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1 Presentation

Semigroupe is a C programme designed to compute finite semigroups. It runs on any machine equipped
with a C compiler. So far, it has been tested successfully on Unix machines, on PC’s and on Apple
machines (Macintosh, PowerBook, etc.). The programme is extremely fast, but is not optimized in terms
of space requirements. It is very likely that, if you try to push the programme to its limits, you will
encounter memory problems rather than time problems.

The programme is based on algorithms designed by Véronique Froidure and the author [2]. Version
2.0 allows to produce outputs in LATEX, but this feature is mainly useful for relatively small semigroups
(say of size smaller than 300), otherwise the files generated by the programme are huge.

A reminder on the basic definitions of semigroup theory is given at the end of this document.

2 Installation

Read carefully the README file and follow the instructions. Please report any problem to Jean-Eric.

Pin@liafa.jussieu.fr

3 Main Menu

After the prompt

Semigroupe Version 2.000000 *** Jean-Eric Pin, January 2009 ***

You are first asked:

Would you like a LaTeX output for this session (y/n) ?

You should answer by y or n (followed by return, like for any command).
If you answer no, you will have the choice between the following options:

Give your choice :

(1) Semigroup

(2) Monoid

(3) Ordered syntactic semigroup

(4) Ordered syntactic monoid

(5) Standard example

(6) Read a file

(7) Modify preferences

(8) Quit Semigroupe

3.1 Options 1-4

Options (1)-(4) are self-explanatory. For instance, choose option (1) if you want to compute a finite
semigroup (not a monoid). More details are given in Section 4 below.
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3.2 Standard examples

See Section 5 for more details on this option.

3.3 Read a file

This option allows you to read a file as input. This file should be in the Examples folder specified in
your Preference file. On a Unix system, the Preference file is called .Semigroupe2Prefs and should be
in your home directory.

3.4 Modify preferences

This option lets you modify your Preferences.

(1) Change language ?

(2) Modify the path of the examples folder ?

(3) Modify the path of the LaTeX examples folder ?

If you want to change the default language, the following languages are available: English, French,
German, Italian, Portuguese and Spanish.
By default, the path for the examples folder is

homedirectory/Documents/Semigroupe/Examples

where homedirectory is the absolute path of your home directory.
The path of the LATEX examples folder is

homedirectory/Documents/Semigroupe/LaTeXFiles

3.5 Quit Semigroupe

This is the way to quit the programme.

4 Computing semigroups

If you select one of the options 1–4, you will be asked

Number of letters of the alphabet ?

that is, the number of generators of your semigroup. Since Semigroupe was designed with application
to automata theory in mind, the number of generators should be 6 26.

The semigroup is given as a subsemigroup of one of the following semigroups (called the universe),
which are selected in the next menu.

Give the type of semigroup :

(1) Transitions

(2) Partial transitions

(3) Boolean matrices

(4) Max-Plus matrices

(5) Min-Plus matrices

(6) Tropical Max-Plus matrices

(7) Tropical Min-Plus matrices

(8) Projective Max-Plus matrices

(9) Matrices with integer coefficients

These options have the following meaning:

(1) selects the semigroup of all transformations on the set {1, 2, . . . , n},

(2) selects the semigroup of all partial transformations on the set {1, 2, . . . , n},

(3) selects the semigroup of square Boolean matrices of size n,
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(4) selects the semigroup of matrices over the semiring (Z, max, +),

(5) selects the semigroup of matrices over the semiring (Z, min, +),

(6) selects the semigroup of matrices over the semiring ({−∞, 0, 1, . . . , t}, max, +), for some threshold
t,

(7) selects the semigroup of matrices over the semiring {0, 1, . . . , t, +∞}, min, +), for some threshold t,

(8) selects the semigroup of all projective matrices over the semiring (Z, max, +),

(9) selects the semigroup all matrices over the semiring Zt,p, for some threshold t and some period p.

The next question is

Number of states of the automaton ?

If you chose Option (2) (partial transitions), do not count the sink state 0 in the number of states. Next
a self-explanatory dialog permits to enter the generators. This time you can use the sink state 0 as in
the following example:

Number of states of the automaton ? 3

1.a = 2

2.a = 3

3.a = 1

1.b = 1

2.b = 0

3.b = 3

Then you are asked to give an upper bound to the size of the semigroup you are computing. This value
is used to estimate the size of the hash table used in the computation so it is important to give a real
upper bound (otherwise the programme may crash). If you have no idea of the size, try a large number,
like 50,000. Actually, Semigroupe is able to compute semigroups as large as 2,000,000 elements on a
machine with 256 Mbytes of memory, and over 5,000,000 elements if you have over 1Gbyte available. But
in general, you will not have to go that far.

You can also save your generators in a file.

Would-you like to save these generators (y/n) ? y

Give the name of the file : myTestFile

This feature is very useful since you can edit and modify this file for future use.
Then the computation starts and gives as output something like this

Generators :

a | 2 3 4 5 6 7 8 1

b | 1 2 3 4 5 6 8 0

*******************

Computation of the D-classes

Computation of the H-classes

Computation time for the elements 0s 2/100

Computation time for the D-classes 0s 1/100

Computation time for the H-classes 0s 0/100

Cumulative computation time 0s 4/100

Number of elements : 51481

Number of relations : 1603

Computation terminated. Maximal length of words : 55

D-classes 9

R-classes 256

L-classes 256
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H-classes 12870

Number of idempotents : 256

bbaabbaabbaabb = 0

The generators are the generators of the semigroup you just defined. The sentence “Computation of
the D-classes” indicates that this computation is over. The next sentences give some indication on the
computation time: the first line gives the time needed to compute the elements of the semigroup, and the
next line gives the total amount of time to compute the elements and the Green relations. The number
of elements is given, as well as the number of relations.

Several options are offered:

4.1 List of elements

This option provides the list of all elements of the semigroup. These elements are represented by words.
If the universe is the semigroup Tn of all transformations on {1, 2, . . . , n}, the value of each element
(a transformation) is given. For instance, if you compute the semigroup F2 of example 3 (Monoid of

partial functions Fn, with n = 2), you will obtain the following output:

| 1 2

------------------

* 1 1 | 1 2

G 2 a | 2 1

* 3 b | 1 1

* 4 c | 1 0

R 5 ac | 0 1

* 6 ba | 2 2

R 7 ca | 2 0

* 8 aca | 0 2

*M 9 bac | 0 0

A G indicates an element of a group, an R indicates a regular element and an M indicates an element of
the minimal ideal. A star indicates an idempotent.
If the universe is a semigroup of matrices, each matrix is given line by line. For instance

(11) Monoid of unitriangular Boolean matrices of size n x n

...

(1) List of elements

| 1 0 0 | 0 1 0 | 0 0 1 |

-----------------------------------------

* 1 1 | 1 0 0 | 0 1 0 | 0 0 1 |

* 2 a | 1 1 0 | 0 1 0 | 0 0 1 |

* 3 b | 1 0 1 | 0 1 0 | 0 0 1 |

* 4 c | 1 0 0 | 0 1 1 | 0 0 1 |

* 5 ab | 1 1 1 | 0 1 0 | 0 0 1 |

*M 6 ac | 1 1 1 | 0 1 1 | 0 0 1 |

* 7 bc | 1 0 1 | 0 1 1 | 0 0 1 |

8 ca | 1 1 0 | 0 1 1 | 0 0 1 |

In this example, the generators are

a =





1 1 0
0 1 0
0 0 1



 , b =





1 0 1
0 1 0
0 0 1



 , c =





1 0 0
0 1 1
0 0 1




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4.2 List of relations

Provides a presentation of S. Actually the output is a confluent rewriting system defining S. The rules
are given under the form u = v, but could be interpreted as u → v. In each case, v is strictly smaller
than u in the shortlex order (that is, either v is strictly shorter than u, or v and u have the same length,
but v is before u in the lexicographic order). For instance, if S is the semigroup T3 of all transformations
on three elements generated by the three transformations a, b and c described below, the relations are
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bb = 1

bc = ac

cc = c

aaa = 1

aab = ba

aba = b

baa = ab

bab = aa

bac = c

cac = cb

acaac = caac

caacb = caaca

caacab = caac

4.3 List of idempotents

This command gives, as expected, the list of idempotents. For instance, if S = T3, the set of idempotents
is

E(S) = {1, c, acb, cba, aaca, acaa, caac, aacab, caaca, caacaa}

4.4 Minimal ideal

Computes the minimal ideal I. For instance, if S = T3,

I = {caac, caaca, caacaa}

4.5 Green’s relations

Computes the Green’s relations D, R and L. Actually, the programme computes the number of D-classes,
R-classes and L-classes and assign a number to each of these classes. Then it gives, for each element s,
the number corresponding to the D-class, the R-class and the L-class of s, respectively.

Remember that J = D and that H = R ∩ L.

4.6 Computation of the inverses

An element x̄ is a weak inverse of x if x̄xx̄ = x̄. It is an inverse if, furthermore, xx̄x = x. This option
computes both the inverses and weak inverses of each element.

4.7 Computation of a local submonoid

Given an idempotent e, compute the monoid eSe. For instance, if S = T3 and e = c, eSe = {c, cb, caac, caaca}.

4.8 Computation of a right ideal

Computes the right ideal generated by a given element. For instance, if S = T3 and u = cc, then
uS = {c, ca, cb, caa, cab, cba, caac, caaca, caacaa}.

4.9 Computation of a left ideal

Computes the left ideal generated by a given element. For instance, if S = T3 and u = cc, Su =
{c, ac, cb, aac, acb, aacb, caac, caaca}.

4.10 Computation of an element

Given a word, computes its reduced form using the rewriting system described above. For instance, if
S = T3 and u = baaababcbabbacba, the reduced form is caacaa.
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4.11 Computation of the kernel

Computes the kernel of S. For instance, if S the semigroup of example 22 (in the standard examples
option), then

K(S) = {baaaab, aaaaaab, baaaaaa, aaaaaaaa}

4.12 Variety tests

Tests whether the semigroup belongs to a few standard varieties. These are the following varieties of
finite semigroups

(1) commutative semigroups,

(2) idempotent semigroups,

(3) nilpotent semigroups,

(4) aperiodic semigroups,

(5) groups,

(6) R-trivial semigroups (R),

(7) L-trivial semigroups (L),

(8) J -trivial semigroups,

(9) semigroups with commuting idempotents (Ecom),

(10) block-groups (BG),

(11) semigroups in which regular elements are idempotent (DA),

(12) the join of the varieties R and L. (R ∨ L),

4.13 Do another computation

Ready for another run ?

4.14 Quit Semigroupe

The end !

5 Standard examples

Semigroupe offers a variety of examples. Trying these examples is an easy way to become familiar with
the software.

5.1 Symmetric group S
n

A permutation on {1, 2, . . . , n} is a bijection from {1, 2, . . . , n} into itself. The set of all permutations on
{1, 2, . . . , n} is a group, called the symmetric group on n elements under the multiplication defined by

fg = g ◦ f

The symmetric group on n elements is generated by the two permutations

a =

(

1 2 . . . n − 1 n
2 3 . . . n 1

)

b =

(

1 2 3 . . . n
2 1 3 . . . n

)

The symmetric group Sn has n! elements.
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5.2 Transformation monoid T
n

A transformation on {1, 2, . . . , n} is a total function from {1, 2, . . . , n} into itself. The set of all transfor-
mations on {1, 2, . . . , n} is a monoid, under the multiplication defined by

fg = g ◦ f

This monoid, denoted by Tn, is generated by the three transformations

a =

(

1 2 . . . n − 1 n
2 3 . . . n 1

)

b =

(

1 2 3 . . . n
2 1 3 . . . n

)

c =

(

1 2 . . . n − 1 n
1 2 . . . n − 1 1

)

The monoid Tn has nn elements.

5.3 Monoid of partial functions F
n

The set of all partial functions from {1, 2, . . . , n} into itself a monoid, under the multiplication defined
by

fg = g ◦ f

This monoid, denoted by Fn, is generated by the four transformations

a =

(

1 2 . . . n − 1 n
2 3 . . . n 1

)

b =

(

1 2 3 . . . n
2 1 3 . . . n

)

c =

(

1 2 . . . n − 1 n
1 2 . . . n − 1 1

)

d =

(

1 2 . . . n − 1 n
1 2 . . . n − 1 −

)

The monoid Fn has (n + 1)n elements.

5.4 Monoid of injective partial functions I
n

The set of all injective functions from {1, 2, . . . , n} into itself a monoid, under the multiplication defined
by

fg = g ◦ f

This monoid, denoted by In, is generated by the transformations

a =

(

1 2 . . . n − 1 n
2 3 . . . n 1

)

b =

(

1 2 3 . . . n
2 1 3 . . . n

)

c =

(

1 2 . . . n − 1 n
1 2 . . . n − 1 −

)

5.5 Monoid of the multiplication by n (in inverse binary)

This monoid is generated by the transformations a and b defined on {1, . . . , n} as follows:

q ·a =

{

q/2 if q is even

(q − 1)/2 if q is odd

q ·b =

{

n + q − 1/2 if q is even

n + q/2 if q is odd
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5.6 Monoid RB
n

generated by the regular relations on {1, ..., n}

This monoid, denoted by RBn contains all regular elements of Bn. It is generated by the four relations

a =

(

1 2 . . . n − 1 n
2 3 . . . n 1

)

b =

(

1 2 3 . . . n
2 1 3 . . . n

)

c =

(

1 2 . . . n − 1 n
1 2 . . . n − 1 {n, 1}

)

d =

(

1 2 . . . n − 1 n
1 2 . . . n − 1 −

)

5.7 Monoid of order preserving functions on {1, ..., n}

The set of all order preserving functions from {1, 2, . . . , n} into itself is a monoid, under the multiplication
defined by

fg = g ◦ f

This monoid, denoted by On, can be generated by n transformations of the form

ai =

(

1 2 . . . i − 1 i i + 1 . . . n
1 2 . . . i − 1 i + 1 i + 1 . . . n

)

for 0 6 i 6 n − 1 and

a0 =

(

1 2 . . . n − 1 n
1 1 . . . n − 2 n − 1

)

The monoid On has
(

2n−1
n

)

elements.

5.8 Monoid of injective order preserving partial functions

The set of all order preserving partial functions from {1, 2, . . . , n} into itself is a monoid, under the
multiplication defined by

fg = g ◦ f

This monoid, denoted by POIn, can be generated by n transformations of the form

ai =

(

1 2 . . . (n − i) − 2 (n − i) − 1 (n − i) (n − i) + 1 . . . n
1 2 . . . (n − i) − 2 (n − i) − (n − i) + 1 . . . n

)

for 0 6 i 6 n − 1. For n = 4, these generators are

a =

(

1 2 3 4
1 2 4 −

)

b =

(

1 2 3 4
1 3 − 4

)

c =

(

1 2 3 4
1 − 3 4

)

d =

(

1 2 3 4
− 1 2 3

)

The monoid POIn has
(

2n

n

)

elements.

5.9 Monoid POPI
n

This monoid is generated by the two partial functions

a =

(

1 2 . . . n − 1 n
2 3 . . . n 1

)

b =

(

1 2 . . . n − 2 n − 1 n
1 2 . . . n − 2 n −

)

and contains 1 + n
2

(

2n

n

)

elements.
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5.10 Group Z/nZ

This is the well-known cyclic group of order n, generated by the circular permutation

a =

(

1 2 . . . n − 1 n
2 3 . . . n 1

)

5.11 Brandt semigroup BA
n

There are several equivalent definitions of this semigroup BAn, called the Brandt aperiodic semigroup of
dimension n. It is the syntactic semigroup of the language (a1a2 · · ·an)+ on the alphabet {a1, a2, · · · , an}.
It is also the semigroup of all square matrices of size n with 0-1 entries having at most one non-zero entry,
under the usual multiplication of matrices. For instance,

BA2 =
{

(

1 0

0 0

)

,

(

0 1

0 0

)

,

(

0 0

1 0

)

,

(

0 0

0 1

)

,

(

0 0

0 0

)

}

Finally, it can be shown that BAn is the transformation semigroup generated by the n partial functions
ai (1 6 i 6 n) defined by

ai =

(

1 2 . . . i − 1 i i + 1 . . . n
− − . . . − i + 1 − . . . −

)

where the value of i + 1 is taken modulo n in the range {1, 2, . . . , n}. In particular, n·an = 1. The size
of BAn is n2 + 2.

5.12 Brandt monoid BA
n

This is the same semigroup as in the previous section, with an identity adjoined.

5.13 Monoid of triangular Boolean matrices of size n × n

This monoid is generated by n(n+1)
2 boolean matrices : the n(n−1)

2 generators of Un (see next subsection)
and the n “subidentities” obtained from the identity matrix by replacing exactly one diagonal entry by
a zero. For n = 4, these four extra matrices are









0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1









,









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1









,









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









5.14 Monoid of unitriangular Boolean matrices of size n × n

A Boolean matrix is said to be unitriangular if all its diagonal entries are ones and its subdiagonal entries
are zeroes. The set Un of all n × n unitriangular Boolean matrices form a monoid under the product of

Boolean matrices. This monoid is generated by the n(n−1)
2 unitriangular matrices Ui,j (1 6 i < j 6 n)

having ones on the diagonal and exactly one extra one in position (i, j). For n = 4, these matrices are








1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1









,









1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1









,









1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1









,









1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1









,









1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1









,









1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1









The monoid Un is J -trivial and contains 2
n(n−1)

2 elements.
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5.15 An ordered syntactic monoid

This is the monoid generated by the following generators:

1 2 3

a 2 3 0

b 0 1 2

The initial state and unique final state is 1. The output generated by Semigroupe is given in Section 6.

5.16 Syntactic monoid of (a(a · · · (a(ab)∗b)∗ · · · b)∗b)∗ (n times)

This monoid is generated by the two transformations

a =

(

1 2 . . . n − 1 n
2 3 . . . n −

)

b =

(

1 2 3 . . . n
− 1 2 . . . n − 1

)

and contains 1 + n(n+1)(2n+1)
6 elements.

5.17 Monoid generated by the matrices
(

1 0

1 1

)

and
(

1 1

0 1

)

The entries of these matrices belong to the semiring Zt,p, where the threshold t and the period p are
specified in the next dialog.

5.18 A semigroup in LJ but not in B1

The variety B1 is the variety of semigroups corresponding to the so-called dot-depth one languages. These
languages are boolean combinations of subsets of A+ the form u0A

∗u1A
∗u2 · · ·A

∗uk, where u0, u1, u2,
. . . , uk are words. It was conjectured for some time that B1 was equal to LJ, the variety of locally
J -trivial semigroups, before Knast found a counterexample.

Knast’s counterexample is generated by the four transformations

a =

(

1 2 3 4 5 6 7
4 4 − − − − 4

)

b =

(

1 2 3 4 5 6 7
− 2 − 2 5 5 −

)

c =

(

1 2 3 4 5 6 7
− − 3 7 − 3 7

)

d =

(

1 2 3 4 5 6 7
− 6 6 − 6 − −

)

This semigroup has 31 elements.

5.19 An example of transition semigroup

This example computes the transition semigroup generated by the two transformations

a =

(

1 2 3 4 5
3 5 3 3 5

)

b =

(

1 2 3 4 5
− 2 4 2 2

)

This semigroup has 8 elements.

5.20 An example of monoid of Boolean matrices

This example computes the monoid generated by the Boolean matrices




0 1 0
1 1 0
0 1 0



 ,





1 0 0
1 0 1
1 0 0





This monoid has 7 elements.
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5.21 An example of semigroup of matrices with integer entries

This example computes the semigroup generated by the two matrices with entries in the semiring Z1,2.





0 1 0
1 1 0
0 1 0



 ,





1 0 0
1 0 1
1 0 0





This semigroup has 37 elements.

5.22 An example of semigroup of matrices with Max-Plus entries

This example computes the semigroup generated by the following matrices
(

0 −4
−4 −1

)

,

(

0 −3
−3 −1

)

This monoid has 37 elements.

6 An example computed by Semigroupe

This is the example
Monoid generated by the following generators:

1 2 3

a 2 3 0

b 0 1 2

This monoid has a zero: a3 = 0
Number of elements: 15
Number of relations: 9
Maximal length of the words: 4
Number of D-classes: 4
Number of R-classes: 7
Number of L-classes: 7
Number of H-classes: 15
Elements:

1 2 3

∗ 1 1 2 3

a 2 3 0

b 0 1 2

a2 3 0 0

∗ ab 1 2 0

∗ ba 0 2 3

b2 0 0 1

∗ a3 0 0 0

a2b 2 0 0

ab2 0 1 0

ba2 0 3 0

b2a 0 0 2

∗ a2b2 1 0 0

∗ ab2a 0 2 0

∗ b2a2 0 0 3
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Relations:

aba = a bab = b b2b = 0 a3 = 0 ba2a = 0

ba2b = ab2a a2b2a = a2b ab2aa = ba2

Idempotents:

E(S) = {1, ab, ba, a3, a2b2, ab2a, b2a2}

Syntactic preorder:

1 < ab 1 < ba a < a2b a < ba2 b < ab2

b < b2a a2 < a3 ab < a2b2 ab < ab2a ba < ab2a

ba < b2a2 b2 < a3 a2b < a3 ab2 < a3 ba2 < a3

b2a < a3 a2b2 < a3 ab2a < a3 b2a2 < a3

Minimal ideal:

I = {a3}

D-classes:

∗
1

∗
ba b

a
∗

ab

∗
b2a2 b2a b2

ba2 ∗
ab2a ab2

a2 a2b
∗

a2b2

∗
a3

This monoid is not commutative, since ab 6= ba. This monoid is not idempotent, since u 6= u2 for u = a.
This monoid is not nilpotent. This monoid is aperiodic. This monoid is not a group. This monoid is
neither R-trivial nor L-trivial. The idempotents of this monoid commute. This monoid is a block-group.
This monoid is not in DA since the identity (xy)ω(yx)ω(xy)ω = (xy)ω is not satisfied for x = a and
y = b. This monoid is not in DS, since the identity ((xy)ω(yx)ω(xy)ω)ω = (xy)ω is not satisfied for x = a
and y = b. This monoid is not in R ∨ L since the identity (xy)ωx(zx)ω = (xy)ω(zx)ω is not satisfied for
x = a, y = b and z = b.

7 Finite semigroups

A semigroup is a set equipped with an internal associative operation which is usually written in a mul-
tiplicative form. A monoid is a semigroup with an identity element (usually denoted by 1). If S is a
semigroup, S1 denotes the monoid equal to S if S has an identity element and to S ∪ {1} otherwise. In
the latter case, the multiplication on S is extended by setting s1 = 1s = s for every s ∈ S1. If S is a
semigroup, the operation ∗ defined on S by s ∗ t = ts defines a new semigroup, called the reverse of S.

An element e of a semigroup S is idempotent if e2 = e. A semigroup is idempotent if all its elements
are idempotent. In this chapter, we will mostly use finite semigroups, in which idempotents play a key
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role. In particular, if s is an element of a finite semigroup, the subsemigroup generated by s contains a
unique idempotent and a unique maximal subgroup, whose identity is the unique idempotent.

An ideal of a semigroup S is a non empty subset I of S such that, for all x ∈ I and for all s, t ∈ S,
sxt ∈ I. If S is finite, the intersection of all ideals is still an ideal, called the minimal ideal of S.

If s is an element of a finite semigroup, the unique idempotent power of s is denoted sω. If e is an
idempotent of a finite semigroup S, the set

eSe = {ese | s ∈ S}

is a subsemigroup of S, called the local subsemigroup associated with e. This semigroup is in fact a
monoid, since e is an identity in eSe.

A finite semigroup S is said to satisfy locally a property P if every local subsemigroup of S satisfies
P . For instance, S is locally trivial if, for every idempotent e ∈ S and every s ∈ S, ese = e.

A zero is an element 0 such that, for every s ∈ S, s0 = 0s = 0. It is a routine exercise to see that
there is at most one zero in a semigroup. A non-empty finite semigroup that contains a zero and no other
idempotent is called nilpotent.

A semiring is a set k equipped with an addition and a multiplication. It is a commutative monoid
with identity 0 for the addition and a monoid with identity 1 for the multiplication. Multiplication is
distributive over addition and 0 satisfies 0x = x0 = 0 for every x ∈ k. The simplest example of a semiring
which is not a ring is the Boolean semiring B = {0, 1} defined by 0 + 0 = 0, 0 + 1 = 1 + 1 = 1 + 0 = 1,
1.1 = 1 and 1.0 = 0.0 = 0.1 = 0. Several other semirings are used by Semigroupe:

(1) The semiring (N ∪ {−∞}, max, +),

(2) The semiring (N ∪ {+∞}, min, +),

(3) The semiring {−∞, 0, 1, . . . , t}, max, +), for some threshold t,

(4) The semiring {0, 1, . . . , t, +∞}, min, +), for some threshold t,

(5) The semiring (Z, +, x),

(6) The semiring Nt,p, for some threshold t and some period p: this semiring is the quotient of N under
the congruence t = t + p. Thus Nt,p = {0, 1, . . . , t, t + 1, . . . , t + p − 1}

For each n > 0, the set Mn(k) of n by n matrices with entries in k is again a semiring for addition and
multiplication of matrices induced by the operations in k.

7.1 Green’s relations

Green’s relations on a semigroup S are defined as follows. If s and t are elements of S, we set

s L t if there exist x, y ∈ S1 such that s = xt and t = ys,
s R t if there exist x, y ∈ S1 such that s = tx and t = sy,
s J t if there exist x, y, u, v ∈ S1 such that s = xty and t = usv.
s H t if s R t and s L t.

For finite semigroups, these four equivalence relations can be represented as follows. The elements of a
given R-class (resp. L-class) are represented in a row (resp. column). The intersection of an R-class and
an L-class is an H-class. Each J -class is a union of R-classes (and also of L-classes). It is not obvious
to see that this representation is consistent: it relies in particular on the fact that, in finite semigroups,
the relations R and L commute. Thus one can introduce a fifth relation

D = R ◦ L = L ◦ R

One can show that, in a finite semigroup, D = J . In other words, s J t if and only if there exists r ∈ S
such that s R r and r R t, or equivalently, if there exists u ∈ S such that s L u and u L t.

The presence of an idempotent in an H-class is indicated by a star. One can show that each H-class
containing an idempotent e is a subsemigroup of S, which is in fact a group with identity e. Furthermore,
all R-classes (resp. L-classes) of a given J -class have the same number of elements.

∗

a1, a2
∗

a3, a4 a5, a6

b1, b2
∗

b3, b4
∗

b5, b6
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A J -class.

In this figure, each row is an R-class and each column is an L-class. There are 6 H-classes and 4
idempotents. Each idempotent is the identity of a group of order 2.
A J -class containing an idempotent is called regular . One can show that in a regular J -class, every
R-class and every L-class contains an idempotent.
A semigroup S is L-trivial (resp. R-trivial, J -trivial, H-trivial) if two elements of S which are L-
equivalent (resp. R-equivalent, J -equivalent, H-equivalent) are equal. See [3, 4] for more details.

7.2 Ordered semigroups

See [5, 6] for relevant definitions. A relation R on a semigroup S is stable on the right (resp. left) if, for
every x, y, z ∈ S, x R y implies xz R yz (resp. zx R zy). A relation is stable if it is stable on the right
and on the left. An ordered semigroup is a semigroup S equipped with a stable order relation 6 on S.
Ordered monoids are defined analogously.

An order ideal I of an ordered monoid (M, 6) is a subset of M such that if x ∈ I and y 6 x then
y ∈ I.

Let A∗ be a free monoid. Given a language P of A∗ we define the syntactic congruence ∼P and the
syntactic preorder 6P as follows:

(1) u ∼P v if and only if for all x, y ∈ A∗, xvy ∈ P ⇔ xuy ∈ P ,

(2) u 6P v if and only if for all x, y ∈ A∗, xvy ∈ P ⇒ xuy ∈ P .

The monoid A∗/∼P is called the syntactic monoid of P , and is denoted by M(P ). The monoid A∗/∼P ,
ordered with the stable order relation induced by 6P is called the ordered syntactic monoid of P . The
syntactic (ordered) monoid of a rational language is finite.

7.3 Varieties

A variety of semigroups is a class of semigroups closed under taking subsemigroups, quotients and direct
products. A variety of finite semigroups, or pseudovariety, is a class of finite semigroups closed under
taking subsemigroups, quotients and finite direct products. Varieties of ordered semigroups and varieties
of finite ordered semigroups are defined analogously. Varieties of semigroups or ordered semigroups will
be denoted by boldface capital letters, like V.

An important variety of monoids is the variety of aperiodic monoids, defined by the identity xω =
xω+1. Thus, a finite monoid M is aperiodic if and only if, for each x ∈ M , there exists n > 0 such that
xn = xn+1. This also means that the cyclic subgroup of the submonoid generated by any element x is
trivial or that in M the Green relation H is the equality relation. It follows that a monoid is aperiodic
if and only if it is group-free: every subsemigroup which happens to be a group has to be trivial.

Another important variety is the variety G of all finite groups. This is indeed a variety because a
submonoid of a finite group is a group.

7.4 Kernel

Recall that a relational morphim between monoids M and N is a relation τ : M → N such that:

(1) τ(m)τ(n) ⊂ τ(mn) for all m, n ∈ M ,

(2) τ(m) is non-empty for all m ∈ M ,

(3) 1 ∈ τ(1)

Equivalently, τ is a relation whose graph

graph(τ) = { (m, n) | n ∈ mτ }

is a submonoid of M ×N that projects onto M . The kernel of M , denoted by K(M), is the intersection
of the submonoids τ−1(1) over all relational morphims s τ : M → G into a group. this definition is
not constructive, but a deep result of Ash [1] gives an algorithm to compute K(M). The kernel of M
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is the smallest submonoid of M closed under weak conjugation: if m is a weak inverse of n, that is, if
mnm = m, then, for every k ∈ K(M), mkn ∈ K(M) and nkm ∈ K(M).

The kernel was introduced as a tool to study decidability problems related to Malcev products. Let
V be a variety of finite monoids. Let

V M©G = { M | There is a relational morphism τ from M

onto a group G such that τ−1(1) ∈ V}

Then V M©G is a variety, called the Mal’cev product of V and G. The following consequence of Ash’s
theorem shows that if V is decidable, then V M©G is decidable.

Theorem 7.1 Let M be a monoid and let V be a variety. Then M ∈ V M©G if and only if K(M) ∈ V.
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