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Abstract. We present a new graphic language which can serve, for
instance, as models for VLSI and control systems. Its primitives are
based on standard timing diagrams, and this is a great advantage over
other formalisms since designers can rapidly master it. The semantics is
rigorously defined in the formalism of the theory of automata on infinite
words. Using this formalism, we are able to give a rather precise upper-
bound on the expressive power of our graphic language in terms of a
language theoretic measure, the concatenation level. A detailed example
is presented.

1 Introduction

This paper emerged as the result of a discussion between circuit designers and
researchers working in the area of specification languages on the one hand and
automata theory on the other. It has a practical component, the description
of new formal specification language resembling timing diagrams, as well as a
strong theoretical flavour, since the semantics of the language is based on results
from the theory of automata on infinite words.

Our work is motivated by the following observation : circuit designers are
often discouraged by the complexity of the specification languages. In an effort
to remedy this problem, we introduce a graphic language, called the Chronogram
Language [1], the primitives of which are based on standard timing diagrams.
Timing diagrams are a formalism which is commonly used in the community
of circuit designers, so our language can be rapidly mastered. In other words,
contrary to most formalisms, properties are drawn rather than written, and this
pictural representation is much more convenient for the non-specialist than an
abstract formalism.

On the other hand, the use of pictures doesn’t preclude a precise syntax and
semantics. It turns out that the primitives of our language can be conveniently
interpreted as rational (also called regular) expressions on infinite words. It will
follow from our syntax that all chronograms can be interpreted as rational ex-
pressions. This approach not only permits us to define rigorously the semantics
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of the chronogram language, but also gives precise information about its expres-
sive power. Before stating our results, we need to briefly review some facts on
rational sets of infinite words.

There are two well-known scales to measure the complexity of a rational
set, the logical scale and the combinatorial scale. The logical scale branches
into two main parts, corresponding to the first order logic and to the monadic
second order logic, respectively. Within the first order logic one can define a
hierarchy by counting the number of alternations between existential and uni-
versal quantifiers. The combinatorial scale, on the other hand, is based on the
basic operations used to define the rational sets : boolean operations, concate-
nation product and iteration. It also branches into two main domains : the
star-free sets (which can be defined without using iteration) and the rational
sets. A hierarchy inside the star-free sets is obtained by counting the number of
alternations between the use of the boolean operations and of the concatenation
product. A nice (but non-trivial) feature is that the logical and the combinato-
rial scales coincide [17, 16]. Our main result states that the languages definable
using chronograms are within level 3 in the star-free (or logical) hierarchy. This
gives a rather precise upper bound to the expressive power of the Chronogram
Language.

Although our language was originally designed as a language for specifying
circuit behaviour, it can serve more generally for modelling temporal properties.
The Chronogram Language has been designed to provide designers with a good
expressive power for temporal properties. For instance, both safety and liveness
properties can be expressed in the Chronogram Language, in contrast with
other languages VHDL [14], Lucid [2], Lustre [5], Signal [13], etc. which cannot
express liveness properties. To ensure compatibility with existing formalisms,
the chronograms that represent safety properties can be compiled into VHDL
(a standard description language used in circuit design) and Signal expressions,
and liveness properties will be translated into CTL∗ in the future.

The paper is organized as follows. The Chronogram language is introduced
through an example which is analyzed later in section 6. The abstract syntax
of the Chronogram Language is given in section 4. In order to keep the paper
self-contained, the main definitions on languages and automata required for this
paper are summarized in section 3. The semantics of the Chronogram Language
are presented in section 5 and are illustrated by means of a detailed example in
section 6. The paper concludes with our plan for future work. Our approach
is illustrated by several examples of interpretations of chronograms involving
rational sets of infinite words.
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2 A presentation of the Chronogram Language.

A chronogram.

At the top of this chronogram is shown the CLOCK, which informally, represents
the time. All the events are synchronized on the rising edges of the clock, except
if all zones below the clock are IRRELEVANT zones. In the latter case, the
duration of the signal is not specified. This chronogram defines constraints on
the events of three boolean signals: I, O and B. Each line is dedicated to a
signal: the second one for B, the third one for O and the first and the last ones
for I. Each line consists of IRRELEVANT zones and bold line boxes. Only
the bold line boxes are relevant for the definition of constraints. On the second
line (dedicated to the B signal), there are three boxes with a solid line at the
bottom, and three boxes with a solid line at the top. This means that B must
carry the true value during the period of time represented by the first three
boxes, and the false value during the period of time represented by the last
three boxes. On the first and third line, the boxes are labelled by a symbol (v,
x or w). This means that during the period of time represented by the box,
the signal carries the value v (resp. x or w). This value v (resp. x, w) is not
specified in the chronogram but has to be the same in all boxes labelled by v
(resp. x, w). A minus sign can be added in the left part of the box: in this
case, the signal carries the value v̄ opposite to the label v of the box. On the
first line such a box is used with the symbol w.

The bold line boxes can be connected by arrows. The resulting graph can
have several (simply) connected components. Each component defines a con-
straint. The relative location of the boxes is relevant only inside a connected
component. For instance, the properties 1, 2, 4, 5, 6 and 3 which are detailed in
section 6 are specified in this order by the chronogram. Let us consider the first
property : when the gate is opened, I and O carry the same value. The gate is
opened if and only if B carries the false value. And in this case, I and O carry
the value denoted by the symbol v in the chronogram: the arrows mean that
“B carries the false value” implies that I and O carry the value v. The other
properties can be read in a similar way in the chronogram: two linked arrows
must be interpreted as a logical and.
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3 Languages and automata.

In this section, we briefly recall some basic definitions from the theory of
automata needed in this article. For more details, the reader is referred to
[10, 15, 18]. We also define the language-theoretic hierarchy that will serve as a
measure of the expressive power of the Chronogram Language.

We denote respectively by A∗, A+ and Aω the sets of finite words, non-empty
finite words and infinite words on an alphabet A. A language is a set of finite
words, that is, a subset of A∗. The rational operations are the three operations
union, product and star, defined on languages as follows

L1 ∪ L2 = {u | u ∈ L1 or u ∈ L2} (1) Union :

L1L2 = {u1u2 | u1 ∈ L1 and u2 ∈ L2} (2) Product :

L∗ = {u1 · · ·un | n ≥ 0 andu1, . . . , un ∈ L} (3) Star :

The set of rational (or regular) languages of A∗ is the smallest set of subsets
of A∗ containing the finite sets and closed under finite union, product and star.
For instance, {a, ab}∗ab ∪ (ba∗b)∗ denotes a rational set. The rational subsets
of A+ are the rational subsets of A∗ that do not contain the empty word. It
is possible to generalize the concept of rational languages to infinite words as
follows. First, the product can be extended to A∗ ×Aω, by setting, for X ⊂ A∗

and Y ⊂ Aω,
XY = {xy | x ∈ X et y ∈ Y }.

Next, we define an infinite iteration ω by setting, for every subset X of A+

Xω = {x0x1x2 · · · | for all i ≥ 0, xi ∈ X}

That is, Xω is the set of infinite words obtained by concatenating an infinite
sequence of words of X . By definition, a subset of Aω is ω-rational (or ω-
regular) if it is equal to a finite union of sets of the form XY ω where X and Y
are non-empty rational sets of A+.

Boolean operations comprise union, intersection, complementation and set
difference. It can be shown that the rational subsets of A∗ are closed under
finite boolean operations. The set of star-free subsets of A∗ is the smallest
set of subsets of A∗ containing the finite sets and closed under finite boolean
operations and product.

For instance, A∗ is star-free, since it is the complement of the empty set.
More generally, if B is a subset of the alphabet A, the set B∗ is also star-free
since B∗ is the complement of the set of words that contain at least one letter of
B′ = A \B. This leads to the following star-free expression (where Xc denotes
the complement of a set X)

B∗ = A∗ \A∗(A \B)A∗ = (∅c(A \B)∅c)c = (∅c(Ac ∪B)c∅c)c

Of course, B+ = B∗ \ {ε} is also star-free.
The set of star-free subsets of Aω is the smallest set S of subsets of Aω closed

under finite boolean operations and such that if X is a star-free subset of A+

and Y ∈ S, then XY ∈ S.
The definition of star-free languages of A∗ makes use of two different types

of operations: boolean operations and concatenation product. By alternating
the use of these two operations, one gets a hierarchy, called the concatenation
hierarchy, defined as follows.
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1. The sets of level 0 are the empty set and A∗,

2. For every integer n ≥ 0, the sets of level n + 1/2 are the finite unions of
the sets of the form

L0a1L1a2 · · · akLk

where L0, L1, . . . , Lk are sets of level n and a1, . . . , ak are letters

3. For every integer n ≥ 0, the sets of level n + 1 are finite boolean combi-
nations of sets of level n+ 1/2.

Note that a set of level m is also a set of level n for every n ≥ m. The languages
of level 1/2 are the finite unions of languages of the form A∗a1A

∗a2 · · · akA∗,
the languages of level 1 are finite boolean combinations of these languages, etc.
The following languages are of level 1 on the alphabet A:

B∗ = A∗ \
⋃

a∈A\B

A∗aA∗

{ε} = A∗ \
⋃

a∈A

A∗aA∗

B+ = B∗ \ {ε}

The next proposition summarizes several results relative to this hierarchy.

Proposition 3.1 (Brzozowski and Knast [4], Perrin and Pin [16])

1. The finite languages have level 1.

2. For each n ≥ 0, the languages of level n are closed under union, intersec-
tion, and complement.

3. For each n ≥ 0, the languages of level n + 1/2 are closed under union,
intersection, and product.

4. Let n ≥ 0 and let ϕ : A∗ → B∗ be a monoid morphism. If L is a language
of level n (resp. n+ 1/2), then ϕ−1(L) is also of level n (resp. n+ 1/2).

5. The hierarchy is strict for all n: there exist languages of level n+ 1 that
are not of level n+1/2 and languages of level n+1/2 that are not of level
n.

Concatenation hierarchies can be extended to infinite words as follows [16].

1. The sets of level 0 are the empty set ∅ and Aω,

2. For every integer n ≥ 0, the sets of level n + 1/2 are the finite unions of
the sets of the form XaY , where X is a set of A∗ of level n+ 1/2, Y is a
subset of Aω of level n and a is a letter.

3. For every n ≥ 0, the sets of level n+ 1 are finite boolean combinations of
sets of level n+ 1/2.
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4 An abstract syntax of the Chronogram Lan-

guage

The abstract syntax of the language is given by a grammar, in which the initial
of each non-terminal is a capital letter (e.g. Clock) and each terminal is either
written in capital letters (e.g. IDENTIFIER), or consists of a single lower-case
letter (e.g. i) or of a non alphabetic sign (e.g. 1, *).

The rules are grouped by level of derivation and every rule is written only
once. As a consequence, the derivation rules of certain terms may precede some
of their occurrences.

Constraint ::= Property Constraint | Property

Property ::= Clock Hypothesis Conclusion

Hypothesis ::= TimeDiagram

Conclusion ::= TimeDiagram

TimeDiagram ::= MultiColumnList

Clock ::= IDENTIFIER

MultiColumnList ::= MultiColumn MultiColumnList | MultiColumn

MultiColumn ::= StaticMultiColumn | DynamicMultiColumn

StaticMultiColumn ::= Width StaticRowList

DynamicMultiColumn ::= FiniteLowerBound UpperBound DynamicRowList

StaticRowList ::= StaticRow StaticRowList | StaticRow

DynamicRowList ::= DynamicRow DynamicRowList | DynamicRow

StaticRow ::= StaticIntervalList IDENTIFIER

DynamicRow ::= DynamicIntervalList IDENTIFIER

UpperBound ::= FiniteUpperBound | *

Width ::= INTEGER

Length ::= INTEGER

FiniteLowerBound ::= INTEGER

FiniteUpperBound ::= INTEGER

StaticIntervalList ::= StaticInterval StaticIntervalList | NIL

DynamicIntervalList ::= DynamicInterval DynamicIntervalList | NIL

StaticInterval ::= Length PrimitiveSymbol

DynamicInterval ::= PrimitiveSymbol

PrimitiveSymbol ::= i | f | e | r | s | 1 | 0 | SymbolicValue

SymbolicValue ::= - IDENTIFIER | IDENTIFIER

The intuitive meaning of the primitive symbols is the following:
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• i (Irrelevant) The value of the signal is not specified and can be either 0
or 1.

• 1 The signal is stable and its value is 1.

• 0 The signal is stable and its value is 0.

• f (Falling) The signal owns one and only one falling edge (but may have
0, 1 or 2 rising edges).

• r (Rising) The signal owns one and only one rising edge (but may have 0,
1 or 2 falling edges).

• s (Stable) The signal is stable but its value is unknown.

• e (Edge) The value of the signal changes once and only once.

5 Semantics of the Chronogram Language.

The formal semantics of the Chronogram Language are given in terms of ω-
rational languages. More precisely, a certain rational language is associated
with each of the graphic primitives of the Chronogram Language and with each
variable. Next, to each operator of the Chronogram Language (generation of
intervals, rows, columns, multicolumns, time diagrams, etc.) corresponds an
operation on languages that preserves rationality. A distinguishing feature of
the Chronogram Language is the use of symbolic values or boolean variables.
We shall first detail this peculiar aspect.

5.1 Boolean variables and valuations.

If v denotes a boolean variable, v̄ will denote its complement. Thanks to boolean
variables, one can specify in the Chronogram Language not only properties like
“The value of the signal at time t is 0 (resp. 1)”, but also properties of the form
“the value of the signal is v at time t and v̄ at time t+ 3”. In order to take in
account these variables, it is convenient, in the first place, to represent a signal
not as an infinite word on the alphabet B = {0, 1}, but as an infinite word on
the extended alphabet C = B ∪ V ∪ V̄ , where V is the set of variables used in
the chronogram.

One goes back to the binary alphabet B by associating a value with each
variable. This can formally be realized by a valuation, that is a map ν : C → B
such that

1. for all b ∈ B, ν(b) = b

2. for all v ∈ V , ν(v̄) = ν(v).

For instance, the previous example would be interpreted as “the value of the
signal is 0 at time t and 1 at time t + 3” (which corresponds to the valuation
ν defined by ν(v) = 0) or “the value of the signal is 1 at time t and 0 at time
t+ 3” (which corresponds to the valuation ν defined by ν(v) = 1).

A valuation ν : C → B defines in a natural way a function ν : C∗ → B∗, by
setting, for every word c1c2 · · · cn ∈ C∗,

ν(c1c2 · · · cn) = ν(c1)ν(c2) · · · ν(cn)
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If L is a subset of C∗, the set ν(L) is called the valuation of L.

5.2 Constraints on a single signal.

A signal is considered as an infinite word u on the binary alphabet B. As we
shall see later, the constraints defined on a given signal in our language can
always be formulated under the form u ∈ LBω, where L is a certain rational
language of B∗, that we shall now compute in more detail.

If the chronogram contains variables, we first identify the signal with an
infinite word u on the alphabet C, as was explained before. The constraint
in which the variables are not interpreted can be formulated under the form
u ∈ LBω, where L is a certain rational language of C∗, while the final constraint
can be expressed under the form

u ∈
⋃

ν valuation

ν(L)Bω

There are in fact two types of constraints, the “static” constraints, which corre-
spond to the case where L is a finite language, and the “dynamic” constraints,
that correspond to the case where L can be an infinite language.

In the case of a static constraint, the language L is obtained as a finite con-
catenation of rational languages corresponding to static intervals. For instance,
the following sequence of static intervals defines a constraint: “between time n1

and n2, the signal has a unique rising edge, between time n2 and n3, its value
is a constant v and between time n3 and n4, its value is always 0”. Note that
in this case, the values of n2 − n1, n3 − n2 and n4 − n3 are the length of the
static intervals.

In the case of a dynamic constraint, the language L is obtained as a finite
concatenation of rational languages corresponding to dynamic intervals. For in-
stance, the following sequence of dynamic intervals defines a constraint: “There
exist instants n2, n3, n4 such that between time n1 and n2, the signal has a
unique rising edge, between time n2 and n3, its value is a constant v and be-
tween time n3 and n4, its value is always 0”. The difference with the previous
case is that the values of n2 − n1, n3 − n2 and n4 − n3 are not specified in the
dynamic constraints, that is, can be chosen arbitrarily.

The languages associated with (static or dynamic) intervals are themselves
obtained from the so-called primitive languages associated with the primitive
symbols. This vocable concerns the elements of the set

V ∪ V̄ ∪ {i, 0, 1, f, r, s, e}

that is, all symbols of variables (possibly overlined) and the symbols associated
with the graphic primitives of the Chronogram Language. Recall the intuitive
meaning of these primitives.

• i (Irrelevant) The value of the signal is not specified and can be either 0
or 1.

• 1 The signal is stable and its value is 1.

• 0 The signal is stable and its value is 0.
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• f (Falling) The signal owns one and only one falling edge (but may have
0, 1 or 2 rising edges).

• r (Rising) The signal owns one and only one rising edge (but may have 0,
1 or 2 falling edges).

• s (Stable) The signal is stable but its value is unknown.

• e (Edge) The value of the signal changes once and only once.

This leads to the following table of the primitive languages associated with the
graphic primitives:

L(i) = {0, 1}+ L(1) = 1+ L(0) = 0+

L(f) = 0∗1+0+1∗ L(r) = 1∗0+1+0∗ L(s) = 0+ ∪ 1+

L(e) = 0+1+ ∪ 1+0+

On the other hand, the primitive language associated with each variable v is

L(v) = v+ and L(v̄) = v̄+

We, therefore, have

Proposition 5.1 The primitive languages and their valuations are star-free
languages of level 3/2.

Proof We have already seen that the languages L(i) = {0, 1}+, L(1) = 1+,
L(0) = 0+, L(v) = v+ and L(v̄) = v̄+ are languages of level 1. It follows that
L(s) = 0+ ∪ 1+ is also of level 1. On the other hand, L(f) = 0∗1+0+1∗ is a
product of languages of level 1/2 and thus is of level 3/2. A similar argument
would show that the languages L(r) and L(e) are of level 3/2. Finally, each
valuation of the languages L(v) and L(v̄) is equal to either 0+ or 1+, which are
languages of level 1.

We can now formally define the notion of interval. A static interval is a
couple I = (ℓ, t) where ℓ is a positive integer and t is a primitive symbol. Intu-
itively, the integer ℓ represents the length of the interval on which the condition
defined by t will be considered. For example, if ℓ = 5 and t = e, the value of
the signal will change once and only once in the interval [0, 5[. The language
associated with I is the subset of C∗ defined by

L(I) = L(ℓ, t) = L(t) ∩ Cℓ

For example, if ℓ = 5 and t = e, then

L(I) = (0+1+ ∪ 1+0+) ∩ C5

= {01111, 00111, 00011, 00001, 10000, 11000, 11100, 11110}

A dynamic interval is simply a primitive symbol and thus the corresponding
language is already defined. A static (resp. dynamic) row is a sequence of static

(resp. dynamic) intervals. The language associated with a row (I1, I2, . . . , Is)
is defined by

L(I1, I2, . . . , Is) = L(I1)L(I2) · · ·L(Is)

9



0 1 2 3 4 5 6 7 8 9 10

v v
_

Irrel. e

11

…

Figure 5.1: A static row.

For instance, the language of C+ associated with the row represented below is

11v{0, 1}v̄v̄{01111, 00111, 00011, 00001}

Here is another example, for a dynamic row. If I1 = v, I2 = e and I3 = v̄, then

L(I) = v+(0+1+ ∪ 1+0+)v̄+

The languages associated with rows are described in the next proposition

Theorem 5.2 The languages associated with a static row and their valuations
are finite languages. The languages associated with a dynamic row and their
valuations are languages of level 3/2.

Proof The language associated with a static row is an intersection of lan-
guages associated with static intervals, which are finite languages. Since the
valuation of a finite language is finite, the first part of the statement follows.

The language associated with a dynamic row is a product of languages of
dynamic intervals. Now, by Proposition 5.1, the languages associated with
dynamic intervals and their valuations are of level 3/2 and by Proposition 3.1,
the product of languages of level 3/2 is also of level 3/2.

Finally, if L is the language associated with a (static or dynamic) row, the
constraint defined by this row is the set

⋃

ν is a valuation

ν(L)Bω

In other words, in order to compute the constraint defined by a row, one first
computes the language L associated with this row on the extended alphabet C
and then one simply gives a value to the variables. For instance, for the row
represented in figure 5.2, the constraint can be written

(111{0, 1}00{01111, 00111, 00011, 00001}

∪ 110{0, 1}11{01111, 00111, 00011, 00001})Bω

5.3 Constraints on several signals.

We now define the language associated with a constraint on a set of k signals.
We first introduce some auxiliary notation. Let A be an alphabet. For each
integer k, Ak denotes the alphabet consisting of k-uple of letters of A, denoted
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as a column matrix. For instance, B8 is the set of bytes, and the triple





1
0
1



 is

a letter of B3. Thus

u =





1
1
1









0
1
0









1
0
0









1
0
0









0
0
0





is a word on the alphabet B3. By reading in parallel the lines of the previous
representation, one gets the three words 10110, 11000 and 10000. Therefore the
word u given above can be represented by the triple (10110, 11000, 10000) of
words of B∗. More generally, it is always possible to represent a word of length
n on the alphabet Ak as a k-array of words of A∗.








a1,1
a1,2
...

a1,k















a2,1
a2,2
...

a2,k








· · ·








an,1
an,2
...

an,k








We denote by πA : A∗
k → A∗ ×A∗ × · · · ×A∗

︸ ︷︷ ︸

k times

the function defined by

πA















a1,1
a1,2
...

a1,k















a2,1
a2,2
...

a2,k








· · ·








an,1
an,2
...

an,k















=

(a1,1a2,1 · · · an,1, a1,2a2,2 · · ·an,2, . . . , a1,ka2,k · · · an,k)

This function πA is in fact a monoid morphism of A∗
k into A∗ ×A∗ × · · · ×A∗ :

this simply means that it preserves the concatenation product. However, it is
not an isomorphism (except if k = 1) because an element of A∗ ×A∗ × · · · ×A∗

may have components of different length. Let

Dk(A) = {(u1, u2, . . . , uk) ∈ A∗ ×A∗ · · · ×A∗ | |u1| = |u2| = . . . = |uk|}

denote the set of k-tuples of words of the same length. Now, since πA induces
an isomorphism from A∗

k onto Dk(A), one can identify the k-tuples of Dk(A)
with the words of A∗

k.
Returning once again to signals, a static multicolumn is a pair M = (p,R)

where p is a positive integer and R = (R1, . . . , Rk) is a k-uple of static rows.
Intuitively, to each row corresponds a signal, but it is important to observe that
two rows or more can represent the same physical signal. This allows one to
impose several distinct constraints on a given signal and to conveniently display
hypothesis-conclusion pairs, when a signal can figure in one set of hypotheses
and in another set of conclusions. By definition, the language associated with
a static multicolumn (p,R) is

L(p,R) = Cp
k ∩ π−1

C

(
L(R1)× L(R2)× · · · × L(Rk) ∩Dk(C)

)

In other words, the k-tuples (u1, u2, . . . , uk) such that u1 ∈ L(R1), u2 ∈ L(R2),
. . . , uk ∈ L(Rk) and |u1| = |u2| = . . . = |uk| = p are selected and identified
with words of C∗

k .
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A dynamic multicolumn is a triple M = (n,m,R) where n is a integer, m is
either an integer or the symbol ∗ and R = (R1, . . . , Rk) is a k-tuple of dynamic
rows. Define

C
[0,m]
k =

⋃

0≤i≤m

Ci
k

The language associated with a dynamic multicolumn is by definition

L(n,m,R) = Cn
k

(

C
[0,m]
k ∩ π−1

C

(
L(R1)× L(R2)× · · · × L(Rk) ∩Dk(C)

))

L(n, ∗, R) = Cn
k

(

C∗
k ∩ π−1

C

(
L(R1)× L(R2)× · · · × L(Rk) ∩Dk(C)

))

The difference between the types of multicolumns is that, in a dynamic multi-
column, there may be no upper bound on the common length of the ui’s.
One can show for the multicolumns a result similar to the one obtained for rows

Theorem 5.3 The languages associated with a static multicolumn and their
valuations are finite languages. The languages associated with a dynamic mul-
ticolumn and their valuations are languages of level 3/2.

Proof Let M = (p,R) be a static multicolumn. Then the language associ-
ated with M is a subset of Cp

k and hence is finite. The valuations are subsets
of Bp

k and are also finite. The case of a dynamic multicolumn M = (n,m,R),
where m is an integer, is similar.

Finally, let M = (n, ∗, R) be a dynamic multicolumn. Then L(M) =

Cn
k

(

C∗
k ∩π−1

C

(
L(R1)×L(R2)× · · ·×L(Rk)∩Dk(C)

))

. Since Cn
k is a finite lan-

guage, it is of level 1 by Proposition 3.1. By the same Proposition, the languages
of level 3/2 are closed under intersection and product and it remains to show
that the language π−1

C

(
L(R1) × L(R2) × · · · × L(Rk) ∩Dk(C)

)
is of level 3/2.

Denote by πi the i-th projection of C∗
k on C∗, defined by πi(c1, c2, . . . , ck) = ci.

We first observe that

π−1
C

(
L(R1)× L(R2)× · · · × L(Rk) ∩Dk(C)

)
=

⋂

1≤i≤k

π−1
i (L(Ri))

Indeed, the above language is actually the set of k-tuples (u1, u2, . . . , uk) such
that |u1| = |u2| = . . . = |uk| and ui ∈ L(Ri) for 1 ≤ i ≤ k. Now the languages
L(Ri) are of level 3/2 by Proposition 5.2, and by Proposition 3.1, so are the
languages π−1

i (L(Ri)) and their intersection. Therefore, π−1
C

(
L(R1)× L(R2)×

· · · × L(Rk) ∩Dk(C)
)
is of level 3/2, as required.

Let ν : C → B be a valuation. By definition, one has

Lν(M) = ν

(

Cn
k

(

C∗
k ∩ π−1

C

(
L(R1)× L(R2)× · · · × L(Rk) ∩Dk(C)

))
)

= Bn
k ν
(

C∗
k ∩ π−1

C

(
L(R1)× L(R2)× · · · × L(Rk) ∩Dk(C)

))

A lemma is in order to treat this expression:

Lemma 5.4 Let ν : C → B be a valuation and let L1, L2, . . . , Lk be languages
of C∗. Then the following formula holds

ν
(

C∗
k ∩ π−1

C

(
L(R1)×L(R2)× · · · ×L(Rk)∩Dk(C)

))

= B∗
k ∩

⋂

1≤i≤k

π−1
i

(
ν(Li)

)

12



Proof One has successively

ν
(

C∗
k ∩ π−1

C

(
L(R1)× L(R2)× · · · × L(Rk) ∩Dk(C)

))

=

ν

{








c1,1
c1,2
...

c1,k















c2,1
c2,2
...

c2,k








· · ·








cm,1

cm,2

...
cm,k








| m ≥ 0 and

c1,1c2,1 · · · cm,1 ∈ L1, . . . , c1,kc2,k · · · cm,k ∈ Lk

}

=

{








ν(c1,1)
ν(c1,2)

...
ν(c1,k)















ν(c2,1)
ν(c2,2)

...
ν(c2,k)








· · ·








ν(cm,1)
ν(cm,2)

...
ν(cm,k)








| m ≥ 0 and

c1,1c2,1 · · · cm,1 ∈ L1, . . . , c1,kc2,k · · · cm,k ∈ Lk

}

=

{








b1,1
b1,2
...

b1,k















b2,1
b2,2
...

b2,k








· · ·








bm,1

bm,2

...
bm,k








| m ≥ 0 and

b1,1b2,1 · · · bm,1 ∈ ν(L1), . . . , b1,kb2,k · · · bm,k ∈ ν(Lk)

}

=

{

u1u2 · · ·um | m ≥ 0 and π1(u1u2 · · ·um) ∈ ν(L1), . . . ,

πk(u1u2 · · ·um) ∈ ν(Lk)

}

= B∗
k ∩

⋂

1≤i≤k

π−1
i ν(Li)

Let us achieve the proof of proposition 5.3. By Lemma 5.4, one has

Lν(M) = Bn
k ν
(

C∗
k ∩ π−1

C

(
L(R1)× L(R2)× · · · × L(Rk) ∩Dk(C)

))

= Bn
k

(

B∗
k ∩

⋂

1≤i≤k

π−1
i (Lν(Ri))

)

The languages Lν(Ri) are of level 3/2 by Proposition 5.2, Bn
k is finite and B∗

k

is of level 1. Since the languages of level 3/2 are closed under intersection, the
previous formula shows that Lν(M) is of level 3/2.

5.4 Timing diagrams and properties.

A timing diagram (TD) is a sequence of multicolumns. A property is a pair
P = (M,N) of timing diagrams: M = (M1,M2, . . .Mr) is the hypothesis and
N = (N1, N2 . . . Nr) is the conclusion. A property defines a particular binary

13



relation on k-tuples of signals. The property is satisfied if every k-tuple of signals
that satisfies the hypothesis satisfies the conclusion, too.

In the rational language formalism, this can be translated as follows: an
infinite word w on the alphabet Bk satisfies a property P = (M,N) if, for each
suffix s of w and for all valuations ν, if there exists a factorization u1u2 · · ·urur+1

of s, where u1 ∈ Lν(M1), u2 ∈ Lν(M2), . . . , ur ∈ Lν(Mr), ur+1 ∈ Bω
k , then

there exists a factorization u′
1u

′
2 · · ·u

′
ru

′
r+1 of s, where u′

1 ∈ Lν(M1) ∩ Lν(N1),
u′
2 ∈ Lν(M2) ∩ Lν(N2), . . . , u

′
r ∈ Lν(Mr) ∩ Lν(Nr), u

′
r+1 ∈ Bω

k . This can be
reformulated as follows.

Theorem 5.5 An infinite word w on the alphabet Bk satisfies P if and only if
none of its suffixes belong to the set

K(P ) =
⋃

ν valuation

Lν(M1)Lν(M2) · · ·Lν(Mr)B
ω
k

\
((

Lν(M1) ∩ Lν(N1)
)(
Lν(M2) ∩ Lν(N2)

)
· · ·
(
Lν(Mr) ∩ Lν(Nr)

))

Bω
k

Proof It is easier to consider the negation of the condition. By definition,
an infinite word w on the alphabet Bk does not satisfy P if and only if there
exist a suffix s of w, and a valuation ν such that there exists a factorization of
s of the form u = u1u2 · · ·urur+1 with

u1 ∈ Lν(M1), u2 ∈ Lν(M2), . . . , ur ∈ Lν(Mr), ur+1 ∈ Bω
k

but such that

s /∈
(
Lν(M1) ∩ Lν(N1)

)(
Lν(M2) ∩ Lν(N2)

)
· · ·
(
Lν(Mr) ∩ Lν(Nr)

))

Bω
k

The formula of the statement follows immediately.

Corollary 5.6 An infinite word w on the alphabet Bk satisfies a property P if
and only if it belongs to the set L(P ) = Bω

k \B∗
kK(P ).

We arrive to our main result.

Theorem 5.7 For every property P , the set L(P ) is a star-free set of level 3.

Proof Proposition 5.3 show that the languages Lν(Mi) and Lν(Ni) are of
level 3/2. Since the languages of level 3/2 are closed under intersection and prod-

uct, the sets Lν(M1)Lν(M2) · · ·Lν(Mr)B
ω and

((
Lν(M1)∩Lν (N1)

)(
Lν(M2)∩

Lν(N2)
)
· · ·
(
Lν(Mr) ∩ Lν(Nr)

))

Bω are also of level 3/2. Therefore K(P ) is of

level 2 and L(P ) is of level 3.

14



5.5 Constraints.

We call a constraint a finite sequence of properties. Let (P1, P2, . . . , Pn) be a
constraint. Let L(P1), L(P2), . . . , L(Pn) be the sets of infinite words defined
by P1, P2, . . . , Pn, respectively. Then the set of words defined by (P1, P2, . . . ,
Pn) is the language L(P1) ∩ L(P2) ∩ · · · ∩ L(Pn). In other words, a constraint
is a conjunction of properties. Now, the languages of level 3 are closed under
intersection. Therefore, Theorem 5.7 implies the following result.

Corollary 5.8 The set of infinite words defined by a constraint is a star-free
language of level 3.

6 An example.

This section is devoted to the detailed study of an example. Consider a s. We
propose to specify its control system using chronograms. The wash does not
take more than one car at a time. There is a gate at the entrance. This gate
is closed while a car is in the wash and opened if the wash is empty. Moreover,
there are two switches set respectively at the entrance and at the exit of the
wash. These switches may be either on or off at any instant, subject to the
constraint that the one at the entrance toggles every time a car enters the wash,
and the one at the exit toggles every time a car exits from the wash.

The car wash control system can be modeled by three boolean signals de-
noted by B, I, and O. The signal B (Entrance) carries the 0 value to model
the opened gate and the 1 value to model the closed gate. The signals I (In)
and O (Out) model the entrance switch and exit switch, respectively. Initially,
the value of the signals B, I, and O is set to 0, which means the wash is empty
and its gate is open.

The following five properties specify the car wash control system. This
set of properties may be neither consistent nor minimal. The set of figures
below show the chronograms for these properties. An automaton model of the
system induced from these properties is proposed, too. Then we prove that a
sixth constraint is effectively satisfied by the automaton. Here are the first five
properties.

• (1) During any instant, if the gate is opened, I and O carry the same
value.

• (2) During any instant, if I and O carry the same value, the gate is opened.

• (3) If the gate is closed during an instant t, then I is stable between t and
t+ 1 (since the machine cannot wash more than one car at a time).

• (4) If the gate is open during an instant t, then O is stable between t and
t+ 1 (since the machine is empty).

• (5) As soon as a car enters the wash, the gate closes. The property to be

proved is the following:
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Figure 6.2: The chronograms of properties 1 and 2.

• (6) When the gate is closed, the car that is in the machine will eventually
exit.

The chronograms of these properties are drawn in the figures below. An ex-
planation is in order for the chronogram representing property 6. Indeed, the
clock signal seems to count off one time unit between v and v̄. However, since
the signals I and O carry the value IRRELEVANT during the same period, the
clock signal is irrelevant. Thus property 6 is an unbounded liveness property.
The semantics of these chronograms can be expressed by rational ω-expressions.

The basic alphabet is B3 = {0, 1}3. Each matrix





v1
v2
v3



 represents one of

the value of the





B
I
O



 triple. The set of these matrices is the alphabet of

the language on which the previous properties are defined. In the following
definitions, v, v1, v2, etc. will denote boolean variables.

1. The first constraint states that if B = 0, then I and O carry the same

value. In other words, the letters





0
0
1



 and





0
1
0



 cannot occur. Thus the

set C1 associated with the first constraint is defined by

C1 =

{



0
0
0



 ,





1
0
1



 ,





1
1
0



 ,





0
1
1



 ,





1
0
0



 ,





1
1
1





}ω
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Figure 6.3: The chronograms of properties 3 and 4.

Figure 6.4: The chronograms of properties 5 and 6.
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2. The second constraint states that if I and O carry the same value, then

B = 0. In other words, the letters





1
0
0



 and





1
1
1



 cannot occur, either.

Therefore, the set C2 associated with the second constraint is defined by

C2 =

{



0
0
0



 ,





0
0
1



 ,





0
1
0



 ,





0
1
1



 ,





1
0
1



 ,





1
1
0





}ω

3. The third constraint states that if the letter u(t) is equal to





1
v
v1



, then

the letter u(t+1) is equal to





v2
v
v3



. What can be written as Bω
3 \B

∗
3K1B

ω
3 ,

where

K1 =

{



1
1
v1









v2
0
v3



 ,





1
0
v1









v2
1
v3



 | v1, v2, v3 ∈ B

}

4. The fourth constraint states that if the letter u(t) is equal to





0
v1
v



, then

the letter u(t+1) is equal to





v2
v3
v



. What can be written Bω
3 \B∗

3K2B
ω
3 ,

where

K2 =

{



0
v1
0









v2
v3
1



 ,





0
v1
1









v2
v3
0



 | v1, v2, v3 ∈ B

}

5. The fifth constraint states that if u(t) is equal to





v1
v
v2



, and if u(t+1) is

equal to





v3
v̄
v4



, then v3 = 1. This can be written as Bω
3 \B∗

3K3B
ω
3 , where

K3 =

{



v1
v
v2









0
v̄
v3



 | v, v1, v2, v3 ∈ B

}

Let us consider the system specified by these five properties. The first two ones
define the following set of words

{



0
0
0



 ,





1
0
1



 ,





1
1
0



 ,





0
1
1





}ω

The last three ones define the following set of words Bω
3 \B∗

3KBω
3 , where

K = K1 ∪K2 ∪K3
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0, 0, 0

1, 1, 0

0, 1, 1

1, 0, 1

(0, 0, 0)

(1, 1, 0)

(0, 1, 1)

(1, 0, 1)

(1, 1, 0) (0, 1, 1)

(1, 0, 1)(0, 0, 0)

Figure 6.5: The automaton of the five properties.

The five properties altogether define the following set of words S = Cω\C∗RCω,
where

C =

{



0
0
0



 ,





1
0
1



 ,





1
1
0



 ,





0
1
1





}

and

R =

{



0
0
0









1
0
1



 ,





0
0
0









0
1
1



 ,





1
1
0









0
0
0



 ,





1
1
0









1
0
1



 ,





0
1
1









0
0
0



 ,





0
1
1









1
1
0









1
0
1









1
1
0



 ,





1
0
1









0
1
1





}

Since the initial value of the three boolean signals is set to 0, the car wash
control system can be represented by the automaton shown below.
Note that the states of this automaton are solutions of the equation I + O =
B mod 2. Consider the sixth property, which is a liveness property. It says

that, given an instant t such that u(t) is of the form





1
v2
v3



, then there exists a

subsequent instant s (s > t) such that u(s) is equal to





v1
v′2
v̄3



. Thus, property

(6) is described by a rational expression involving six multicolumns: M1, M2,
M3, N1, N2, N3. The languages they define are, respectively,

L(M1) =

{



1
v2
v3



 | v2, v3 ∈ B

}

L(N1) =

{



v1
v′2
v



 | v1, v′2 ∈ B

}

L(M2) = B∗
3 L(N2) = B∗

3

L(M3) = B3 L(N3) =

{



v′1
v′′2
v̄



 | v′1, v
′′
2 ∈ B

}
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Let K(P ) be the language representing the property. It comes

K(P ) = K1K
ω
2 ∪K3K

ω
4

where

K1 =

{



1
0
1



 ,





1
1
1





}

K2 =

{



0
0
1



 ,





0
1
1



 ,





1
0
1



 ,





1
1
1





}

K3 =

{



1
0
0



 ,





1
1
0





}

K4 =

{



0
0
0



 ,





0
1
0



 ,





1
0
0



 ,





1
1
0





}

It is theoretically possible to compute the automaton associated with K(P ),
and then to prove that S is a subset of Bω

3 \ B∗
3K(P ), where Bω

3 \ B∗
3K(P ) is

given by Corollary 5.6. More directly, one can observe that S ⊂ Bω
3 \B∗

3K(P )
is equivalent with S ∩B∗

3K(P ) = ∅ which can be rewritten into

T ∩K(P ) = ∅

where the set T = {u ∈ Bω
3 | vu ∈ S for some v ∈ B∗

3} is recognized by the
Büchi automaton [18] given in Figure 6.5, by taking all the states as initial and
final states. Recall that an infinite word u is accepted by a Büchi automaton if
there is at least an infinite run with label u starting at some initial state and
visiting a final state infinitely often. Thus the equality T ∩K(P ) = ∅ can be
directly verified on this automaton, since no word of K(P ) can have an infinite
run on the Büchi automaton for T .

7 Conclusion

We have presented a new formal language for the specification of temporal prop-
erties of Discrete Event Dynamic Systems. This language, called the Chrono-
gram Language, is based on a well-known graphic metaphor: waveforms. It
allows specifying certain complex temporal properties in a more convenient way
than textual temporal logics (CTL, CTL∗ . . . ). Although we do not consider
this language as a universal one, we think that its graphical approach might be
appealing to designers. In fact, we view the chronogram language as a basic
part of a future Computer Aid Design (CAD) environment including validation
tools. Several authors have developped similar work [3, 6, 8, 9, 11, 12, 19, 20].

The Chronogram Language is graphic and fully declarative. In this paper,
we defined rigorously its semantics by using automata theory. The main result
of this work is that it is possible to associate a finite automaton with any
chronogram. This means that chronograms are ω-rational. In fact, as shown
in this paper, chronograms correspond to a much smaller class that the class
of ω-rational sets, and this may lead to some specific compilation algorithms in
the future.

We are now studying new developments: an extension of the Chronogram
Language allowing designers to specify properties without any reference to some
clock or including timing aspects (having physical time delays) and a consistency
checking tool for sets of chronograms. We are also working on the improvement
of the compilation algorithm since it is crucial to compile chronograms into
as small as possible automata. Currently, compilers generate VHDL code and
Signal code. New output languages will also be available in the future.
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