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Abstract

In 1970, R. S. Cohen and Janusz A. Brzozowski introduced a hierarchy
of star-free languages called the dot-depth hierarchy. This hierarchy and
its generalisations, together with the problems attached to them, had a
long-lasting influence on the development of automata theory. This survey
article reports on the numerous results and conjectures attached to this
hierarchy.

This paper is a follow-up of the survey article Open problems about regular
languages, 35 years later [57]. The dot-depth hierarchy, also known as Brzo-
zowski hierarchy, is a hierarchy of star-free languages first introduced by Cohen
and Brzozowski [25] in 1971. It immediately gave rise to many interesting ques-
tions and an account of the early results can be found in Brzozowski’s survey
[20] from 1976.

1 Terminology, notation and background

Most of the terminology used in this paper was introduced in [57]. We just com-
plete these definitions by giving the ordered versions of the notions of syntactic
monoid and variety of finite monoids.

1.1 Syntactic order and positive varieties

An ordered monoid is a monoid equipped with an order 6 compatible with the
multiplication: x 6 y implies zx 6 zy and xz 6 yz.

The syntactic preorder1 of a language L of A∗ is the relation 6L defined on
A∗ by u 6L v if and only if, for every x, y ∈ A∗,

xuy ∈ L ⇒ xvy ∈ L.

∗The author was funded from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 670624).

1Unfortunately, the author used the opposite order in earlier papers (from 1995 to 2011).
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The syntactic congruence of L is the associated equivalence relation ∼L, defined
by u ∼L v if and only if u 6L v and v 6L u.

The syntactic monoid of L is the quotient M(L) of A∗ by ∼L and the
natural morphism η : A∗ → A∗/∼L is called the syntactic morphism of L. The
syntactic preorder 6L induces an order on the quotient monoid M(L). The
resulting ordered monoid is called the syntactic ordered monoid of L.

For instance, the syntactic monoid of the language {a, aba} is the monoid
M = {1, a, b, ab, ba, aba, 0} presented by the relations a2 = b2 = bab = 0. Its
syntactic order is given by the relations 0 < ab < 1, 0 < ba < 1, 0 < aba < a,
0 < b.

The syntactic ordered monoid of a language was first introduced by Schützenberger
[86] in 1956, but thereafter, he apparently only used the syntactic monoid.

A positive variety of languages is a class of languages closed under finite
unions, finite intersections, left and right quotients and inverses of morphisms.
A variety of languages is a positive variety closed under complementation.

Similarly, a variety of finite ordered monoids is a class of finite ordered
monoids closed under taking ordered submonoids, quotients and finite products.
Varieties of finite (ordered) semigroups are defined analogously. If V is a variety
of ordered monoids, let Vd denote the dual variety, consisting of all ordered
monoids (M,6) such that (M,>) ∈ V. We refer the reader to the books
[2, 28, 62] for more details.

Eilenberg’s variety theorem [28] admits the following ordered version [63].
Let V be a variety of finite ordered monoids. For each alphabet A, let V(A) be
the set of all languages of A∗ whose syntactic ordered monoid is in V. Then V
is a positive variety of languages. Furthermore, the correspondence V → V is
a bijection between varieties of finite ordered monoids and positive varieties of
languages.

By Reiterman’s theorem [83], varieties of finite monoids can be defined by a
set of profinite identities of the form u = v, where u and v are profinite words.
Similarly, varieties of finite ordered monoids can be defined by a set of profinite
identities of the form u 6 v (see [73]).

1.2 li-varieties versus +-varieties

Let us first recall that a monoid morphism ϕ : A∗ → B∗ is length-increasing
if for all u ∈ A∗, |ϕ(u)| > |u| or equivalently, if ϕ(A) ⊆ B+. A class of
languages closed under finite unions, finite intersections, left and right quotients
and inverses of length-increasing morphisms is a positive li-variety of languages.
A positive li-variety of languages closed under complementation is a li-variety
of languages.

In fact, li-varieties are almost the same thing as +-varieties, a notion due
to Eilenberg [28]. A +-class of languages C associates with each finite alphabet
A a set C(A) of regular languages of A+, that is, not containing the empty
word. A positive +-variety of languages is a +-class of languages closed under
finite unions, finite intersections, left and right quotients and inverses of semi-
group morphisms. A +-variety of languages is a positive +-variety closed under
complementation.

The precise correspondence between li-varieties and +-varieties is discussed
in [105] and [69], pp. 260–261), but we will only need the following result. Let us
say that a (positive) li-variety of languages V is well suited if, for each alphabet
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A, V(A) contains the languages {1} and A+. If V is a (positive) well-suited
li-variety, then the languages of the form L ∩ A+, where L ∈ V(A), form a
(positive) +-variety V+. If W is a (positive) +-variety of languages, then the
languages of the form L or L∪{1}, where L is in W, form a (positive) well-suited
li-variety W ′. Moreover the correspondences V → V+ and W → W ′ are inverse
bijective correspondences between well-suited li-varieties and +-varieties.

The reader may wonder why two such closely related notions are needed.
On the one hand, the notion of li-variety fits perfectly with the more general
theory developed in [105] and is also more flexible. For instance, the notion of
polynomial closure defined in Section 3 is easier to define (see [69], pp. 260–
261 for a discussion). On the other hand, Eilenberg’s variety theorem can be
extended to both +-varieties and li-varieties, but it is easier to state for +-
varieties: there is a bijective correspondence between +-varieties and varieties of
finite semigroups. In other words, languages of a +-variety can be characterized
by a property of their syntactic semigroup. By comparison, li-varieties require
the use of the syntactic morphism instead of the syntactic semigroup[105]. But
since all li-varieties considered in this paper are well-suited, they are also in
bijection with varieties of finite semigroups.

2 The dot-depth hierarchy

Let us first come back to the original definition from [25]. Given an alphabet
A, the languages ∅, {1} and {a}, where a ∈ A, are called basic languages. Let
E be the class of basic languages.

Given a class C of languages, let BC be its Boolean closure and let M C be
its monoid closure, that is, the smallest class of languages containing C and the
language {1} and closed under concatenation product. Star-free languages can
be constructed by alternately applying the operators B and M to the class E .
This leads to a hierarchy of star-free languages, called the dot-depth hierarchy.
The question arises to know whether one should start with the operator B or M ,
but the equality BMBE = BMBM E shows that it just makes a difference
for the lower levels.

In his 1976 survey, Brzozowski suggested to start the hierarchy at B0 =
BM E , the class of finite or cofinite2 languages. The dot-depth hierarchy is the
sequence obtained from B0 by setting Bn+1 = BMBn for all n > 0.

It is interesting to quote Brzozowski’s original motivations as reported in
[20].

The following motivation led to these concepts. Feedback-free net-
works of gates, i.e., combinational circuits, constitute the simplest
and degenerate forms of sequential circuits. Combinational networks
are, of course, characterized by Boolean functions. This suggested
that (a) all Boolean operations should be considered together when
studying the formation of aperiodic languages from the letters of the
alphabet, and (b) since concatenation (or “dot” operator) is linked
to the sequential rather than the combinational nature of a language,
the number of concatenation levels required to express a given aperi-
odic language should provide a useful measure of complexity.

2A language is cofinite if its complement is finite.
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The term aperiodic languages refers to the characterization of star-free languages
obtained by Schützenberger [87] in 1965.

Theorem 2.1 A language is star-free if and only if its syntactic monoid is
aperiodic.

3 Concatenation hierarchies

Further developments lead to a slight change in the definition, motivated by
the connection with finite model theory presented in Section 4 and by the alge-
braic approach discussed in Section 5. The main change consisted in replacing
products by marked products. A language L of A∗ is a marked product of the
languages L0, L1, . . . , Ln if

L = L0a1L1 · · · anLn

for some letters a1, . . . , an of A.
Given a set L of languages, the polynomial closure of L is the set of languages

that are finite unions of marked products of languages of L. The polynomial clo-
sure of L is denoted Pol L and the Boolean closure of Pol L is denoted BPol L.
Finally, let co-Pol L denote the set of complements of languages in Pol L.

Concatenation hierarchies are now defined by alternating Boolean operations
and polynomial operations. For historical reasons, they are indexed by half-
integers. More precisely, the concatenation hierarchy based on L is the sequence
defined inductively as follows: L0 = L and, for each n > 0,

(1) Ln+1/2 = Pol Ln is the polynomial closure of the level n,

(2) Ln+1 = BLn+1/2 = BPol Ln is the Boolean closure of the level n+ 1/2.

The classes of the form Ln are called the full levels and the classes of the form
Ln+1/2 are called the half levels of the hierarchy.

The dot-depth hierarchy corresponds to the full levels of the concatenation
hierarchy based on the class B0 of finite or cofinite languages. It should be noted
that, apart for level 0, this hierarchy coincides with the concatenation hierarchy
starting with the class of languages L0 defined by L0(A) = {∅, {1}, A+, A∗}.

Another natural concatenation hierarchy is the Straubing-Thérien hierarchy,
based on the class of languages V0 defined by V0(A) = {∅, A∗}. Other initial
classes of languages have been considered in the literature, but we will stick here
to these two examples.

It is not clear at first sight whether these hierarchies do not collapse, but this
question was solved in 1978 by Brzozowski and Knast [21]. Thomas [114, 115]
gave a different proof based on game theory.

Theorem 3.1 The dot-depth hierarchy is infinite.

Let Dn be the sequence of languages of {a, b}∗ defined by D0 = {1} and Dn+1 =
(aDnb)

∗. Then one can show that D0 ∈ B0 and for all n > 0, Dn ∈ Bn −Bn−1.

The Straubing-Thérien hierarchy is also infinite and the following diagram, in
which all inclusions are proper, summarizes the relations between the two hier-
archies.
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V0 V1/2 V1 V3/2 V2 V5/2 · · ·

Star-free

languages

B0 B1/2 B1 B3/2 B2 · · ·

⊂ ⊂ ⊂ ⊂ ⊂ ⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂ ⊂ ⊂ ⊂ ⊂

The dot-depth problem asks whether the dot-depth hierarchy is decidable.

Problem 1 Given a half integer n and a regular language L, decide whether L
belongs Bn.

The corresponding problem for the hierarchy Vn is also open and the two prob-
lems are intimately connected. A particularly appealing aspect of this problem
is its close connection with finite model theory.

4 Connection with finite model theory

Let us associate to each word u = a0a1 . . . an−1 over the alphabet A a relational
structure

Mu =
{

{0, 1, . . . , n− 1}, <, (a)a∈A

}

,

where< is the usual order on the domain and a is a predicate giving the positions
i such that ai = a. For instance, if u = abaab, then a = {0, 2, 3} and b = {1, 4}.
Given a sentence ϕ, the language defined by ϕ is

L(ϕ) = {u ∈ A+ | Mu satisfies ϕ}.

The structure associated to the empty word has an empty domain, which leads
to potential problems in logic, since some inference rules are not sound when
empty structures are allowed. There are two possible solutions to this problem.
The first one consists in ignoring the empty word. In this case, one makes the
convention that a language L of A∗ is defined by ϕ if L(ϕ) = L∩A+. The second
possibility is to adopt the convention that sentences beginning with a universal
quantifier are true and sentences beginning with an existential quantifier are
false in the empty model.

For the study of the dot-depth hierarchy, one needs to slightly expand the
signature by adding three relational symbols min, max and S, interpreted re-
spectively as the minimal element (0 in our example), the maximal element (4
in our example) and the successor relation S, defined by S(x, y) if and only if
y = x+ 1.

First order formulas are now built in the usual way by using these symbols,
the equality symbol, (first-order) variables, Boolean connectives and quantifiers.
For instance, the sentence

∃x ∃y
(

(x < y) ∧ (ax) ∧ (by)
)

,

intuitively interpreted as there exist two positions x < y in the word such that
the letter in position x is an a and the letter in position y is a b, defines the
language A∗aA∗bA∗.

McNaughton and Papert [55] showed that a language is first-order definable
if and only if it is star-free. Thomas [113] (see also [56]) refined this result
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by showing that the dot-depth hierarchy corresponds, level by level, to the
quantifier alternation hierarchy of first-order formulas, defined as follows.

A formula is said to be a Σn-formula if it is equivalent to a formula of the
form Q(x1, . . . , xk)ϕ where ϕ is quantifier free and Q(x1, . . . , xk) is a sequence
of n blocks of quantifiers such that the first block contains only existential
quantifiers (note that this first block may be empty), the second block universal
quantifiers, etc. For instance, ∃x1∃x2∀x3∀x4∀x5∃x6 ϕ, where ϕ is quantifier
free, is in Σ3. Similarly, if Q(x1, . . . , xk) is formed of n alternating blocks of
quantifiers beginning with a block of universal quantifiers (which again might
be empty), we say that ϕ is a Πn-formula.

Denote by Σn (resp., Πn) the class of languages which can be defined by a
Σn-formula (resp., a Πn-formula) and by BΣn the Boolean closure Σn-formulas.
Finally, set, for every n > 0, ∆n = Σn∩Πn. If needed, we use the notation Σn[<
], Σn[<,S] or Σn[<,S,min,max], depending on the signature. Note that the
distinction between the signatures {<,S} and {<,S,min,max} is only useful
for the levels Σ1, Π1 and BΣ1. Indeed, for n > 2, the following equalities hold:

Σn[<,S,min,max] = Σn[<,S], Πn[<,S,min,max] = Πn[<,S],

∆n[<,S,min,max] = ∆n[<,S], BΣn[<,S,min,max] = BΣn[<,S].

The resulting hierarchy is depicted in the following diagram:

Σ1 Σ2 Σ3 Σ4 Σ5
. . .

BΣ1 ∆2 BΣ2 ∆3 BΣ3 ∆4 BΣ4 ∆5

Π1 Π2 Π3 Π4 Π5
. . .

The next theorem summarizes the results of [55, 113, 56].

Theorem 4.1

(1) A language is first-order definable if and only if it is star-free.

(2) A language is in Πn[<] if and only if its complement is in Σn[<].

(3) A language is in Σn[<] if and only if it is in Vn−1/2.

(4) A language is in Σn[<,S,min,max] if and only if it is in Bn−1/2.

(5) A language is in BΣn[<] if and only if it is in Vn.

(6) A language is in BΣn[<,S,min,max] if and only if it is in Bn.

In particular, deciding whether a language has dot-depth n is equivalent to a
very natural problem in finite model theory.

The classes ∆n also have a natural description in terms of unambiguous
products. A marked product L = L0a1L1 · · · anLn of n languages L0, L1, . . . , Ln

is unambiguous if every word u of L admits a unique factorization of the form
u0a1u1 · · · anun with u0 ∈ L0, u1 ∈ L1, . . . , un ∈ Ln.

The unambiguous polynomial closure UPol L of a class of languages L is the
class of languages that are finite disjoint unions of unambiguous products of the
form L0a1L1 · · · anLn, where the ai’s are letters and the Li’s are elements of L.

The following result was proved by Weil and the author [71] in 1995.

Theorem 4.2
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(1) A language is in ∆n+1[<] if and only if it is in UPol Vn.

(2) A language is in ∆n+1[<,S,min,max] if and only if it is in UPol Bn.

The Straubing-Thérien hierarchy is pictured in the diagram below. A simi-
lar diagram for the Brzozowski hierarchy could be obtained by replacing each
occurrence of V by B.

Pol V0 Pol V1 Pol V2 Pol V3
. . .

V1 UPol V1 V2 UPol V2 V3 UPol V3

co-Pol V0 co-Pol V1 co-Pol V2 co-Pol V3
. . .

5 Algebraic approach

The algebraic approach to the study of concatenation hierarchies arises from
the following two results [28].

Theorem 5.1 Each full level Vn is a variety of languages and every half-level
Vn+1/2 is a positive variety of languages.

A similar result holds for the Brzozowski hierarchy.

Theorem 5.2 Each full level Bn is a li-variety of languages and every half-level
Bn+1/2 is a positive li-variety of languages.

We let Vn denote the variety of finite monoids corresponding to Vn and
Vn+1/2 the variety of ordered monoids corresponding to Vn+1/2. Similarly, let
Bn denote the variety of finite semigroups corresponding to Bn and Bn+1/2 the
variety of ordered semigroups corresponding to Bn+1/2.

The next results involve three operations on varieties: the semidirect product,
the Mal’cev product and the Schützenberger product. The semidirect product,
denotedV∗W, and the Mal’cev product, denotedVM©W, are binary operations.
The Schützenberger product, denoted ♦V, is a unary operation. Giving the
precise definitions of these operations would lead us too far afield, but they can
be found in [2, 24, 28, 66, 64, 76, 85, 98, 104, 118] for the semidirect product,
in [24, 66, 64, 72, 74, 98] for the Mal’cev product and in [100, 59, 61, 65, 66] for
the Schützenberger product.

The author, generalizing an early result of Reutenauer [84], used the Schützen-
berger product to prove the following result [61, 66].

Theorem 5.3 For every n > 0, Vn+1 = ♦Vn.

A nice connection between the hierarchies Vn and Bn was discovered by
Straubing [101] (see also Pin-Weil [76] for the half levels). A semigroup S is
said to be locally trivial if, for every idempotent e ∈ S and every s ∈ S, ese = e.
Let LI = Jese = eK be the variety of locally trivial semigroups. We let Je 6 eseK
denote the variety of ordered semigroups, such that, for every idempotent e ∈ S
and every s ∈ S, e 6 ese. The dual variety Je > eseK is defined in the same
way.
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Vn+1/2 = Je 6 eseK M©Vn ↔ Σn+1[<] = Pol Vn = Vn+1/2

LI M©Vn ↔ ∆n+1[<] = UPol Vn Vn+1 = ♦Vn ↔ Vn+1 = BΣn+1[<]

V
d
n+1/2 = Je > eseK M©Vn ↔ Πn+1[<] = co-Pol Vn = Vn+1/2

Figure 5.1:

Theorem 5.4 For every n > 0, Bn = Vn ∗ LI and Bn+1/2 = Vn+1/2 ∗ LI.

It is very likely that this result extends to the intermediate classes ∆n, giving
∆n[<,S,min,max] = ∆n[<] ∗ LI, but to the author’s knowledge, this has only
been proved[112] for n 6 2.

Weil and the author [71, 74] established another useful relation.

Theorem 5.5 The variety Vn+1/2 is equal to the Mal’cev product Je 6 eseK M©

Vn.

A similar result holds for the varieties ∆n, as a consequence of a more general
result on the unambiguous product [58, 70].

Theorem 5.6 A language belongs to ∆n+1[<] if and only if its syntactic monoid
belongs to LI M©Vn.

The algebraic counterpart of the Straubing-Thérien hierarchy is summarized
in Figure 5.1, in which the symbol ↔ indicates the equivalence between the
algebraic characterizations and the logical descriptions. Again, one gets a sim-
ilar diagram for the Brzozowski hierarchy by replacing each occurrence of V
by B and by considering the signature {<,S,min,max} instead of {<}. The
algebraic approach gives algebraic characterizations of the concatenation hier-
archies, but do not necessarily lead to decidability results. Let us now examine
the decidability questions in more details.

6 Known decidability results

A language belongs to V0 if and only if its syntactic monoid is trivial.

6.1 Levels 1/2 and 1

The level 1/2 is also easy to study [71]. The variety V1/2 consists of the languages
that are finite union of languages of the form A∗a1A

∗ · · · akA
∗, where a1, . . . , ak

are letters and the variety B1/2 consists of the languages that are finite union
of languages of the form u0A

∗u1A
∗ · · ·uk−1A

∗uk, where u0, . . . , uk are words.

Theorem 6.1
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(1) A regular language belongs to V1/2 if and only if its ordered syntactic
monoid satisfies the identity 1 6 x.

(2) A language belongs to B1/2 if and only if its ordered syntactic semigroup
belongs to the variety Je 6 eseK.

The variety V1 consists of the languages that are Boolean combinations of lan-
guages of the form A∗a1A

∗ · · · akA
∗, where a1, . . . , ak are letters. The decid-

ability of V1 was obtained by Imre Simon [95] in 1975. Recall that a monoid is
J -trivial if two elements generating the same ideal are equal.

Theorem 6.2 A language belongs to V1 if and only if its syntactic monoid is
J -trivial.

It follows that V1 is the variety J of J -trivial monoids. This variety of J -trivial
monoids is characterized by the identities xω+1 = xω and (xy)ω = (yx)ω, or,
alternatively, by the identities y(xy)ω = (xy)ω = (xy)ωx. Simon’s original proof
is based on a very nice argument of combinatorics on words. Simon’s theorem
inspired a lot of subsequent research and a number of alternative proofs have
been proposed [97, 107, 1, 2, 40, 42, 43, 44]. Let me just mention two important
consequences in semigroup theory. Recall that a monoid M divides a monoid
N if M is a quotient of a submonoid of N . The first result is due to Straubing
[99] and the second one to Straubing and Thérien [107].

Theorem 6.3 A monoid is J -trivial if and only if it divides a monoid of upper
unitriangular Boolean matrices.

Theorem 6.4 A monoid is J -trivial if and only if it is a quotient of an ordered
monoid satisfying the identity 1 6 x.

The languages of dot-depth one are the Boolean combinations of languages
of the form u0A

∗u1A
∗ · · ·uk−1A

∗uk, where k > 0 and u0, u1, · · ·uk ∈ A+. The
decidability of B1 was obtained by Knast [45, 46] and the proof was improved
by Thérien [111]. This result also had a strong influence on subsequent devel-
opments, notably in finite semigroup theory.

Theorem 6.5 A regular language belongs to B1 if and only if its syntactic semi-
group satisfies Knast identity:

(xωpyωqxω)ωpyωs(xωryωsxω)ω = (xωpyωqxω)ω(xωryωsxω)ω.

6.2 The classes ∆2

The variety UPol V1 is equal to ∆2[<]. According to a result of Schützenberger
[88], it consists of the finite disjoint unions of the unambiguous products of the
form A∗

0a1A
∗
1a2 · · · akA

∗
k, where a1, . . . , ak ∈ A and A0, A1, . . . , Ak are subsets

of A. It corresponds to the variety DA of all monoids in which each regular
D-class is an idempotent subsemigroup [88]. This variety can be defined by the
profinite identity (xy)ωy(xy)ω = (xy)ω. Therefore we have

Theorem 6.6 A language belongs to ∆2[<] if and only if its syntactic monoid
belongs to DA.
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The variety DA has numerous applications, nicely summarized by Tesson
and Thérien in their survey Diamonds are forever: the variety DA [109].

The first application relates DA to another fragment of first-order logic. Let
FOk[<] be the class of languages that can be defined by a first-order sentence
using at most k variables and let FO[<] =

⋃

k>0 FO
k[<]. We have already seen

that FO[<] is the variety of star-free languages. One can show that FO[<] =
FO3[<] and it is not difficult to see that a language is in FO1[<] if and only
if its syntactic monoid is idempotent and commutative. The following result is
due to Thérien and Wilke [112].

Theorem 6.7 A language belongs to FO2[<] if and only if its syntactic monoid
belongs to DA.

Etessami, Vardi and Wilke proved in [29] that FO2[<] is also the class of
languages captured by a fragment of temporal logic called unary temporal logic.
Finally, Schwentick, Thérien and Vollmer [89] proved that a language is accepted
by a partially ordered two-way automaton if and only if its syntactic monoid
belongs to DA. See also the article of Diekert, Gastin and Kufleitner [27] for
alternative proofs of these results.

Let us now consider the signature {<,S}. We already mentioned that the
variety corresponding to ∆2[<,S] is DA ∗ LI. Moreover, Almeida [3] proved
that DA ∗ LI = LDA, the variety of all finite semigroups S such that, for all
e ∈ S, eSe ∈ DA. It follows that ∆2[<,S] is also decidable.

6.3 Level 3/2

Two general decidability results are consequences of the results of Section 5.
The first one is due to Straubing [101] (see also [76] for the half levels) and is
a consequence of Theorem 5.4, except for the case n = 1, which follows from
Theorems 6.2 and 6.5.

Theorem 6.8 For each n > 1, the variety Bn is decidable if and only if the
variety Vn is decidable. Similarly, the variety Bn+1/2 is decidable if and only
if the variety Vn+1/2 is decidable.

Given a set of profinite identities defining a variety of finite monoids V, Weil
and the author[72] gave a set of identities defining the varieties Je 6 eseK M©V

and LI M© V. This leads in particular to a set of profinite identities for V3/2

[72].

Theorem 6.9 A language belongs to V3/2 if and only if its ordered syntactic
monoid satisfies the profinite identities uω 6 uωvuω, where u and v are idem-
potent profinite words on the same alphabet. This condition is decidable.

The decidability of V3/2 was also proved by Arfi [8, 9] as a consequence of
Hashiguchi’s results [38]. See also the model theoretic approach of Selivanov
[91] for alternative proofs.

The decidability of B3/2 now follows from Theorem 6.8. A direct characteri-
zation of V3/2 and B3/2 using forbidden patterns was given Glaßer and Schmitz
[32, 34]. It leads to an NL-algorithm for the membership problem for B3/2.
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Very recently, Almeida, Bartonova, Kĺıma and Kunc [5] improved the result
of Weil and the author [72] to get the following decidability result.

Theorem 6.10 If Σn[<] is decidable, then ∆n+1[<] is decidable.

This result can be translated in two ways. In terms of varieties of languages:

if Pol Vn−1 is decidable, then UPol Vn is decidable,

or in terms of varieties of monoids:

if Vn−1/2 is decidable, then LI M©Vn is decidable.

6.4 Level 2 and beyond

Let us return to the level 2 of the Straubing-Thérien hierarchy. A simple de-
scription of the languages of V2 was obtained by Straubing and the author [68]
in 1981:

Theorem 6.11 A language belongs to V2(A) if and only if it is a Boolean com-
bination of languages of the form A∗

0a1A
∗
1a2 · · · akA

∗
k, where a1, . . . , ak ∈ A and

A0, A1, . . . , Ak are subsets of A.

In the same article, Straubing and the author gave an algebraic characterisation
of V2 similar to Theorem 6.3.

Theorem 6.12 A monoid belongs to V2 if and only if it divides a monoid of
upper triangular Boolean matrices.

However, it is not clear whether Theorem 6.12 leads to an effective character-
ization and despite numerous partial results [6, 7, 26, 75, 102, 103, 108, 117, 118],
the decidability of V2 remained a major open problem for 20 years. It was finally
settled by Place and Zeitoun in 2014 [78].

Theorem 6.13 The variety of languages V2 = BΣ2[<] is decidable.

In the same paper [78], Place and Zeitoun also obtained three other decid-
ability results.

Theorem 6.14 The positive varieties of languages Σ3[<], Π3[<] and ∆3[<] are
decidable.

On a two-letter alphabet, this result was first established in [33]. The alge-
braic translation of Theorem 6.14 states that the varieties of ordered monoids
V5/2 and Vd

5/2 are decidable. In view of Theorem 6.10, this also gives the decid-

ability of ∆4[<].

To obtain these results, Place and Zeitoun considered a more general ques-
tion than membership, the separation problem. Let us say that a language S
separates two languages K and L if K ⊆ S and L ∩ S = ∅. The separation
problem can be formulated for any class C of languages.

Problem 2 Is the following problem decidable: given two disjoint regular lan-
guages K and L, is there a language S ∈ C separating K and L.
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Note that if the separation problem is decidable for C, then C is decidable.
Indeed, since L is the unique language separating L and Lc, L belongs to C if
and only if L and Lc are separable.

As shown by Almeida [4], the separation problem is related to a problem on
finite semigroups (finding the 2-pointlike sets relative to a variety of semigroups).
The separation problem for star-free languages was first solved by Henckell [39]
in its semigroup form. Successive improvements can be found in [41, 79, 82].

A major result of Place and Zeitoun [78] is the following much stronger
result.

Theorem 6.15 If the separation problem for Σn[<] is decidable, then Σn+1[<]
is decidable.

The latest result, due to Place [77] states that the separation problem is
decidable for Σ3[<] and Π3[<]. New decidability results follow, as a corollary
of Theorem 6.15 and 6.10.

Theorem 6.16 The positive varieties of languages Σ4[<], Π4[<] and the vari-
eties of languages ∆4[<] and ∆5[<] are decidable.

The decidability of the other levels is still open and the following diagram sum-
marizes the known results on the quantifier alternation hierarchy. Due to the
lack of space, the signature is omitted. Thus Σn stands for Σn[<].

Σ1 Σ2 Σ3 Σ4 Σ5
. . .

BΣ1 ∆2 BΣ2 ∆3 BΣ3 ∆4 BΣ4 ∆5

Π1 Π2 Π3 Π4 Π5
. . .

BΣ1 Decidability proved BΣ3 Decidability open

For the signature {<,S,min,max}, the decidability of Σn and Πn, for n 6 4
and that of BΣn, for n 6 2, follows from Theorem 6.8. The decidability of ∆n,
for n 6 4, follows from the decidability of Σn and Πn. Finally ∆5 seems to be
the only fragment known to be decidable in the signature {<}, but still pending
for the signature {<,S}.

We have seen the importance of the operation V → V ∗ LI, where V is a
variety of monoids. However, Auinger proved that decidability is not always
preserved by this operation [10]. In other words, there exists a decidable variety
V such that V ∗ LI is not decidable. Surprisingly, as shown by Steinberg [96],
the same operation preserves the decidability of pointlikes. This implies the
following result, which was recently reproved by Place and Zeitoun [80] in a
simpler way.

Theorem 6.17 Let V be a variety of finite monoids. If separability is decidable
in the variety of languages corresponding to V, then it is also decidable in the
variety corresponding to V ∗ LI.

In the same paper, Place and Zeitoun [80] proved the following result.
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Theorem 6.18 Let F be one of the fragments Σn, Πn or BΣn. If separation
is decidable in F [<], then it is decidable in F [<,S,min,max].

It follows that separation is decidable for ∆2[<,S] and for Σn[<,S,min,max]
and Πn[<,S,min,max] for n 6 3.

To the knowledge of the author, the decidability of the other levels is still
open. We recommend the recent survey of Place and Zeitoun [81] for a presen-
tation of the new ideas and new results on the expressiveness of fragments of
first-order logic.

7 Other developments

In this section, we list several research topics related to concatenation hierar-
chies. We apologize for not giving much details, but presenting any of these
topics would require an independent article. However, we tried to give some
relevant bibliography for the interested reader.

7.1 Other hierarchies

Several subhierarchies of star-free languages were presented in Brzozowski’s sur-
vey [20]. An interesting subhierarchy of V1 is obtained by limiting the number
of marked products [94]. In particular, if only one product is allowed, one gets
the variety of languages J1 consisting of the Boolean closure of the languages
of the form A∗aA∗. As was already mentioned, this variety is equal to FO1[<]
and the corresponding variety of monoids is the variety J1 of idempotent and
commutative monoids.

A subhierarchy of B1 can be defined in a similar way. The first level of this
subhierarchy is the li-variety of locally testable languages, which consists of the
Boolean closure of the languages of the form uA∗, A∗v and A∗wA∗, where u, v
and w are words of A∗. An algebraic characterization of this class was obtained
independently by McNaughton [54] and by Brzozowski and Simon [22]. Let
us say that a semigroup S is locally idempotent and commutative if, for each
idempotent e ∈ S, the semigroup eSe is idempotent and commutative. We let
LJ1 denote the variety of all locally idempotent and commutative semigroups.

Theorem 7.1 A language is locally testable if its syntactic semigroup is locally
idempotent and commutative.

In fact, it is relatively easy to prove that a language is locally testable if its
syntactic semigroup belongs to the variety J1 ∗ LI, but the really difficult part
of the proof is the equality LJ1 = J1 ∗LI. Historically, this result was the first
decidability for a variety of the form V ∗ LI and it became very influential for
this reason. Locally testable languages give another parameter to play with:
one can assume in the definition that |u|, |v| < k and |w| 6 k, which leads to
the notion of k-testable language.

By limiting iteratively the number of marked products, one can also define
tree-like hierarchies [12, 13, 14, 59, 61], which also admit an algebraic counter-
part in terms of Schützenberger product.
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Another interesting way to obtain subhierarchies is to limit the number
of Boolean operations. Such Boolean hierarchies were extensively studied by
Selivanov and his coauthors [35, 47, 91, 90, 93].

Finally, several subhierarchies of ∆2 = FO2 were considered in the recent
years [30, 48, 49, 50, 51, 53, 52, 106, 119].

7.2 Connection with complexity classes

Bearing comparison with Brzozowski’s original motivation, a result of Barring-
ton and Thérien [11] gives evidence that the dot-depth provides a useful mea-
sure of complexity for Boolean circuits. More precisely, these authors found
a remarkable correspondence between languages of dot-depth n and Boolean
AC0-circuits of depth n.

Another surprising connection between language hierarchies and the struc-
ture of complexity classes is offered by the theory of leaf languages [16, 17, 18,
19, 23, 36, 37, 92, 93, 116].

8 Conclusion

Several surveys related to concatenation hierarchies can be found in the lit-
erature [20, 31, 60, 64, 67, 81, 110]. Moreover, the study of concatenation
hierarchies is not limited to words and similar hierarchies were considered for
infinite words, for traces, for data words [15] and even for tree languages.

Since its introduction in 1971, the dot-depth hierarchy has been the topic of
numerous investigations. The reason for this success is to be found in the variety
of approaches successively proposed to solve the difficult problems raised by this
hierarchy. Automata theory, combinatorics on words, semigroup theory, finite
model theory, all these areas joined forces to produce increasingly sophisticated
tools, leading to substantial progress, notably on decidability questions. Let us
hope that the next 45 years will see even more progress and that the decidability
of the dot-depth hierarchy will finally be established.
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[65] J.-É. Pin, Bridges for concatenation hierarchies, in 25th ICALP, Berlin,
1998, pp. 431–442, Lect. Notes Comp. Sci. n̊ 1443, Springer.
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