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Abstract

Eilenberg has shown that there is a one-to-one correspondence between

varieties of finite monoids and varieties of recognizable languages. In this

paper, we give a description of a variety of languages close to the class of

piecewise testable languages considered by I. Simon. The corresponding

variety of monoids is the variety of J -trivial monoids with commuting

idempotents. This result is then generalized to the case of finite monoids

with commuting idempotents whose regular D-classes are groups from a

given variety of groups.

1 Introduction

The study of recognizable (or regular) languages was initiated by Kleene in
1954, when he showed that a language that can be recognized by a system pos-
sessing only a finite memory - a finite automaton, in the current terminology -
can be expressed from the letters by using three natural operations only, now
known as Kleene’s operations : union, concatenation and star. This famous
theorem was the first of a series of fundamental results obtained by Brzozowski,
Mc Naughton, I. Simon, Schtzenberger, and others. The theory of varieties,
introduced by Eilenberg twelve years ago, gave a unified presentation of these
apparently isolated results. It was known for a long time that one could associate
a finite monoid, called the syntactic monoid, with any recognizable language.
Eilenberg used this tool to show that there is a one-to-one correspondence be-
tween certain classes of recognizable languages (the varieties of languages) and
certain classes of finite monoids (the varieties of finite monoids). The term “va-
riety” is borrowed from universal algebra and is indeed very close to the classical
definition, a variety of finite monoids being a class of finite monoids closed under
submonoids, quotients and finite direct products. Eilenberg’s theorem gave a
new impetus to the theory of recognizable languages (and even to the theory
of finite monoids) and a number of articles have been devoted to the detailed
study of the correspondence between languages and monoids [2, 3, 6]. We also
point out the nice connection between logic and varieties of languages developed
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by W. Thomas and the recent applications of this theory to the complexity of
Boolean circuits discovered by Barrington, Straubing and Thérien.

In this paper, we are especially interested by the languages corresponding to
the intersection of two important varieties of finite monoids. The first variety
is the variety J of “J -trivial” monoids. Although the reader may be unfamiliar
with the term “J -trivial”, it corresponds to a simple algebraic property (two
elements generating the same ideal are equal), and J is generated by a very
natural class of finite monoids : the ordered monoids in which the identity is
the greatest element. The corresponding languages are the piecewise testable
languages [8] and form the first level of Straubing’s concatenation hierarchy [9].
The second variety is the variety of finite monoids with commuting idempotents.
Again, this a very naturally defined variety of monoids, which is generated by
all the monoids of partial one-to-one maps on a finite set [1]. The corresponding
variety of languages was described in [4, 5].

However, the question remain open to characterize the languages correspond-
ing to the intersection of these two varieties. Surprisingly, the previous known
results of [4, 5, 8] do not seem to help much to solve this problem. In fact the
solution given in this paper is based on an argument of [1] and gives a slightly
more general result. Given a variety of finite groups H, let V(H) be the vari-
ety of finite monoids with commuting idempotents whose regular J -classes are
groups of the variety H. We give a description of the languages corresponding
to these varieties of finite monoids.

2 Some automata

Recall that a (partial, deterministic) automaton A = (Q, A, · ) is defined by a
set of states Q, an alphabet A and a partial action (q, a) → q · a of A on Q.
This action is extended to an action of A∗ on Q by setting q · 1 = q for every
q ∈ Q, and, for u ∈ A∗ and a ∈ A, q · (ua) = (q ·u) · a whenever (q ·u) and
(q ·u) · a are defined. If each letter induces a permutation of Q, then A is called
a group-automaton.

Example 2.1 Let A = ({1, 2, 3}, {a, b}, · ) where 1 · a = 2, 2 · a = 3, 3 · a = 1,
1 · b = 1, 2 · b = 3, 3 · b = 2. Then A is a group-automaton.

1

2

3

a

a, b

a

bb

In this paper, we shall consider a special class of automata. An automaton
A = (Q, A, · ) is “good” if there exists a total pre-order (i.e., reflexive and
transitive relation) on Q such that, for every letter a ∈ A and for every q, q1, q2 ∈
Q, the following conditions are satisfied.

(1) If q1 6 q2, and q1 · a and q2 · a are defined, then q1 · a 6 q2 · a.
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(2) If q · a is defined, then q 6 q · a.

(3) If q1 · a = q2 · a then q1 = q2.

(4) Let ∼ be the equivalence associated to 6 (q ∼ q′ if and only if q 6 q′ and
q′ 6 q). If q · a ∼ q, then a induces a permutation on the ∼-classes of q.

Conditions (1) to (3) state that each letter induces an increasing, extensive
and injective partial function on Q. Note that if C is an equivalence class for
∼, condition (4) states that if a letter a maps at least an element of C to some
other element of C, then a induces a permutation on C. Denote by AC the set of
all letters inducing a permutation on C. Then the automaton AC = (C, AC , · )
is a group-automaton and defines a permutation group GC .

Let H be a variety of finite groups. If GC ∈ H for every equivalence class C
of ∼, we say that A is “H-good”.

Example 2.2 Let A be the automaton represented by the following diagram.

0 1

2

3 4

5 6

7
b

a a

b a

b

b

b

a

Then A is good for the total pre-order 0 6 1 ∼ 2 6 3 6 4 ∼ 5 ∼ 6 6 7.
Conditions (1)–(4) have some interesting algebraic counterparts.

Proposition 2.1 Let M be the transition monoid of an automaton satisfying
condition (3). Then the idempotents commute in M .

Proof. Let A = (Q, A, · ) be an automaton satisfying (3), and let e be an
idempotent of the transition monoid M of A. Then for every q ∈ Q such that
q · e is defined, we have q · e = (q · e) · e and thus q = q · e by (3). Therefore e is a
subidentity and it follows immediately that idempotents commute in M .

Proposition 2.2 Let M be the transition monoid of an automaton satisfying
conditions (2),(3) and (4). Then the regular D-classes of M are groups.

Proof. We first observe that conditions (2), (3) and (4) are satisfied by every
element u of M . For instance assume that u = a1 · · · ak and that q ·u ∼ q. Then
q 6 q · a1 6 q · a1a2 6 · · · 6 q ·u ∼ q and thus q ∼ q · a1 ∼ q · a1a2 ∼ · · · ∼ q ·u.
It follows by (4) that the letters a1, . . . , ak induce a permutation on the ∼-class
C(q) of q. Therefore u itself induces a permutation on C(q).

Assume now u 6R v. Then ux = v for some x ∈ M . Thus if q · v is
defined, q · v = q ·ux and thus q ·u is also defined and q ·u 6 q ·ux = q · v by
(2). It follows that if u R v, then q ·u and q · v are simultaneously defined and
q ·u ∼ q · v.

3



Suppose now that u is idempotent. Then q ·u = q if q ·u is defined, and
thus by (4), u induces the identity on C(q). Furthermore q ∼ q · v and by (4),
v induces a permutation on C(q). It follows that uv = vu = v and thus u H v.
Thus the R-class containing u is a group.

Finally Proposition 2.1 shows that the idempotents commute in M . It follows
that two L-equivalent idempotents are equal. Therefore the D-class containing
the idempotent u is a group.

Corollary 2.3 The transition monoid of an H-good automaton belongs to V(H).

Proof. In fact, condition (1) is not required to get the conclusion. By Propo-
sitions 2.1 and 2.2, the only thing still to be proved is that every group in the
transition monoid belongs to H. But, as shown above, every element of a group
G induces a permutation on every equivalence class of ∼.

Let C1, . . . , Cr be the set of ∼-classes and let π : GC1
× · · · × GCr

be the
map defined by gπ = (g1, . . . , gr) where gk is the restriction of g to Ck. Then
π is an injective group morphism, and since GC1

, . . . , GCr
∈ H, we also have

G ∈ H.

Let A = (Q, A, · ) be an H-good automaton. Given two states q1, q2 ∈ Q,
we set S(q1, q2) = {q ∈ Q | q1 6 q 6 q2}. Then the restriction of the action of
A to the set S(q1, q2) defines an automaton A(q1, q2).

Proposition 2.4 If A is H-good, then A(q1, q2) is H-good for every pair of
states (q1, q2).

Proof. This follows from the definition of an H-good automaton.

To conclude this section, we give a description of the languages recognized
by H-good automata. Let H be a variety of finite groups, and let X be the
corresponding variety of languages. We call H-elementary a language of the
form

L0a1L1a2 · · · akLk,

where k > 0, a1, . . . , ak ∈ A, and, for 0 6 i 6 k, Li ∈ B∗
i X , where Bi is a subset

of A not containing ai or ai+1.
We can now state

Proposition 2.5 Every language recognized by an H-good automaton is a finite
union of H-elementary languages.

Proof. Let A = (Q, A, · ) be an H-good automaton. It suffices to show that
for every q, q′ ∈ Q, the set L(q, q′) = {u ∈ A∗ | q ·u = q′} is a finite union of
H-elementary languages. Set

A(q, q′) = {a ∈ A | q · a = q′}.

Then we have

L(q, q′) =
⋃

L(q0, q
′
0)a1L(q1, q

′
1) · · · akL(qk, q′k),
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where the union runs over the letters such that a1 ∈ A(q′0, q1), . . . , ak ∈
A(q′k−1, qk), and over the sequences such that q = q0 ∼ q′0 < q1 ∼ q′1 < . . . <
qk ∼ q′k = q′ where, as usual, q < q′ means (q 6 q′) and not (q′ 6 q).

Now since qi ∼ q′i, each L(qi, q
′
i) is recognized by a group-automaton Bi =

(Qi, Bi, · ) such that ai /∈ Bi and ai+1 /∈ Bi. Thus L(q, q′) is a finite union of
H-elementary languages.

3 The main result

The aim of this section is to prove the following result, which provides a de-
scription of the variety of languages V(H) corresponding to V(H).

Theorem 3.1 For every alphabet A, A∗V(H) is the Boolean algebra generated
by all H-elementary languages.

We first prove

Proposition 3.2 Every H-elementary language of A∗ belongs to A∗V(H).

Proof. Let L = L0a1L1a2 · · · akLk be an H-elementary language, where each
Li ∈ B∗

i X . Then each Li is recognized by a group automaton Ai = (Qi, Bi, · )
with initial state qi and set of final states Fi ⊆ Qi. Set, for each ti ∈ Qi,

Lti
= {u ∈ A∗ | qi ·u = ti}.

Then Li =
⋃

ti∈Fi
Lti

and L is a finite union of languages of the form

K = Lt0a1Lt1a2 · · · akLtk
.

Now the automaton A represented in the diagram

B0 B1• • • • . . . • •

q0 t0 q1 t1 qk tk
Bk

a1 a2 ak

is an H-good automaton that recognizes K with q0 as initial state and tk as (the
only) final state. Thus K is recognized by the transition monoid M of A, and
by Corollary 2.3, M ∈ V(H). Therefore K ∈ A∗V(H) and hence L ∈ A∗V(H),
since a variety of languages is closed under union.

Let A∗B(H) be the Boolean algebra generated by all H-elementary lan-
guages. Proposition 3.2 shows that A∗B(H) is contained in A∗V(H). To prove
the opposite inclusion, it suffices to show that if a language L ⊆ A∗ is recognized
by a monoid M of V(H), then L ∈ A∗B(H).

Let η : A∗ → M be a monoid morphism that saturates L (that is, L =
Lηη−1). We first recall a result of Ash [1].

Proposition 3.3 There exists an integer N > 0 such that every word w ∈ A∗

can be factorized as w = u0v1u1 · · · vkuk where

(a) v1η, . . . , vkη are regular,
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(b) if bi−1 is the last letter of ui−1 and if ai is the first letter of ui, then
(bi−1vi)η and (viai)η are not regular,

(c) |u0 · · ·uk| 6 N .

Note that, since the regular D-classes of M are groups, “regular” means
“element of a group”. We denote by uα the set of all letters occurring in a word
u. Proposition 3.3 can be made more precise as follows.

Proposition 3.4 Let w = u0v1u1 · · · vkuk be a factorization of w satisfying
conditions (a) and (b) of Proposition 3.3. Then

(d) for 1 6 i 6 k, the last letter of ui−1 and the first letter of ui do not belong
to the set viα.

Proof. Let ai be the first letter of ui. If ai ∈ viα, then vi = v′iaiv
′′
i . Now viη

is in a group Hi of M and thus viη R (viv
′
i)η R (viv

′
iai)η R v2

i η. Therefore,
viη, (viv

′
i)η, (viv

′
iai)η ∈ Hi. Thus, by Green’s lemma, the right translation x →

x(aiη) maps G onto itself. In particular (viai)η ∈ Hi, and this contradicts
condition (b). Thus ai /∈ viα. The proof for the last letter of ui−1 is dual.

We now associate with each factorization w = u0v1u1 · · · vkuk satisfying
conditions (a) and (b) an automaton constructed as follows. First, each vi

belongs to a group Hi of M , whose identity is an idempotent ei. Now each
letter ai of viα acts by right multiplication on Hi (more precisely, if h ∈ Hi,
then h · a = h(aη)): this defines a group automaton Bi = (Hi, viα, · ).

We consider also the minimal automaton of the word u = u0u1 · · ·uk defined
as follows. The set of states is the set of left factors of u and, for each letter
a ∈ A and for each left factor x of u, x · a = xa if xa is a left factor of u
and is undefined otherwise. We now “sew” the automata B and Bi’s together,
according to the following diagram.

e1

B1

v1η e2

B2

v2η . . . ek

Bk

vkη
u0 u1 uk

More formally, the set of states is now the disjoint union of the Hi’s and of the
set S of left factors of u different from u0, u0u1, . . . , u0 · · ·uk−1. The action of
a letter a is given by the following rules :

(i) if hi ∈ Hi, then hi · a = hi(aη) if a ∈ viα (same action as in Bi),

(ii) if s ∈ S, then s · a = sa if sa ∈ S (same action as in B),

(iii) if a is the first letter of ui, (viη) · a = u0 ·ui−1a,

(iv) if a is the last letter of ui−1, and if ui−1 = u′
i−1a, then (u0 · · ·ui−2u

′
i−1) · a =

ei.

Now Proposition 3.4 shows that the automaton defined in this way is H-good.

Let A = (Q, A, · ) be an automaton. We denote by ∼A the equivalence on
A∗ defined by u ∼A v if and only if for every q ∈ Q, q ·u = q · v. It is not
difficult to see that ∼A is in fact a congruence on A∗. The main step in the
proof of Theorem 3.1 is the following proposition.
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Proposition 3.5 Let k be the maximal size of the groups in M . Then if
w ∼A w′ for every H-good automaton on the alphabet wα ∪ w′α having at
most (|wα| + |w′α|)k(N + 1) states, then wη = w′η.

Proof. First assume that wη and w′η are regular. Then there exist two groups
H and H ′ with identity e and e′, respectively, such that wη ∈ H and w′η ∈ H ′.
Since |H | 6 k and |H ′| 6 k, w and w′ have the same action on the two group
automata (H, wα) and (H ′, w′α). In particular e(wη) = e(w′η) = wη and
e′(w′η) = e′(wη) = w′η. Thus e J wη J w′η J e′ and hence e = e′ since
regular J -classes are groups. Thus wη = w′η as required.

We now prove the proposition by induction on |wα|+|w′α|. If |wα|+|w′α| =
0 then w = w′ = 1 and the result is trivial. Suppose now |wα| + |w′α| > 0. We
may also assume that one of wη or w′η, say wη, is not regular. In particular
w 6= 1 and |wα| > 1. Let w = u0v1u1 · · · vkuk be a factorization of w given
by Proposition 3.3. Since wη is not regular, Proposition 3.4 shows that, for
1 6 i 6 k, viα is strictly included in wα. Let A be the automaton associated
with this factorization and represented in the diagram

e1
B1

v1η e2
B2

v2η . . . ek
Bk

vkη
u0 u1 uk

The number of states of A is bounded by k(N + 1). Thus w ∼A w′. Therefore
w′ admits a factorization of the form w′ = u0v

′
1u1 · · · v

′
kuk.

Assume wη 6= w′η. Then there exists an index i such that viη 6= v′iη.
Since |viα| + |v′iα| < |wα| + |w′α| the induction hypothesis may be applied:
there exists an H-good automaton C on the alphabet viα∪ v′iα, having at most
(|viα|+ |v′iα|)k(N + 1) states such that vi 6∼C v′i. Let C = (Q, viα ∪ v′iα, · ) and
let q ∈ Q be such that q · vi 6= q · v′i. We may assume that q · vi = q′ is defined
(the case when q · v′i is defined is dual). By Proposition 2.4, the automaton
C(q, q′) is also H-good.

We now proceed to the “surgical operation” on A consisting of replacing the
subautomaton Bi by C(q, q′):

A : e1
B1

v1η . . . ei
Bi

viη . . . ek
Bk

vkη
u0 u1 ui−1 ui uk

A′ : e1
B1

v1η . . . q

C(q, q′)

q′ . . . ek
Bk

vkη
u0 u1 ui−1 ui uk

The new automaton A′ is still H-good, and contains at most (|viα|+|v′α|)k(N +
1) 6 (|wiα|+ |w′α|)k(N + 1) states. On the other hand, w 6∼A′ w′, a contradic-
tion. Therefore wη = w′η and this concludes the proof of Proposition 3.5.
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Let ∼ be the congruence on A∗ defined by u ∼ v if and only if u ∼A v for
every H-good automaton having at most 2|A|k(N + 1) states. Proposition 3.5
immediately implies

Proposition 3.6 If w ∼ w′, then wη = w′η.

We can now conclude the proof of Theorem 3.1. By Proposition 3.6, every
language L recognized by η is a finite union of ∼-classes. Now every ∼-class is the
intersection of some ∼A-classes where A = (Q, A, · ) is an H-good automaton.
But u ∼A v if and only if for every q ∈ Q, q ·u = q · v. Set, for q, q′ ∈ Q,

L(q, q′) = {u ∈ A∗ | q ·u = q′}.

Then we have, for every u ∈ A∗,

{v ∈ A∗ | v ∼A u} =
⋂

u∈L(q,q′)

L(q, q′) \
⋃

u/∈L(q,q′)

L(q, q′)

and by Proposition 2.5, every L(q, q′) is a finite union of H-elementary lan-
guages. Therefore each class is a Boolean combination of H-elementary lan-
guages and so is L.

4 The J -trivial case

In this section we consider the variety V of finite J -trivial monoids with com-
muting idempotents. This corresponds to the variety V(H) when H is the
trivial variety of groups. Thus Theorem 3.1 can be restated as follows.

Theorem 4.1 Let L ⊆ A∗ be a recognizable language and let M be its syntactic
monoid. The following conditions are equivalent:

(1) M is J -trivial with commuting idempotents,

(2) L is a Boolean combination of languages of the form A∗
0a1A

∗
1a2 · · ·akA∗

k

where k > 0, a1, . . . , ak ∈ A, A0, . . . , Ak ⊆ A and, for 1 6 i 6 k, ai /∈
Ai−1 ∪ Ai.

The variety V also plays a role in the study of power monoids. Recall that
the power monoid P(M) of a monoid M is the set of all subsets of M with
multiplication defined, for all X, Y ⊆ M , by

XY = {xy | x ∈ X, y ∈ Y }.

Given a variety of monoids W, we denote by PW the variety of finite monoids
generated by all monoids P(M) where M ∈ W.

Denote by J, R, and Rr the varieties of J -trivial, R-trivial and L-trivial
monoids, respectively, and by DA the variety of monoids whose regular D-
classes are Aperiodic semigroups (in fact, rectangular bands!).

It was proved in [7] that PJ = PR = PRr = PDA. We slightly improve
this result by showing

Theorem 4.2 For any variety W such that V ⊆ W ⊆ DA, PW = PJ. In
particular, PV = PJ = PR = PRr = PDA.
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Proof. Since V ⊆ W = DA, we have PV ⊆ PW = PDA. Thus it suffices to
show that PDA is contained in PV. We denote by V , V1 and V2 the varieties
of languages corresponding to V, PV and PDA, respectively. By Eilenberg’s
theorem, it suffices to show that V2 is contained in V1. Let A be an alphabet. It
was shown in [7] that A∗V2 is the Boolean algebra generated by the languages of
the form K = A∗

0a1A
∗
1a2 · · ·akA∗

k, where k > 0, a1, . . . , ak ∈ A and A0, . . . , Ak ⊆
A.

Since A∗V1 is also a Boolean algebra, it suffices to show that K belongs to
A∗V2. Let B be the disjoint union of A0, . . . , Ak and {a1}, . . . , {ak}. Thus

B =
⋃

16i6k

Bi ∪ {b1, . . . , bk}

where each Bi is a copy of Ai. There is a natural map ϕ from B to A which maps
each Bi onto Ai and each bi onto ai. Further ϕ extends to a length-preserving
morphism ϕ : B∗ → A∗. Now let

L = B∗
0a1B

∗
1a2 · · · akB∗

k.

Since bi−1 /∈ Bi−1 for 1 6 i 6 k, L ∈ B∗V by Theorem 3.1. Now it is known
that if ϕ : B∗ → A∗ is a length-preserving morphism and if L ⊆ B∗ is recognized
by a monoid M , then Lϕ is recognized by P(M). Thus K = Lϕ ∈ A∗V1 as
required.
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