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Abstract

We solve the following problem proposed by H. Straubing. Given a two letter
alphabet A, what is the maximal number of states f(n) of the minimal automaton
of a subset of A", the set of all words of length n. We give an explicit formula to
compute f(n) and we show that 1 = lim,, . nf(n)/2" < lim, . nf(n)/2" = 2.

The purpose of this note is to solve the following question, raised by H. Straubing.
Let A = {a, b} be a two-letter alphabet. For each finite language L, denote by s(L) the
number of states of the minimal (deterministic) automaton of L, and put

f(n) =max{s(L) | L C A"}

The problem is to compute f(n) and to give, if possible, an asymptotic equivalent.
We first recall some definitions (see [1] for more details). An automaton A =

(Q, A, -, qo, F) consists of a (finite) set of states @, a finite set of letters A, an initial
state ¢ € @Q, a set of final states F' C @), and a partial function Q x A — ) denoted
by (gq,a) — ¢-a. This function is extended to a (partial) function @ x A* — @, called
the transition function, by the rules

(a) for every g € Q, q¢-1 =g,

(b) for every q € Q, u € A* and a € A, ¢- (ua) = (q-u)-a if (¢-u) and (¢-u)-a are

defined, and ¢- (ua) is undefined otherwise.

If the transition function is a total function, A is a complete automaton and it is
uncomplete otherwise. The language accepted by A is the set

LA)={ue A" | qp-ue F}

A state ¢ is accessible (resp. coaccessible ) if qo-u = q (respectively ¢-u € F') for some
word u € A*. Two states ¢ and ¢’ are equivalent (in A) if, for every word u € A*,
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q-u € F is equivalent to ¢-u € F. An automaton is reduced if, for any ¢,q' € Q, ¢
equivalent to ¢’ implies ¢ = ¢'.

Let us mention a trivial, but useful, observation. If ¢,¢’ ¢ F are not equivalent,
then there exists a letter a € A such that either q-a # ¢’- a, or ¢-a is defined and ¢'-a
is undefined, or ¢-a is undefined and ¢’- a is defined.

Finally, an automaton is minimal if it is reduced and if every state is both accessible
and coaccessible. As is well known, every rational language is accepted by a (unique)
minimal automaton.

We first establish some elementary facts about the minimal automaton

A: (QaAa 'aq(]aF)
of a non-empty language L C A™. Set, for i > 0,
Qi = {q € Q | there exists u € A® such that go-u = ¢} and k; = Card Q;.

Then we can state

Proposition 1. The following properties hold :
(1) the family (Qi)o<i<n is a partition of Q,
(2) Qo ={qo} and Q, = {qr}, where q5 is the unique final state of A,
(3) for0<i<n—1, Qi1 =Qi-aUQ;-b,
(4) for0<i<n—1, (k;+1) < (kiy1 +1)%

Proof (1) Since L is non empty, it contains a word u = ay - - a,. Now, for 0 < i < n,
go-a1---a; € Q;, and hence (); is non empty. Assume that Q; N Q; is not empty and
let ¢ € Q; N Q;. Then there exists a word u of length ¢ and a word v of length j such
that go-u = ¢ and gg- v = ¢. Since A is minimal, the state ¢ is coaccessible, and hence
there exists a word w such that g-w is a final state. It follows that uw,vw € L and
thus |uw| = |vw| = n. Therefore i = |u| = |v| = j and the Q;’s are pairwise disjoint.

We claim that @; is empty for ¢ > n. Indeed, let ¢ € @;. Then by definition,
q = qo- u for some word w of length > n. Thus ¢ is not coaccessible, a contradiction.
Now @ = ;5o @: and it follows that the family (Q;)o<i<n is a partition of Q.

(2) The equality Qo = {qo} is clear. Let ¢ € Q. Then there exists a word u of
length n such that go-u = ¢ and a word w such that ¢-w € F (since q is coaccessible).
Thus uw € L and hence |uw| = n. It follows that w =1, w € L and q € F. Let ¢’ be
another final state. Then qo-u' = ¢’ for some v’ € L. Let v € A*. Then q-v € F (resp.
q¢-v € F) if and only if v = 1. It follows that ¢ = ¢’ since A is reduced.

(3) is obvious.

(4) For a given ¢ € Q;, either ¢-a € Q41 or ¢-a is undefined; this gives (k; 1 + 1)
possibilities. Similarly, there are (k; 1 + 1) possibilities for ¢-b. Furthermore, since ¢ is
coaccessible, either q-a or ¢-b is defined. Finally, this gives (k;;1 +1)? — 1 possibilities
for the pair (¢-a,q-b). But since A is reduced, two distinct states ¢ and ¢’ cannot have
the same image under @ and b. Thus k; < (k;11 +1)2 - 1. O



Corollary 2. For 0 <i<mn, k; < min(2’, 22" " _ 1).

Proof We make use of Proposition 1. By (2), kg = 1 and by (3), ki1 < 2k; for
0 <i<n-—1 Thus k; < 2¢ by induction on 4. Similarly, k, = 1 by (2) and
ki < (kip1+1)2 —1 by (4). Thus k; < 22" — 1 by induction on n —4. O

Set g(n) = > o<i<n min(2%,22""" — 1). Since the family (Qi)o<i<n is a partition of
Q, we have

CardQ = Z Card Q; < g(n).

0<i<n

Therefore, we have proved

Proposition 3. The minimal automaton of a language L C A™ has at most g(n) states.
Therefore f(n) < g(n).

Our main result states that the opposite inequality also holds.
Theorem 4. For everyn >0, f(n) = g(n).

Proof The result is trivial if n = 0. We assume now n > 0. By Proposition 3, it suffices
to exhibit a minimal automaton with g(n) states that accepts a language L C A™. Let
x be the unique positive real number such that n = 2% + z, and let £ = [27]. The
following lemma gives the property for which k£ was selected.

Lemma 5. Let j be a positive integer.
(1) If j < k, then 27 < 22" —1.
(2) Ifj >k, then 29 > 22" — 1.

Proof (1)Ifj < k, then j < 2% and z < n—j by the definition of z. Thus j < 2% < 2"~/
and hence j +1 < 2" 7. Now if j > 0,2"7 > j+1>2andif j =0, 2" 7 =2" > 2,
since n > 0. Thus 27 > 2 in any case and 20 < 22"l 92"

(2) If j > k, then j > 2% and x > n — j by the definition of z. Thus 27 > 22" >
227 > 22 1. o

We now construct a complete automaton A = (Q, A, -, qo, {qs}) as follows. The set

@ is the disjoint union of a sink state 0 and of (n + 1) sets Q; (0 < i < n) such that

(a) Qo={q} and Qn = {qr},

(b) for 0 <i < k, Card Q; = 2,

(c) for k <i<n, CardQ; = 22" 1,
and the transitions satisfy the following conditions

(d) 0-a=0and 0-b=0,

(e) for0<i<k—1,{¢-c|qgeQ;and c € {a,b}} = Qit1
(since Card Q;; = 2°4Qi  this implies that all the states q-c, where ¢ € Q; and
¢ € {a, b}, are distinct).

(f) for k—1<i<nandq,q €Q,



(f1) (g-a,q-b) € (Qi+1 U{0}) x (Qir1 U{0})) \ {(0,0)},
(£2) (g¢-a,q-b) = (¢ a,q"-b) implies ¢ = ¢,
(f3) for every s € Q;+1, there exists t € Q); such that t-a =s or t-b=s.
To ensure that condition (f) can be satisfied, it suffices to verify that, for £k — 1 <
1 < n,
Card@; < (1+ Card Qi+1)2 —1 and Card@Q;11 < 2Card Q;.

Both conditions are trivially satisfied for ¢ > k, and follow from Lemma 5 for ¢ = k — 1.

We derive from A an uncomplete automaton B by removing the sink state 0 and
all the transitions of the form g-a = 0 or ¢-b = 0. B is now an automaton with g(n)
states in which every state is accessible and coaccessible (by conditions (e) and (f3)).
Furthermore B is reduced (by conditions (e) and (f2)) and hence minimal. Finally, as
required, every word accepted by B has length n.

Example 1. Let n = 5. Then g(5) = 14+2+4+8+3+1=19and k = 4. An
automaton with 19 states recognizing a set of words of length 5 is represented in Figure
1 (next page).

The behaviour of g(n) when n tends to infinity is given by the following theorem.

Theorem 6. The following formula holds

1= lim ng(n)/2" < lim ng(n)/2" = 2.

n—oo

Proof It follows from Lemma 5 that

gmy= > 2+ 3 @ 1) =T1+Ty

0<j<k-1 k<j<n

where .
=242 " and =2+ Y (27 1.
k+1<j<n

We first study T5. If j > k+1 > 2% + 1, then n — j < x — 1, whence on—i < vl =
27 /2 < n/2, and therefore 22" — 1 < 27/2 Thus —2 < Ty < n2"? and it follows that
lim,, o nT%/2™ = 0.

We now come back to Th. Put d =z — |x]. By the definition of z, n = |z] 4 [27]
and hence n — k = x — d and k = 2% + d. Therefore Ty = 22°+4 1 927 and

T3 /2" = (2 +27)T1 /2727 = (14 2277) (27 + 227707,

Since z +2* =n < 2-2% we have x < logyn and 27% < 2/n. Consequently, one has
1 <14 227" <1+ 2logyn/n, and thus lim,, (1 + 227%) = 1. It remains to study
the term T'(n) = od 1 9274=1)2* Ty start with, since 0 < d < 1, we have 1 < 2¢ < 2,
whence

lim ng(n)/2"™ > 1.

n—oo
Let € be a real number such that 0 < e < 1. We claim that the inequality T'(n) < 1+4¢
holds for infinitely many n. This will be a consequence of the following lemma.



Figure 1.

Lemma 7. Let €1, g9 be two real numbers such that 0 < €1 < e9 < 1. Then there exists
an integer ro such that, for every r > rq, there exists a real number § such that

(a) e1 <0 < e, and
(b) m =146+ 2719 is an integer.

Proof We take ro > logy[(2 — (€2 —€1))/(2°2 — 2°1)], so that, for every r > rg,
(r4e9 +27152) — (r g1 +2771) > 2,

Now, since the function ¢ — r 4 t 4+ 2" is monotone, there exists a real § with
g1 <0 < &g such that m =7+ + 2" is an integer. O



To prove the claim, we apply the lemma with £ = —logy(1 — ¢/3) and g3 =
logy(1 +¢/2). One verifies easily that the condition 0 < £; < €9 < 1 is satisfied. Then,
for any large enough r, there exists an integer m < r and a real § with €1 < § < &9
such that

T(m) =20 +227"-12" < 982 L 9@71-D2" <1 4 o9 4 9= (/3)2"

Thus if 7 > log,((3/¢) logy(2/€)), then 27 (/32" < ¢/2 and T(m) < 1 + ¢, proving the
claim. It follows that lim, , . T(n) < 1, whence lim,, , ng(n)/2" = 1.

On the other hand, 2=% — 1 < —1/3d and thus T'(n) < 2¢ +27(@2°)/3 Let 0 < ¢ <
1/3. Then for n > —61log, €, we have

—6logee <n=x+2% <2¥ 4+ 2%

and hence —2%/3 < log, €. Setting y = 2%, we obtain T'(n) < y+%'°82¢, where 1 < y < 2.
But a short calculation shows that, on this interval, the function ¢ — ¢ + ¢1°82¢ reaches
its maximum for ¢ = 2. Therefore T'(n) < 2 + ¢ for every £ > 0 and

lim ng(n)/2" < 2.
n—oo

Finally, let 0 < e < 1 and put &1 = logy(2—¢) and g9 = (14+£1)/2. Then 0 < g1 < g9 <
1, and by Lemma 7, there exists infinitely many integers m such that m = r 4 6 4270
with €1 < § < g9 and

T(m) =20 422712 > 90 5 951 9 ¢
Therefore lim,, .o, T'(n) > 2 —¢ for every £ > 0 and hence lim,, .o, ng(n)/2" = 2. o©
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