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Basic definitions

An element e of a semigroup is idempotent if
e2 = e. The set of idempotents of a semigroup S is
denoted by E(S).

A semigroup is idempotent if each of its elements is
idempotent (that is, if E(S) = S). A semilattice is
a commutative and idempotent monoid.

A variety of finite monoids is a class of finite
monoids closed under taking submonoids, quotient
monoids and finite direct products.



LIAFA, CNRS and University Paris Diderot

Part I

Kernels and extensions
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The kernel of a group morphism

Let π : H → G be a surjective group morphism.
The kernel of π is the group

T = Ker(π) = π−1(1)

and H is an extension of G by T .

The synthesis problem in finite group theory
consists in constructing H given G and T .
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The kernel of a group morphism

Let π : H → G be a surjective group morphism.
The kernel of π is the group

T = Ker(π) = π−1(1)

and H is an extension of G by T .

The synthesis problem in finite group theory
consists in constructing H given G and T .

◮ Is there a similar theory for semigroups?
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A specific example

A monoid M is an extension of a group by a
semilattice if there is a surjective morphism π from
M onto a group G such that π−1(1) is a semilattice.

• How to characterize the extensions of a group
by a semilattice?

• Is there a synthesis theorem in this case?

• In the finite case, what is the variety generated
by the extensions of a group by a semilattice?
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The difference between semigroups and groups

Let π : H → G be a surjective group morphism and
let K = π−1(1). Then π(h1) = π(h2) iff
h1h

−1

2
∈ K.

If π : M → G be a surjective monoid morphism and
K = π−1(1), there is in general no way to decide
whether π(m1) = π(m2), given K.

For this reason, the notion of a kernel of a monoid
morphism has to be stronger. . .
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The kernel category of a morphism

Let G be a group and let π : M → G be a
surjective morphism. The kernel category Ker(π)
of π has G as its object set and for all g, h ∈ G

Mor(u, v) = {(u,m, v) ∈ G×M ×G | uπ(m) = v}

Note that Mor(u, u) is a monoid equal to π−1(1)
and that G acts naturally (on the left) on Ker(π):

u v

gu gv

m

gm
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A first necessary condition

Proposition

Let π be a surjective morphism from a monoid M
onto a group G such that π−1(1) is a semilattice.

Then π−1(1) = E(M) and the idempotents of M
commute.

Proof. As π−1(1) is a semilattice, π−1(1) ⊆ E(M).
If e is idempotent, then π(e) is idempotent and
therefore is equal to 1. Thus E(M) ⊆ π−1(1).
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A second necessary condition

Let M be a monoid with commuting idempotents.

• It is E-unitary if for all e, f ∈ E(M) and
x ∈ M , one of the conditions ex = f or
xe = f implies that x is idempotent.

• It is E-dense if, for each x ∈ M , there are
elements x1 and x2 in M such that x1x and
xx2 are idempotent.

Note that any finite monoid is E-dense, since every
element has an idempotent power. But (N,+) is
not E-dense since its unique idempotent is 0.
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A second necessary condition (2)

Proposition

Let π be a surjective morphism from a monoid M
onto a group G such that π−1(1) = E(M). Then
M is E-unitary dense.

Proof. If ex = f then π(e)π(x) = π(f), that is
π(x) = 1. Thus x ∈ E(M) and M is E-unitary.

Let x ∈ M and let g = π(x). Let x̄ be such that
π(x̄) = g−1. Then π(x̄x) = 1 = π(xx̄). Therefore
x̄x and xx̄ are idempotent. Thus M is E–dense.
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The fundamental group π1(M)

Let F (M) be the free group with basis M . Then
there is a natural injection m → (m) from M into
F (M). The fundamental group π1(M) of M is the
group with presentation

〈M | (m)(n) = (mn) for all m, n ∈ M〉

Fact. If M is an E-dense monoid with commuting
idempotents, then π1(M) is the quotient of M by
the congruence ∼ defined by u ∼ v iff there exists
an idempotent e such that eu = ev.
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Characterization of extensions of groups

Theorem (Margolis-Pin, J. Algebra 1987)

Let M be a monoid whose idempotents form a

subsemigroup. TFCAE:

(1) there is a surjective morphism π : M → G
onto a group G such that π−1(1) = E(M),

(2) the surjective morphism π : M → Π1(M)
satisfies π−1(1) = E(M),

(3) M is E-unitary dense.
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Part II

The synthesis theorem
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Categories

Notation: u and v are objects, x, y, p, q, p + x,
p + x+ y are morphisms, p, q, x+ y, y + x are
loops.

u v

x

y

p q

For each object u, there is a loop 0u based on u
such that, for every morphism x from u to v,
0u + x = x and x+ 0v = x.

The local monoid at u is the monoid formed by the
loops based on u.
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Groups acting on a category (1)

An action of a group G on a category C is given by
a group morphism from G into the automorphism
group of C. We write gx for the result of the action
of g ∈ G on an object or morphism x. Note that for
all g ∈ G and p, q ∈ C:

• g(p + q) = gp + gq,

• g0u = 0gu.

The group G acts freely on C if gx = x implies
g = 1. It acts transitively if the orbit of any object
of C under G is Obj(C).
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The monoid Cu

Let G be a group acting freely and transitively on a
category C. Let u be an object of C and let

Cu = {(p, g) | g ∈ G, p ∈ Mor(u, gu)}

Then Cu is a monoid under the multiplication
defined by (p, g)(q, h) = (p+ gq, gh).

u gu

hu ghu

p

q
gqp+ gq
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A property of he monoid Cu

Proposition

Let G be a group acting freely and transitively on a

category. Then for each object u, the monoid Cu is

isomorphic to C/G.
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The synthesis theorem

Theorem (Margolis-Pin, J. Algebra 1987)

Let M be a monoid. The following conditions are

equivalent:

(1) M is an extension of a group by a semilattice,

(2) M is E-unitary dense with commuting

idempotents,

(3) M is isomorphic to C/G, where G is a group

acting freely and transitively on a connected,

idempotent and commutative category.
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The covering theorem

Let M and N be monoids with commuting
idempotents. A cover is a surjective morphism
γ : M → N which induces an isomorphism from
E(M) to E(N).

Theorem (Fountain, 1990)

Every E-dense monoid with commuting

idempotents has an E-unitary dense cover with

commuting idempotents.
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Part III

The finite case
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Closure properties

Proposition

The class of extensions of groups by semilattices is

closed under taking submonoids and direct product.

Proof. Let π be a surjective morphism from a
monoid M onto a group G such that π−1(1) is a
semilattice. If N be a submonoid of M , then π(N)
is a submonoid of G and hence is group H. Thus N
is an extension of H and π−1(1) ∩N is a
semilattice.

Direct products: easy.
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Variety generated by finite extensions

Let V be the variety generated by extensions of
groups by semilattices.

A monoid belongs to V iff it is a quotient of an
extension of a group by a semilattice.

M

N G

π−1(1) = E(M)πγ

The monoid N belongs to V.
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Variety generated by finite extensions

Let V be the variety generated by extensions of
groups by semilattices.

A monoid belongs to V iff it is a quotient of an
extension of a group by a semilattice.

M

N G

π−1(1) = E(M)πγ

The monoid N belongs to V.

◮ This diagram is typical of a relational morphism.
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Relational morphisms

Let M and N be monoids. A relational morphism
from M to N is a map τ : M → P(N) such that:

(1) τ(s) is nonempty for all s ∈ M ,

(2) τ(s)τ(t) ⊆ τ(st) for all s, t ∈ M ,

(3) 1 ∈ τ(1).

Examples of relational morphisms include:

• Morphisms

• Inverses of surjective morphisms

• The composition of two relational morphisms
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Graph of a relational morphism

The graph R of τ is a submonoid of M ×N . Let
α : R → M and β : R → N be the projections.
Then α is surjective and τ = β ◦ α−1.

M N

R ⊆ M ×N

α β

τ

α(m, n) = m τ(m) = β(α−1(m))

β(m, n) = n τ−1(n) = α(β−1(n))
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An example of relational morphism

Let Q be a finite set. Let S(Q) the symmetric group
on Q and let I(Q) be the monoid of all injective
partial functions from Q to Q under composition.

Let τ : I(Q) → S(Q) be the relational morphism
defined by τ(f) = {Bijections extending f}

1 2 3 4

f 3 - 2 -

h1 3 1 2 4

h2 3 4 2 1

τ(f) = {h1, h2}
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Relational morphisms

Proposition

Let τ : M → N be a relational morphism. If T is a

subsemigroup of N , then

τ−1(T ) = {x ∈ M | τ(x) ∩ T 6= ∅}
is a subsemigroup of M .

In our example, τ−1(1) is a semilattice since

τ−1(1) = {f ∈ I(Q) | the identity extends f}

= {subidentities on Q} ≡ (P(Q),∩)
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Finite extensions and relational morphisms

A monoid belongs to V iff it is a quotient of an
extension of a group by a semilattice.

M

N G

π−1(1) semilattice

γ(π−1(1)) semilattice
πγ

τ

Proposition

A monoid N belongs to V iff there is a relational

morphism τ from N onto a group G such that

τ−1(1) is a semilattice.
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Finite extensions and relational morphisms (2)

Consider the canonical factorization of τ :

N G

R ⊆ N ×G

α β

τ

Then α induces a isomorphism from β−1(1) onto
τ−1(1) since

β−1(1) = {(n, 1) ∈ R | 1 ∈ τ(n)}

τ−1(1) = {n ∈ N | 1 ∈ τ(n)}
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A non effective characterization

Theorem (Margolis-Pin, J. Algebra 1987)

Let N be a finite monoid. TFCAE

(1) N belongs to V,

(2) N is a quotient of an extension of a group by

a semilattice,

(3) N is covered by an extension of a group by a

semilattice,

(4) there is a relational morphism τ from N onto

a group G such that τ−1(1) is a semilattice.
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The finite covering theorem

Theorem (Ash, 1987)

Every finite monoid with commuting idempotents

has a finite E-unitary cover with commuting

idempotents.

Corollary

The variety V is the variety of finite monoids with

commuting idempotents.
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Part IV

Group radical
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Group radical of a monoid

Let M be a finite monoid. The group radical of M
is the set

K(M) =
⋂

τ :M→G

τ−1(1)

where the intersection runs over the set of all
relational morphisms from M into a finite group.
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Universal relational morphisms

Proposition

For each finite monoid M , there exists a finite

group G and a relational morphism τ : M → G
such that K(M) = τ−1(1).

Proof. There are only finitely many subsets of M .
Therefore K(M) = τ−1

1
(1) ∩ · · · ∩ τ−1

n (1) where
τ1 : M → G1, . . . , τn : M → Gn. Let
τ : M → G1 × · · · ×Gn be the relational
morphism defined by τ(m) = τ1(m)× · · · × τn(m).
Then τ−1(1) = K(M).
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Another characterization of V

Theorem

Let M be a finite monoid. TFCAE:

(1) M belongs to V,

(2) K(M) is a semilattice,

(3) The idempotents of M commute and

K(M) = E(M).

◮ Is there an algorithm to compute K(M)?
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Ash’s small theorem

Theorem (Ash 1987)

If M is a finite monoid with commuting

idempotents, then K(M) = E(M).

Corollary

The variety V is the variety of finite monoids with

commuting idempotents.
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Ash’s big theorem

Denote by D(M) the least submonoid T of M
closed under weak conjugation: if t ∈ T and
aāa = a, then atā ∈ T and āta ∈ T .

Theorem (Ash 1991)

For each finite monoid M , one has K(M) = D(M).

Corollary

One can effectively compute K(M).
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Part V

The topological approach
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The pro-group topology

The pro-group topology on A∗ [on FG(A)] is the
least topology such that every morphism from A∗

on a finite (discrete) group is continuous.

Proposition

Let L be a subset of A∗ and u ∈ A∗. Then u ∈ L
iff, for every morphism β from A∗ onto a finite

group G, β(u) ∈ β(L).
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A topological characterization of K(M)

Theorem (Pin, J. Algebra 1991)

Let α : A∗ → M be surjective morphism. Then

m ∈ K(M) iff 1 ∈ α−1(m).

1 ∈ α−1(m) ⇐⇒ for all β : A∗ → G, 1 ∈ β(α−1(m))

⇐⇒ for all τ : M → G, 1 ∈ τ(m)

⇐⇒ for all τ : M → G,m ∈ τ−1(1)

⇐⇒ m ∈ K(M)
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Finitely generated subgroups of the free group

Theorem (M. Hall 1950)

Every finitely generated subgroup of the free group

is closed.

Theorem (Ribes-Zalesskii 1993)

Let H1, . . . , Hn be finitely generated subgroups of

the free group. Then H1H2 · · ·Hn is closed.
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Computation of the closure of a set

Theorem (Pin-Reutenauer, 1991 (mod R.Z.))

There is a simple algorithm to compute the closure

of a given rational subset of the free group.

Theorem (Pin, J. Algebra 1991 (mod P.R.))

There is a simple algorithm to compute the closure

of a given rational language of the free monoid.
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Another proof of Ash’s big theorem

Theorem (Pin, Bull. Austr. Math. 1988)

Given the simple algorithm to compute the closure

of a rational language, one has K(M) = D(M).

Therefore, Ribes-Zalesskii’s theorem gives another
proof of Ash’s big theorem.

Theorem

Given a decidable variety V, the variety generated

by V-extensions of groups is decidable.
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