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Abstract

We solve the following problem proposed by H. Straubing. Given a two letter
alphabet A, what is the maximal number of states f(n) of the minimal automaton
of a subset of An, the set of all words of length n. We give an explicit formula to
compute f(n) and we show that 1 = lim

n→∞
nf(n)/2n ≤ limn→∞ nf(n)/2n = 2.

The purpose of this note is to solve the following question, raised by H. Straubing.
Let A = {a, b} be a two-letter alphabet. For each finite language L, denote by s(L) the
number of states of the minimal (deterministic) automaton of L, and put

f(n) = max{s(L) | L ⊂ An}

The problem is to compute f(n) and to give, if possible, an asymptotic equivalent.
We first recall some definitions (see [1] for more details). An automaton A =

(Q,A, · , q0, F ) consists of a (finite) set of states Q, a finite set of letters A, an initial
state q0 ∈ Q, a set of final states F ⊂ Q, and a partial function Q × A → Q denoted
by (q, a) → q · a. This function is extended to a (partial) function Q×A∗ → Q, called
the transition function, by the rules

(a) for every q ∈ Q, q · 1 = q,

(b) for every q ∈ Q, u ∈ A∗ and a ∈ A, q · (ua) = (q ·u)· a if (q ·u) and (q ·u)· a are
defined, and q · (ua) is undefined otherwise.

If the transition function is a total function, A is a complete automaton and it is
uncomplete otherwise. The language accepted by A is the set

L(A) = {u ∈ A∗ | q0 ·u ∈ F}

A state q is accessible (resp. coaccessible ) if q0 ·u = q (respectively q ·u ∈ F ) for some
word u ∈ A∗. Two states q and q′ are equivalent (in A) if, for every word u ∈ A∗,
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q ·u ∈ F is equivalent to q′ ·u ∈ F . An automaton is reduced if, for any q, q ′ ∈ Q, q
equivalent to q′ implies q = q′.

Let us mention a trivial, but useful, observation. If q, q ′ /∈ F are not equivalent,
then there exists a letter a ∈ A such that either q · a 6= q ′ · a, or q · a is defined and q′ · a
is undefined, or q · a is undefined and q ′ · a is defined.

Finally, an automaton is minimal if it is reduced and if every state is both accessible
and coaccessible. As is well known, every rational language is accepted by a (unique)
minimal automaton.

We first establish some elementary facts about the minimal automaton

A = (Q,A, · , q0, F )

of a non-empty language L ⊂ An. Set, for i ≥ 0,

Qi = {q ∈ Q | there exists u ∈ Ai such that q0 ·u = q} and ki = CardQi.

Then we can state

Proposition 1. The following properties hold :

(1) the family (Qi)0≤i≤n is a partition of Q,

(2) Q0 = {q0} and Qn = {qf}, where qf is the unique final state of A,

(3) for 0 ≤ i ≤ n− 1, Qi+1 = Qi · a ∪Qi · b,

(4) for 0 ≤ i ≤ n− 1, (ki + 1) ≤ (ki+1 + 1)2.

Proof (1) Since L is non empty, it contains a word u = a1 · · · an. Now, for 0 ≤ i ≤ n,
q0 · a1 · · · ai ∈ Qi, and hence Qi is non empty. Assume that Qi ∩ Qj is not empty and
let q ∈ Qi ∩Qj . Then there exists a word u of length i and a word v of length j such
that q0 ·u = q and q0 · v = q. Since A is minimal, the state q is coaccessible, and hence
there exists a word w such that q ·w is a final state. It follows that uw, vw ∈ L and
thus |uw| = |vw| = n. Therefore i = |u| = |v| = j and the Qi’s are pairwise disjoint.

We claim that Qi is empty for i > n. Indeed, let q ∈ Qi. Then by definition,
q = q0 ·u for some word u of length > n. Thus q is not coaccessible, a contradiction.
Now Q =

⋃
i≥0 Qi and it follows that the family (Qi)0≤i≤n is a partition of Q.

(2) The equality Q0 = {q0} is clear. Let q ∈ Qn. Then there exists a word u of
length n such that q0 ·u = q and a word w such that q ·w ∈ F (since q is coaccessible).
Thus uw ∈ L and hence |uw| = n. It follows that w = 1, u ∈ L and q ∈ F . Let q ′ be
another final state. Then q0 ·u

′ = q′ for some u′ ∈ L. Let v ∈ A∗. Then q · v ∈ F (resp.
q′ · v ∈ F ) if and only if v = 1. It follows that q = q ′ since A is reduced.

(3) is obvious.
(4) For a given q ∈ Qi, either q · a ∈ Qi+1 or q · a is undefined; this gives (ki+1 + 1)

possibilities. Similarly, there are (ki+1 +1) possibilities for q · b. Furthermore, since q is
coaccessible, either q · a or q · b is defined. Finally, this gives (ki+1 + 1)2 − 1 possibilities
for the pair (q · a, q · b). But since A is reduced, two distinct states q and q ′ cannot have
the same image under a and b. Thus ki ≤ (ki+1 + 1)2 − 1.
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Corollary 2. For 0 ≤ i ≤ n, ki ≤ min(2i, 22n−i
− 1).

Proof We make use of Proposition 1. By (2), k0 = 1 and by (3), ki+1 ≤ 2ki for
0 ≤ i ≤ n − 1. Thus ki ≤ 2i by induction on i. Similarly, kn = 1 by (2) and
ki ≤ (ki+1 + 1)2 − 1 by (4). Thus ki ≤ 22n−i

− 1 by induction on n− i.

Set g(n) =
∑

0≤i≤n min(2i, 22n−i
− 1). Since the family (Qi)0≤i≤n is a partition of

Q, we have

CardQ =
∑

0≤i≤n

CardQi ≤ g(n).

Therefore, we have proved

Proposition 3. The minimal automaton of a language L ⊆ An has at most g(n) states.

Therefore f(n) ≤ g(n).

Our main result states that the opposite inequality also holds.

Theorem 4. For every n ≥ 0, f(n) = g(n).

Proof The result is trivial if n = 0. We assume now n > 0. By Proposition 3, it suffices
to exhibit a minimal automaton with g(n) states that accepts a language L ⊆ An. Let
x be the unique positive real number such that n = 2x + x, and let k = d2xe. The
following lemma gives the property for which k was selected.

Lemma 5. Let j be a positive integer.

(1) If j < k, then 2j < 22n−j
− 1.

(2) If j ≥ k, then 2j > 22n−j
− 1.

Proof (1) If j < k, then j < 2x and x < n−j by the definition of x. Thus j < 2x < 2n−j

and hence j + 1 ≤ 2n−j . Now if j > 0, 2n−j ≥ j + 1 ≥ 2 and if j = 0, 2n−j = 2n ≥ 2,
since n > 0. Thus 2n−j ≥ 2 in any case and 2j ≤ 22n−j−1 < 22n−j

− 1.
(2) If j ≥ k, then j ≥ 2x and x ≥ n − j by the definition of x. Thus 2j ≥ 22x

≥
22n−j

> 22n−j
− 1.

We now construct a complete automaton A = (Q,A, · , q0, {qf}) as follows. The set
Q is the disjoint union of a sink state 0 and of (n + 1) sets Qi (0 ≤ i ≤ n) such that

(a) Q0 = {q0} and Qn = {qf},

(b) for 0 ≤ i < k, CardQi = 2i,

(c) for k ≤ i ≤ n, CardQi = 22n−i
− 1,

and the transitions satisfy the following conditions

(d) 0· a = 0 and 0· b = 0,

(e) for 0 ≤ i < k − 1, {q · c | q ∈ Qi and c ∈ {a, b}} = Qi+1

(since CardQi+1 = 2Card Qi , this implies that all the states q · c, where q ∈ Qi and
c ∈ {a, b}, are distinct).

(f) for k − 1 ≤ i < n and q, q′ ∈ Qi,
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(f1) (q · a, q · b) ∈ ((Qi+1 ∪ {0}) × (Qi+1 ∪ {0})) \ {(0, 0)},

(f2) (q · a, q · b) = (q′ · a, q′ · b) implies q = q′,

(f3) for every s ∈ Qi+1, there exists t ∈ Qi such that t· a = s or t· b = s.

To ensure that condition (f) can be satisfied, it suffices to verify that, for k − 1 ≤
i ≤ n,

CardQi ≤ (1 + CardQi+1)
2 − 1 and CardQi+1 ≤ 2CardQi.

Both conditions are trivially satisfied for i ≥ k, and follow from Lemma 5 for i = k− 1.
We derive from A an uncomplete automaton B by removing the sink state 0 and

all the transitions of the form q · a = 0 or q · b = 0. B is now an automaton with g(n)
states in which every state is accessible and coaccessible (by conditions (e) and (f3)).
Furthermore B is reduced (by conditions (e) and (f2)) and hence minimal. Finally, as
required, every word accepted by B has length n.

Example 1. Let n = 5. Then g(5) = 1 + 2 + 4 + 8 + 3 + 1 = 19 and k = 4. An
automaton with 19 states recognizing a set of words of length 5 is represented in Figure
1 (next page).

The behaviour of g(n) when n tends to infinity is given by the following theorem.

Theorem 6. The following formula holds

1 = lim
n→∞

ng(n)/2n ≤ lim
n→∞

ng(n)/2n = 2.

Proof It follows from Lemma 5 that

g(n) =
∑

0≤j≤k−1

2j +
∑

k≤j≤n

(22n−j

− 1) = T1 + T2

where
T1 = 2k + 22n−k

and T2 = −2 +
∑

k+1≤j≤n

(22n−j

− 1).

We first study T2. If j ≥ k + 1 ≥ 2x + 1, then n − j ≤ x − 1, whence 2n−j ≤ 2x−1 =
2x/2 ≤ n/2, and therefore 22n−j

− 1 ≤ 2n/2. Thus −2 ≤ T2 ≤ n2n/2 and it follows that
limn→∞ nT2/2

n = 0.
We now come back to T1. Put d = x− bxc. By the definition of x, n = bxc+ d2xe

and hence n− k = x− d and k = 2x + d. Therefore T1 = 22x+d + 22x−d
and

nT1/2
n = (x + 2x)T1/2

x22x

= (1 + x2−x)(2d + 2(2−d−1)2x

).

Since x + 2x = n ≤ 2 · 2x, we have x ≤ log2 n and 2−x ≤ 2/n. Consequently, one has
1 ≤ 1 + x2−x ≤ 1 + 2 log2 n/n, and thus limn→∞(1 + x2−x) = 1. It remains to study

the term T (n) = 2d + 2(2−d−1)2x
. To start with, since 0 ≤ d < 1, we have 1 ≤ 2d ≤ 2,

whence
lim

n→∞
ng(n)/2n ≥ 1.

Let ε be a real number such that 0 < ε < 1. We claim that the inequality T (n) ≤ 1+ ε
holds for infinitely many n. This will be a consequence of the following lemma.
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Figure 1.

Lemma 7. Let ε1, ε2 be two real numbers such that 0 < ε1 < ε2 < 1. Then there exists

an integer r0 such that, for every r ≥ r0, there exists a real number δ such that

(a) ε1 < δ < ε2, and

(b) m = r + δ + 2r+δ is an integer.

Proof We take r0 ≥ log2[(2− (ε2 − ε1))/(2
ε2 − 2ε1)], so that, for every r ≥ r0,

(r + ε2 + 2r+ε2)− (r + ε1 + 2r+ε1) ≥ 2.

Now, since the function t → r + t + 2r+t is monotone, there exists a real δ with
ε1 < δ < ε2 such that m = r + δ + 2r+δ is an integer.
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To prove the claim, we apply the lemma with ε1 = − log2(1 − ε/3) and ε2 =
log2(1 + ε/2). One verifies easily that the condition 0 < ε1 < ε2 < 1 is satisfied. Then,
for any large enough r, there exists an integer m < r and a real δ with ε1 < δ < ε2

such that

T (m) = 2δ + 2(2−δ−1)2r

≤ 2ε2 + 2(2−ε1−1)2r

≤ 1 + ε/2 + 2−(ε/3)2k

.

Thus if r ≥ log2((3/ε) log2(2/ε)), then 2−(ε/3)2k
≤ ε/2 and T (m) ≤ 1 + ε, proving the

claim. It follows that limn→∞ T (n) ≤ 1, whence limn→∞ ng(n)/2n = 1.
On the other hand, 2−d − 1 ≤ −1/3d and thus T (n) ≤ 2d + 2−(d2x)/3. Let 0 < ε <

1/3. Then for n > −6 log2 ε, we have

−6 log2 ε < n = x + 2x < 2x + 2x

and hence−2x/3 < log2 ε. Setting y = 2d, we obtain T (n) ≤ y+ylog
2

ε, where 1 ≤ y ≤ 2.
But a short calculation shows that, on this interval, the function t → t + tlog

2
ε reaches

its maximum for t = 2. Therefore T (n) ≤ 2 + ε for every ε > 0 and

lim
n→∞

ng(n)/2n ≤ 2.

Finally, let 0 < ε < 1 and put ε1 = log2(2−ε) and ε2 = (1+ε1)/2. Then 0 < ε1 < ε2 <
1, and by Lemma 7, there exists infinitely many integers m such that m = r + δ + 2r+δ

with ε1 < δ < ε2 and

T (m) = 2δ + 2(2−δ−1)2r

≥ 2δ > 2ε1 = 2− ε.

Therefore limn→∞ T (n) ≥ 2−ε for every ε > 0 and hence limn→∞ ng(n)/2n = 2.
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