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Abstract

In December 1979, Janusz A. Brzozowski presented a selection of six

open problems about regular languages and mentioned two other problems

in the conclusion of his article. These problems have been the source of

some of the greatest breakthroughs in automata theory over the past

35 years. This survey article summarizes the state of the art on these

questions and the hopes for the next 35 years.

Thirty-five years ago, at a conference in Santa Barbara in December 1979,
Janusz A. Brzozowski [8] presented a selection of six open problems about reg-
ular languages and mentioned two other topics in the conclusion of his article.
These six open problems were, in order, star height, restricted star height, group
complexity, star removal, regularity of non-counting classes and optimality of
prefix codes. The two other topics were the limitedness problem and the dot-
depth hierarchy.

These problems proved to be very influential in the development of automata
theory and were the source of critical breakthroughs. The aim of this paper is to
survey these results, to describe their impact on current research and to outline
some hopes for the next thirty-five years. Due to the lack of space, the dot-depth
hierarchy is treated in a separate article [61].

1 Terminology, notation and background

This goal of this section is to fix notation and terminology. We define in partic-
ular the notions of syntactic monoid, class of languages, variety, profinite word,
profinite identity, semiring and weighted automaton.

In the sequel, A denotes a finite alphabet and 1 denotes the empty word. A
semigroup S divides a semigroup T if S is a quotient of a subsemigroup of T .

∗The author was funded from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 670624).
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1.1 Quotients and syntactic monoid

Given a language L of A∗ and two words x and y, the left quotient of L by x is
the language

x−1L = {u ∈ A∗ | xu ∈ L}.

Similarly, the right quotient of L by y is the language

Ly−1 = {u ∈ A∗ | uy ∈ L}.

Finally, we set
x−1Ly−1 = {u ∈ A∗ | xuy ∈ L}.

Observe that (x−1L)y−1 = x−1Ly−1 = x−1(Ly−1).
The syntactic congruence of a language L of A∗ is the equivalence relation

∼L defined by u ∼L v if and only if, for every x, y ∈ A∗,

xuy ∈ L ⇐⇒ xvy ∈ L,

or, equivalently, if
u ∈ x−1Ly−1 ⇐⇒ v ∈ x−1Ly−1.

The syntactic monoid of L is the quotient M(L) of A∗ by ∼L and the natural
morphism η : A∗ → A∗/∼L is called the syntactic morphism of L.

For instance, the syntactic monoid of the language (ab)∗ is the monoid M =
{1, a, b, ab, ba, 0} presented by the relations a2 = b2 = 0, aba = a, bab = b and
0a = 0b = 0 = a0 = b0.

1.2 Classes of languages

Many properties of languages, such as being regular, finite, commutative, star-
free, etc., are defined without any explicit reference to an alphabet. However,
these properties do not define a set of languages, unless the alphabet is specified.
The notion of class of languages is a convenient way to avoid this problem.

A class of languages C associates with each finite alphabet A a set C(A)
of regular languages1 of A∗. A class C of languages is said to be closed under
some operation, such as union, intersection, complement, quotients, product,
star, etc., if, for each alphabet A, the set of languages C(A) is closed under this
operation. Similarly, C is said to be closed under Boolean operations if, for each
A, C(A) is a Boolean algebra of languages.

A monoid morphism ϕ : A∗ → B∗ is said to be

(1) length-preserving if |ϕ(u)| = |u| for all u ∈ A∗, or equivalently, if ϕ(A) ⊆
B;

(2) length-increasing if |ϕ(u)| > |u| for all u ∈ A∗, or equivalently, if ϕ(A) ⊆
B+;

(3) length-decreasing if |ϕ(u)| 6 |u| for all u ∈ A∗, or, equivalently, if ϕ(A) ⊆
B ∪ {1}.

A class of languages C is closed under inverses of morphisms if for each morphism
ϕ : A∗ → B∗, the condition L ∈ C(B) implies ϕ−1(L) ∈ C(A). Closure under
inverses of length-increasing, length-decreasing or length-preserving morphisms
is defined in the same way.

1This definition can be extended to nonregular languages, but we are only interested in
regular languages in this paper.
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1.3 Varieties of languages and varieties of finite monoids

Varieties constitute important examples of classes of languages. A variety of
languages is a class of languages closed under Boolean operations, left and right
quotients and inverses of morphisms. Star-free languages, which will be defined
in Section 2, form the most emblematic example of a variety of languages.

Closure under inverses of morphisms can be relaxed by requiring only clo-
sure under inverses of length-preserving, length-increasing or length-decreasing
morphisms, leading to the notions of lp-variety, li-variety and ld-variety, respec-
tively. These notions were introduced independently by Esik [27] and Straubing
[85].

A variety of finite monoids is a class of finite monoids closed under taking
submonoids, quotients and finite products. We refer the reader to the books
[1, 26, 63] for more details on varieties of monoids.

Eilenberg’s variety theorem [26] states that there is a bijective correspon-
dence between varieties of languages and varieties of finite monoids.

Theorem 1.1 Let V be a variety of finite monoids. For each alphabet A, let
V(A) be the set of all languages of A∗ whose syntactic monoid is in V. Then
V is a variety of languages. Moreover, the correspondence V → V is a bijection
between varieties of finite monoids and varieties of languages.

Let us just mention for the record that a generalization of Eilenberg’s variety
theorem also holds for lp-varieties, li-varieties and ld-varieties. See [27, 10, 49,
65, 66, 85] for more details.

1.4 Profinite words

A finite monoid M separates two words u and v of A∗ if there is a monoid
morphism ϕ : A∗ → M such that ϕ(u) 6= ϕ(v). We set

r(u, v) = min
{
Card(M) | M is a finite monoid that separates u and v }

and d(u, v) = 2−r(u,v), with the usual conventions min ∅ = +∞ and 2−∞ = 0.
Then d is a metric on A∗ and the completion of A∗ for this metric is denoted
by Â∗. The (concatenation) product on A∗ can be extended by continuity to

Â∗, making Â∗ a compact topological monoid, called the free profinite monoid.
Its elements are called profinite words.

This abstract definition does not make it easy to really understand what a
profinite word is. Actually, although Â∗ is known to be uncountable if A is
nonempty, it is difficult to exhibit “concrete” examples of profinite words, other
than words of A∗. One such example can be obtained as a consequence of a
standard result of semigroup theory:

Given an element s of a compact semigroup S, the closed subsemi-
group of S generated by s contains a unique idempotent, usually
denoted by sω.

In particular, if u is a profinite word, then uω is also a profinite word. For
instance, if A = {x, y}, then (xy)ω and ((xy)ωyx(yxy)ω)ω are examples of profi-
nite words.
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1.5 Profinite identities

Let M be a finite monoid. Let us equip M with the discrete metric d, defined
by d(x, x) = 0 and d(x, y) = 1 if x 6= y. Then every morphism ϕ : A∗ → M is
uniformly continuous since d(x, y) < 2−|M | implies ϕ(x) = ϕ(y). Thus ϕ admits

a unique continuous extension ϕ̂ : Â∗ → M .
Let u, v be two profinite words on some alphabet B. We say that a finite

monoid M satisfies the profinite identity u = v if the equality ϕ̂(u) = ϕ̂(v) holds
for all morphisms ϕ : B∗ → M . For instance, a monoid is commutative if and
only if it satisfies the identity xy = yx. It is aperiodic if and only if it satisfies
the identity xωx = xω.

Reiterman’s theorem [72] states that a class of finite monoids is a variety if
and only if it can be defined by a set of profinite identities. Since varieties of
languages are in bijection with varieties of finite monoids, one can also define
varieties of languages by profinite identities. This was made precise by Gehrke,
Grigorieff and the author [28] as follows.

Let L be a regular language of A∗ and let η : A∗ → M be its syntactic
morphism. Then η admits a unique continuous extension η̂ : Â∗ → M . In the
same way, every monoid morphism from B∗ to A∗ admits a unique continuous
extension ϕ̂ : B̂∗ → Â∗. Given two profinite words u and v on the alphabet
B, we say that L satisfies the profinite identity u = v if the equality η̂(ϕ̂(u)) =
η̂(ϕ̂(v)) holds for all morphisms ϕ : B∗ → A∗. Reiterman’s theorem can now be
transposed to varieties of languages:

A class of languages is a variety of languages if and only if it can be
defined by a set of profinite identities.

A similar characterization was also proved [28] for lp-varieties, li-varieties
and ld-varieties. We just state this result for ld-varieties, the other cases being
similar. Let us say that a regular language satisfies the profinite ld-identity u = v
if the equality η̂(ϕ̂(u)) = η̂(ϕ̂(v)) holds for all length-decreasing morphisms
ϕ : B∗ → A∗. Then one can state

A class of languages is a ld-variety of languages if and only if it can
be defined by a set of profinite ld-identities.

We refer the reader to [2] for a detailed study of profinite identities defining
varieties of finite monoids and to the survey [65] for profinite equations on
languages.

1.6 Semirings

A semiring is a set K equipped with two binary operations, written additively
and multiplicatively, and two elements 0 and 1, satisfying the following condi-
tions:

(1) K is a commutative monoid for the addition with identity 0,

(2) K is a monoid for the multiplication with identity 1,

(3) Multiplication is distributive over addition: for all s, t1, t2 ∈ K, s(t1+t2) =
st1 + st2 and (t1 + t2)s = t1s+ t2s,

(4) for all s ∈ K, 0s = s0 = 0.
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Examples of semirings include (N,+,×), (Z,+,×) and the tropical semirings
(N ∪ {+∞},min,+) and (N ∪ {−∞},max,+). The set of languages over A∗

also forms a semiring with union as addition and concatenation product as
multiplication. Consequently, we adopt the algebraic notation which consists
of writing + for union, 0 for the empty language and u for the language {u},
when u is a word. Thus, for instance, 1 + ab + baa + bb denotes the language
{1, ab, baa, bb}.

Let K be a semiring. We let K⟪A⟫ (respectively KJAK) denote the semiring
of formal power series in noncommutative (respectively commutative) variables
in A with coefficients in K. We let also K〈A〉 (respectively K[A]) denote the
semiring of polynomials in noncommutative (respectively commutative) vari-
ables in A with coefficients in K.

1.7 Weighted automata

Let K be a semiring. A K-weighted automaton (or K-transducer) is a quintuple
A = (Q,A,E, I, F ), where Q (resp., I, F ) is the set of states (resp., initial and
final states) and A is the input alphabet. The set of transitions E is a subset of

Q×A×K ×Q. A transition (q, a, x, q′) is also written as q
a|x
−−→ q′. A path

q0
a1|x1

−−−→ q1
a2|x2

−−−→ q2 · · · qn−1
an|xn

−−−−→ qn

is successful if q0 ∈ I and qn ∈ F . The output of this path is the product
x1x2 · · ·xn.

The function τ : A∗ → K realized by A is defined as follows. Given a word
u ∈ A∗, τ(u) is the sum of the outputs of all successful paths of label u. If there
is no successful path of label u the output is 0. Note that addition and product
refer to the operations of the semiring K. Thus, if K is the tropical semiring
(N ∪ {+∞},min,+), the output of a path is the sum x1 + x2 + · · · + xn and
τ(u) is the minimum of the outputs of all successful paths of label u.

Automata with outputs in the tropical semiring are sometimes called au-
tomata with distance [32, 34, 35, 36] or distance automata [44, 43, 45].

2 Star height

Extended regular expressions on the alphabet A are defined recursively as fol-
lows:

(1) 0, 1 and a, for each a ∈ A, are regular expressions.

(2) If E and F are extended regular expressions, then (E + F ), (EF ) and
(E)c and (E)∗ are regular expressions.

The value of an extended regular expression E is the language of A∗ obtained
from E by interpreting (E)c as the complement of E and the other operators
as union, concatenation and star.

The star height of an extended regular expression is the maximum nested
depth of stars in the expression. For instance

((
a(ba)∗bc

)∗
+
(
b(aa)∗b+ a

)∗
+
(
b(a+ b)∗bb

)c
)∗
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is an extended regular expression of star height 3. More formally, the star height
h(E) of an extended regular expression E is defined recursively by

(1) h(0) = 0, h(1) = 0 and, for each a ∈ A, h(a) = 0.

(2) If E and F are regular expressions, then h((E)c) = h(E), h((E + F )) =
h((EF )) = max(h(E), h(F )) and h((E)∗) = h(E) + 1.

The star height h(L) of a regular language L is the minimum of the star heights
of the extended regular expressions representing L. In other words

h(L) = min{h(E) | E is an extended regular expression of value L}.

Note that allowing intersection would not change the star height of a language
since K ∩ L = (Kc + Lc)c. The star height problem is the following question:

Problem 1 Is there an algorithm which computes the star height of a given
regular language?

A language of star height 0 is said to be star-free. For instance, the language
A∗ = ∅c is star-free and so is the language (ab)∗ on the alphabet A = {a, b}
since

(ab)∗ =
(
bA∗ ∪A∗a ∪A∗aaA∗ ∪A∗bbA∗

)c
=
(
b∅c ∪ ∅ca ∪ ∅caa∅c ∪ ∅cbb∅c

)c
.

Star-free languages were characterized by Schützenberger [77] in 1965.

Theorem 2.1 A language is star-free if and only if its syntactic monoid is
aperiodic.

Theorem 2.1 gives an algorithm to decide whether a language is star-free.
For instance, the language (aa)∗ is not star-free, and hence has star height 1,
since its syntactic monoid is the cyclic group of order 2, a non-aperiodic monoid.

Theorem 2.1 also suggests that languages of star height 6 n form a variety
of languages, and can therefore be characterized by a property of their syntactic
monoid. This hypothesis, explicitly mentioned in Henneman’s thesis [37] in
1971, has never been invalidated. However, the author [62] proved in 1978 that,
for any finite monoid M , there is a finite language F such that M divides the
syntactic monoid of F ∗, with the following consequence:

Theorem 2.1 If the languages of star-height 6 1 form a variety of languages,
then all regular languages have star-height 6 1.

Proposition 2.1 appears to kill the algebraic approach, unless every language
has star height 0 or 1. However, Straubing, Thérien and the author [67] proved
in 1992 a weaker property: the languages of star-height 6 n form a ld-variety.

Theorem 2.2 For each n, the class of all languages of star-height 6 n is closed
under Boolean operations, quotients and inverse of length-decreasing morphisms.

As we have seen, ld-varieties of languages can be defined by profinite ld-identities.
Therefore, it would suffice to find a single nontrivial ld-identity satisfied by all
languages of star-height 6 1 to prove the existence of a language of star-height
> 1. Unfortunately, no such identity is known and we still have no example
of a language of star height 2. Several past candidates have been turned down
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[67, 87, 75], but languages of the form π−1(1), where π is a surjective morphism
from A∗ onto a sufficiently complicated group (say the symmetric group S5)
might be reasonable candidates.

On the other hand, if you believe that all languages have star-height 6 1,
it “just” remains to prove that the languages of star-height 6 1 are closed
under inverses of morphisms. One difficulty is that even languages of the form
ϕ−1(F ∗), where ϕ is a morphism and F is finite, can be extremely complicated.
In particular, we do not know whether the ld-variety generated by the languages
of the form F ∗, where F is finite, is the variety of all regular languages. A very
partial result has been obtained in this direction. Daviaud and Paperman [18]
gave profinite equations characterizing the closure under Boolean operations and
quotients of the set of languages of the form u∗, where u is a word. However,
finding a characterization of the ld-variety generated by these languages is still
an open problem and moreover, there is still a giant step to pass from u∗ to F ∗.

An interesting logical approach was proposed by Lippert and Thomas [53].
The idea was to consider star-free expressions with an additional constant L,
where L is a fixed language. However, Lippert and Thomas proved that the
equivalence between star-free expressions and first-order logic [59] fails to extend
to this setting: the relativized star-free expressions are strictly weaker than the
corresponding first-order formulas.

3 Limitedness problem and restricted star height

This section gathers two problems, the limitedness problem and the restricted
star height problem. As we will see, the former one can be viewed as a warmup
problem for the latter one.

3.1 Limitedness problem

The limitedness problem is not only interesting on its own, but the tools intro-
duced to solve it ultimately led to an elegant solution to the restricted star-height
problem. They proved to be very influential in automata theory and they are
still the topic of very active research.

The Kleene star of a language L is defined as the infinite union

L∗ = 1 + L+ L2 + · · · =
∑

n>0

Ln.

The question arises whether this infinite sum can be truncated. A language is
said to be k-limited if

L∗ = 1 + L+ · · ·+ Lk = (1 + L)k.

It is easy to see that L is k-limited if and only if 1 + L is k-limited. Moreover,
if L contains the empty word, then L is k-limited if and only if L∗ = Lk.

A language is limited (or has the finite power property) if it is k-limited for
some k > 0. According to Simon [80], the limitedness problem was first proposed
by Brzozowski in 1966 during the seventh SWAT (now FOCS) Conference. It
can be stated as follows:

Problem 2 Decide whether a given regular language is limited or not.
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a
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b

a

The minimal automaton A of L.

1 2

3

4

a | 1, b | 1

b | 0

a | 0

b | 0

a | 0

a | 1

a | 0

b | 0

b | 1

b | 0

a | 0

An automaton B for L∗, with weights added.

Figure 3.1: A 4-limited language: L∗ = (1 + L)4.

After some preliminary work by Linna [52] in 1973, the problem was solved
independently by Hashiguchi [31] and Simon [79] in the late seventies, and an
elegant semigroup solution was proposed by Kirsten [41] in 2002. Hashiguchi’s
solution worked directly on the minimal deterministic automaton recognizing
L. Simon went another way and came up with a very simple reduction to a
problem on weighted automata. Given the considerable influence of this method
on subsequent research, it is worth explaining his idea. Given a regular language
L, consider the function fL : A∗ → N ∪ {+∞} defined by

fL(u) =

{
min{n | u ∈ Ln} if u ∈ L∗;

+∞ otherwise.

It is clear that L is k-limited if and only if the range of fL is contained in
{0, · · · , k} ∪ {+∞}. Consequently, L is limited if and only if fL has a finite
range. Now, fL can be computed by a weighted automaton with output in the
tropical semiring (N ∪ {+∞},min,+). Let us describe this construction on the
example proposed by Simon [80] in his 1988 survey.

Let A = {a, b} and L = (a+ b)(b2 +(a+ ba)b∗a)∗. We start with a standard
automaton A for L, represented on the left hand side of Figure 3.1. Next we
build an automaton B accepting L∗ by the standard construction and convert
it to a weighted automaton by adding a 0-output to each transition of A and
a 1-output to each new transition in B (the dashed transitions in Figure 3.1).
Intuitively, there is a fee of 1 each time a path reaches state 1 and hence this
weighted automaton realizes fL. Thus the limitedness problem can be reduced
to the finite range problem for weighted automata.

Problem 3 Decide whether or not the behaviour of a given weighted automaton
has a finite range.

For the limitedness problem, it suffices to solve the finite range problem for
weighted automata over the tropical semiring. But historically, the finite range
problem was first studied for the semiring (N,+,×) by Mandel and Simon [56]
in 1977 and for fields by Jacob [39] in 1978. The first solution for the tropi-
cal semiring was given by Simon [79] in 1978. Successive improvements were
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proposed by Hashiguchi [32, 35] (1982 and 1990), Leung [50] (1987) and Simon
[80, 81] (1988 and 1994). See the survey [64] for more details.

Theorem 3.1 The finite range problem for the tropical semiring (N∪{+∞},min,+)
is decidable.

The complexity of the problem was also analyzed. Hashiguchi [36] showed
in 2000 that every n-state distance automaton is either unlimited or limited by
2C(n), where C(n) = 4n3+n ln(n+2)+n 6 4n3+n2+2n. In 2004, Leung and
Podolskiy [51] improved this bound to C(n) = 3n3 + n lnn+ n− 1 and proved
that limitedness of distance automata is decidable in PSPACE. The problem is
in fact PSPACE-complete, as shown by Kirsten [44].

The limitedness problem is undecidable for context-free languages, see Hugues
and Selkow [38]. Kirsten and Richomme [42, 46] also investigated the limited-
ness problem in trace monoids.

3.2 Restricted star height

Regular expressions on the alphabet A are defined recursively as follows:

(1) 0, 1 and a, for each a ∈ A are regular expressions.

(2) if E and F are regular expressions, then E + F , (E)(F ) and (E)∗ are
regular expressions.

The notion of restricted star height of a regular expression is the maximum
nested depth of stars in the expression. For instance

((
a(ba)∗b

)∗
+
(
b(aa)∗b+ c

)∗
)∗

is a regular expression of height 3. More formally, the restricted star height
h(E) of a regular expression E is defined recursively by

(1) h(0) = 0, h(1) = 0 and, for each a ∈ A, h(a) = 0.

(2) If E and F are regular expressions, then h(E+F ) = h(EF ) = max(h(E), h(F ))
and h((E)∗) = h(E) + 1.

The value v(E) of a regular expression E is the language of A∗ represented by
E. Formally, v is a function from the set of regular expressions to the set of
regular languages of A∗ defined by

(1) v(0) = 0, v(1) = 1 and v(a) = a for each a ∈ A,

(2) if E and F are two regular expressions, v(E∪F ) = v(E)∪v(F ), v(EF ) =
v(E)(F ) and v(E∗) = v(E)∗.

The restricted star height h(L) of a regular language L is the minimum of the
restricted star heights of the regular expressions which represent it. In other
words

h(L) = min{h(E) | E is a regular expression such that v(E) = L}.

The star height problem was raised by L.C. Eggan [25] in 1963:

Problem 4 Is there an algorithm which computes the restricted star height of
a given regular language?
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Dejean and Schützenberger [20] first proved in 1966 that for each n > 0,
there exists a language of restricted star height n. Only a few partial results
[11, 12, 13, 14, 37] were known until Hashiguchi [33] proved in 1982 that re-
stricted star height one is decidable. A few years later, in 1988, Hashiguchi [34]
succeeded to prove the general case: restricted star height is decidable. However,
Hashiguchi’s proof is hard to read and yields an algorithm of non-elementary
complexity (cf. Lombardy’s thesis [54], Annexe B and examples by Lombardy
and Sakarovitch [55]). It took 25 years to obtain Hashiguchi’s first solution to
Eggan’s problem but it took another 23 years until Kirsten [45] found a simpli-
fied proof in 2005. Just like for the limitedness problem, the idea of this proof
is to reduce the restricted star-height problem to finding upper bounds for the
function computed by a new kind of automata, the nested-distance desert au-
tomata. The resulting algorithm has a complexity in double exponential space.

Nested-distance desert automata are a particular case of hierarchical cost
automata. A hierarchical cost automaton is a nondeterministic finite automa-
ton equipped with a totally ordered finite set of counters, initially set to zero.
Transitions can increment or reset a given counter, but then all counters of
smaller rank have to be reset. A cost automaton is defined in a similar way, but
the counters are not ordered and thus transitions can only increment or reset a
given counter. These notions have been widely studied in the recent years, no-
tably by Kirsten [44, 43], Bojanczyk and Colcombet [5, 6, 16, 17]. Very recently,
Bojanczyk [5] proved that the limitedness problem for cost automata reduces to
solving Gale-Stewart games with ω-regular winning conditions, which leads to
an entirely new proof of the decidability of the restricted star-height problem.

Even with the progress realised in the recent years, the complexity of the
algorithms seemed to exclude the possibility of any practical computation. How-
ever, Fijalkow, Gimbert, Kelmendi and Kuperberg addressed the challenge by
writing a C++-programme computing the star-height of regular languages ac-
cepted by (small) automata, as part of their package ACME++ (Automata with
Counters, Monoids and Equivalence), freely available at http://www.liafa.univ-paris-diderot.fr/~nath/?page=acmepp.

Let me conclude these two sections on star-height by suggesting another
problem. Let us define an intermediate regular expression as an extended reg-
ular expression allowing union and intersection but not complement. Interme-
diate regular expressions are clearly more general than regular expressions but
less general than extended regular expressions. The intermediate star-height
of a language is the minimum of the star heights of the intermediate regular
expressions representing the language. The intermediate version of Problems 1
and 4 can now be stated as follows:

Problem 5 Are there languages of arbitrary intermediate star-height? Is there
an algorithm which computes the intermediate star height of a given regular
language?

4 Group complexity

In this section, all semigroups and groups are supposed to be finite.
The Krohn-Rhodes theorem states that every semigroup S divides a finite

alternating wreath product of groups and aperiodic semigroups.
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Theorem 4.1 (Krohn-Rhodes 1966) Every semigroup S divides a wreath
product of the form

A0 ◦G1 ◦A1 · · ·An−1 ◦Gn ◦An, (∗)

where A0, A1, . . . , An are aperiodic semigroups and G1, . . . , Gn are groups.

The group complexity of S is the smallest possible integer n over all decom-
positions of type (∗). Thus aperiodic semigroups have group complexity 0 and
nontrivial groups have group complexity 1. However, the following problem is
still open:

Problem 6 Is there an algorithm to compute the group complexity of a semi-
group, given its multiplication table?

This question generated intense research and several important tools of semi-
group theory, like the Rhodes expansion and pointlike sets were introduced in
connection with this problem. As a result, the group complexity of many semi-
groups has been computed. However, as of today, there is no known algorithm
to decide whether a semigroup has group complexity 1 and the only known
results regarding decidability, due to Karnofsky and Rhodes [40], date back to
1982.

Theorem 4.2 One can decide whether a semigroup divides a wreath product of
the form G ◦ A. One can decide whether a semigroup divides a wreath product
of the form A ◦G.

The book by J. Rhodes and B. Steinberg [74] is by far the most important
reference on these questions. It contains a thorough presentation of the nu-
merous tools introduced to attack Problem 6 as well as a detailed survey of the
existing partial results up to 2009. Several authors, including Almeida, Auinger,
Henckell, Margolis, Rhodes, Steinberg and Volkov enriched the literature since
then and the reader is invited to look at the articles of these authors to follow
recent progress.

Problem 6 is of course deeply related to the study of the wreath product
and have strong connection with language theory. A key reason is that the
syntactic semigroup of the composition of two sequential functions divides the
wreath product of the syntactic semigroups of the two functions. Cohen and
Brzozowski [15] and Meyer [60] used a refinement of the Krohn-Rhodes theo-
rem for aperiodic semigroups to obtain an alternative proof of Schützenberger’s
characterization of star-free languages. Straubing [82] took further advantage
of wreath product decompositions to characterize various classes of regular lan-
guages and to state its influential wreath product principle [84], which was later
generalized in several ways [68, 10].

It is interesting to see that in the opposite direction, major progress on
wreath product decompositions came from language theory. For instance, the
characterization of locally testable languages by Brzozowski-Simon [9] and Mc-
Naughton [58], Knast’s description of dot-depth one languages [47, 48, 86] and
Straubing’s study of concatenation hierarchies [83] opened the way to Tilson’s
delay theorem [88].
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5 Star removal

Star removal is the only problem of the list that remained untouched, although it
is certainly a fascinating question. The absence of references makes it hazardous
to evaluate its difficulty, but I hope it will attract more attention in the future.
Here is the problem.

Let K be a regular language. Then the equation K = XK has a maximal
solution L∗. Then K = L∗K and one can show that the equation in R:

K = L∗R

has a minimal solution R = K − (L∗ − 1)K.
Iterating this process on R, we get a decomposition

K = L∗
1L

∗
2 · · ·L

∗
kRk,

where Rk is the minimal solution of K = L∗
1L

∗
2 · · ·L

∗
kR.

Problem 7 Does this process terminate (i.e., L∗
k = 1 at some point)?

6 Regularity of non-counting classes

A language L of A∗ is said to be noncounting of order n if for all x, y, u ∈ A∗,

xuny ∈ L ⇐⇒ xun+1y ∈ L.

Let ∼n be the smallest congruence on A∗ satisfying xn ∼n xn+1 for all x ∈ A∗

and let µ : A∗ → A∗/∼n be the natural morphism. The problem of the regularity
of non-counting classes can be stated formally as follows:

Problem 8 Is µ−1(m) a regular language for every m ∈ A∗/∼n?

An extended version of the problem was studied by McCammond [57].

Problem 9 Let ∼n,m be the smallest congruence on A∗ satisfying xn ∼ xn+m

for all x ∈ A∗. Are the congruence classes regular?

The problem is not yet entirely solved but generated intense research. The
results by de Luca and Varricchio [19] (1990), McCammond [57] (1991), Guba
[29, 30] (1993), Do Lago [21, 22, 23, 24] (1996, 1998, 2001, 2002) can be sum-
marized in the following theorems:

Theorem 6.1 Problem 9 has a positive answer for n > 3 and m > 0.

Theorem 6.2 Problem 9 has a negative answer for n = 2 and m > 1.

For n = 2, m = 1 (x3 = x2), the problem is still open, but a partial result
is known. Let us say that a word is overlap-free if it contains no factor of the
form xyxyx for any x ∈ A+ and y ∈ A∗. If it contains no proper factor of the
form above, then the word is said to be almost overlap-free.

12



Theorem 6.3 (Plyushchenko and Shur 2011 [69, 71, 70]) For n = 2 and
m = 1, the congruence class of a word containing an overlap-free or an almost
overlap-free word is a regular language.

The regularity of noncounting classes is also reminiscent of Burnside’s cel-
ebrated problem, posed by Burnside in 1902. Burnside asked whether a k-
generated group satisfying the identity xn = 1 is necessarily finite. In 1968,
Novikov and Adian disproved the conjecture for every odd n larger than 4381,
a bound that was later reduced to 665 by Adian. Ivanov also disproved the con-
jecture for each even n divisible by 29 and larger or equal to 248. The problem
has been solved positively for k = 1 and for k > 1 and n = 2, 3, 4 and 6, but is
still open for n = 5 and k > 1.

7 Optimality of prefix codes

Recall that a language X of A+ is a code if the condition

x1 · · ·xn = x′
1 · · ·x

′
m (where xi, x

′
i ∈ X)

implies n = m and xi = x′
i for i = 1, . . . , n. It is a prefix code if any two distinct

words in X are incomparable for the prefix order.
A language of A∗ can be identified with an element of Z⟪A⟫, the set of formal

series in noncommutative variables in A and coefficients in Z. Let α : Z⟪A⟫→
Z〈A〉 be the natural morphism mapping a series in noncommutative variables
onto its commutative version. For instance, if X = ba+abab+ baab+ bbab, then
α(X) = ab+ 2a2b2 + ab3.

A language X is commutatively prefix if α(X) = α(P ) for some prefix code
P . In other words, X is commutatively prefix if there exists a bijection from X
to some prefix code mapping every word of X to one of its anagrams.

A nontrivial result, Theorem 14.6.4 in the book of Berstel, Perrin and
Reutenauer [4], states that a language X is commutatively prefix if and only if
the series (1 − α(X))/(1 − α(A)) has nonnegative coefficients. Schützenberger
[76] proposed in 1965 the following conjecture:

Conjecture 1 Every code is commutatively prefix.

This conjecture generated intense research and was proved in some particular
cases, but a counterexample was ultimately found by Peter Shor [78] in 1983.
The code

X = {ba, ba7, ba13, ba14, a3b, a3ba2, a3ba4, a3ba6, a8b,

a8ba2, a8ba4, a8ba6, a11b, a11ba2, a11ba4}

is not commutatively prefix. Following the discovery of this counterexample,
Perrin suggested a weaker version of Schützenberger’s conjecture. A code is
said to be maximal if it is not properly contained in any other code.

Problem 10 Is every finite maximal code commutatively prefix?
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This problem is closely related to a question on optimal encodings [3]. A
monoid morphism γ : B∗ → A∗ is a (prefix) encoding if γ(B) is a (prefix) code.
Let p be a probability on B, representing for instance the frequency of the letters
of B. For instance, if B is the usual latin alphabet, p(a) could be the frequency
of each letter in written English. Suppose also that each letter a of A has a cost
c(a), which, in practice, is often interpreted as the time to send the symbol a.
The cost of a word a1a2 · · · an is then defined as the sum c(a1) + · · · + c(an).
The average weighted cost of γ is the quantity

W (γ) =
∑

b∈B

p(b)c(b)

and the optimal encoding problem is to find, given A, B, p and c, an encoding
γ such that W (γ) is minimal. Thus a positive solution to Problem 10 would
imply that an optimal encoding can always chosen to be prefix.

Interestingly, Problem 10 is also strongly related to a problem on formal
power series. Let X ⊆ A+. A pair (P, S) of subsets of A∗ is called a positive
factorization for X if each word w factorizes uniquely into w = sxp with p ∈ P ,
s ∈ S, x ∈ X. In terms of formal power series in N〈A〉, this means that

A∗ = SX∗P or equivalently 1−X = P (1−A)S.

This condition implies that X is commutatively prefix. Moreover, if P and S are
finite, then X is a finite maximal code. These results motivated the following
conjecture, known as the Factorization Conjecture.

Conjecture 2 For any finite maximal code X over A, there exist two polyno-
mials P, S ∈ N〈A〉 such that 1−X = P (1−A)S.

A positive answer to the Factorization Conjecture would also solve positively
Problem 10. Both questions are still open, but in 1985, Reutenauer [73] proved
the following weaker version of the Factorization Conjecture.

Theorem 7.1 For any finite maximal code X over A, there exist two polyno-
mials P, S ∈ Z〈A〉 such that 1−X = P (1−A)S.

Reutenauer’s theorem gives strong evidence that the Factorization Conjec-
ture might be true. For a complete discussion, the reader is referred to the book
of Berstel, Perrin and Reutenauer [4] and to the survey papers of Bruyère and
Latteux [7] and of Béal, Berstel, Marcus, Perrin, Reutenauer and Siegel [3].

8 Conclusion

Janusz A. Brzozowski really has excellent taste! The challenging problems he
selected 35 years ago fostered intense studies and are still at the heart of current
research. Only two of them, the limitedness problem and the restricted star
height problem, have been completely solved. One of them, the regularity of
non-counting classes, is almost solved. Significant progress has been done on
group complexity and on optimality of prefix codes. Only little progress is to
be reported on star height and the star removal problem remained untouched.
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The amount of new ideas created or expanded to solve these questions, mix-
ing algebra, logic and automata theory are cause for optimism and one can hope
for a complete solution of some of Brzozowski’s open problems within the next
35 years.
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[61] J.-É. Pin, The Brzozowski hierarchy, 45 years later. To appear.
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