any time.
This fact, more than anything else, explains the amazing scalability of the protocol.

This assumption breaks down in the case of POST requests. Indeed, a POST request usually
causes some action to be performed (a page to be printed, a significant amount of money to be
transferred from your bank account, or, in Florida, a vote to be registered), and such a request
should not be repeated.

The only solution to this problem is to reserve HTTP to idempotent activities, and use reliable
protocols for action-effecting ones. Notwithstanding that, HTTP/1.1 makes a weak attempt at
making POST requests slightly more reliable and efficient than they are in HTTP/1.0.

When speaking to an HTTP/1.1 server, an HTTP client is allowed to request that the server
check a priori whether it intends to honour a POST request. This is done by sending an
expectation, a specific header with the request, ‘Expect: 100-continue’, and waiting for either
an error message or a ‘100 Continue’ reply from the server. If the latter arrives, the client is
welcome to send the rest of the POST request7.

Polipo’s behaviour w.r.t. client expectations is controlled by the variable expectContinue.
If this variable is false, Polipo will never send an expectation to the server; if a client sends
an expectation, Polipo will fail the expectation straight away, causing the client (if correctly
implemented) to retry with no expectation. If expectContinue is maybe (the default), Polipo will
behave in a standards-compliant manner: it will forward expectations to the server when allowed
to do so, and fail client expectations otherwise. Finally, if expectContinue is true, Polipo will
always send expectations when it is reasonable to do so; this violates the relevant standards and
will break some websites, but might decrease network traffic under some circumstances.

3.12 Tunnelling connections

Polipo is an HTTP proxy; it proxies HTTP traffic, and clients using other protocols should
either establish a direct connection to the server or use an ad hoc proxy.

In many circumstances, however, it is not possible to establish a direct connection to the
server, for example due to mis-configured firewalls or when trying to access the IPv4 Internet

7 This, of course, is only part of the story. Additionally, the server is not required to reply with ‘100 Continue’,
hence the client must implement a timeout. Furthermore, according to the obsolete RFC2068, the server is
allowed to spontaneously send ‘100 Continue’, so the client must be prepared to ignore such a reply at any
time.

http://tor.eff.org

Chapter 3: Polipo and the network 15

from an IPv6-only host. In such situations, it is possible to have Polipo behave as a tunnelling
proxy — a proxy that merely forwards traffic between the client and the server without under-
standing it. Polipo enters tunnel mode when the client requests it by using the HTTP ‘CONNECT’
method.

Most web browsers will use this technique for HTTP over SSL if configured to use Polipo as
their ‘https proxy’. More generally, the author has successfully used it to cross mis-configured
firewalls using OpenSSH, rsync, Jabber, IRC, etc.

The variable tunnelAllowedPorts specifies the set of ports that Polipo will accept to tunnel
traffic to. It defaults to allowing ssh, HTTP, https, rsync, IMAP, imaps, POP, pops, Jabber,
CVS and Git traffic.

It is possible to selectively block tunneled connections, see Section 3.8.3 [Forbidden Tunnels],
page 11

Chapter 4: Caching 16

4 Caching

4.1 Cache transparency and validation

If resources on a server change, it is possible for a cached instance to become out-of date. Ideally,
a cache would be perfectly transparent, meaning that it never serves an out-of-date instance; in
a universe with a finite speed of signal propagation, however, this ideal is impossible to achieve.

If a caching proxy decides that a cached instance is new enough to likely still be valid, it will
directly serve the instance to the client; we then say that the cache decided that the instance
is fresh. When an instance is stale (not fresh), the cache will check with the upstream server
whether the resource has changed; we say that the cached instance is being revalidated.

In HTTP/1.1, responsibility for revalidation is shared between the client, the server and
the proxy itself. The client can override revalidation policy by using the ‘Cache-Control’
header1; for example, some user-agents will request end-to-end revalidation in this way when
the user shift-clicks on reload. The server may choose to specify revalidation policy by using
the ‘Expires’ and ‘Cache-Control’ headers. As to the proxy, it needs to choose a revalidation
policy for instances with neither server- nor client-side cache control information. Of course,
nothing (except the HTTP/1.1 spec, but that is easily ignored) prevents a proxy from overriding
the client’s and server’s cache control directives.

4.1.1 Tuning validation behaviour

Polipo’s revalidation behaviour is controlled by a number of variables. In the following, an
resource’s age is the time since it was last validated, either because it was fetched from the
server or because it was revalidated.

The policy defining when cached instances become stale in the absence of server-provided
information is controlled by the variables maxAge, maxAgeFraction, maxExpiresAge and
maxNoModifiedAge. If an instance has an ‘Expires’ header, it becomes stale at the date given
by that header, or when its age becomes larger than maxExpiresAge, whichever happens first.
If an instance has no ‘Expires’ header but has a ‘LastModified’ header, it becomes stale when
its age reaches either maxAgeFraction of the time since it was last modified or else the abso-
lute value maxAge, whichever happens first. Finally, if an instance has neither ‘Expires’ nor
‘Last-Modified’, it will become stale when its age reaches maxNoModifiedAge.

4.1.2 Further tweaking of validation behaviour

If cacheIsShared is false (it is true by default), Polipo will ignore the server-side
‘Cache-Control’ directives ‘private’, ‘s-maxage’ and ‘proxy-must-revalidate’. This is
highly desirable behaviour when the proxy is used by just one user, but might break some sites
if the proxy is shared.

When connectivity is very poor, the variable relaxTransparency can be used to cause Polipo
to serve stale instances under some circumstances. If relaxTransparency is false (the default),
all stale instances are validated (see Section 4.1 [Cache transparency], page 16), and failures to
connect are reported to the client. This is the default mode of operation of most other proxies,
and the least likely to surprise the user.

If relaxTransparency is maybe, all stale instances are still validated, but a failure to connect
is only reported as an error if no data is available in the cache. If a connection fails and stale
data is available, it is served to the client with a suitable HTTP/1.1 ‘Warning’ header. Current
user-agents do not provide visible indication of such warnings, however, and this setting will
typically cause the browser to display stale data with no indication that anything went wrong.

1 Or the obsolete ‘Pragma’ header.

Chapter 4: Caching 17

It is useful when you are consulting a live web site but don’t want to be bothered with failed
revalidations.

If relaxTransparency is true, missing data is fetched from remote servers, but stale data
are unconditionally served with no validation. Client-side ‘Cache-Control’ directives are still
honoured, which means that you can force an end-to-end revalidation from the browser’s interface
(typically by shift-clicking on “reload”). This setting is only useful if you have very bad network
connectivity or are consulting a very slow web site or one that provides incorrect cache control
information2 and are willing to manually revalidate pages that you suspect are stale.

If mindlesslyCacheVary is true, the presence of a ‘Vary’ header (which indicates that
content-negotiation occurred, see Section 3.3.2.1 [Censor Accept-Language], page 9) is ignored,
and cached negotiated instances are mindlessly returned to the client. If it is false (the default),
negotiated instances are revalidated on every client request.

Unfortunately, a number of servers (most notably some versions of Apache’s mod_deflate

module) send objects with a ‘ETag’ header that will confuse Polipo in the presence of a ‘Vary’
header. Polipo will make a reasonable check for consistency if ‘dontTrustVaryETag’ is set to
‘maybe’ (the default); it will systematically ignore ‘ETag’ headers on objects with ‘Vary’ headers
if it is set to ‘true’.

A number of websites incorrectly mark variable resources as cachable; such issues can be
worked around in polipo by manually marking given categories of objects as uncachable. If
dontCacheCookies is true, all pages carrying HTTP cookies will be treated as uncachable. If
dontCacheRedirects is true, all redirects (301 and 302) will be treated as uncachable. Fi-
nally, if everything else fails, a list of uncachable URLs can be given in the file specified by
uncachableFile, which has the same format as the forbiddenFile (see Section 3.8.1 [Internal
forbidden list], page 11). If not specified, its location defaults to ‘~/.polipo-uncachable’ or
‘/etc/polipo/uncachable’, whichever exists.

4.2 The in-memory cache

The in-memory cache consists of a list of HTTP and DNS objects maintained in least-recently
used order. An index to the in-memory cache is maintained as a (closed) hash table.

When the in-memory cache grows beyond a certain size (controlled by a number of variables,
see Chapter 5 [Memory usage], page 20), or when a hash table collision occurs, resources are
written out to disk.

4.3 The on-disk cache

The on-disk cache consists in a filesystem subtree rooted at a location defined by the vari-
able diskCacheRoot, by default "/var/cache/polipo/". This directory should normally be
writeable, readable and seekable by the user running Polipo. While it is best to use a local
filesystem for the on-disk cache, a NFSv3- or AFS-mounted filesystem should be safe in most
implementations. Do not use NFSv2, as it will cause cache corruption3.

If diskCacheRoot is an empty string, no disk cache is used.

The value maxDiskEntries (32 by default) is the absolute maximum of file descriptors held
open for on-disk objects. When this limit is reached, Polipo will close descriptors on a least-
recently-used basis. This value should be set to be slightly larger than the number of resources
that you expect to be live at a single time; defining the right notion of liveness is left as an
exercise for the interested reader.

2 This is for example the case of www.microsoft.com, and also of websites generated by a popular Free content
management system written in Python.

3 Polipo assumes that ‘open(O_CREAT | O_EXCL)’ works reliably.

Chapter 4: Caching 18

The value diskCacheWriteoutOnClose (64 kB by default) is the amount of data that Polipo
will write out when closing a disk file. Writing out data when closing a file can avoid subsequently
reopening it, but causes unnecessary work if the instance is later superseded.

The integers diskCacheDirectoryPermissions and diskCacheFilePermissions are the
Unix filesystem permissions with which files and directories are created in the on-disk cache;
they default to ‘0700’ and ‘0600’ respectively.

The variable maxDiskCacheEntrySize specifies the maximum size, in bytes, of an instance
that is stored in the on-disk cache. If set to -1 (the default), all objects are stored in the on-disk
cache,

4.3.1 Asynchronous writing

When Polipo runs out of memory (see Section 5.3 [Limiting memory usage], page 20), it will
start discarding instances from its memory cache. If a disk cache has been configured, it will
write out any instance that it discards. Any memory allocation that prompted the purge must
then wait for the write to complete.

In order to avoid the latency hit that this causes, Polipo will preemptively write out instances
to the disk cache whenever it is idle. The integer idleTime specifies the time during which
Polipo will remain idle before it starts writing out random objects to the on-disk cache; this
value defaults to 20 s. You may want to decrease this value for a busy cache with little memory,
or increase it if your cache is often idle and has a lot of memory.

The value maxObjectsWhenIdle (default 32) specifies the maximum number of instances that
an idle Polipo will write out without checking whether there’s any new work to do. The value
maxWriteoutWhenIdle specifies the maximum amount of data (default 64 kB) that Polipo will
write out without checking for new activity. Increasing these values will make asynchronous
write-out slightly faster, at the cost of possibly increasing Polipo’s latency in some rare circum-
stances.

4.3.2 Purging the on-disk cache

Polipo never removes a file in its on-disk cache, except when it finds that the instance that it
represents has been superseded by a newer version. In order to keep the on-disk cache from
growing without bound, it is necessary to purge it once in a while. Purging the cache typically
consists in removing some files, truncating large files (see Section 1.5 [Partial instances], page 3)
or moving them to off-line storage.

Polipo itself can be used to purge its on-disk cache; this is done by invoking Polipo with
the -x flag. This can safely be done when Polipo is running (see Section 4.3.4 [Modifying the
on-disk cache], page 19).

For a purge to be effective, it is necessary to cause Polipo to write-out its in-memory cache
to disk (see Section 2.3 [Stopping], page 5). Additionally, Polipo will not necessarily notice the
changed files until it attempts to access them; thus, you will want it to discard its in-memory
cache after performing the purge. The safe way to perform a purge is therefore:

$ kill -USR1 polipo-pid

$ sleep 1

$ polipo -x

$ kill -USR2 polipo-pid

The behaviour of the -x flag is controlled by three configuration variables. The variable
diskCacheUnlinkTime specifies the time during which an on-disk entry should remain unused
before it is eligible for removal; it defaults to 32 days.

The variable diskCacheTruncateTime specifies the time for which an on-disk entry should
remain unused before it is eligible for truncation; it defaults to 4 days and a half. The variable

Chapter 4: Caching 19

diskCacheTruncateSize specifies the size at which files are truncated after they have not been
accessed for diskCacheTruncateTime; it defaults to 1MB.

Usually, Polipo uses a file’s modification time in order to determine whether it is old enough
to be expirable. This heuristic can be disabled by setting the variable preciseExpiry to true.

4.3.3 Format of the on-disk cache

The on-disk cache consists of a collection of files, one per instance. The format of an on-disk
resource is similar to that of an HTTP message: it starts with an HTTP status line, followed
by HTTP headers, followed by a blank line (‘\r\n\r\n’). The blank line is optionally followed
by a number of binary zeroes. The body of the instance follows.

The headers of an on-disk file have a few minor differences with HTTP messages. Obviously,
there is never a ‘Transfer-Encoding’ line. A few additional headers are used by Polipo for its
internal bookkeeping:

• ‘X-Polipo-Location’: this is the URL of the resource stored in this file. This is always
present.

• ‘X-Polipo-Date’: this is Polipo’s estimation of the date at which this instance was last
validated, and is used for generating the ‘Age’ header of HTTP messages. This is optional,
and only stored if different from the instance’s date.

• ‘X-Polipo-Access’: this is the date when the instance was last accessed by Polipo, and is
used for cache purging (see Section 4.3.2 [Purging], page 18). This is optional, and is absent
if the instance was never accessed.

• ‘X-Polipo-Body-Offset’: the presence of this line indicates that the blank line following
the headers is followed by a number of zero bytes. Its value is an integer, which indicates
the offset since the beginning of the file at which the instance body actually starts. This
line is optional, and if absent the body starts immediately after the blank line.

4.3.4 Modifying the on-disk cache

It is safe to modify the on-disk cache while Polipo is running as long as no file is ever modified
in place. More precisely, the only safe operations are to unlink (remove, delete) files in the disk
cache, or to atomically add new files to the cache (by performing an exclusive open, or by using
one of the ‘link’ or ‘rename’ system calls). It is not safe to truncate a file in place.

Chapter 5: Memory usage 20

5 Memory usage

Polipo uses two distinct pools of memory, the chunk pool and the malloc pool.

5.1 Chunk memory

Most of the memory used by Polipo is stored in chunks, fixed-size blocks of memory; the size of a
chunk is defined by the compile-time constant CHUNK_SIZE, and defaults to 4096 bytes on 32-bit
platforms, 8192 on 64-bit ones. Chunks are used for storing object data (bodies of instances)
and for temporary I/O buffers. Increasing the chunk size increases performance somewhat, but
at the cost of larger granularity of allocation and hence larger memory usage.

By default, Polipo uses a hand-crafted memory allocator based on mmap(2) (VirtualAlloc
under Windows) for allocating chunks; while this is very slightly faster than the stock memory
allocator, its main benefit is that it limits memory fragmentation. It is possible to disable the
chunk allocator, and use malloc(3) for all memory allocation, by defining MALLOC_CHUNKS at
compile time; this is probably only useful for debugging.

There is one assumption made about CHUNK_SIZE: CHUNK_SIZE multiplied by the number of
bits in an unsigned long (actually in a ChunkBitmap — see chunk.c) must be a multiple of the
page size, which is 4096 on most systems (8192 on Alpha, and apparently 65536 on Windows).

As all network I/O will be performed in units of one to two chunks, CHUNK_SIZE should be
at least equal to your network interface’s MTU (typically 1500 bytes). Additionally, as much
I/O will be done at CHUNK_SIZE-aligned addresses, CHUNK_SIZE should ideally be a multiple of
the page size.

In summary, 2048, 4096, 8192 and 16384 are good choices for CHUNK_SIZE.

5.2 Malloc allocation

Polipo uses the standard malloc(3) memory allocator for allocating small data structures (up
to 100 bytes), small strings and atoms (unique strings).

5.3 Limiting Polipo’s memory usage

Polipo is designed to work well when given little memory, but will happily scale to larger con-
figurations. For that reason, you need to inform it of the amount of memory it can use.

5.3.1 Limiting chunk usage

You can limit Polipo’s usage of chunk memory by setting chunkHighMark and chunkLowMark.

The value chunkHighMark is the absolute maximum number of bytes of allocated chunk
memory. When this value is reached, Polipo will try to purge objects from its in-memory cache;
if that fails to free memory, Polipo will start dropping connections. This value defaults to 24MB
or one quarter of the machine’s physical memory, whichever is less.

When chunk usage falls back below chunkLowMark, Polipo will stop discarding in-memory
objects. The value chunkCriticalMark, which should be somewhere between chunkLowMark

and chunkHighMark, specifies the value above which Polipo will make heroic efforts to free
memory, including punching holes in the middle of instances, but without dropping connections.

Unless set explicitly, both chunkLowMark and chunkCriticalMark are computed automati-
cally from chunkHighMark.

5.3.2 Limiting object usage

Besides limiting chunk usage, it is possible to limit Polipo’s memory usage by bounding the
number of objects it keeps in memory at any given time. This is done with objectHighMark

and publicObjectLowMark.

Chapter 5: Memory usage 21

The value objectHighMark is the absolute maximum of objects held in memory (including
resources and server addresses). When the number of in-memory objects that haven’t been
superseded yet falls below publicObjectLowMark, Polipo will stop writing out objects to disk
(superseded objects are discarded as soon as possible).

On 32-bit architectures, every object costs 108 bytes of memory, plus storage for every globally
unique header that is not handled specially (hopefully negligible), plus an overhead of one word
(4 bytes) for every chunk of data in the object.

You may also want to change objectHashTableSize. This is the size of the hash table used
for holding objects; it should be a power of two and defaults to eight times objectHighMark.
Increasing this value will reduce the number of objects being written out to disk due to hash
table collisions. Every hash table entry costs one word.

5.3.3 OS usage limits

Many operating systems permit limiting a process’ memory usage by setting a usage limit; on
most Unix-like systems, this is done with the -v option to the ulimit command. Typically, the
effect is to cause calls to the malloc and mmap library functions to fail.

Polipo will usually react gracefully to failures to allocate memory1. Nonetheless, you should
avoid using OS limits to limit Polipo’s memory usage: when it hits an OS limit, Polipo cannot
allocate the memory needed to schedule recovery from the out-of-memory condition, and has no
choice other than to drop a connection.

Unfortunately, some operating system kernels (notably certain Linux releases) fail to fail an
allocation if no usage limit is given; instead, they either crash when memory is exhausted, or
else start killing random processes with no advance warning2. On such systems, imposing an
(unrealistically large) usage limit on Polipo is the safe thing to do.

1 There are exactly three places in the code where Polipo will give up and exit if out of memory; all three are
extremely unlikely to happen in practice.

2 How I wish for a ‘SIGXMEM’ signal.

Copying 22

Copying

You are allowed to do anything you wish with Polipo as long as you don’t deny my right to be
recognised as its author and you don’t blame me if anything goes wrong.

More formally, Polipo is distributed under the following terms:

Copyright c© 2003–2006 by Juliusz Chroboczek

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

The last sentence is what happens when you allow lawyers to have it their way with a
language.

Variable index 23

Variable index

A
allowedClients . 7
allowedPorts . 8
alwaysAddNoTransform . 9
authCredentials . 7
authRealm . 7

B
bigBufferSize . 8

C
cacheIsShared . 16
censoredHeaders . 8
censorReferer . 8
CHUNK_SIZE . 20
chunkCriticalMark . 20
chunkHighMark . 20
chunkLowMark . 20

D
daemonise . 4
disableConfiguration . 6
disableLocalInterface . 6
disableProxy . 5
disableServersList . 6
disableVia . 8
DISK_CACHE_BODY_OFFSET . 19
diskCacheDirectoryPermissions 17
diskCacheFilePermissions . 17
diskCacheRoot . 17
diskCacheTruncateSize . 18
diskCacheTruncateTime . 18
diskCacheUnlinkTime . 18
diskCacheWriteoutOnClose . 17
displayName . 7
dnsGethostbynameTtl . 12
dnsMaxTimeout . 12
dnsNameServer . 12
dnsNegativeTtl . 12
dnsQueryIPv6 . 12
dnsUseGethostbyname . 12
dontCacheCookies . 16
dontCacheRedirects . 16
dontTrustVaryETag . 16

E
expectContinue . 14

F
forbiddenFile . 11
forbiddenRedirectCode . 11
forbiddenUrl . 11

I
idleTime . 18

L
laxHttpParser . 8
localDocumentRoot . 5
logFacility . 5
logFile . 5
logFilePermissions . 5
logLevel . 5
logSyslog . 5

M
MALLOC_CHUNKS . 20
maxAge . 16
maxAgeFraction . 16
maxDiskCacheEntrySize . 17
maxDiskEntries . 17
maxExpiresAge . 16
maxNoModifiedAge . 16
maxObjectsWhenIdle . 18
maxPipelineTrain . 10
maxSideBuffering . 10
maxWriteoutWhenIdle . 18
mindlesslyCacheVary . 16

O
objectHashTableSize . 20
objectHighMark . 20

P
parentAuthCredentials . 13
parentProxy . 13
pidFile . 4
pipelineAdditionalRequests . 10
pmmFirstSize . 10
pmmSize . 10
preciseExpiry . 18
proxyAddress . 7
proxyName . 7, 8
proxyOffline . 9
proxyPort . 7
publicObjectLowMark . 20

R
redirector . 11
redirectorRedirectCode . 11
replyUnpipelineSize . 10
replyUnpipelineTime . 10

S
scrubLogs . 5
serverExpireTime . 9
serverMaxSlots . 10

Variable index 24

serverSlots . 10
serverSlots1 . 10
smallRequestTime . 10
socksParentProxy . 14
socksProxyType . 14
socksUserName . 14

T
tunnelAllowedPorts . 14

U
uncachableFile . 16
useTemporarySourceAddress . 8

Concept index 25

Concept index

A
Accept-Language . 9
access control . 7
address . 7
advertisement . 11
Adzapper . 11
age . 16
Allowed ports . 8
anonymity . 8
authentication . 7, 13

B
banner ad . 11
breaking pipelines . 10
browser configuration . 5
browsing offline . 9
bug . 11

C
cache transparency . 16
caching . 1
chunk . 20
configuration file . 4
configuration variable . 4
CONNECT . 14
connectivity . 9
content negotiation . 9
cookies . 8
counter . 11

D
daemon . 4
DNS . 12

E
entity . 1
expire . 16

F
filesystem . 17
firewall . 13
forbidden . 11
Forbidden ports . 8
fresh . 16

G
GET request . 3
gethostbyname . 12

H
HEAD request . 3
headers . 8
HTTP . 1, 8

HTTP/SSL . 14
https . 14

I
instance . 1
intermediate proxies . 9
invocation . 4
IPv6 . 7, 8, 12

K
keep-alive connection . 2

L
large request . 10
latency . 1
limiting memory . 20
local server . 5
logging . 5
loop . 7
loopback address . 7

M
malloc . 20
memory . 20
multiple addresses . 8
multiplexing . 2, 10

N
name server . 12
negotiation . 9
NFS . 17

O
offline browsing . 9
on-disk cache . 19
on-disk file . 19
OOM killer . 21
OPTIONS request . 3
out-of-date instances . 16

P
parent proxy . 13
partial instance . 3
password . 7
persistent connection . 2
pid . 4
Pipelining . 2
Poor Man’s Multiplexing . 2, 10
port. 7
ports . 8
POST request . 3, 14
privacy . 8
PROPFIND request . 3

Concept index 26

proxy . 1
proxy loop . 7
proxy name . 7
purging . 18
PUT request . 3, 14

R
range request . 3
redirect . 11
redirector . 11
Referer . 8
resolver . 12
resource . 1
revalidation . 16
round-trip time . 9
rsync . 14
runtime configuration . 4, 6

S
security . 7
server statistics . 9
shift-click . 9
shutting down . 5
signals . 5
small request . 10
SOCKS . 14
Squid-style redirector . 11
stale . 16
stopping . 5

T
terminal . 4
throughput . 1
transfer rate . 9
transparent cache . 16
tunnel . 14
tunnelling proxy . 14

U
ulimit . 21
uncachable . 16
upstream proxy . 13
URL . 1
usage limit . 21
user-agent configuration . 5
username . 7

V
validation . 16
variable . 4
vary . 16
via . 7

W
warning . 9
web ad . 11
web bug . 11
web counter . 11
web interface . 6
web server . 5

	Background
	The web and HTTP
	Proxies and caches
	Latency and throughput
	Network traffic
	Persistent connections
	Pipelining
	Poor Man's Multiplexing

	Caching partial instances
	Other requests

	Running Polipo
	Starting Polipo
	Configuration
	Running as a daemon
	Logging

	Configuring your browser
	Stopping Polipo and getting it to reload
	The local web server
	The web interface

	Polipo and the network
	Client connections
	Access control

	Contacting servers
	Allowed ports

	Tuning at the HTTP level
	Tuning the HTTP parser
	Censoring headers
	Why censor Accept-Language

	Adjusting intermediate proxy behaviour

	Offline browsing
	Server statistics
	Tweaking server-side behaviour
	Poor Man's Multiplexing
	Forbidden and redirected URLs
	Internal forbidden list
	External redirectors
	Forbidden Tunnels

	The domain name service
	Parent proxies
	HTTP parent proxies
	SOCKS parent proxies

	Tuning POST and PUT requests
	Tunnelling connections

	Caching
	Cache transparency and validation
	Tuning validation behaviour
	Further tweaking of validation behaviour

	The in-memory cache
	The on-disk cache
	Asynchronous writing
	Purging the on-disk cache
	Format of the on-disk cache
	Modifying the on-disk cache

	Memory usage
	Chunk memory
	Malloc allocation
	Limiting Polipo's memory usage
	Limiting chunk usage
	Limiting object usage
	OS usage limits

	Copying
	Variable index
	Concept index

