
Local languages and the Berry-Sethi algorithm

Jean Berstel∗ and Jean-Éric Pin†

5 February 1995

Abstract

One of the basic tasks in compiler construction, document process-
ing, hypertext software and similar projects is the efficient construction
of a finite automaton from a given rational (regular) expression. The aim
of the present paper is to give an exposition and a formal proof of the
background of the algorithm of Berry and Sethi relating the computa-
tion involved to a well-known family of recognizable languages, the local
languages.

1 Introduction

One of the basic tasks in compiler construction, document processing, hypertext
software and similar projects is the efficient construction of a finite automaton
from a given rational (regular) expression. There exist a great variety of al-
gorithms for this. An impressive account has been given recently by Watson
[11]. For several reasons, the algorithm of Berry and Sethi [2] is of particular
interest (see [4, 5] for a discussion). The aim of the present paper is to give an
exposition and a formal proof of the background for this algorithm by relating
the computation involved to a well-known family of recognizable languages, the
local languages.

Local languages were studied in some detail in [10], see also [7]. These
languages are very easy to define, and they are exactly the languages recognized
by a special family of automata also called Glushkov automata. The main
result used in Berry-Sethi’s algorithm is that every language denoted by a linear
rational expression can be recognized by a Glushkov automaton. We give a
short proof of this, by showing that every language denoted by a linear rational
expression is local. Observe however that the inclusion is strict.

The development of efficient algorithms is an important issue (see [8, 5, 13])
but we are not concerned with this problem in this paper. Our goal is rather to
provide a simple formal proof of the correctness of the algorithm.

In the topic of transducing a regular expression to an automaton, the ter-
minology is not yet uniform. Thus, linear expressions are called restricted in
[11]. Also, what we denote by P and S is frequently written First and Last.
The set of factors of length 2 of a language (or of the language denoted by an
expression) that we write F for short is sometimes written Follow.

∗LITP/IBP, CNRS berstel@litp.ibp.fr
†LITP/IBP, CNRS pin@litp.ibp.fr

1

A first presentation of the relation between Berry-Sethi’s algorithm and local
languages appeared in [3].

2 Local Languages

Given a language L ⊂ A∗, define

P (L) = {a ∈ A | aA∗ ∩ L 6= ∅}

S(L) = {a ∈ A | A∗a ∩ L 6= ∅}

F (L) = {x ∈ A2 | A∗xA∗ ∩ L 6= ∅}

N(L) = A2 \ F (L)

By definition, P (L) is the set of first letters of words in L and F (L) is the set
of factors (subwords) of length 2 of words in L. Clearly, for every language, one
has

L \ {1} ⊂ (P (L)A∗ ∩ A∗S(L)) \ A∗N(L)A∗

A language L is called local if equality holds. More precisely, a language L ⊂ A∗

is said to be local if there exist two subsets P and S of A and a subset N of A2

such that 1

L \ {1} = (PA∗ ∩ A∗S) \ A∗NA∗

For example, if A = {a, b, c}, the language

(abc)∗ = {1} ∪ [(aA∗ ∩ A∗c) \ A∗{aa, ac, ba, bb, cb, cc}A∗]

is local. The terminology “local” can be explained as follows: in order to know
whether a given word is in L, it suffices to verify that its first letter is in P , its last
letter is in S, and all its factors of length 2 are not in N . Thus, membership in
L can be checked by scanning the word through a window of size 2. Conversely,
if a language L is local, it is easy to recover the parameters P , S and N . Indeed
P (respectively S) is the set of all first (last) letters of the words of L and N is
the set of words of length 2 that are not factors of any word in L.

One can easily find a deterministic automaton recognizing a local language
given the parameters P , S and N . We consider the following type of automata
which, as we shall see, characterize local languages: a deterministic (but not
necessarily complete) automaton A = (Q, A, ., i, T) is said to be local if, for every
letter a, the set {q.a | q ∈ Q} contains at most one element. A deterministic
automaton is said to be standard if it contains no transition arriving on the
initial state.

Proposition 2.1 Let L = (PA∗ ∩ A∗S) \ A∗NA∗ be a local language. Then L
is recognized by the standard local automaton A having A∪ {1} as set of states,

1 as initial state, S as set of final states and whose transitions are given by the

rules 1.a = a if a ∈ P and a.b = b if ab /∈ N .

Proof. Let indeed u = a1 · · ·an be a word accepted by A. Then there is a
successful path

1
a1−→ a1

a2−→ a2 · · · an−1

an−→ an

1P stands for prefix, S for suffix, and N for non-factor.

2

Consequently, the end of the path, an, is a final state and thus an ∈ S. Similarly,
since there is a transition 1

a1−→ a1, one has necessarily a1 ∈ P . Finally, for

1 ≤ j ≤ n − 1, there is a transition aj

aj+1

−→ aj+1, and thus ajaj+1 /∈ N . It
follows that u ∈ L.

Conversely, if u = a1 · · ·an ∈ L, it follows a1 ∈ P , an ∈ S and, for 1 ≤ j ≤ n,
ajaj+1 /∈ N . Therefore 1

a1−→ a1

a1−→ a1 · · · an−1

an−→ an is a successful
path of A and A accepts u. Consequently the language recognized by A is L.

If the local language contains the empty word, the previous construction
can be applied, by taking S ∪ {1} as set of final states. This completes the
proof.

Proposition 2.2 Let L ⊂ A∗ be a rational language. The following conditions

are equivalent:

(1) L is a local language,

(2) L is recognized by a local automaton.

(3) L is recognized by a standard local automaton.

Proof. (1) implies (3) by proposition 2.1. (3) implies (2) is trivial.
(2) implies (1). Let A = (Q, A, , ., i, T) be a local automaton that recognizes a
language L. Set

P = {a ∈ A | i.a is defined},

S = {a ∈ A | there exists q ∈ Q such that q.a ∈ T },

N = {x ∈ A2 | x is the label of no path in A }

K = (PA∗ ∩ A∗S) \ A∗NA∗.

Let u = a1 · · · an be a non-empty word of L. Then u is the label of a successful
path

c : i = q0

a1−→ q1

a2−→ q2 · · · qn−1

an−→ qn

In particular, a1 ∈ P , qn ∈ T and thus an ∈ S, and for 1 ≤ j ≤ n − 1, one has
ajaj+1 /∈ N . Consequently u ∈ K, and thus L \ {1} is contained in K.

Conversely, let u = a1 · · · an be a non-empty word of K and set q0 = i.
By assumption, a1 ∈ P , an ∈ S and, for 1 ≤ j ≤ n − 1, ajaj+1 /∈ N . Since
a1 ∈ P , q0.a1 is defined. Set q0.a1 = q1. We show by induction that there exists
a sequence of states qj (0 ≤ j ≤ n) such that a1 · · · aj is the label of a path
q0 −→ q1 −→ · · · −→ qj of A. Indeed, since ajaj+1 /∈ N , ajaj+1 is the label of

some path p
aj

−→ q
aj+1

−→ r. But since the automaton A is a local, qj−1.aj = p.aj,
that is q = qj and thus qj+1 is defined as qj+1 = r. Finally, since an ∈ S, it

follows that qn ∈ T . Consequently q0

a1−→ q1

a2−→ q2 · · · qn−1

an−→ qn is a
successful path of A and its label u is recognized by A.

Example 2.1 Let A = {a, b, c}, P = {a, b}, S = {a, c} and N = {ab, bc, ca}.
Then the language L = (PA∗ ∩ A∗S) \ A∗NA∗ is recognized by the automaton
represented below.

3

1

a

b

c

a

b

c

a

b

a

c

b

Local languages are stable under various operations:

Proposition 2.3 Let A1 and A2 be two disjoint subsets of the alphabet A, and

let L1 ⊂ A∗

1 and L2 ⊂ A∗

2 be two local languages. Then the languages L1 ∪ L2

and L1L2 are also local languages.

Proof. Let A1 = (Q1, A1, E1, i1, T1) and A2 = (Q2, A2, E2, i2, T2) be standard
local automata recognizing L1 and L2 respectively. Then L1 ∪ L2 is recognized
by the local automaton (Q, A, E, i, T) where

Q = (Q1 \ {i1}) ∪ (Q2 \ {i2}) ∪ {i} (i is a new state)

E = {(q, a, q′) | (q, a, q′) ∈ E1 ∪ E2, q 6= i1, q 6= i2}

∪ {(i, a, q) | (i1, a, q) ∈ E1 or (i2, a, q) ∈ E2}

T =

{

T1 ∪ T2 if i1 /∈ T1 and i2 /∈ T2

T1 \ {i1}) ∪ (T2 \ {i2}) ∪ {i} otherwise

For the product, set A = (Q, A, E, I, T), with

Q = (Q1 ∪ Q2) \ {i2}

E = E1 ∪ {(q, a, q′) ∈ E2 | q 6= i2} ∪ {(q1, a, q2) | q1 ∈ T1 and (i2, a, q2) ∈ E2}

I = I1

T =

{

T2 if i2 /∈ T2,

T1 ∪ (T2 \ {i}) if i2 ∈ T2 (that is if 1 ∈ L2).

By construction, A is a local automaton and it is easy to verify that it recognizes
L1L2.

Proposition 2.4 Let L be a local language. Then the language L∗ is also a

local language.

Proof. Let A = (Q, A, E, i, T) be a standard local automaton recognizing L.
Consider the automaton A′ = (Q, A, E′, i, T ∪ {i}), with

E′ = E ∪ {(q, a, q′) | q ∈ T and (i, a, q′) ∈ E}

Then A′ is local and recognizes L∗.

4

3 Berry-Sethi Algorithm

Berry and Sethi proposed an algorithm to find a non-deterministic automaton
recognizing a given rational expression. For any rational expression e, we denote
by L(e) the language that e represents.

We say that a rational expression is linear if every letter a has at most
one occurrence in the expression (in Watson [11], it is called restricted). For
example, the expression [a1a2(a3a4)

∗ ∪ (a5a6)
∗a7]

∗ is linear. One can linearize
any rational expression by replacing all the letters that occur in it by distinct
symbols. For example, the above expression is a linearization of the expression
e = [ab(ba)∗ ∪ (ac)∗b]∗. Now, given an automaton that recognizes the language
L(e′) of a linearized version e′ of a rational expression e, it is easy to obtain an
automaton for the language L(e), by replacing letters of e′ by the corresponding
letters of e. For instance, if A is the automaton represented below (which
recognizes the language [(a1a2)

∗a3]
∗), one obtains, by replacing a1 and a3 by a

and a2 by b, the (non-deterministic) automaton A′, which recognizes [(ab)∗a]∗.

A:

a3

a1 a2

a1

a1 a3

a3

→ A′ :

a

a
b

a

a a
a

Therefore it suffices to be able to compute an automaton for each linear expres-
sion.

Proposition 3.1 For every linear expression e, the language L(e) is local.

Proof. The proof is by induction on the formation rules of linear expressions.
First, the languages represented by 0, 1 and a, for a ∈ A, are local languages.
Next, by proposition 2.4, if e represents a local language, then e∗ represents
also a local language. Let now be e and e′ two linear expressions and suppose
that the expression (e ∪ e′) is linear. Let B (respectively B′) the set of letters
occurring in e (e′). Since (e ∪ e′) is linear, the sets B and B′ are disjoint, and
the local language L(e) (L(e′)) is contained in B∗ (B′∗). By proposition 2.3,
the languages L(e ∪ e′) and L(ee′) are also local.

Observe that the converse does not hold: for instance, the language (ab)∗a
is local but is not denoted by a linear expression.

We have seen in the previous section an algorithm to compute a deterministic
automaton recognizing a given local language L. It suffices to test whether the

5

empty word belongs to L and to compute the sets

P (L) = {a ∈ A | aA∗ ∩ L 6= ∅},

S(L) = {a ∈ A | A∗a ∩ L 6= ∅},

F (L) = {x ∈ A2 | A∗xA∗ ∩ L 6= ∅}.

But this can be easily done given a rational expression (linear or not) rep-
resenting the language, by making use of the following well-known recursive
procedures. First, we compute Λ(e) = {1} ∩ L(e) as follows:

Λ(0) = ∅;

Λ(1) = {1};

Λ(a) = ∅ for all a ∈ A;

Λ(e ∪ e′) = Λ(e) ∪ Λ(e′);

Λ(e.e′) = Λ(e) ∩ Λ(e′);

Λ(e∗) = {1};

Next,

P(0) = ∅; S(0) = ∅;
P(1) = ∅; S(1) = ∅;
P(a) = {a} for all a ∈ A; S(a) = {a} for all a ∈ A;
P(e ∪ e′) = P(e) ∪ P(e′); S(e ∪ e′) = S(e) ∪ S(e′);
P(e.e′) = P(e) ∪ Λ(e)P(e′) S(e.e′) = S(e′) ∪ S(e)Λ(e′);
P(e∗) = P(e); S(e∗) = S(e);

F(0) = ∅;
F(1) = ∅;
F(a) = ∅ for all a ∈ A;
F(e ∪ e′) = F(e) ∪ F(e′);
F(e.e′) = F(e) ∪ F(e′) ∪ S(e)P(e′);
F(e∗) = F(e) ∪ S(e)P(e);

To sum up, given a rational expression e, Berry-Sethi algorithm produces a
non-deterministic automaton as follows:

(1) Compute a linear version e′ of e and memorize the encoding of letters.

(2) Compute recursively the sets P (e′), S(e′) and F (e′).

(3) Compute a deterministic automaton A′ recognizing e′.

(4) Decode the letters of e′ to compute a non-deterministic automaton recog-
nizing e.

4 Final remark

Observe that Berry and Sethi’s given an unusual proof of a well-known result,
namely that every rational language is the homomorphic image of a local lan-
guage.

6

References

[1] A.V. Aho, R. Sethi and J. Ullman. Compilers: Principles, Techniques and

Tools. Addison-Wesley Series in Computer Science, Addison-Wesley, Read-
ing, Massachusetts, (1986).

[2] G. Berry and R. Sethi, From regular expressions to deterministic automata,
Theoretical Computer Science, 48 (1986), 117–126.

[3] J. Berstel, Finite automata and rational languages, an introduction in For-

mal Properties of finite automata and applications J.E. Pin ed., Lecture
Notes in Computer Science 386 (1987), 2–14.

[4] A. Brüggemann-Klein and D. Wood, Deterministic regular languages,
STACS 92, Lecture Notes in Computer Science 577, (1992) 173–184.

[5] A. Brüggemann-Klein, Regular Expressions into Finite Automata,
LATIN’92, Lecture Notes in Computer Science 583, (1992) 87–98.

[6] J.M. Champarnaud, From a regular expression to an automaton, Informa-
tion Processing Letters, to appear.

[7] S. Eilenberg, Automata, Languages and Machines, Vol A, Academic Press,
(1974)

[8] V. M. Glushkov, The abstract theory of automata, Russian Mathematical

Surveys 16, (1961) 1–53.

[9] R. McNaughton and H. Yamada, Regular expressions and state graphs for
automata, IEEE Trans. on Electronic Computers 9, (1960) 39–47.

[10] M. Nivat, Transductions des langages de Chomsky, Annales de l’Institut

Fourier 18, (1968) 339–455.

[11] B. W. Watson, A taxonomy of finite automata construction algorithms,
Computing Science Note 93–43, Eindhoven University of Technology, The
Netherlands, (1993).

[12] B. W. Watson, A taxonomy of finite automata minimization algorithms,
Computing Science Note 93–44, Eindhoven University of Technology, The
Netherlands, (1993).

[13] D. Ziadi, J. L. Ponty and J.-M. Champarnaud, Passage d’une expression
rationnelle à un automate fini non-déterministe, manuscript, (1995).

7

