
Languages and scanners

Danièle Beauquier and Jean-Eric Pin ∗

In this paper, we are interested in a special class of automata, called
scanners. These machines can be considered as a model for computations
that require only “local” information. Informally, a scanner is an automaton
equipped with a finite memory and a “sliding” window of a fixed length. In
a typical computation, the sliding window is moved from left to right on the
input, so that the scanner can remember the factors of length smaller than
or equal to the size of the window. In view of these factors, the scanner
decides whether or not the input is accepted or rejected.

a1 a2 a3 a4 a5 · · · an

Finite
Memory

Figure 0.1: A scanner.

Scanners have been used for a long time in language theory. Every-
one knows the local languages which occur for instance in the theorem of
Chomsky-Schützenberger on context-free languages. Roughly speaking, a
local language is described by the factors of length 2 of its words. For in-
stance, if A = {a, b, c, d}, the language c(ab)+d is the set of all words whose
set of factors of length 2 is exactly {ca, ab, ba, bd}. The locally testable lan-
guages generalize local languages : the membership of a given word in such
a language is determined by the set of factors of a fixed length k (the order
in which these factors occur and their frequency is not relevant) of the word,
and by the prefixes and suffixes of length < k of the word. These conditions
can be tested by a scanner. The locally testable languages are character-

∗LITP/IBP, Université Paris VI et CNRS, Tour 55-56, 2 place Jussieu, 75251 Paris
Cedex 05, FRANCE. e-mail: beauquier@litp.ibp.fr, pin@litp.ibp.fr

1

ized by a deep algebraic property of their syntactic semigroup, discovered
independently by Brzozowski-Simon [2] and McNaughton [7].

There are several possible variations on this definition. First, one can
drop the conditions about the prefixes and suffixes. Membership in this type
of language, that we call strongly locally testable (SLT), is determined only
by factors of a fixed length k. Thus, a language is SLT if and only if it is
a finite boolean combination of languages of the form A∗wA∗, where w is a
word. Surprisingly, this rather natural family of languages does not seem to
have been considered previously in the literature. We show that this family
is also decidable and characterized by another nice algebraic property. But
this time, the syntactic semigroup does not suffice, and a property of the
image of the language in its syntactic semigroup is needed.

A second natural extension is to take in account the number of occur-
rences of the factors of the word. However, since we want to use finite
automata to recognize our languages, we can only count factors up to a cer-
tain threshold. Threshold counting is the favorite way of counting of small
children : they can distinguish 0, 1, 2, . . . but after a certain number n (the
threshold), all numbers are ”big”. From a more mathematical point of view,
two positive integers s and t are congruent threshold n if s = t or if s ≥ n
and t ≥ n. This defines the threshold locally testable languages (TLT). A
combination of two deep results of Straubing [11] and Thérien and Weiss [13]
yields a syntactic characterization of these languages. In view of the results
of the previous paragraph, it is reasonable to think that similar results hold
if one drops the conditions about the prefixes and suffixes. However, we are
not yet able to solve this problem.

The families of languages we have introduced are also deeply connected
with the study of first order theory of successor, with a predicate for each
letter, interpreted on finite words. Indeed Thomas [14] proved that the
languages definable in this logic are exactly the TLT languages. Since we
have an effective syntactic characterization of these languages, we derive
the following decidability result : given a monadic second order formula ϕ
of the theory of successor, it is decidable whether ϕ is equivalent to a first
order formula. We also show that the languages definable by a boolean
combination of existential formulas are exactly the SLTT languages.

Finally, scanners can also be used to define sets of infinite (or even bi-
infinite) words. This is technically more difficult and will be the subject of
a future paper. Most of the results of the present paper as well as those
of this future paper have been presented, without proofs, at the ICALP in
Stresa, 1989 [1].

2

1 Preliminaries

1.1 Words.

Let A be a finite alphabet. We denote by A∗ the set of words over A, and
by A+ the set of non empty words. If u is a word of length ≥ k, we denote
by upk and usk, respectively, the prefix and suffix of length k of u. If u and
x are two words, we denote by

[

u
x

]

the number of occurrences of the factor

x in u. For instance
[

abababa
aba

]

= 3, since aba occurs in three different places
in abababa : abababa, abababa, abababa.

1.2 Finite semigroups.

Recall that a semigroup is a set S equipped with an associative multipli-
cation. All semigroups considered in this paper are finite, except for free
semigroups and free monoids. Therefore the word “semigroup” will mean
“finite semigroup” in the rest of the paper. An element e of a semigroup S is
idempotent if e2 = e. The set of idempotents of a semigroup S is denoted by
E(S). Every non-empty finite semigroup contains at least one idempotent.
If S = E(S), S is an idempotent semigroup.

A monoid is a semigroup with an identity. Let S be a semigroup. We
denote by S1 the monoid equal to S if S has an identity, and to S ∪ {1},
where 1 is a new identity, otherwise.

Given two semigroups S and T , a semigroup morphism ϕ : S → T is
a function from S into T such that, for every s, s′ ∈ S, (sϕ)(s′ϕ) = (ss′)ϕ.
Recall the definitions of the Green’s relations R, L and D: s R t if and only
if there exists u, v ∈ S1 such that su = t and tv = s, s L t if and only if
there exists u, v ∈ S1 such that us = t and vt = s, s D t if and only if there
exists u ∈ S1 such that s R u and u L t. We denote by ≤J the preorder on
S defined by s ≤J t if and only if there exists u, v ∈ S1 such that usv = t.
One can show that s D t if and only if s ≤J t and t ≤J s. We shall need
the following technical result.

Lemma 1.1 Let S and T be two finite semigroups, let π : S → T be a
surjective morphism. Let t and t′ be two elements of T such that t R t′

(respectively t L t′, t D t′). Then there exist s, s′ ∈ S such that sπ = t,
s′π = t′ and s R s′ (respectively s L s′, s D s′).

Proof. We give the proof for R only, but the proof for L and D is similar.
Let t and t′ be two elements of T such that t R t′. Since π is surjective, the
set tπ−1 is non empty. Choose a minimal element s (for the preorder ≤J)
in tπ−1. Since t R t′, there exist u, v ∈ T 1 such that t′ = tu and t = t′v. Let
x, y ∈ S1 be such that xπ = u and yπ = v. Then (sxy)π = tuv = t′v = t and
sxy ≤J sx ≤J s. Thus, by the choice of s, we have sxy D s. It follows, by a

3

standard argument ([9], proposition 1.4, p.47), sxy R s, whence s′ = sx R s.
This proves the lemma, since s′π = tu = t′.

Let S be a finite semigroup. A local subsemigroup of S is a subsemi-
group of S of the form eSe, where e ∈ E(S). A semigroup is said to be
locally trivial, (respectively locally commutative, locally idempotent, locally
a group, etc.) if all the local subsemigroups of S are trivial (respectively
commutative, idempotent, groups, etc.). For instance, a semigroup S is lo-
cally idempotent and commutative if, for each e ∈ E(S) and each s, t ∈ S,
(ese)2 = (ese) and (ese)(ete) = (ete)(ese).

1.3 Semidirect products.

Let M be a monoid and let T be semigroup. We write the product in
M additively to provide a more transparent notation , but it is not meant
to suggest that M is commutative. A left action of T on M is a map
(t,m) → tm from T × M into M such that, for all m,m1,m2 ∈ M and
t, t1, t2 ∈ T , (t1t2)m = t1(t2m) and t(m1 + m2) = tm1 + tm2, t0 = 0 Given
such a left action, the semidirect product of M and T (with respect to this
action) is the semigroup M ∗ T defined on the set M × T by the product
(m1, t1)(m2, t2) = (m1 + t1m2, t1t2).

1.4 Counting semirings.

We define the following congruences on N. x ≡ y threshold t (also denoted
x ≡t y) if and only if (x < t and x = y) or (x ≥ t and y ≥ t). For instance
the equivalence classes of ≡4 are {0}, {1}, {2}, {3}, {4, 5, 6, 7, . . .}. The
quotient semiring Nt = N/≡t is called a counting semiring. In particular,
the boolean semiring B = N1 is a counting semiring.

2 Scanners and languages defined by factors of

words.

2.1 Some equivalences and congruences.

Factors of words can be used in many different ways to define families of
languages. We have selected four of them, which form the subject of this
article. For every k, t > 0, let ≡k,t be the equivalence of finite index defined
on A+ by setting u ≡k,t v if and only if, for every word x of length ≤ k,
[

u
x

]

≡t

[

v
x

]

. For instance, u ≡k,1 v if and only if u and v have the same sets
of factors of length k, and u ≡k,5 v if and only if u and v have the same
factors of length k, but counted with multiplicity threshold 5.

4

Example 2.1 abababab ≡2,3 abababa since abababab contains 4 (≡ 3 thresh-
old 3) occurrences of ab and 3 (≡ 3 threshold 3) occurrences of ba, and no
occurrences of aa (respectively bb).

We also define a congruence ∼k,t of finite index on A+ by setting u ∼k,t v if

(a) u and v have the same prefixes of length < k,

(b) u and v have the same suffixes of length < k,

(c) u ≡k,t v.

These four equivalences define four classes of languages. A subset of A+ is
locally k-testable if it is union of ∼k,1-classes. It is threshold locally k-testable
if it is union of ∼k,t-classes for some t. If one replaces in the previous def-
initions the congruence ∼k,t by the equivalence ≡k,t, one defines the corre-
sponding notions of strongly locally k-testable and strongly threshold locally
k-testable languages.

A subset of A+ is locally testable (LT) if it is locally k-testable for some
k > 0. The notions of threshold locally testable, strongly locally testable,
strongly threshold locally testable languages are defined similarly. The cor-
responding abreviations are TLT, SLT, and STLT.

2.2 A combinatorial description.

One can also define these classes as boolean algebras. Set, for x ∈ A+, and
r, t ≥ 0,

L(x, r, t) = {u ∈ A+ |

[

u

x

]

≡t r}

Thus L(x, r, t) is the set of all words u containing r occurrences of the
factor x, but counted threshold t. For instance, L(x, 1, 1) = A∗xA∗, and
L(x, 0, 1) = A+ \A∗xA∗.

Proposition 2.1 Let L be a subset of A+.

(1) L is SLT if and only if it is a boolean combination of languages of the
form L(x, 1, 1),

(2) L is STLT if and only if it is a boolean combination of languages of
the form L(x, r, t),

(3) L is LT if and only if it is a boolean combination of languages of the
form L(x, 1, 1), xA∗, or A∗x,

(4) L is TLT if and only if it is a boolean combination of languages of the
form L(x, r, t), xA∗, or A∗x.

Proof. We only recall the proof of (1), which is standard. The proof of the
other statements can be easily adapted. For each u ∈ A+, put

Ek(u) = {x ∈ A+ | x is a factor of length k of u} and Fk(u) = Ak \Ek(u)

5

Then the equivalence class of u with respect to ≡k,1 is the set

S(u) =
⋂

x∈Ek(u)

A∗xA∗ \
⋃

x∈Fk(u)

A∗xA∗

This shows that S(u) is a boolean combination of languages of the form
A∗xA∗.

Conversely, let L be a finite boolean combination of languages of the
form A∗xA∗. Let k be the maximal length of the words x occurring in such
a boolean expression. It suffices to show that if |x| ≤ k, then A∗xA∗ is a
union of ≡k,1-classes. But this is clear, since if u ∈ A∗xA∗ and u ≡k,1 v,
then u and v have the same factors of length |x|, whence v ∈ A∗xA∗.

The relations between the four classes is shown in the following diagram.

SLT

STLT

TLT

LT

Example 2.2 Let A = {a, b}. Then (ab)+ is locally testable since (ab)+ =
(aA∗ ∩ A∗b) \ (A∗aaA∗ ∪ A∗bbA∗). We shall see in section 3 that (ab)+ is
not strongly locally testable.

Example 2.3 Let A = {a, b}. Then the set a∗ba∗ is strongly threshold
locally testable : it is the set of all words containing exactly one occurrence
of b. We shall see in section 3 that a∗ba∗ is not locally testable.

2.3 Scanners.

Our four classes of languages can also be defined in terms of a special class
of finite automata, the scanners. The informal definition of a scanner has
been given in the introduction. There are actually two types of scanners,
depending on the use of the window : normally, a window of size k is allowed
to read only factors of length k. If the scanner is unbounded, we allow the
window to be also moved beyond the first and the last letter of the word,
so that the prefixes and suffixes of length < k can be read. For instance, if
k = 3, and u = abbaaabab, different positions of the window are represented
in the following diagrams :

a bbaaabab ab baaabab abb aaabab a bba aabab · · · abbaaaba b

6

We now give the formal definition. A scanner on a counting semiring K is
a triple S = (A, k, F) where A is a finite set (the alphabet), k is a positive
integer (the size of the window), F is a (finite) set of polynomials of K〈A∗〉
of degree k, called the memory. Let u ∈ A+ be a word. Let f : A+ → K〈A∗〉
be the application defined by

uϕ =
∑

|x|=k

[

u

x

]

x

Thus uϕ is just the formal sum of all factors of length k of u, with multiplicity
counted in K. For instance, if A = {a, b}, K = N3, and k = 3,

(abbabbaabababbabbab)ϕ = 4abb + 4bba + 5bab + baa + aab + 2aba

= 3abb + 3bba + 3bab + baa + aab + 2aba

A word u is accepted by S if and only if uf ∈ F .
A scanner on the boolean semiring is a boolean scanner. In the case of an

unbounded scanner, the window is allowed to read the prefixes and suffixes of
length < k. To represent this information, one introduces two new functions
π, σ : A+ → K〈A∗〉 defined by uπ =

∑

t<k upt and uσ =
∑

t<k ust. The
memory is now a triple (P, F, S) of sets of polynomials of K〈A∗〉 of degree
≤ k. Intuitively, P codes the set of possible prefixes, F the set of possible
factors, and S the set of possible suffixes. A word u is accepted by S if and
only if uπ ∈ P , uϕ ∈ F and uσ ∈ S.

Proposition 2.2 Let L be a subset of A+.

(1) L is SLT if and only if it is accepted by a boolean scanner,

(2) L is STLT if and only if it is accepted by a scanner,

(3) L is LT if and only if it is accepted by an unbounded boolean scanner,

(4) L is TLT if and only if it is accepted by an unbounded scanner,

Proof. Again, we only give the proof for (1), but the other proofs are
similar. Let S = (A, k, F) be a boolean scanner recognizing a subset L of
A+. Observe that u ≡k,1 v if and only if uf = vf . It follows that L is
union of ≡k,1-classes. Conversely, if L is union of ≡k,1-classes for some k,
put F = uf | u ∈ L. Then the boolean scanner S = (A, k, F) recognizes
L.

3 Syntactic characterizations.

In this section, we give effective characterizations for three of the four fam-
ilies of languages introduced above. In order to keep a uniform notation

7

for the subsequent statements, we shall denote by S(L) the syntactic semi-
group of a recognizable language L of A+, by η : A+ → S(L) its syntactic
morphism, and by P (L) = Lη the syntactic image of L. We need first to
introduce some algebraic tools.

3.1 Varieties of semigroups.

A variety of (finite) semigroups is a class of semigroups closed under taking
subsemigroups, morphic images (or quotients) and finite direct products.
Varieties of monoids are defined similarly. The following varieties will be
used in this paper.

• J1, the variety of all idempotent and commutative monoids,

• Com, the variety of all commutative monoids,

• Acom, the variety of all commutative aperiodic monoids,

• LI, the variety of locally trivial semigroups,

• LIk, the variety of all semigroups S that satisfy the equation

x1x2 · · · xkxx1x2 · · · xk = x1x2 · · · xk

for all x, x1, x2, . . . , xk ∈ S.

• LJ1, the variety of locally idempotent and commutative semigroups,

Given a variety of monoids V and a variety of semigroups W, we denote
by V∗W the variety of semigroups generated by all the semidirect products
of the form M ∗ T , where M ∈ V and T ∈ W .

3.2 Varieties of languages.

Let V be a variety of semigroups (monoids). One associates to each alphabet
A the set A+V (A∗V) of all languages of A+ (A∗) whose syntactic semigroup
(monoid) belongs to V. V is called the variety of languages corresponding
to V. A description of various varieties of languages can be found in the
litterature [5, 6, 9].

Proposition 3.1 For each alphabet A,

(1) A+J1 is the boolean algebra generated by the languages of the form
A∗aA∗ where a ∈ A,

(2) A+LIk is the boolean algebra generated by the languages of the form
A∗u, vA∗ where u and v are words of length ≤ k,

(3) A+LI is the boolean algebra generated by the languages of the form
A∗u, vA∗ where u, v ∈ A+,

8

(4) A∗Acom is the boolean algebra generated by the languages of the form
{u ∈ A∗ | |u|a = r}, where a ∈ A and r ∈ N.

For now, we need a description, due to Straubing [11], of the varieties of
languages corresponding to V ∗ LI and to V ∗ LIk, when V is a variety of
monoids.

Let k be an integer, and let Bk = Ak. To avoid ambiguity, words of B∗
k

will be represented by finite sequences (b1, b2, · · · , bn), where each bi ∈ Ak.
We define a (sequential) function σk : A+ → B∗

k by setting

wσk = 1 if |w| < k,

(wa)σk = (wσk, (wa)sk) if |w| ≥ k and a ∈ A.

For example, (abbaab)σ3 = (abb, bba, baa, aab). Thus σk associates to a word
u the sequence of words appearing on a window of size k when u is read
from left to right.

To each congruence α of finite index on B∗
k, associate the congruence

(α, k) on A+ defined by u(α, k)v if and only if

(a) u and v have the same prefixes of length < k,

(b) u and v have the same suffixes of length < k,

(c) uσkαvσk

Denote by V and Wk the varieties of languages corresponding to V and
V ∗ LIk, respectively.

Theorem 3.2 [11] A language belongs to A+Wk−1 if and only if it is a finite
union of (α, k)-classes for some congruence α on B∗

k such that B∗
k/α ∈ V .

We give an equivalent form of Theorem 3.2 in terms of boolean algebras.

Corollary 3.3 For every alphabet A, A+Wk−1 is the boolean algebra gen-
erated by the languages of the form A∗u, vA∗ (where u and v are words of
length < k) or Xσ−1

k , where X ∈ B∗
kV.

Proof. In one direction, it suffices to show that each of the languages A∗u,
vA∗ and Xσ−1

k belong to A+Wk−1. First, if |u| < k, then, by proposition 3.1,
S(A∗u), S(uA∗) ∈ LIk−1 ⊂ V∗LIk−1. Furthermore, since σk is a sequential
function, a general result ([5], Chap. 6) states that S(Xσ−1

k) divides a
wreath product of the form M(X) ◦ S(σk), where S(σk) is the syntactic
invariant of σk. Now M(X) ∈ V since X ∈ B∗

kV, and S(σk) ∈ LIk−1. It
follows that S(Xσ−1

k) ∈ V ∗ LIk−1.
Conversely, if L ∈ A+Wk−1, then by Theorem 2.5, L is union of (α, k)-

classes for a certain congruence α such that B∗
k/α ∈ V. Now, it follows

from the definition of (α, k) that the equivalence classes of (α, k) are boolean
combinations of sets of the form A∗u, vA∗ (where u and v are words of length

9

< k) or Xσ−1
k , where X is an equivalence class for α. But since B∗

k/α ∈ V,
one has X ∈ B∗

kV.

For the variety V ∗ LI, one has the following result.

Theorem 3.4 Let S be a semigroup. Then S ∈ V ∗ LI if and only if
S ∈ V ∗ LIk, where k = |S|.

Applying these results with V = Acom and J1 respectively, one obtains
the following corollary.

Corollary 3.5

(1) L is locally testable if and only if S(L) belongs to J1 ∗ LI,

(2) L is threshold locally testable if and only if S(L) belongs to Acom∗LI,

Proof. We only prove (2), the proof of (1) beeing similar. Let L be a subset
of A+. By Corollary 3.3 and Theorem 3.4, S(L) ∈ Acom∗LI if and only if L
is a boolean combination of languages of the form A∗u, vA∗ or Xσ−1

k , where
X ∈ B∗

kAcom. Furthermore, by Proposition 3.1, X ∈ B∗
kAcom if and only

if X is a boolean combination of languages of the form {u ∈ B∗
k | |u|x = r},

where x ∈ Bk and r ∈ N. Now we have

{u ∈ A∗ | |u|x = r}σ−1
k = {u ∈ A∗ |

[

u

x

]

= r} = L(x, r, t) for every t > r.

Therefore S(L) ∈ Acom ∗ LI if and only if L is a boolean combination
of languages of the form A∗u, vA∗ or L(x, r, t), that is, if and only if L is
threshold locally testable.

Note that corollary 3.5 does not give an algorithm to decide whether a
language is LT, TLT or PLT. Indeed, it is not clear at first sight whether
one can decide if a given semigroup belongs to J1 ∗ LI or Acom ∗ LI. But
Brzozowski and Simon [2] and Mac Naughton [7] shaw independently that
J1 ∗ LI = LJ1. Therefore we have

Theorem 3.6 [2, 7, 11] L is locally testable if and only if S(L) belongs to
LJ1.

The syntactic characterization of locally threshold testable languages is
more involved and depends on a deep result of Thérien and Weiss [13]. Given
a semigroup S, form a graph G(S) as follows : the vertices of G(S) are the
idempotents of S, and the edges from e to f are the elements of the form
esf .

Theorem 3.7 [13] A semigroup S belongs to Acom ∗LI if and only if S is
aperiodic and its graph satisfies the following condition (C): if p and r are
edges from e to f , and if q is an edge from f to e, then pqr = rqp.

10

e f

p, r

q

Figure 3.2: The condition pqr = rqp.

Therefore, one obtains

Corollary 3.8 A language L is threshold locally testable if and only if S(L)
is aperiodic and its graph satisfies condition (C).

Example 3.1 Let A = {a, b}, and let L = a∗ba∗. Then L is recognized by
the automaton

1

a

2

a

b

Figure 3.3: The minimal automaton of a∗ba∗.

The transitions are given in the following table

1 2

a 1 2
b 2 −
bb − −

Therefore, S = S(L) is presented by the relations a = 1, b2 = 0. Thus
S = {a, b, 0}, where a = 1 is the identity, and E(S) = {1, 0}. The local
semigroups are 0S0 = {0}, and 1S1 = S. This last local semigroup is not
idempotent, since b2 6= b. Therefore, L is not locally testable. On the other
hand, G(S) is the graph represented below, which satisfies condition (C).

11, b, 0 0 0

0

0

Figure 3.4: The graph of S.

Therefore L is TLT (see example 2.2).

The three classes of languages we have considered so far were character-
ized by an algebraic property of their syntactic semigroup. Such a property

11

do not suffice, however, to characterize the class of strongly locally testable
languages. To overcome this difficulty, we need to consider not only the
syntactic semigroup, but also the syntactic image of the language.

Let S be a semigroup and let P be a subset of S. We say that P saturates
the D-classes of S if, for every D-class D of S, D∩P 6= ∅ implies D ⊂ P . It
is equivalent to say that s ∈ P and s D t imply t ∈ P . The next proposition
shows that this property is stable under quotients.

Proposition 3.9 Let S and T be two semigroups, let π : S → T be a
surjective morphism. Let PS (respectively PT) be a subset of S (respectively
T) such that PT = PSπ and PS = PT π−1. Then PS saturates the D-classes
of S if and only if PT saturates the D-classes of T .

Proof. Suppose that PT saturates the D-classes of T . Let s ∈ PS and s′ ∈ S
such that s D s′. Then sπ D s′π, sπ ∈ PT and therefore, s′π ∈ PT . Thus
s′ ∈ PT π−1 = PS , and PS saturates the D-classes of S.

Conversely, suppose that PS saturates the D-classes of S. Let t, t′ ∈ T
such that t ∈ PT and t D t′. By Lemma 1.1, there exists s, t ∈ S such that
sπ = t, s′π = t′ and s D s′. It follows that s ∈ PT π−1 = PS , whence s′ ∈ PS

and s′π = t′ ∈ PSπ = PT .

Theorem 3.10 A language L is strongly locally testable if and only if S(L)
is locally idempotent and commutative and P (L) saturates the D-classes of
S(L).

Proof. To simplify notations, put S = S(L), P = P (L) and denote by ∼k

the congruence ∼k,1. If L is SLT, then L is also LT and thus S is locally
idempotent and commutative by Theorem 3.6. Furthermore, L is a boolean
combination of languages of the form A∗xA∗. Let k be the maximal length
of the words x occurring in this boolean combination. Then, if u ∈ L and
if u and v have the same factors of length ≤ k, then v ∈ L. We claim that
P saturates the R-classes of S. Let s ∈ P and let t ∈ S such that s R t.
Then there exist some elements x, y ∈ S(L)1 such that sx = t and ty = s.
Let s′ ∈ A+, x′, y′ ∈ A∗ be words such that s′η = s, x′η = x and y′η = y
(if x = 1 or y = 1, we take x′ = 1 or y′ = 1, respectively). Now the word
s′(x′y′)k belongs to L, since (s′(x′y′)k)η = s(xy)k = s. Furthermore, the
words s′(x′y′)k and s′(x′y′)kx′ contain the same factors of length ≤ k. This
is obvious if x′ = 1. Suppose now x′ ∈ A+. Then every factor of s′(x′y′)k is
clearly a factor of s′(x′y′)kx′. Conversely, let t be a factor of length ≤ k of
s′(x′y′)kx′. Then either t is a factor of s′(x′y′)k, or t is a factor of (x′y′)k−1x′,
since |(x′y′)k−1| ≥ k − 1. But (x′y′)k−1x′ itself is a factor of s′(x′y′)k and
thus t is a factor of s′(x′y′)k. It follows, by the remark above, that s′(x′y′)kx′

belongs to L and hence (s′(x′y′)kx′)η = s(xy)kx = sx = t ∈ P , proving the

12

claim. A dual argument would show that P saturates the L-classes, and
hence P also saturates the D-classes.

Conversely, assume that S is locally idempotent and commutative and
that P saturates the D-classes of S. Then, L is locally testable by theorem
3.6, and thus is union of ∼k-classes for some k. Put Sk = A+/∼k. Then
there is a surjective morphism πk : Sk → S, and a subset Q of Sk such that

(a) L = Qπ−1
k and Q = Lπk,

(b) Q = Pπ−1 and P = Qπ.

Now, by Proposition 3.9, Q saturates the D-classes of Sk. To finish the
proof, we need a result on the D-classes of Sk. Denote by Fk(u) the set of
factors of length k of a word u.

Lemma 3.11 Let u and v be two words of A+. Then uπk D vπk if and only
if either u = v or Fk(u) = Fk(v) 6= ∅ (this case implies that u and v are of
length ≥ k).

Proof. We first treate the case |u| < k (respectively |v| < k). If uπk D vπk,
then there exist four words x, y, s, t ∈ A∗ such that xuy ∼k v and svt ∼k u.
This implies svt = u, whence |v| < k, and thus xuy = v, so that u = v.

Suppose now |u|, |v| ≥ k. If uπk D vπk, there exist two words x, y ∈ A∗

such that xuy ∼k v. In particular, every factor of length k of u is a factor
of v, and, by a dual argument, Fk(u) = Fk(v).

Conversely, assume that Fk(u) = Fk(v) and let p (respectively s) be
the prefix (suffix) of length k of u. Then p (respectively s) occurs in v, so
that v = v0pv1 = v2sv3. Put w = v0uv3. We claim that w ∼k v. Indeed
v0p (respectively sv3) is a common prefix (suffix) of v and w. Next, since
Fk(u) = Fk(v), each factor of length k of v is a factor of u and hence a factor
of w. Conversely, let t be a factor of length k of w. Then t is either a factor
of v0p, a factor of u, or a factor of sv3. In each case, it is also a factor of v,
which proves the claim. Therefore vπk = (v0πk)(uπk)(v3πk), and, by a dual
argument, uπk D vπk.

We now conclude the proof of Theorem 3.10. We start with the equality
L = Qπ−1

k and we distinguish two categories of elements in Q. Put

Q1 = {s ∈ Q | every word of sπ−1
k is of length ≥ k} and

Q2 = {s ∈ Q | there exists a word of sπ−1
k of length < k}

Then, since Q = Q1 ∪Q2, we have

L = Q1π
−1
k ∪

⋃

s∈Q2

sπ−1
k

and we shall prove separately that the languages Q1π
−1
k and sπ−1

k , for s ∈
Q2, are SLT.

13

Let s ∈ Q2. Then sπ−1
k contains a word u of length < k, and sπ−1

k = {u},
since u cannot be equivalent to another word. But

{u} = A∗uA∗ \

(

⋃

a∈A

A∗uaA∗ ∪
⋃

a∈A

A∗auA∗

)

and thus sπ−1
k is strongly locally testable.

Since Q saturates the D-classes of Sk, and since, by Lemma 3.11, an
element of Q2 cannot be D-equivalent with an element of Q1, Q1 is a union
of D-classes. Furthermore, Lemma 3.11 shows that a D-class D contained in
Q1 is entirely characterized by a certain non empty set F of words of length
k. More precisely Dπ−1

k = {u ∈ A+ | Fk(u) = F}. It follows that Dπ−1
k is

strongly locally testable, since

{u ∈ A+ | Fk(u) = F} =
⋂

x∈F

A∗xA∗ \
⋃

x ∈ Ak \ FA∗xA∗

Finally, L is a finite union of SLT languages, and thus is also strongly locally
testable.

Example 3.2 Let A = {a, b, c}, and let L = c(ab)∗ ∪ c(ab)∗a. Then L is
recognized by the following automaton

1 2 3
c

a

b

Figure 3.5: An automaton recognizing L = c(ab)∗ ∪ c(ab)∗a.

The transitions are given in the following table

1 2 3

a − 3 −
b − − 2
c 2 − −
ab − 2 −
ba − − 3
ca 3 − −

Therefore, S(L) is presented by the relations cabc = c, a2 = b2 = c2 = bc =
ac = 0. The D-class structure is represented in the following diagram, where
the grey box is the image of L.

14

∗ab a

b ∗ba

c ca

∗0

Figure 3.6: The J -class structure.

Thus P (L) saturates the D-classes, and L is SLT. In fact,

L = A∗cA∗ \ (A∗aaA∗ ∪A∗acA∗ ∪A∗bbA∗ ∪A∗bcA∗ ∪A∗cbA∗ ∪A∗ccA∗).

The next statement summarizes the results of this section.

Corollary 3.12 For a given recognizable subset L of A+, the following prop-
erties are effectively decidable :

(1) L is locally testable,

(2) L is threshold locally testable,

(3) L is strongly locally testable.

In view of these results, it is natural to conjecture that one can also
decide whether a given language is STLT, but we don’t have a proof of this
fact.

4 Connections with logic.

The connections between formal languages and mathematical logic were first
studied by Büchi [3]. To each word u ∈ A+ is associated a structure

Mu = ({1, 2, . . . , |u|}, S, (Ra)a∈A)

where S denotes the successor relation on {1, 2, . . . , |u|} and Ra is set of all
i such that the i-th letter of u is an a. For instance, if A = {a, b} and u =
abaab, then Ra = {1, 3, 4} and Rb = {2, 5}. The logical language appropriate
to such models has S and the Ra’s as non logical symbols, and formulas are
built in the standard way by using these non-logical symbols, variables,
boolean connectives, equality and quantifiers. Note that we don’t use the
symbol < in this logic. We shall denote by L1(A) and L2(A), respectively,
the set of first order and monadic second order formulas of this logic. Given

15

a sentence ϕ, we denote by L(ϕ) the set of all words which satisfy ϕ, when
ϕ is interpreted according to the model described above. For instance, if

ϕ = ∃x∃y∃z((y = Sx) ∧ (z = Sy) ∧Rax ∧Rby ∧Rbz)

then L(ϕ) = A∗abbA∗.
The seminal result of Büchi can now be stated as follows

Theorem 4.1 [3] A subset of A+ is rational if and only if it can be defined
by a L2(A)-sentence.

The first order theory was investigated by Thomas [14]. Thomas proved
that a language is TLT if and only if it is definable by a L′

1(A)-sentence,
where L′

1(A) is the logical language obtained by completing L1(A) with the
0-ary symbols min, max, interpreted as the minimum 1 and the maximum
|u| on {1, . . . , |u|}. Furthermore, Thomas proved that boolean combinations
of existential L′

1(A)-sentences were sufficient to define TLT-languages. Now,
it is easy to define min and max in terms of S. For instance, one can consider
min as a new variable satisfying the formula ∀x¬S(x,min). Therefore, one
obtains

Theorem 4.2 A subset of A+ is threshold locally testable if and only if it
is definable by a L1(A)-sentence.

However, the situation is slightly different if one considers only boolean
combinations of existential L1(A)-sentences, because rewriting min in terms
of S creates some alternations of quantifiers. More precisely, we have

Theorem 4.3 A subset of A+ is strongly threshold locally testable if and
only if it is definable by a boolean combination of existential L1(A)-sentences.

Proof. If L is a STLT language, L is a boolean combination of languages of
the form L(x, r, t). Therefore it suffices to show that each of these languages
can be defined by a boolean combination of existential L1(A)-sentences.
The formal proof can easily be adapted from the following example, where
A = {a, b}. One has L(ab, 2, 3) = L(ϕ), where ϕ = ϕ1 ∧ ¬ϕ2, and

ϕ1 = ∃x1∃x2∃x3∃x4(¬(x1 = x3) ∧ S(x1, x2) ∧ S(x3, x4)

∧Rax1 ∧Rbx2 ∧Rax3 ∧Rbx4)

ϕ2 = ∃x1∃x2∃x3∃x4∃x5∃x6(¬(x1 = x3) ∧ ¬(x3 = x5) ∧ ¬(x1 = x5)

∧ S(x1, x2) ∧ S(x3, x4) ∧ S(x5, x6)

∧Rax1 ∧Rbx2 ∧Rax3 ∧Rbx4 ∧Rax5 ∧Rbx6)

Conversely, it suffices to show that a language L defined by an existential
L1(A)-sentence ϕ is SLTT. We use an argument of game theory, which

16

we borrow from [14]. For the conveniance of the reader, we briefly review
the terminology of game theory needed to achieve the proof (see [10] for
more details). Let u = u1 · · · ur and v = v1 · · · vs be two words, where
u1, . . . , ur, v1, . . . , vs ∈ A. A position in u (respectively in v) is a an element
of {1, . . . , |u|} (respectively {1, . . . , |v|}). For each m > 0, define a game
Gm(u, v) between two players as follows. Player I plays first, and chooses m
positions i1, . . . , im of u. Then player II must choose m positions j1, . . . , jm

in v. We say that II wins the game if the following conditions are satisfied :

(1) For 1 ≤ r ≤ m, the letter uir is equal to the letter vjr
. (Intuitively, if I

chooses an occurrence of a letter a, then II should choose an occurrence
of the same letter.)

(2) For each r, s ≤ m, ir = is if and only if jr = js. (Intuitively, if I
decides to choose twice - or more - the same position, then II should
follow this choice. Conversely, II is not allowed to choose twice the
same position if it was not the choice of I.)

(3) For each r, s ≤ m, ir = is + 1 if and only if jr = js + 1. (Intuitively,
if I decides to choose two adjacent positions, then II should follow
this choice. Similarly, if I chooses two non-adjacent positions, then II
should follow this choice.)

Now, by the theory of Ehrenfeucht-Fräıssé, two words u and v satisfy the
same existential formulas of quantifier rank ≤ m if and only if Player II has
a winning strategy in the games Gm(u, v) and Gm(v, u).

The main argument of the proof is the following lemma.

Lemma 4.4 Let n = 2m + 1 and t = (m− 1)(2m + 1) + 1. If u ≡n,t v, then
Player II has a winning strategy in the games Gm(u, v) and Gm(v, u).

Proof. By symmetry, it suffices to prove the result for the game Gm(u, v).
The strategy of II is easier to understand if one thinks that the choice of ik

(respectively jk) also determines the segment

Ik = [1, . . . , |u|] ∩ [ik − 2m−k, ik + 2m−k]

(respectively Jk = [1, . . . , |v|] ∩ [jk − 2m−k, jk + 2m−k]). The strategy of II
consists to choose jk so that the following conditions are satisfied :

(a) u[Ik] = v[Jk],

(b) For every s < k, is ∈ Ik if and only if js ∈ Jk. In this case Ik is a
subsegment of Is and Jk is the corresponding subsegment of Js.

We prove by induction on k that jk can be choosen so that conditions (a) and
(b) are satisfied. For k = 1, condition (b) is empty, and condition (a) can
be fulfilled because u and v have the same factors of length n by hypothesis.
Assume that js has been choosen successfully for s < k. We now choose jk

as follows.

17

First, assume there exists s < k such that is ∈ Ik, and let us take the
smallest s satisfying this condition. Then

is − 2m−s ≤ (ik + 2m−k)− 2m−s ≤ (ik + 2m−k)− 2.2m−k = ik − 2m−k

and, symmetrically, ik + 2m−k ≤ is + 2m−s. Therefore Ik is a subsegment
of Is and we can take for Jk the corresponding subsegment of Js. Since
u[Is] = v[Js], we have u[Ik] = v[Jk]. Now if i′s ∈ Ik for some s′ such that
s < s′ < k, then d(is, is′) ≤ d(is, ik)+d(ik, is′) ≤ 2.2m−k ≤ 2m−s′ . Therefore
Is′ is a subsegment of Is , as illustrated in the following diagram, and Js′ is
the corresponding subsegment of Js′ .

Is

Ik

Is′

is ik is′

A similar argument would show that, if js′ ∈ Jk, then is′ ∈ Ik. Thus
conditions (a) and (b) are satisfied in this case.

Now suppose that is ∈ Ik for every s < k. We claim that there exists
at least one occurrence of the factor x = u[Ik] in v, defining a segment Jk

such thatv[Jk] = x and js ∈ Jk for every s < k. Indeed, assume that every
segment Jk such that v[Jk] = x satisfies js ∈ Jk for some s < k, that is,
jk ∈ [js− 2m−k, js +2m−k]. Then one can bound the number of occurrences
of x in v as follows:

[

v

x

]

≤
∑

0<s<k

(2m−k+1 + 1)) = (k − 1)(2m−k+1 + 1) < t

Now, since |x| ≤ n, we have by hypothesis
[

u
x

]

≡
[

v
x

]

threshold t, so that
[

u
x

]

=
[

v
x

]

. But each segment J in v such that v[J] = x and js ∈ J defines
a segment I in u such that u[I] = x and is ∈ I, since u[Is] = v[Js] by the
induction hypothesis.

18

Is

I

Js

J

u

v

Furthermore, this application is injective, that is, the situation repre-
sented in the figure below can never occur.

Is Is′

I = I ′Js Js′

J J ′

u

v

Indeed, we have seen above that if, for instance, s < s′, I = I ′ implies
that Is′ is a subsegment of Is. Therefore, Js′ must be a subsegment of Js

and thus J = J ′. It follows that each occurrence of x in v that is a factor of
some v[Js] is in one-to-one correspondence with an occurrence of x in u that
is a factor of u[Is]. In particular,

[

u
x

]

>
[

v
x

]

, a contradiction. This proves the
claim, and conditions (a) and (b) can be satisfied.

Now, it is easy to verify that this choice of j1, . . . , jm is a winning strategy
for player II.

We now conclude the proof of theorem 4.3. Assume that L is defined by
an existential sentence ϕ of quantifier rank m. If u ≡n,t v, then Lemma 4.4
and the theorem of Ehrenfeucht-Fräıssé shows that u satisfies ϕ if and only
if v satisfies ϕ. This means that L(ϕ) is a union of ≡n,t-classes, and hence
L(ϕ) is strongly locally threshold testable.

19

5 Remarks.

There are a few extensions that were not considered in order to keep this pa-
per to a reasonable size. The first possibility would be to introduce modulo
counting. If one considers modulo counting only, the notions of “periodi-
cally locally testable language” and “modular scanner” can be easily defined,
and the syntactic characterization follows from the works of Straubing and
Thérien (the condition would be that S(L) is locally a commutative group).
One can also give a logical interpretation if one allows the “modular” quan-
tifiers considered by Straubing, Thérien and Thomas [12]. One can also
consider simultaneously modulo and threshold counting. The corresponding
variety of semigroups would be Com ∗LI, for which an effective description
has been given by Thérien and Weiss [13] (a semigroup belongs to Com∗LI

if and only if the graph associated with the semigroup satisfies (C)). How-
ever, no such decidability results is known for the corresponding “strong”
notions. In conclusion, if one removes the conditions on prefixes and suffixes,
nothing is known, except in the boolean case.

The second possible extension is to consider infinite words, and this will
be the subject of a future paper.

References

[1] D. Beauquier and J.E. Pin, 1989, Factors of words, in Automata, Lan-

guages and Programming, (G. Ausiello, M. Dezani-Ciancaglini and
S. Ronchi Della Rocca, eds.), Lecture Notes in Comput. Sci., 372,
Springer, 63–79.

[2] J.A. Brzozowski and I. Simon, 1973, Characterizations of locally
testable languages, Discrete Math. 4, 243-271.

[3] J.R. Büchi, 1962, On a decision method in restricted second-order arith-
metic, in Proc. 1960 Int. Congr. for Logic, Methodology and Philosophy

of Science, Stanford Univ. Press, Standford, 1–11.

[4] S. Eilenberg, 1974, Automata, languages and machines, Vol. A, Aca-
demic Press, New York.

[5] S. Eilenberg, 1976, Automata, languages and machines, Vol. B, Aca-
demic Press, New York.

[6] G. Lallement, 1979, Semigroups and combinatorial applications, Wiley,
New York.

[7] R. McNaughton, 1974, Algebraic decision procedures for local testabil-
ity, Math. Syst. Theor. 8, 60-76.

20

[8] D. Perrin and J.E. Pin, First order logic and star-free sets, J. Comput.

System Sci. 32, 1986, 393–406.

[9] J.-E. Pin, 1984 Variétés de langages formels, Masson, Paris; English
translation: 1986, Varieties of formal languages, Plenum, New-York.

[10] J.G. Rosenstein, 1982, Linear orderings, Academic Press, New York.

[11] H. Straubing, Finite semigroup varieties of the form V ∗ D, J. Pure

Applied Algebra 36 (1985) 53–94.

[12] H. Straubing, D. Thérien and W. Thomas, 1988, Regular Languages
Defined with Generalized Quantifiers, in Proc. 15th ICALP, Springer
Lecture Notes in Computer Science 317, 561–575.

[13] D. Thérien and A. Weiss, 1985, Graph congruences and wreath prod-
ucts, J. Pure Applied Algebra 35, 205–215.

[14] W. Thomas, 1982, Classifying regular events in symbolic logic, J. Com-

put. Syst. Sci 25, 360–375.

21

