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1 Basic algebraic structures

A semigroup is a pair consisting of a set S and an associative binary operation on S, usu-

ally denoted multiplicatively. In this case, xy is called the product of x and y. Sometimes,

the additive notation is preferred, and x+ y denotes the sum of x and y.

A monoid is a triple consisting of a set M , an associative binary operation on M and

an identity for this operation. This identity is denoted by 1 in the multiplicative notation

and by 0 in the additive notation.

A semiring consists of a set k, two binary operations on k, denoted additively and

multiplicatively, and two elements 0 and 1, satisfying the following conditions:

(1) k is a commutative monoid for addition with identity 0,

(2) k is a monoid for multiplication with identity 1,

(3) Multiplication is distributive over addition: for all s, t1, t2 ∈ k, we have s(t1 +
t2) = st1 + st2 and (t1 + t2)s = t1s+ t2s,

(4) for all s ∈ k, we have 0s = s0 = 0.

A ring is a semiring in which the monoid (k,+, 0) is a group. A semiring is commutative

if its multiplication is commutative.

The simplest example of a semiring which is not a ring is the Boolean semiring B =
{0, 1} whose operations are defined by the following tables

+ 0 1

0 0 1

1 1 1

× 0 1

0 0 0

1 0 1

2 Words, languages and automata

2.1 Words and languages

Let A be a set called an alphabet, whose elements are called letters. A finite sequence of

elements ofA is called a finite word onA, or just a word. We denote by mere juxtaposition

a1 · · · an

the sequence (a1, . . . , an). The set of words is endowed with the operation of concate-

nation product also called product, which associates the word xy = a1 · · · apb1 · · · bq
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with two words x = a1 · · · ap and y = b1 · · · bq . This operation is associative. It has an

identity, the empty word, denoted by 1 or ε, which is the empty sequence.

We let A∗ denote the set of words on A and A+ the set of nonempty words. The set

A∗ [A+], equipped with the concatenation product is thus a monoid with identity 1 [a

semigroup]. The set A∗ is called the free monoid on A and A+ the free semigroup on A.

Let u = a1 · · · an be a word in A∗ and let a be a letter of A. A nonnegative integer i
is said to be an occurrence of the letter a in u if ai = a. We denote by |u|a the number of

occurrences of a in u. Thus, ifA = {a, b} and u = abaab, one has |u|a = 3 and |u|b = 2.

The sum

|u| =
∑

a∈A

|u|a

is the length of the word u. Thus |abaab| = 5.

A language is a set of words. The empty language is denoted by 0 and each singleton {u}
is simply denoted u. Several operations can be defined on languages:

(1) Boolean operations, which comprise union (which we often denote by +), inter-

section and complement (denoted by L→ Lc).

(2) Quotients: given a language L and a word u of A∗, u−1L = {v | uv ∈ L} and

Lu−1 = {v | vu ∈ L}.

(3) Star and Plus: if L is a language, L∗ [L+] is the submonoid (subsemigroup) of

A∗ generated by L. Thus L∗ = {u1u2 · · ·un | n > 0, u1, . . . , un ∈ L} and

L∗ = L+ + 1.

(4) Product: the product of two languages L1 and L2 is the language L1L2 = {u1u2 |
u1 ∈ L1, u2 ∈ L2}.

(5) Morphisms. Let A and B be two alphabets, and let ϕ be a function from A into B∗.

Then ϕ extends in a unique way to a monoid morphism from A∗ into B∗. If L is a

language of A∗, then ϕ(L) = {ϕ(u) | u ∈ L} is a language of B∗.

(6) Inverses of morphisms. If ϕ : A∗ → B∗ is a monoid morphism and L is a language

of B∗, then ϕ−1(L) = {u ∈ A∗ | ϕ(u) ∈ L} is a language of A∗.

The set of rational (or regular) languages on A∗, denoted by Rat(A∗), form the smallest

set of languages containing the languages 0, 1 and a for each letter a ∈ A, and closed

under finite union, product and star. That is, if L and L′ are rational languages, then the

languages L+ L′, LL′ and L∗ are also rational.

For instance, if A = {a, b}, the language (a + ab + ba)∗ is a rational language. The

set A∗uA∗ of all words containing a given factor u is rational. The set of words of odd

length is rational and can be written as (A2)∗A.

We conclude this section by a standard result: rational languages are closed under

morphisms. An extension of this result will be given in Proposition 6.1.

Proposition 2.1. Let ϕ : A∗ → B∗ be a morphism. If L is a rational language of A∗,

then ϕ(L) is a rational language of B∗.
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2.2 Finite automata and recognizable languages

A finite automaton is a 5-tuple A = (Q,A,E, I, F ), where Q is a finite set called the set

of states, A is an alphabet, E is a subset of Q× A×Q, called the set of transitions, and

I and F are subsets of Q, called respectively the set of initial states and the set of final

states.

It is convenient to represent an automaton by a labelled graph whose vertices are the

states of the automaton and the edges represent the transitions. The initial [final] states

are pictured by incoming [outgoing] arrows.

Example 2.1. Let A = (Q,A,E, I, F ) where Q = {1, 2}, I = {1, 2}, F = {2}, A =
{a, b} and E = {(1, a, 1), (2, b, 1), (1, a, 2), (2, b, 2)}. This automaton is represented in

Figure 1.

1a 2 b

a

b

Figure 1. An automaton.

Two transitions (p, a, q) and (p′, a′, q′) are consecutive if q = p′. A path in the automaton

A is a finite sequence of consecutive transitions

c = (q0, a1, q1), (q1, a2, q2), . . . , (qn−1, an, qn)

also denoted by

c : q0
a1−→ q1 · · · qn−1

an−→ qn or q0
a1···an−−−−−→ qn.

The state q0 is its origin, the state qn its end, the word a1 · · · an is its label and the integer

n is its length. Is is also convenient to consider that for each state q ∈ Q, there is an

empty path q
1

−→ q from q to q labelled by the empty word.

A path in A is called initial if its origin is an initial state and final if its end is a final

state. It is successful (or accepting) if it is initial and final.

A state q is accessible if there is an initial path ending in q and it is coaccessible if

there is a final path starting in q.

Example 2.2. Consider the automaton represented in Figure 1. The path

c : 1
a

−→ 1
a

−→ 2
b

−→ 2
b

−→ 1
a

−→ 2
b

−→ 2

is successful, since its end is a final state. However the path

c : 1
a

−→ 1
a

−→ 2
b

−→ 2
b

−→ 1
a

−→ 2
b

−→ 1

has the same label, but is not successful, since its end is 1, a nonfinal state.

A word is accepted by the automaton A if it is the label of at least one successful path

(beware that it can be simultaneously the label of a nonsuccessful path). The language
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recognized (or accepted) by the automaton A is the set, denoted by L(A), of all the words

accepted by A. Two automata are equivalent if they recognize the same language.

A language L ⊆ A∗ is recognizable if it is recognized by a finite automaton, that is, if

there is a finite automaton A such that L = L(A).

Example 2.3. Consider the automaton represented in Figure 2.

1a 2 b

a

b

Figure 2. The automaton A.

We let the reader verify that the language accepted by A is aA∗, the set of all words whose

first letter is a.

Example 2.3 is elementary but it already raises some difficulties. In general, deciding

whether a given word is accepted or not might be laborious, since a word might be the

label of several paths. The notion of deterministic automaton introduced in Section 2.3

permits one to avoid these problems.

A standard property of recognizable languages is known as the pumping lemma. Al-

though it is formally true for any recognizable language, it is only interesting for the

infinite ones.

Proposition 2.2 (Pumping lemma). Let L be a recognizable language. Then there is an

integer n > 0 such that every word u of L of length greater than or equal to n can be

factorized as u = xyz with x, y, z ∈ A∗, |xy| 6 n, y 6= 1 and, for all k > 0, xykz ∈ L.

Proof. Let A = (Q,A,E, I, F ) be an n-state automaton recognizing L and let u =

a1 · · · ar be a word of L of length r > n. Let q0
a1−→ q1 · · · qr−1

ar−→ qr be a successful

path labelled by u. As r > n, there are two integers i and j, with i < j 6 n, such that

qi = qj . Therefore, the word ai+1 . . . aj is the label of a loop around qi, represented in

Figure 3.

q0 q1 qi qj+1 qr

qi+1

a1

. . .
ai aj+1

. . .
ar

ai+1

ai+2

aj

Figure 3. Illustration of the pumping lemma.

Let x = a1 . . . ai, y = ai+1 . . . aj and z = aj+1 . . . ar. Then |xy| 6 n and for all k > 0,

one gets xykz ∈ L, since the word xykz is the label of a successful path.
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The pumping lemma permits one to show that a language like {anbn | n > 0} is not

recognizable. However, it does not characterize the recognizable languages. For instance,

if A = {a, b, c}, the nonrecognizable language {(ab)ncn | n > 0} ∪ A∗bbA∗ ∪ A∗aaA∗

satisfies the pumping lemma.

2.3 Deterministic automata

An automaton A = (Q,A,E, I, F ) is deterministic if I contains exactly one initial state

and if, for every state q ∈ Q and for every letter a ∈ A, there exists at most one state

q′ such that q
a

−→ q′ is a transition of E. If q− is the unique initial state, we adopt the

notation (Q,A,E, q−, F ) instead of (Q,A,E, {q−}, F ).

Example 2.4. The automaton represented in Figure 4 is deterministic.

1 2 3 4 5

b

a b

a

b

b

a

Figure 4. A deterministic automaton.

The following result is one of the cornerstones of automata theory. Its proof is based on

the so-called subset construction.

Proposition 2.3. Every finite automaton is equivalent to a deterministic one.

Proof. Let A = (Q,A,E, I, F ) be an automaton. Consider the deterministic automaton

D(A) = (P(Q), A, · , I,F) where F = {P ⊆ Q | P ∩ F 6= ∅} and, for each subset P
of Q and for each letter a ∈ A,

P · a = {q ∈ Q | there exists p ∈ P such that (p, a, q) ∈ E}.

We claim that D(A) is equivalent to A.

If u = a1 · · · an is accepted by A, there is a successful path

c : q0
a1−→ q1 · · · qn−1

an−→ qn .

The word u also defines a path

I = P0
a1−→ P1 · · · Pn−1

an−→ Pn (2.1)

in D(A). Let us show by induction on i that, for 0 6 i 6 n, qi ∈ Pi. Since c is a suc-

cessful path, one has q0 ∈ I = P0. Suppose that qi−1 ∈ Pi−1. Then since qi−1
ai−→ qi

is a transition, one gets qi ∈ Pi−1 · ai = Pi. For i = n, we get qn ∈ Pn and since c is a

successful path, qn ∈ F . It follows that Pn meets F and hence Pn ∈ F . Therefore u is

accepted by D(A).
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Conversely, let u = a1 · · · an be a word accepted byD(A) and let (2.1) be the success-

ful path defined by u. Since Pn is a final state, one can choose an element qn in Pn ∩ F .

We can now select, for i = n, n−1, . . . , 1, an element qi−1 of Pi−1 such that qi−1
ai−→ qi

is a transition of A. Since q0 ∈ I and qn ∈ F , the path q0
a1−→ q1 · · · qn−1

an−→ qn is

successful, and thus u is accepted by A. This proves the claim and the proposition.

The subset construction converts a nondeterministic n-state automaton into a deter-

ministic automaton with at most 2n states. One can show that this bound is tight.

2.4 Complete, accessible, coaccessible and trim automata

An automaton A = (Q,A, · , q−, F ) is complete if, for each state q ∈ Q and for each

letter a ∈ A, there is at least one state q′ such that q
a

−→ q′ is a transition.

Example 2.5. The automaton represented in Figure 5 is neither complete, nor determin-

istic. It is not deterministic, since the transitions (1, a, 1) and (1, a, 2) have the same label

and the same origin. It is not complete, since there is no transition of the form 2
a

−→ q.

1a 2 b

a

b

Figure 5. An incomplete, nondeterministic automaton.

On the other hand, the automaton represented in Figure 6 is complete and deterministic.

1a 2 b

b

a

Figure 6. A complete and deterministic automaton.

A finite automaton is accessible if all its states are accessible. Similarly, it is coacces-

sible if all its states are coaccessible. Finally, an automaton is trim if it is simultaneously

accessible and coaccessible. It is not difficult to see that every deterministic automaton is

equivalent to a trim one.

Example 2.6. Let A = {a, b}. Starting from the nondeterministic automaton A rep-

resented in Figure 7, we get the deterministic automaton D(A) drawn in Figure 8. In

practice, it suffices to compute the accessible states of D(A), which gives the determin-

istic automaton shown in Figure 9.
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1 2 3

a, b

a a, b

Figure 7. A nondeterministic automaton.

1

12

13

∅

2

3 23

123

a

ba, b

a, b

a, b

a

b

ba, b

aba

Figure 8. After determinisation...

1

12

13

123

a

b

a

b

b

aba

Figure 9. . . . and trimming.

2.5 Standard automata

The construction described in this section might look somewhat artificial, but it will be

used in the study of the product and of the star operation.

A deterministic automaton is standard if there is no transition ending in the initial

state.

Proposition 2.4. Every deterministic automaton is equivalent to a deterministic standard

automaton.

Proof. Let A = (Q,A,E, q−, F ) be a deterministic automaton. If A is not standard, let

p be a new state and A′ = (Q ∪ {p}, A,E′, p, F ′) be the standard automaton defined by
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E′ = E ∪ {(p, a, q) | (i, a, q) ∈ E} and

F ′ =

{

F if i /∈ F ,

F ∪ {p} if i ∈ F .

Then the path q−
a0−→ q1

a1−→ q2 · · · qn−1
an−1

−→ qn is successful in A if and only if

the path p
a0−→ q1

a1−→ q2 · · · qn−1
an−1

−→ qn is successful in A′. Consequently, A and

A′ are equivalent.

Example 2.7. Standardization is illustrated in Figure 10.

1a 2 b

b

a

0

1 2a b

b

a

a b

Figure 10. An automaton and its standardized version.

3 Operations on recognizable languages

We review in this section some classical results on finite automaton. We give explicit

constructions for the following operations: Boolean operations, product, star, quotients

and inverses of morphisms.

3.1 Boolean operations

We give in this section the well known constructions for union, intersection and comple-

ment. Complementation is trivial, but requires a deterministic automaton.

Proposition 3.1. The union of two recognizable languages is recognizable.

Proof. Let L [L′] be a recognizable language of A∗ recognized by the automaton A =
(Q,A,E, I, F ) [A′ = (Q′, A,E′, I ′, F ′)]. We suppose that Q and Q′ are disjoint sets
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and thus one can identifyE andE′ with subsets of (Q∪Q′)×A×(Q∪Q′). Then L+L′

is recognized by the automaton (Q ∪Q′, A,E ∪ E′, I ∪ I ′, F ∪ F ′).

Example 3.1. If L [L′] is recognized by the automaton A [A′] represented in Figure 11,

then L+ L′ is recognized by the automaton represented in Figure 12.

1 2

a b

aA

1 2

3

b
a

a bA′

Figure 11. The automata A and A′.

1 2

a b

a

4 5

6

b
a

a b

Figure 12. An automaton recognizing L+ L′.

Corollary 3.2. Every finite language is recognizable.

Proof. Since recognizable languages are closed under union, it suffices to verify that the

singletons are recognizable. But it is clear that the language a1a2 · · · an is recognized by

the automaton represented in Figure 13.

0 1 2 n
a1 a2 a3 . . . an

Figure 13. An automaton recognizing a1 · · · an.

Proposition 3.3. The intersection of two recognizable languages is recognizable.

Proof. Let L [L′] be a recognizable language of A∗ recognized by the automaton A =
(Q,A,E, I, F ) [A′ = (Q′, A,E′, I ′, F ′)]. Consider the automaton B = (Q×Q′, A, T, I×
I ′, F × F ′) where

T =
{

(

(q1, q
′
1), a, (q2, q

′
2)
)

| (q1, a, q2) ∈ E and (q′1, a, q
′
2) ∈ E′

}

.
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A word u = a1a2 · · · an is the label of a successful path in B

(q0, q
′
0)

a1−→ (q1, q
′
1)

a2−→ (q2, q
′
2) · · · (qn−1, q

′
n−1)

an−→ (qn, q
′
n)

if and only if the paths

q0
a1−→ q1

a2−→ q2 · · · qn−1
an−→ qn and

q′0
a1−→ q′1

a2−→ q′2 · · · q′n−1
an−→ qn

are successful paths in A and A′ respectively. Therefore, B recognizes L ∩ L′.

In practice, one just computes the trim part of B.

Example 3.2. If L [L′] is recognized by the automaton A [A′] represented in Figure 11,

then L ∩ L′ is recognized by the trim automaton represented in Figure 14.

1, 1 2, 2 3, 3

b

a b

Figure 14. A trim automaton recognizing L ∩ L′.

Proposition 3.4. The complement of a recognizable language is recognizable.

Proof. Let L be a recognizable language of A∗ and let A = (Q,A, · , q−, F ) be a com-

plete deterministic automaton recognizing L. Then the automaton A′ = (Q,A, · , q−, Q\
F ) recognizes Lc. Indeed, since A and A′ are both deterministic and complete, every

word u of A∗ is the label of exactly one path starting in q−. Let q be the end of this path.

Then u belongs to L if and only if q belongs to F and u belongs to Lc if and only if q
belongs to Q \ F .

Example 3.3. The language (ab)∗ is recognized by the complete deterministic automaton

A, and its complement is recognized by the automaton A′ represented in Figure 15.

0

1 2

a, b

b

a

b

a

A A′

0

1 2

a, b

b

a

b

a

Figure 15. Complementation of a deterministic automaton.
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3.2 Product

Proposition 3.5. The product of two recognizable languages is recognizable.

Proof. Let L1 and L2 be two recognizable languages of A∗, recognized by the automata

A1 = (Q1, A,E1, I1, F1) and A2 = (Q2, A,E2, I2, F2), respectively. One may assume,

by Propositions 2.3 and 2.4, that A2 is a standard deterministic automaton and thus in

particular that I2 = {i}. One can also suppose that Q1 and Q2 are disjoint. Let now

A = (Q,A,E, I, F ), where

Q = (Q1 ∪Q2) \ {i},

E = E1 ∪ {(q, a, q′) ∈ E2 | q 6= i} ∪ {(q1, a, q
′) | q1 ∈ F1 and (i, a, q′) ∈ E2},

I = I1, and

F =

{

F2 if i /∈ F2,

F1 ∪ (F2 \ {i}) if i ∈ F2 (i.e., if 1 ∈ L2).

We claim that A recognizes L1L2. If u is a word of L1L2, then u = u1u2 for some

u1 ∈ L1 and u2 ∈ L2. Therefore, there is a successful path c1 : i1
u1−→ q1 in A1 (with

i1 ∈ I1 and q1 ∈ F1) and a successful path c2 : i
u2−→ q2 in A2, with q2 ∈ F2. If

u2 = 1, then L2 contains the empty word, the path c1 is a successful path in A and u is

accepted by A. If u2 is not the empty word, let a be the first letter of u2 and let i
a

−→ q
be the first transition of c2. Since q1 ∈ F1, q1

a
−→ q is by definition a transition of E.

Furthermore, if q′
b

−→ q′′ is a transition of c2 different from the first transition, then q′

is the end of a transition of A2. Since A2 is standard, this implies q′ 6= i and it follows

from the definition of E that the transition q′
b

−→ q′′ is also a transition of A. Let c′2 be

the path of A obtained by replacing in c2 the first transition i
a

−→ q by q1
a

−→ q. The

resulting path c1c
′
2 is a successful path in A of label u and hence u is accepted by A.

Conversely, let u be a word accepted by A. Then u is the label of a successful path

c : i1
u

−→ f of A. Since the initial states of A are contained in Q1, and since there is no

transition of A starting in Q2 and ending in Q1, c visits first some states of Q1 and then

possibly some states of Q2. If all the states visited by c are in Q1, one has in particular

f ∈ Q1. But this is only possible if 1 ∈ L2, and in this case, c is also a successful path

of A1, and hence u ∈ L1 ⊆ L1L2. If c visits some states of Q2, then c contains a unique

transition of the form e = (q1, a, q2) with q1 ∈ F1 and q2 ∈ Q2. Therefore c = c1ec2,

where c1 is a path in A1 and c2 is a path in A2. Denoting by u1 [u2] the label of c1 [c2],

we get u = u1au2. Since c1 is a successful path in A1, one has u1 ∈ L1. Moreover, by

definition ofE, e′ = (i, a, q2) is a transition of A2. Therefore the path e′c2 is a successful

path in A2 of label au2. It follows that au2 ∈ L2 and thus u ∈ L1L2, proving the claim

and the proposition.

Example 3.4. If L1 [L2] is recognized by the automaton A1 [A2] represented in Figure

16, then L1L2 is recognized by the automaton represented in Figure 17.
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1 2

3

b

a

ba

A1 A2

1 2 3
a

a

b

Figure 16. The automata A1 and A2.

1 2

3

b

a

ba

4 5
a

a

a

b

Figure 17. An automaton recognizing L1L2.

3.3 Star

Proposition 3.6. The star of a recognizable language is recognizable.

Proof. Let L be a recognizable language of A∗, recognized by the deterministic stan-

dard automaton A = (Q,A,E, q−, F ). Let A′ = (Q,A,E′, {q−}, F ∪ {q−}) be the

nondeterministic automaton defined by

E′ = E ∪ {(q, a, q′) | q ∈ F and (q−, a, q
′) ∈ E}.

Let us show that A′ recognizes L∗. If u is a word of L∗, then either u is the empty word,

which is accepted by A′ since q− is a final state, or u = u1u2 · · ·un with u1, . . . , un ∈

L\1. Each ui is the label of a successful path in A, say ci : q−
ui−→ qi with qi ∈ F . Let ai

be the first letter of ui and let q−
ai−→ pi be the first transition of ci. Let i ∈ {2, . . . , n}.

As qi−1 ∈ F , the definition of E′ shows that qi−1
ai−→ pi is a transition of A′. Denote

by c′i the path obtained by replacing in ci the first transition q−
ai−→ pi by qi−1

ai−→ pi.

This defines, for 2 6 i 6 n, a path c′i : qi−1
ui−→ qi in A′. Therefore, the path c1c

′
2 · · · c

′
n

is a successful path of label u in A′ and hence u is accepted by A′.

Conversely, let u be a word accepted by A′. If u = 1, one has u ∈ L∗. Otherwise, u
is the label of a nonempty successful path c of A′. This path can be factorized as

c = q−
u0−→ q1

a1−→ q′1
u1−→ q2

a2−→ q′2 · · · qn
an−→ q′n

un−→ qn+1
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where the transitions e1 = q1
a1−→ q′1, e2 = q2

a2−→ q′2, . . . , en = qn
un−→ q′n+1 are

exactly the transitions of E′ \ E occurring in c. Thus by definition of E′, one gets, for

1 6 i 6 n, qi ∈ F and e′i = (q−, ai, q
′
i) ∈ E. Furthermore, qn+1 ∈ F ∪ {q−} since c is

a successful path. Consequently, the paths

q−
ai−→ q′i

ui−→ qi+1

are paths of A. For 1 6 i 6 n − 1, these paths are successful, since qi ∈ F . Moreover,

since A is standard, qn+1 is different from q− and hence qn+1 ∈ F . Consequently

aiui ∈ L for 1 6 i 6 n. Since q−
u0−→ q1 is also a successful path of A, one also has

u0 ∈ L, and hence u ∈ L∗.

Example 3.5. If L is recognized by the standard deterministic automaton A2 represented

in Figure 16, then L∗ is recognized by the nondeterministic automaton represented in

Figure 18.

1 2 3

a

a

a

a, b

Figure 18. An automaton recognizing L∗.

3.4 Quotients

We first treat the left quotient by a word and then the general case.

Proposition 3.7. Let A = (Q,A, · , q−, F ) be a deterministic automaton recognizing a

language L of A∗. Then, for each word u of A∗, the language u−1L is recognized by the

automaton Au = (Q,A, · , q− ·u, F ), obtained from A by changing the initial state. In

particular u−1L is recognizable.

Proof. First the following formulas hold:

u−1L = {v ∈ A∗ | uv ∈ L} = {v ∈ A∗ | q− · (uv) ∈ F}

= {v ∈ A∗ | (q− ·u)· v ∈ F}.

Therefore u−1L is accepted by Au.

Proposition 3.8. Any quotient of a recognizable language is recognizable.

Proof. Let (Q,A,E, I, F ) be an automaton recognizing a language L of A∗ and letK be

a language of A∗. We do not assume that K is recognizable. Setting

I ′ = {q ∈ Q | q is the end of an initial path whose label belongs to K},

it is easy to see that the automaton B = (Q,A,E, I ′, F ) recognizes K−1L. For the

language LK−1, a similar proof works by considering the automaton (Q,A,E, I, F ′),
where F ′ = {q ∈ Q | q is the origin of a final path whose label belongs to K}.
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3.5 Inverses of morphisms

We now show that recognizable languages are closed under inverses of morphisms.

Proposition 3.9. Let ϕ : A∗ → B∗ be a morphism. If L is a recognizable language of

B∗, then ϕ−1(L) is a recognizable language of A∗.

Proof. Let B = (Q,B,E, I, F ) be an automaton recognizingL. Let A = (Q,A, T, I, F ),
where

T = {(p, a, q) | there is a path labelled by ϕ(a) from p to q in B}.

We claim that A recognizes ϕ−1(L). First, if u is accepted by A, there is a successful

path of A labelled by u. Consequently, there is a successful path of B labelled by ϕ(u).
Thus ϕ(u) is accepted by B and u ∈ ϕ−1(L).

Let now u = a1 · · · an be a word of ϕ−1(L). Since the word ϕ(u) is accepted by L,

there is a successful path in B labelled by ϕ(u). Let us factorize this path as

q0
ϕ(a1)
−− q1 · · · qn−1

ϕ(an)
−− qn .

These paths define in turn a successful path in A labelled by u:

q0
a1−→ q1 · · · qn−1

an−→ qn,

which shows that u is accepted by A.

4 Minimal automaton and syntactic monoid

4.1 Minimal automaton

Let L be a language of A∗. The Nerode automaton of L is the deterministic automaton

A(L) = (Q,A, · , L, F ) where Q = {u−1L | u ∈ A∗}, F = {u−1L | u ∈ L} and the

transition function is defined, for each a ∈ A, by the formula

(u−1L)· a = a−1(u−1L) = (ua)−1L.

Beware of this rather abstract definition. Each state of A(L) is a left quotient of L by a

word, and hence is a language of A∗. The initial state is the language L, and the set of

final states is the set of all left quotients of L by a word of L.

Proposition 4.1. A language L is recognizable if and only if the set {u−1L | u ∈ A∗} is

finite. In this case, L is recognized by its Nerode automaton.

Proof. Let L be a recognizable language, accepted by the deterministic automaton A =
(Q,A, · , q−, F ). By Proposition 3.7, the language u−1L is accepted by the automaton

Au = (Q,A, · , q− ·u, F ). If n is the number of states of A, there are at most n automata

of the form Au and hence at most n distinct languages of the form u−1L.
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Conversely, if the set {u−1L | u ∈ A∗} is finite, the Nerode automaton of L is finite

and recognizes L. Indeed, a word u is accepted by A(L) if and only if L·u = u−1L is a

final state, that is if u ∈ L. It follows that L is recognizable.

Let A = (Q,A,E, q−, F ) and A′ = (Q′, A,E′, q′−, F
′) be two deterministic au-

tomata. A morphism of automata from A to A′ is a surjective function ϕ : Q → Q′ such

that ϕ(q−) = q′−, ϕ−1(F ′) = F and, for every u ∈ A∗ and q ∈ Q, ϕ(q ·u) = ϕ(q)·u.

We write A 6 A′ if there is a morphism from A to A′.

Let L be a recognizable language. The next proposition shows that, amongst the

accessible and complete deterministic automata recognizing L, the Nerode automaton of

L is minimal for 6. For this reason it is called the minimal complete automaton of L.

Proposition 4.2. Let A = (Q,A, · , q−, F ) be a accessible and complete deterministic

automaton accepting L. For each state q of Q, let Lq be the language recognized by

(Q,A, · , q, F ). Then A(L) = ({Lq | q ∈ Q}, A, · , Lq− , {Lq | q ∈ F}), where, for all

a ∈ A and for all q ∈ Q, Lq · a = Lq·a. Moreover, the map q 7→ Lq defines a morphism

from A onto A(L).

Proof. Let q be a state of Q. Since q is accessible, there is a word u of A∗ such that

q− ·u = q, and by Proposition 3.7, one has Lq = u−1L. Conversely, if u is a word, one

has u−1L = Lq with q = q− ·u. Therefore

{Lq | q ∈ Q} = {u−1L | u ∈ A∗} and {Lq | q ∈ F} = {u−1L | u ∈ L},

which proves the first part of the statement.

Furthermore, for all a ∈ A, one has ϕ(q · a) = Lq·a = Lq · a = ϕ(q)· a which shows

that the map ϕ : q 7→ Lq is a morphism from A onto A(L).

The direct computation of the Nerode automaton is probably the most efficient method

for a computation by hand, because it gives directly the minimal automaton. In practice,

one starts with the quotient L = 1−1L and one maintains a table of quotients of L.

For each quotient R, it suffices to compute the quotients a−1R for each letter a. These

quotients are compared to the existing list of quotients and possibly added to this list. But

there is a hidden difficulty: the comparison of two rational expressions is not always easy,

since a given language might be represented by two very different rational expressions.

Example 4.1. For L = (a(ab)∗)∗ ∪ (ba)∗, we get 1−1L = L = L1 and

a−1L1 = (ab)∗(a(ab)∗)∗ = L2 b−1L1 = a(ba)∗ = L3

a−1L2 = bL2 ∪ L2 = L4 b−1L2 = ∅

a−1L3 = (ba)∗ = L5 b−1L3 = ∅

a−1L4 = a−1(bL2 ∪ L2) = L4 b−1L4 = b−1(bL2 ∪ L2) = L2

a−1L5 = ∅ b−1L5 = a(ba)∗ = L3

which gives the minimal automaton represented in Figure 19.
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1 2 435
ab

a

a

ba

b

Figure 19. The minimal automaton of L.

There are standard algorithms for minimizing a given accessible deterministic automaton

[3] based on the computation of the Nerode equivalence. Let A = (Q,A,E, q−, F ) be a

accessible deterministic automaton. The Nerode equivalence ∼ on Q is defined by p ∼ q
if and only if, for every word u ∈ A∗,

p·u ∈ F ⇐⇒ q ·u ∈ F.

One can show that ∼ is actually a congruence, in the sense that F is saturated by ∼ and

that p ∼ q implies p·x ∼ q ·x for all x ∈ A∗. It follows that there is a well-defined

quotient automaton A/∼ = (Q/∼, A,E, q̃−, F/∼), where q̃− is the equivalence class of

q−.

Proposition 4.3. Let A be an accessible and complete deterministic automaton. Then

A/∼ is the minimal automaton of A.

We shall in particular use the following consequence.

Corollary 4.4. An accessible and complete deterministic automaton is minimal if and

only if its Nerode equivalence is the identity.

4.2 Automata and monoids

Let A = (Q,A, · , q−, F ) be a complete deterministic automaton. For each v ∈ A∗, the

mapping

q 7→ q · v

defines a function fv : Q→ Q. If we compose these functions from left to right (in effect,

letting them act on Q on the right), we evidently have

fvfw = fvw

for all v, w ∈ A∗. Thus the set

M(A) = {fv | v ∈ A∗}

of these functions is a monoid, with composition as the operation, and the map

ηA : v 7→ fv

is a morphism from A∗ onto M(A). We call M(A) the transition monoid of the automa-

ton A. Since there are only finitely many maps from Q into itself when Q is a finite set,

M(A) is a finite monoid.
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Example 4.2. Consider the automaton A in Example 3.3, which recognizes the language

(ab)∗. We will represent the mapping fv by the table

fv
0 0· v
1 1· v
2 2· v

We can then tabulate the functions fv for short words v:

f1 fa fb fab fba faa
0 0 0 0 0 0 0
1 2 0 1 0 0 0
2 0 1 0 1 2 0

It is easy to check that for any of the words v for which fv is tabulated above, the maps

fva = fvfa and fvb = fvfb are already in the list. For example, faba = fa. These six

elements thus constitute the entire transition monoid M(A).
Since f1 is the identity element of M(A), we will denote it by 1. The element faa

satisfies

faam = faa = mfaa

for all m ∈ M(A) — that is, it is a zero of the monoid — and so we will write faa = 0.

We abbreviate the remaining elements by a, b, ab, ba, and obtain the following multipli-

cation table for M(A).

· 1 a b ab ba 0

1 1 a b ab ba 0

a a 0 ab 0 a 0

b b ba 0 b 0 0

ab ab a 0 ab 0 0

ba ba 0 b 0 ba 0

0 0 0 0 0 0 0

Again, let A = (Q,A, · , q−, F ) be a complete deterministic automaton. Then

L(A) = η−1
A

(X),

where

X = {fv | q−fv ∈ F} ⊆M(A).

We say that a monoid M recognizes a language L ⊆ A∗ if there is a morphism ϕ : A∗ →
M and a set X ⊆ M such that L = ϕ−1(X). We also say in this instance that the

morphism ϕ recognizes L. Thus our observation above can be restated: for any complete

deterministic automaton A, L(A) is recognized both by the monoid M(A) and by the

morphism ηA.

Example 4.3. In Example 4.2 we have L(A) = (ab)∗ = η−1
A

({1, fab}).
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4.3 Syntactic monoid and syntactic morphism

There are two ways to introduce the syntactic monoid of a recognizable language. We

first present an algorithm to compute it and then give an abstract definition.

Let L ⊆ A∗ be a recognizable language and let A(L) be its minimal automaton. The

monoid Synt(L) =M(A(L)) and the morphism ηL = ηA(L) are called, respectively, the

syntactic monoid and the syntactic morphism of L. In other words, the syntactic monoid

of L is the transition monoid of the minimal automaton of L.

Example 4.4. In Example 4.2 we have Synt((ab)∗) =M(A), because A is the minimal

automaton of (ab)∗.

Example 4.5. Let A be a finite alphabet and let a ∈ A. Consider the language L =
A∗aA∗, which consists of all words that contain an occurrence of the letter a. The min-

imal automaton A(L) is ({0, 1}, A, · , 1, {0}), where 1· a = 0 and q · b = q whenever

either q 6= 1 or b 6= a. The syntactic monoid Synt(L) then contains two transitions:

f1, which is the identity of the monoid, and fa, which is a zero. We can thus write this

monoid as {0, 1}, with the usual multiplication.

Let M and N be monoids. We say that M divides N, and write M ≺ N , if there is a

submonoid N ′ of N and a morphism ϕ : N ′ →M that maps onto M .

Informally,M ≺ N means thatM is simpler thanN . We would naturally considerM
to be simpler thanN ifM is either a submonoid or a quotient ofN . We would also expect

‘simpler than’ to be a transitive relation. It is easy to prove (and left as an exercise for the

reader) that division is the least transitive relation that includes both the submonoid and

quotient relation. The next proposition says that the syntactic monoid of L is the simplest

monoid recognizing L.

Proposition 4.5. Let L be a recognizable language andM a monoid. ThenM recognizes

L if and only if Synt(L) divides M .

Proof. First suppose that Synt(L) divides M . Then there is a submonoid M ′ of M and

a surjective morphism ϕ : M ′ → Synt(L). Since ϕ is surjective, there exists for each

a ∈ A at least one ma ∈M ′ such that ϕ(ma) = ηL(a). Set ψ(a) = ma. Then ψ extends

to a unique morphism (also denoted ψ) from A∗ into M ′. Observe that ϕ ◦ ψ = ηL,

because ϕ(ψ(a)) = ηL(a) for all a ∈ A.

Let P = ψ(L). We claim that for all words v ∈ A∗, ψ(v) ∈ P if and only if

v ∈ L. This will show L = ψ−1(P ), and hence M recognizes L. By definition, v ∈ L
implies ψ(v) ∈ P . On the other hand, if ψ(v) ∈ P , then there is some v′ ∈ L such that

ψ(v) = ψ(v′). We thus have

fv = ηL(v) = ϕ ◦ ψ(v) = ϕ ◦ ψ(v′) = ηL(v
′) = fv′ .

Let A(L) = (Q,A, · , q−, F ) be the minimal automaton of L. Since v′ ∈ L, we have

q− · v′ ∈ F and, since fv = fv′ , q− · v = q− · v′. So q− · v ∈ F and thus v ∈ L,

as claimed. Note that we have not used the minimality of this automaton — we have

actually proved that if N recognizes L and N divides M , then M recognizes L as well.
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For the converse, suppose that M recognizes L via a morphism ψ : A∗ → M and a

subset P ⊆ M such that ψ−1(P ) = L. As before, let A(L) = (Q,A, · , q−, F ) be the

minimal automaton of L. We will show that if w,w′ ∈ A∗ with ψ(w) = ψ(w′), then

ηL(w) = ηL(w
′), in other words, that the syntactic morphism ηL ‘factors through’ ψ.

This implies the existence of a morphism ϕ : Im(ψ) → Synt(L) such that ϕ ◦ ψ = ηL.

Since ηL maps onto Synt(L), we conclude that Synt(L) ≺ M . Suppose, contrary to

what we are trying to prove, that ηL(w) 6= ηL(w
′). Thus there is some state q of A(L)

such that q ·w 6= q ·w′. In particular, by Corollary 4.4, there is some v ∈ A∗ such that

q ·wv ∈ F and q ·w′v /∈ F , or vice-versa. Since every state of A(L) is accessible from

the initial state, there is accordingly some u ∈ A∗ such that q− ·u = q, and thus uwv ∈ L,

uw′v /∈ L. Since uwv ∈ L, we must have ψ(uwv) ∈ P . But ψ(uw′v) = ψ(uwv) is then

also in P , so that uw′v ∈ L, a contradiction.

We have defined the syntactic monoid of a recognizable language as the transition

monoid of its minimal automaton. One often sees a different, although equivalent, def-

inition in terms of congruences. A congruence on a monoid M (finite or infinite) is an

equivalence relation ∼ on M that is compatible with multiplication in M : in other words,

if mi ∼ m′
i for i = 1, 2, then m1m2 ∼ m′

1m
′
2. In this case, there is a well-defined

multiplication on the quotient set M/∼ of equivalence classes of ∼ that turns M/∼ into

a monoid. The map taking m ∈M to its equivalence class [m]∼ is then a morphism from

M onto this quotient monoid, called the projection morphism.

Let L ⊆ A∗ be a recognizable language. We define an equivalence relation ∼L on A∗

as follows: if u, v ∈ A∗, then u ∼L v if and only if for every x, y ∈ A∗, xuy and xvy are

either both in L or both outside of L. We call ∼L the syntactic congruence of L.

To see the connection to the syntactic monoid and syntactic morphism, as we have

defined them, first suppose that u ∼L v. Let q be any state of the minimal automaton of

L. If q ·u 6= q · v, then there is some word y ∈ A∗ such that q ·uy is an accepting state

and q · vy is not, or vice-versa. Without loss of generality, we can assume that q ·uy is

accepting. Since every state of the minimal automaton is accessible from the initial state

q−, we have q = q− ·x for some x ∈ A∗. Thus xuy ∈ L and xvy /∈ L, contradicting

u ∼L v. Thus we must have q ·u = q · v for every state q. This shows that ηL(u) = ηL(v).
Conversely, suppose ηL(u) = ηL(v). Then fxuy = fxfufy = fxfvfy. Thus q− ·xuy is

accepting if and only if q− ·xvy is. That is, xuy ∈ L if and only if xvy ∈ L, i.e., u ∼L v.

We have shown that u ∼L v if and only if ηL(u) = ηL(v), so that equivalence classes of

∼L are in one-to-one correspondence with elements of the syntactic monoid. This implies

immediately that ∼L is a congruence, and that the correspondence ηL(u) ↔ [u]∼L
is an

isomorphism of monoids. We have thus proved

Proposition 4.6. Let L ⊆ A∗ be a recognizable language. Then ∼L is a congruence, and

the quotient monoid A∗/∼L is isomorphic to the syntactic monoid Synt(L).

Example 4.6. Let us use this alternative definition of the syntactic monoid to recompute

Synt((ab)∗), the syntactic monoid we originally computed in Example 4.2. The syntactic

congruence of L identifies two words u and v if the set of pairs of words (x, y) such that

xuy ∈ L is the same as the set of pairs for which xvy ∈ L. If u contains two consecutive

occurrences of a or two consecutive occurrences of b, then this set of pairs is empty.
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Indeed, these words u are the only ones for which there is no pair (x, y) with xuy ∈ L,

so one of the ∼L-classes is A∗aaA∗ ∪A∗bbA∗.
Nonempty words in which the letters a and b alternate lie in one of the sets

(ab)+, (ba)+, b(ab)∗, (ab)∗a.

For all u in, say b(ab)+, xuy ∈ L if and only if x ∈ (ab)∗a and y ∈ (ab)∗. So all

the words in b(ab)+ belong to a single congruence class. Likewise, all the words in

each of the other three sets belong to a single congruence class. The only word we have

not considered is the empty word 1. This is not congruent to any nonempty word: for

example if u starts with a we have a· 1· b ∈ L and aub /∈ L. We have thus determined all

six congruences classes:

1, (ab)+, (ab)∗a, b(ab)∗, (ba)+, A∗aaA∗ ∪A∗bbA∗.

We can compute the multiplication table of the syntactic monoid by choosing a represen-

tative word from each of the two classes whose product we seek, and finding which class

the concatenation of the two words belongs to. This gives the same multiplication table

we constructed earlier using the minimal automaton.

4.4 Ordered versions

A non-symmetrical variant of the definition of the syntactic congruence turns out to be

very useful in studying recognizable languages. Let u, v ∈ A∗: we write u 4L v if for

every x, y ∈ A∗ such that xuy ∈ L, we have also xvy ∈ L. Then 4L is a preorder and

it is immediately verified that u ∼L v if and only if u 4L v and v 4L u. Moreover, if

u1 4L v1 and u2 4L v2, then we have u1u2 4L v1v2. As a result, 4L defines an order

relation 6L on Synt(L) = A∗/∼L, the syntactic monoid of L, which is stable under

product. This order is called the syntactic order of L and the resulting ordered monoid

(Synt(L),6L) is called the ordered syntactic monoid of L.

Example 4.7. We have already seen that M = {1, a, b, ab, ba, 0} is the syntactic monoid

of (ab)∗. The order of its ordered syntactic monoid is given by the relations ab 6 1,

ba 6 1 and 0 6 x for all x ∈M .

The syntactic order can also be computed from the minimal automaton of L. Let A =
(Q,A, · , q−, F ) be the minimal automaton of L. Define a relation 6 on Q by setting

p 6 q if and only if, for all u ∈ A∗, p·u ∈ F implies q ·u ∈ F . The relation 6 is clearly

reflexive and transitive. Suppose that p 6 q and q 6 p. Then, for all u ∈ A∗, p·u ∈ F
if and only if q ·u ∈ F . Since A is minimal, this implies p = q. Thus 6 is an order.

Furthermore, if p 6 q, then for all a ∈ A, p· a 6 q · a since, for all u ∈ A∗, p· au ∈ F
implies q · au ∈ F .

We know that the syntactic monoid of L is the transition monoid of its minimal au-

tomaton. The syntactic order of L can now be defined directly as follows: fu 6 fv if and

only if, for every q ∈ Q, q · u 6 q · v.

Example 4.8. Consider the minimal complete automaton of (ab)∗, represented in Figure

15. The order on the set of states is 0 < 1 and 0 < 2. Indeed, one has 0·u = 0 for all
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u ∈ A∗ and thus, the formal implication

0·u ∈ F ⇒ q ·u ∈ F

holds for any q ∈ Q. One can verify that there is no other relations among the states of Q.

For instance, 1 and 2 are incomparable since 1· ab = 1 ∈ F but 2· ab = 0 /∈ F and 1· b =
0 /∈ F but 2· b = 1 ∈ F . One also recovers the syntactic order described in Example 4.7.

For instance, ab 6 1 since 0· ab = 0· 1, 1· ab = 1· 1 and 2· ab = 0 6 2 = 2· 1.

4.5 Operations on recognizable languages

The direct product M1 ×M2 of two monoids M1 and M2 is just the ordinary cartesian

product with the operation (m1,m2)(m
′
1,m

′
2) = (m1m

′
1,m2m

′
2).

Proposition 4.7. Let L,L1, L2 ⊆ A∗ be recognizable languages. Then

Synt(L) = Synt(A∗ \ L),

Synt(L1 ∪ L2) ≺ Synt(L1)× Synt(L2),

Synt(L1 ∩ L2) ≺ Synt(L1)× Synt(L2).

Proof. The minimal automaton of L is identical to that of A∗ \ L, except for the set

of accepting states. In particular, these two automata have the same transition monoid,

which gives the first part of the claim. For the second, it is enough to prove that if M1

recognizes L1 and M2 recognizes L2, then M1 ×M2 recognizes L1 ∪ L2. The result

will then follow from Proposition 4.5. Suppose then that for i = 1, 2, Mi recognizes Li

through morphisms ϕi and subsets Pi. Let ϕ : A∗ →M1 ×M2 be the morphism defined

by ϕ(w) = (ϕ1(w), ϕ2(w)), and let

P = {(m1,m2) | m1 ∈ P1 or m2 ∈ P2}.

Then ϕ(w) ∈ P if and only if either w ∈ L1 or w ∈ L2. Thus M1 ×M2 recognizes

L1 ∪ L2, as required.

The last part of the Proposition follows from the first two parts by DeMorgan’s Laws.

Example 4.9. The reason for studying the syntactic monoid is that it enables us to char-

acterize properties of a language in terms of algebraic properties of the syntactic monoid.

What follows is a very simple example of this approach, which is the subject of Chap-

ter 16. Suppose that a recognizable language L ⊆ A∗ is recognized by a monoid M
that is both idempotent, that is m·m = m for every m ∈ M , and commutative, that is,

m·n = n·m for all m,n ∈ M . Let ϕ : A∗ → M be a morphism that recognizes L. If

w,w′ ∈ A∗ contain the same set of letters, then ϕ(w) = ϕ(w′): because of idempotence

and commutativity, we can duplicate letters of a word and rearrange them without chang-

ing the image of the word under ϕ. Thus w ∈ L if and only if w′ ∈ L; in other words,

membership of a word in L is determined entirely by the set of letters of L. Conversely,

if L has this property, then L can be written as a boolean combination of languages of

the form A∗aA∗, where a ∈ A. Thus by Proposition 4.7 and Example 4.5, Synt(L)
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divides a direct product of copies of the monoid {0, 1}. This monoid is idempotent and

commutative, and it is straightforward to verify that both the idempotence and commu-

tativity properties are preserved under direct products, quotients and taking submonoids.

Thus Synt(L) is idempotent and commutative. We have shown that membership in L is

dependent only on the set of letters in the word if and only if the syntactic monoid of L is

idempotent and commutative.

5 Rational versus recognizable

The aim of this section is to show that, if A is a finite alphabet, a language of A∗ is

recognizable if and only if it is rational.

5.1 Local languages

A language L ofA∗ is said to be local if there exist two subsets P and S ofA and a subset

N of A2 such that 1

L \ 1 = (PA∗ ∩A∗S) \A∗NA∗.

For instance, if A = {a, b, c}, the language

(abc)∗ = 1 ∪ [(aA∗ ∩A∗c) \A∗{aa, ac, ba, bb, cb, cc}A∗]

is local. The terminology can be explained as follows: in order to check whether a

nonempty word belongs to L, it suffices to verify that its first letter is in P , its last letter

is in S and its factors of length 2 are not in N : all these conditions are local. Conversely,

if a language L is local, it is easy to recover the parameters P , S and N . Indeed, P [S]

is the set of first [last] letters of the words of L, and N is the set of words of length 2 that

are factors of no word of L.

It is easy to compute a deterministic automaton recognizing a local language, given

the parameters P , S and N .

Proposition 5.1. Let L = (PA∗ ∩ A∗S) \ A∗NA∗ be a local language. Then L is

recognized by the automaton A in which the set of states is A ∪ {1}, the initial state is 1,

the set of final states is S, and the transitions are given by the rules 1· a = a if a ∈ P and

a· b = b if ab /∈ N .

Proof. Let u = a1 · · · an be a word accepted by A and let

1
a1−→ a1

a2−→ a2 · · · an−1
an−→ an

be a successful path of label u. Then the state an is final and hence an ∈ S. Similarly,

since 1
a1−→ a1 is a transition, one has necessarily a1 ∈ P . Finally, since for 1 6 i 6

n− 1, ai
ai+1

−→ ai+1 is a transition, the word aiai+1 is not in N . Consequently, u belongs

to L.

1P stands for prefix, S for suffix and N for non-factor.
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Conversely, if u = a1 · · · an ∈ L, one has a1 ∈ P , an ∈ S and, for 1 6 i 6 n,

aiai+1 /∈ N . Thus 1
a1−→ a1

a2−→ a2 · · · an−1
an−→ an is a successful path of A

and A accepts u. Therefore, the language accepted by A is L.

For a local language containing the empty word, the previous construction can be

easily modified by taking S ∪ {1} as the set of final states.

Example 5.1. Let A = {a, b, c}, P = {a, b}, S = {a, c} and N = {ab, bc, ca}. Then

the automaton in Figure 20 recognizes the language L = (PA∗ ∩A∗S) \A∗NA∗.

1

a

b

c

a

b

c

a

b

a

c

b

Figure 20. An automaton recognizing a local language.

Note also that the automaton A described in Proposition 5.1 has a special property: all

the transitions of label a have the same end, namely the state a. More generally, we shall

say that a deterministic automaton (not necessarily complete) A = (Q,A, · ) is local if,

for each letter a, the set {q · a | q ∈ Q} contains at most one element. Local languages

have the following characterization:

Proposition 5.2. A rational language is local if and only if it is recognized by a local

automaton.

Proof. One direction follows from Proposition 5.1. To prove the opposite direction, con-

sider a local automaton A = (Q,A, · , q0, F ) recognizing a language L and let

P = {a ∈ A | q0 · a is defined },

S = {a ∈ A | there exists q ∈ Q such that q · a ∈ F},

N = {x ∈ A2 | x is the label of no path in A }

K = (PA∗ ∩A∗S) \A∗NA∗.

Let u = a1 · · · an be a nonempty word of L and let q0
a1−→ q1 · · · qn−1

an−→ qn be

a successful path of label u. Necessarily, a1 ∈ P , an ∈ S and, for 1 6 i 6 n − 1,

aiai+1 /∈ N . Consequently, u ∈ K, which shows that L \ 1 is contained in K.
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Let now u = a1 · · · an be a nonempty word of K. Then a1 ∈ P , an ∈ S, and, for

1 6 i 6 n − 1, aiai+1 /∈ N . Since a1 ∈ P , the state q1 = q0 · a1 is well defined.

Moreover, since a1a2 /∈ N , a1a2 is the label of some path p0
a1−→ p1

a2−→ p2 in A.

But since A is a local automaton, q0 · a1 = p0 · a1. It follows that the word a1a2 is also

the label of the path q0
a1−→ p1

a2−→ p2. One can show in the same way by induction

that there exists a sequence of states pi (0 6 i 6 n) such that aiai+1 is the label of a

path pi−1
ai−→ pi

ai+1

−→ pi+1 of A. Finally, since an ∈ S, there is a state q such that

q · an ∈ F . But since A is a local automaton, one has q · an = pn−1 · an = pn, whence

pn ∈ F . Therefore q0
a1−→ p1 · · · pn−1

an−→ pn is a successful path in A and its label

u is accepted by A. Thus K = L \ 1.

Local languages are stable under various operations:

Proposition 5.3. LetA1 andA2 be two disjoint subsets of the alphabetA and letL1 ⊆ A∗
1

and L2 ⊆ A∗
2 be two local languages. Then the languages L1 + L2 and L1L2 are local

languages.

Proof. Let A1 [A2] be a local automaton recognizingL1 [L2]. The proofs of Propositions

3.1 and 3.5 give an automaton recognizingL1+L2 andL1L2. A simple verification shows

that these constructions produce a local automaton when A1 and A2 are local.

Proposition 5.4. Let L be a local language. Then the language L∗ is a local language.

Proof. Let A be a local automaton recognizing L. The proof of Proposition 3.6 gives an

automaton recognizing L∗. A simple verification shows that this construction produces a

local automaton when A is local.

5.2 Glushkov’s algorithm

Glushkov’s algorithm [2] is an efficient way to convert a rational expression into a non-

deterministic automaton.

A rational expression is said to be linear if each letter has at most one occurrence in

the expression. For instance, the expression

[a1a2(a3a4)
∗ ∪ (a5a6)

∗a7]
∗ (5.1)

is linear. One can linearize a rational expression by replacing each occurrence of a letter

by a distinct symbol. For instance, the expression (5.1) is a linearization of the expression

e = [ab(ba)∗ ∪ (ac)∗b]∗. Now, given an automaton for e′, the linearization of e, it is easy

to obtain an automaton for e, simply by replacing the letters of e′ by the corresponding

letters in e. For instance, starting from the automaton A which recognizes [(a1a2)
∗a3]

∗,

one gets a nondeterministic automaton A′ which recognizes [(ab)∗a]∗ by replacing a1
and a3 by a and a2 by b, as shown in Figure 21.
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a3

a1

a2

a1

a1 a3

a3

A A
′

a

a

b

a

a a

a

Figure 21. Construction of an automaton recognizing [(ab)∗a]∗.

It remains to find an algorithm to compute the automaton of a linear expression.

Proposition 5.5. Every linear expression represents a local language.

Proof. The proof works by induction on the formation rules of a linear expression. First,

the languages represented by 0, 1 and a, for a ∈ A, are local languages. Next, by Propo-

sition 5.4, if e represents a local language, then so does e∗. Let now e and e′ be two linear

expressions and suppose that the expression (e ∪ e′) is still linear. Let B [B′] be the set

of letters occurring in e [e′]. Since (e ∪ e′) is linear, the letters of B [B′] do not occur in

e′ [e]. In other words, B and B′ are disjoint and the local language represented by e [e′]
is contained in B∗ [B′∗]. By Proposition 5.3, the language represented by (e∪ e′) is also

a local language. A similar argument applies for the language represented by ee′.

Proposition 5.1 allows one to compute a deterministic automaton recognizing a local

language. It suffices to test whether the empty word belongs to L and to compute the sets

P (L) = {a ∈ A | aA∗ ∩ L 6= ∅},

S(L) = {a ∈ A | A∗a ∩ L 6= ∅},

F (L) = {x ∈ A2 | A∗xA∗ ∩ L 6= ∅}.

This can be done by recursion, given a linear rational expression representing the lan-

guage. We first compute the procedure

EmptyWord(e: linear expression): boolean;

which tells whether the empty word belongs to the language represented by e.

EmptyWord(0) = false;

EmptyWord(1) = true;

EmptyWord(a) = false for all a ∈ A;

EmptyWord(e ∪ e′) = EmptyWord(e) or EmptyWord(e′);
EmptyWord(e· e′) = EmptyWord(e) and EmptyWord(e′);
EmptyWord(e∗) = true;

Now P , S and F are computed by the following recursive procedures:
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P(0) = ∅; S(0) = ∅;
P(1) = ∅; S(1) = ∅;
P(a) = {a} for all a ∈ A; S(a) = {a} for all a ∈ A;
P(e ∪ e′) = P(e) ∪ P(e′); S(e ∪ e′) = S(e) ∪ S(e′);
if EmptyWord(e) if EmptyWord(e′)

then P(e· e′) = P(e) ∪ P(e′) then S(e· e′) = S(e) ∪ S(e′)
else P(e· e′) = P(e); else S(e· e′) = S(e′);

P(e∗) = P(e); S(e∗) = S(e);
F(0) = ∅;
F(1) = ∅;
F(a) = ∅ for all a ∈ A;
F(e ∪ e′) = F(e) ∪ F(e′);
F(e· e′) = F(e) ∪ F(e′) ∪ S(e)P(e′);
F(e∗) = F(e) ∪ S(e)P(e);

In summary, Glushkov’s algorithm to convert a rational expression e into a nondetermin-

istic automaton works as follows:

(1) Linearize e into e′ and memorize the coding of the letters.

(2) Compute recursively the sets P (e′), S(e′) and F (e′). Then compute a deterministic

automaton A′ recognizing e′.

(3) Convert A′ into a nondeterministic automaton A recognizing e.

Example 5.2. Consider the rational expression e = (a(ab)∗)∗ ∪ (ba)∗. We first linearize

e into e′ = (a1(a2a3)
∗)∗ ∪ (a4a5)

∗. Let L = L(e) and L′ = L(e′). To compute the sets

P , S and F , one can either use the above-mentioned recursive procedures, or proceed to a

direct computation (this method is usually preferred in a computation by hand...). Recall

that P [S] is the set of first [last] letters of the words of L′. We get

P = {a1, a4} and S = {a1, a3, a5}.

Note that a1 belongs to S since a1 is a word of L′.

Next we compute the set F of all words of length 2 that are factors of some word of L′.

We get F = {a1a2, a1a1, a2a3, a3a1, a3a2, a4a5, a5a4}. For instance, a3a1 is a factor of

a1a2a3a1 and a3a2 is a factor of a1a2a3a2a3. Since the empty word belongs to L′, the

state 1 is final and we finally obtain the automaton represented in Figure 22. Since this

automaton is local, there is actually no need to write the labels on the transitions. We now

convert this automaton into a nondeterministic automaton recognizing L, represented in

Figure 23.

1 a1

a2

a3

a4a5

a1

a1a4

a2

a1

a3a2

a5

a4

Figure 22. A local automaton recognizing L′.
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1 a1

a2

a3

a4a5

a

ab

a

a

ba

a

b

Figure 23. A nondeterministic automaton recognizing L.

To get a deterministic automaton, it remains to apply the algorithm described in Section

2.3.

5.3 Linear equations

In this section, we give an algorithm to convert an automaton into a rational expression.

The algorithm amounts to solving a system of linear equations on languages. We first

consider an equation of the form

X = KX + L, (5.2)

whereK and L are languages andX is the unknown. WhenK does not contain the empty

word, the equation admits a unique solution.

Proposition 5.6. If K does not contain the empty word, then X = K∗L is the unique

solution of the equation X = KX + L.

Proof. Replacing X by K∗L in the expression KX + L, one gets

K(K∗L) + L = K+L+ L = (K+ + 1)L = K∗L,

and hence X = K∗L is a solution of (5.2). To prove uniqueness, consider two solutions

X1 andX2 of (5.2). By symmetry, it suffices to show that each word u ofX1 also belongs

to X2. Let us prove this result by induction on the length of u.

If |u| = 0, u is the empty word and if u ∈ X1 = KX1 + L, then necessarily u ∈ L
since 1 /∈ K. But in this case, u ∈ KX2 + L = X2. For the induction step, consider

a word u of X1 of length n + 1. Since X1 = KX1 + L, u belongs either to L or to

KX1. If u ∈ L, then u ∈ KX2 + L = X2. If u ∈ KX1 then u = kx for some k ∈ K
and x ∈ X1. Since k is not the empty word, one has necessarily |x| 6 n and hence by

induction x ∈ X2. It follows that u ∈ KX2 and finally u ∈ X2. This concludes the

induction and the proof of the proposition.

If K contains the empty word, uniqueness is lost.

Proposition 5.7. If K contains the empty word, the solutions of (5.2) are the languages

of the form K∗M with L ⊆M .
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Proof. Since K contains the empty word, one has K+ = K∗. If L ⊆ M , one has

L ⊆M ⊆ K∗M . It follows that the language K∗M is solution of (5.2) since

K(K∗M) + L = K+M + L = K∗M + L = K∗M.

Conversely, let X be a solution of (5.2). Then L ⊆ X and KX ⊆ X . Consequently,

K2X ⊆ KX ⊆ X and by induction, KnX ⊆ X for all n. It follows that K∗X =
∑

n>0X
nK ⊆ X . The language X can thus be written as K∗M with L ⊆ M : it

suffices to take M = X .

In particular, if K contains the empty word, then A∗ is the maximal solution of (5.2) and

the minimal solution is K∗L.

Consider now a system of the form

X1 = K1,1X1 +K1,2X2 + · · ·+K1,nXn + L1

X2 = K2,1X1 +K2,2X2 + · · ·+K2,nXn + L2

...
...

Xn = Kn,1X1 +Kn,2X2 + · · ·+Kn,nXn + Ln.

(5.3)

We shall only consider the case when the system admits a unique solution.

Proposition 5.8. If, for 1 6 i, j 6 n, the languages Ki,j do not contain the empty word,

the system (5.3) admits a unique solution. Moreover, if the Ki,j and the Li are rational

languages, then the solutions Xi of (5.3) are rational languages.

Proof. The case n = 1 is handled by Proposition 5.6. Suppose that n > 1. Consider the

last equation of the system (5.3), which can be written

Xn = Kn,nXn + (Kn,1X1 + . . .+Kn,n−1Xn−1 + Ln).

According to Proposition 5.6, the unique solution of this equation is

Xn = K∗
n,n(Kn,1X1 + . . .+Kn,n−1Xn−1 + Ln).

Replacing Xn by this expression in the n− 1 first equations, we obtain a system of n− 1
equations with n− 1 unknowns and one can conclude by induction.

We shall now associate a system of linear equations with every finite automaton A =
(Q,A,E, I, F ). Let us set, for p, q ∈ Q,

Kp,q = {a ∈ A | (p, a, q) ∈ E}

Lq =

{

1 if q ∈ F ,

0 if q /∈ F .

The solutions of the system defined by these parameters are the languages recognized by

the automata

Aq = (Q,A,E, {q}, F ).

More precisely, we get the following result:
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Proposition 5.9. The system (5.3) admits a unique solution (Rq)q∈Q, given by the for-

mula

Rq = {u ∈ A∗ | there is a path of label u from q to F}

Furthermore, the language recognized by A is
∑

q∈I Rq .

Proof. Since the languages Kp,q do not contain the empty word, Proposition 5.8 shows

that the system (5.3) admits a unique solution. It remains to verify that the family (Rq)q∈Q

is solution of the system, that is, satisfies for all q ∈ Q the formula

Rq = Kq,1R1 +Kq,2R2 + · · ·+Kq,nRn + Lq. (5.4)

Let us denote by Sq the right hand side of (5.4). If u ∈ Rq , then u is by definition the

label of a path from q to a final state f . If u is the empty word, one has necessarily q = f
and hence Lq = 1. Thus u ∈ Sq in this case. Otherwise, let (q, a, q′) be the first transition

of the path. One has u = au′, where u′ is the label of a path from q′ to f . Then one has

a ∈ Kq,q′ , u
′ ∈ Rq′ and finally u ∈ Sq .

Conversely, let u ∈ Sq . If u = 1, one has necessarily u ∈ Lq , whence q ∈ F and

u ∈ Rq . Otherwise there is a state q′ such that u ∈ Kq,q′Rq′ . Therefore, u = au′

for some a ∈ Kq,q′ and u′ ∈ Rq′ . On the one hand, (q, a, q′) is a transition of A by

definition of Kq,q′ and on the other hand u′ is the label of a final path starting in q′. The

composition of these paths gives a final path of label u starting in q. Therefore u ∈ Rq

and thus Rq = Sq.

For example, if A is the automaton represented in Figure 24,

1 2

3

b

a

a

b a

Figure 24. An automaton.

The system can be written

X1 = aX2 + bX3

X2 = aX1 + bX3 + 1

X3 = aX2 + 1
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1 2

3

a+ b

ba

a∗b+ a

b∗ a

Figure 25. An extended automaton.

and has for solution

X1 = (a+ ba)(aa+ aba+ ba)∗(ab+ b+ 1) + b

X2 = (aa+ aba+ ba)∗(ab+ b+ 1)

X3 = a(aa+ aba+ ba)∗(ab+ b+ 1) + 1.

Since 1 is the unique initial state, the language recognized by the automaton is X1.

5.4 Extended automata

The use of equations is not limited to deterministic automata. The same technique applies

to nondeterministic automata and to more powerful automata, in which the transition

labels are not letters, but rational languages.

An extended automaton is a quintuple A = (Q,A,E, I, F ), whereQ is a set of states,

A is an alphabet, E is a subset of Q × Rat(A∗) × Q, called the set of transitions, I [F ]

is the set of initial [final] states. The label of a path

c = (q0, L1, q1), (q1, L2, q2), . . . , (qn−1, Ln, qn)

is the rational language L1L2 · · ·Ln. The definition of a successful path is unchanged.

A word is accepted by A if it belongs to the label of a successful path. In the example

represented in Figure 25, the set of transitions is

{(1, a∗b+ a, 2), (1, b∗, 3), (2, a+ b, 1), (2, b, 3), (3, a, 1), (3, a, 2)}.

Let A = (Q,A,E, I, F ) be an extended automaton. For all p, q ∈ Q, we let Kp,q denote

the label of the transition from p to q. Notice that Kp,q might possibly be the empty

language. We also put

Lq =

{

1 if there is a path labelled by 1 from q to F

0 otherwise.
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Yet the associated system does not necessarily fulfil the condition 1 /∈ Ki,j and Proposi-

tion 5.9 needs to be modified as follows:

Proposition 5.10. The system (5.3) has a minimal solution (Rq)q∈Q, given by the formula

Rq = {u ∈ A∗ | there is a path labelled by u from q to F}

In particular the language recognized by A is
∑

q∈I Rq.

Proof. Let us first verify that the family (Rq)q∈Q is indeed a solution of (5.3), i.e., satis-

fies, for all q ∈ Q:

Rq = Kq,1R1 +Kq,2R2 + · · ·+Kq,nRn + Lq. (5.5)

Denote by Sq the right hand side of (5.5). If u ∈ Rq, then u is by definition the label of a

path from q to F . If u = 1, one has Lq = 1 and thus u ∈ Sq . Otherwise, let (q, u1, q
′) be

the first transition of the path. One has u = u1u
′, where u′ is the label of a path from q′

to F . Therefore u1 ∈ Kq,q′ , u
′ ∈ Rq′ and finally u ∈ Sq .

Conversely, let u ∈ Sq . If u = 1, one has necessarily u ∈ Lq , whence q ∈ F and

u ∈ Rq. Otherwise, there is a state q′ such that u ∈ Kq,q′Rq′ . Thus u = u1u
′ for some

u1 ∈ Kq,q′ and u′ ∈ Rq′ . On the one hand, (q, u1, q
′) is a transition of A by the definition

of Kq,q′ and on the other hand, u′ is the label of a path from q′ to F . Therefore u = u1u
′

is the label of a path from q to F and u ∈ Rq . Consequently Rq = Sq .

It remains to verify that if (Xq)q∈Q is a solution of the system, then Rq ⊆ Xq for all

q ∈ Q. If u ∈ Rq , there exists a path labelled by u from q to F :

(q0, u1, q1)(q1, u2, q2) · · · (qr−1, ur, qr)

with q0 = q, qr ∈ F , ui ∈ Kqi−1,qi and u1u2 · · ·ur = u. Let us show by induction on

r − i that ui+1 · · ·ur belongs to Xqi . By hypothesis, the Xq are solutions of

Xq = Kq,1X1 +Kq,2X2 + · · ·+Kq,nXn + Lq.

In particular, since qr ∈ F , one has 1 ∈ Lqr and hence 1 ∈ Xqr , which gives the result

for r− i = 0. Moreover, if ui+1 · · ·ur is an element of Xqi , the inclusion Kqi−1,qiXqi ⊆
Xqi−1

shows that uiui+1 · · ·ur is an element ofXqi−1
, which concludes the induction. In

particular, u = u1 · · ·ur ∈ Xq .

Example 5.3. For the extended automaton represented in Figure 25, the system can be

written

X1 = (a∗b+ a)X2 + b∗X3

X2 = (a+ b)X1 + bX3 + 1

X3 = aX1 + aX2 + 1.

Replacing X3 by aX1 + aX2 + 1, and observing that a + b∗a = b∗a, we obtain the

equivalent system

X1 = (a∗b+ a)X2 + b∗(aX1 + aX2 + 1) = b∗aX1 + (a∗b+ b∗a)X2 + b∗

X2 = (a+ b)X1 + b(aX1 + aX2 + 1) + 1 = (a+ b+ ba)X1 + baX2 + b+ 1

X3 = aX1 + aX2 + 1.
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We deduce from the second equation

X2 = (ba)∗((a+ b+ ba)X1 + b+ 1),

and replacing X2 by its value in the first equation, we obtain

X1 = b∗aX1 + (a∗b+ b∗a)(ba)∗((a+ b+ ba)X1 + b+ 1) + b∗

= (b∗a+ (a∗b+ b∗a)(ba)∗(a+ b+ ba))X1 + (a∗b+ b∗a)(ba)∗(b+ 1) + b∗.

Finally, the language recognized by the automaton is

X1 =
(

b∗a+ (a∗b+ b∗a)(ba)∗(a+ b+ ba)
)∗
[(a∗b+ b∗a)(ba)∗(b+ 1) + b∗],

since 1 is the unique initial state.

5.5 Kleene’s theorem

We are now ready to state the most important result of automata theory.

Theorem 5.11 (Kleene [4]). A language is rational if and only if it is recognizable.

Proof. It follows from Proposition 5.9 that every recognizable language is rational. Corol-

lary 3.2 states that every finite language is recognizable. Furthermore, Propositions 3.1,

3.5 and 3.6 show that recognizable languages are closed under union, product and star.

Thus every rational language is recognizable.

The following corollary is now a consequence of Propositions 2.1, 3.1, 3.3, 3.4, 3.5,

3.6, 3.8 and 3.9.

Corollary 5.12. Recognizable [rational ] languages are closed under Boolean operations,

product, star, quotients, morphisms and inverses of morphisms.

We conclude this section by proving some elementary decidability results on recog-

nizable languages. Recall that a property is decidable if there is an algorithm to check

whether this property holds or not. We shall also often use the expressions “given a rec-

ognizable language L” or “given a rational language L”. As long as only decidability is

concerned, it makes no difference to give a language by a nondeterministic automaton, a

deterministic automaton or a regular expression, since there are algorithms to convert one

of the forms into the other. However, the chosen representation is important for complex-

ity issues, which will not be discussed here.

Theorem 5.13. Given a recognizable language L, the following properties are decidable:

(1) whether a given word belongs to L,

(2) whether L is empty,

(3) whether L is finite,

(4) whether L is infinite.

Proof. We may assume thatL is given by a trim deterministic automaton A = (Q,A, · , q−, F ).



34 J.-É. Pin

(1) To test whether u ∈ L, it suffices to compute q− ·u. If q− ·u ∈ F , then u ∈ L; if

q− ·u /∈ F , or if q− ·u is undefined, then u /∈ L.

(2) Let us show that L is empty if and only if F = ∅. The condition F = ∅ is clearly

sufficient. Since A is trim, every state of A is accessible. Now, if A has at least one final

state q, there is a word u such that q− ·u = q. Therefore u ∈ L and L is nonempty.

(3) and (4). Let us show that L is finite if and only if A does not contain any loop. If

A contains a loop q
u

−→ q, then L is infinite: indeed, since A is trim, there exist paths

i
x

−→ q and q
y

−→ f , where f is a final state and thus L contains all the words xuny.

Conversely, if L is infinite, the proof of the pumping lemma shows that A contains a

loop. Now, checking whether an automaton contains a loop is easy. Consider the directed

graph G obtained from A by removing all the labels. Then A is loop-free if and only if

G is acyclic, a property that can be checked by standard algorithms. One can for instance

compute the transitive closureG′ ofG and check whetherG′ contains an edge of the form

(q, q).

We leave as an exercise to the reader to prove that the inclusion problem and the

equality problem are decidable for two given recognizable languages.

6 Algebraic approach

The notions of rational and recognizable sets can be defined in arbitrary monoids. How-

ever, Kleene’s theorem does not extend to arbitrary monoids since rational and recogniz-

able sets form in general two incomparable classes.

6.1 Rational subsets of a monoid

Let M be a monoid. The set P(M) of subsets of M is a semiring with union as addition

and product defined by the formula

XY = {xy | x ∈ X and y ∈ Y }.

For this reason, we shall adopt the notation we already introduced for languages. Union is

denoted by +, the empty set by 0 and the singleton {m}, for m ∈M by m. This notation

has the advantage that the identity of P(M) is denoted by 1.

The powers of a subset X of M are defined by induction by setting X0 = 1, X1 = X
and Xn = Xn−1X for all n > 1. The star operation is defined by

X∗ =
∑

n>0

Xn = 1 +X +X2 +X3 + · · · .

In other words, X∗ is the submonoid of M generated by X . The set of rational subsets of

a monoid M is the smallest set F of subsets of M satisfying the following conditions:

(1) F contains 0 and the singletons of P(M),
(2) F is closed under union, product and star (in other words, if X,Y ∈ F , then

X + Y ∈ F , XY ∈ F and X∗ ∈ F).
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For instance, in a finite monoid, all subsets are rational. The rational subsets of Nk are

the semilinear sets, which are finite unions of subsets of the form

{v0 + n1v1 + · · ·+ nrvr | n1, . . . , nr ∈ N},

where v0, v1, . . . , vr are vectors of Nk.

Rational subsets are also stable under morphisms.

Proposition 6.1. Let ϕ :M → N be a monoid morphism. If R is a rational subset of M ,

then ϕ(R) is a rational subset of N . Moreover, if ϕ is surjective, then for each rational

subset S of N , there exists a rational subset R of M such that ϕ(R) = S.

However, the rational subsets of a monoid are not necessarily closed under intersec-

tion, as shown by the following counterexample: Let M = a∗ × {b, c}∗. Consider the

rational subsets

(a, b)∗(1, c)∗ = {(an, bncm) | n,m > 0}

(1, b)∗(a, c)∗ = {(an, bmcn) | n,m > 0}.

Their intersection is {(an, bncn) | n > 0}, a nonrational subset of M . It follows also

that the complement of a rational subset is not necessarily rational. Otherwise, the ratio-

nal subsets of a monoid would be closed under union and complement and hence under

intersection.

Proposition 6.2. Each rational subset of a monoid M is a rational subset of a finitely

generated submonoid of M .

6.2 Recognizable subsets of a monoid

Let ϕ : M → N be a monoid morphism. A subset L of M is recognized by ϕ if there

exists a subset P of N such that

L = ϕ−1(P ).

If ϕ is surjective, we say that ϕ recognizes L. Note that in this case, the condition L =
ϕ−1(P ) implies P = ϕ(L).

A subset of a monoid is recognizable if it is recognized by a finite monoid. We let

Rec(M) denote the set of recognizable subsets of M .

Proposition 6.3. For any monoid M , Rec(M) is closed under Boolean operations and

left and right quotients. Moreover, if ϕ : N → M is a morphism, L ∈ Rec(M) implies

ϕ−1(L) ∈ Rec(N).

Although Kleene’s theorem does not extend to arbitrary monoids, a weaker property holds

for finitely generated monoids.

Theorem 6.4 (McKnight [5]). Let M be a monoid. The following conditions are equiva-

lent:

(1) M is finitely generated,
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(2) every recognizable subset of M is rational,

(3) the set M is a rational subset of M .

We have seen that the intersection of two rational subsets is not necessarily rational. What

about the intersection of a rational subset and a recognizable subset?

Proposition 6.5. The intersection of a rational subset and of a recognizable subset of a

monoid is rational.

The next theorem gives a description of the recognizable subsets of a finite product

of monoids. Eilenberg [1] attributes it to Mezei. Note that this result does not extend to

finite products of semigroups.

Theorem 6.6. Let M1, . . . ,Mn be monoids and let M = M1 × · · · ×Mn. A subset of

M is recognizable if and only if it is a finite union of subsets of the form R1 × · · · × Rn,

where each Ri is a recognizable subset of Mi.

One of the most important applications of Theorem 6.6 is the fact that the product

of two recognizable relations over finitely generated free monoids is recognizable. Let

A1, . . . , An be finite alphabets. Then the monoid A∗
1 × · · · × A∗

n is finitely generated,

since it is generated by the finite set

{(1, . . . , 1, ai, 1, . . . , 1) | ai ∈ Ai, 1 6 i 6 n}.

Proposition 6.7. Let A1, . . . , An be finite alphabets. The product of two recognizable

subsets of A∗
1 × · · · ×A∗

n is recognizable.
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