A tutorial on sequential functions

Jean-Éric Pin

LIAFA, CNRS and University Paris 7

30 January 2006, CWI, Amsterdam

Outline

- $(1) \ \ {\rm Sequential} \ \ {\rm functions}$
- $\left(2\right)\,$ A characterization of sequential transducers
- (3) Minimal sequential transducers
- (4) Minimization of sequential transducers
- (5) Composition of sequential transducers
- (6) An algebraic approach
- (7) The wreath product principle

Part I

Sequential functions

A transducer (or state machine) is an automaton equipped with an output function. A transducer computes a relation on $A^* \times B^*$.

A sequential transducer is a transducer whose underlying automaton is deterministic (but not necessarily complete). A sequential transducer computes a partial function from A^* into B^* .

A pure sequential transducer computes a partial function φ preserving prefixes: if u is a prefix of v, then $\varphi(u)$ is a prefix of $\varphi(v)$.

An example of a pure sequential transducer

On the input *abaa*, the output is 01001.

$$\xrightarrow{a|01} 2 \xrightarrow{b|0} 2 \xrightarrow{a|\varepsilon} 1 \xrightarrow{a|01} 2$$

Pure sequential transducers

A pure sequential transducer is a 6-tuple

 $\mathcal{A} = (Q, A, B, i, \cdot, *)$

where the input function $(q, a) \rightarrow q \cdot a \in Q$ and the output function $(q, a) \rightarrow q * a \in B^*$ are defined on the same domain $D \subseteq Q \times A$.

$$(q) \xrightarrow{a \mid q \ast a} (q \cdot a)$$

Extensions of the transition and output functions

The transition function is extended to $Q \times A^* \to Q$. Set $q \cdot \varepsilon = q$ and, if $q \cdot u$ and $(q \cdot u) \cdot a$ are defined, $q \cdot (ua) = (q \cdot u) \cdot a$.

The output function is extended to $Q \times A^* \to B^*$. Set $q * \varepsilon = \varepsilon$ and, if q * u and $(q \cdot u) * a$ are defined, $q * (ua) = (q * u)((q \cdot u) * a)$.

$$\underbrace{q} \underbrace{u \mid q \ast u}_{q \cdot u} \underbrace{q \cdot u}_{q \cdot u} \underbrace{a \mid (q \cdot u) \ast a}_{q \cdot ua} \underbrace{q \cdot ua}_{q \cdot ua}$$

Pure sequential functions

The function $\varphi \colon A^* \to B^*$ defined by

 $\varphi(u) = i * u$

is called the function realized by \mathcal{A} .

A function is pure sequential if it can be realized by some pure sequential transducer.

Examples of pure sequential functions

Replacing consecutive white spaces by a single one:

Converting upper case to lower case letters:

Coding and decoding

Consider the coding

 $a
ightarrow 0 \quad b
ightarrow 1010 \quad c
ightarrow 100 \quad d
ightarrow 1011 \quad r
ightarrow 11$

Decoding function

Decoding

 $a \rightarrow 0 \quad b \rightarrow 1010 \quad c \rightarrow 100 \quad d \rightarrow 1011 \quad r \rightarrow 11$

 $01010110100010110101010 \rightarrow abracadabra$

Sequential transducers: informal definition

A sequential transducer is a transducer whose underlying automaton is deterministic (but not necessarily complete). There is an initial prefix and a terminal function.

On the input abaa, the output is 110100100.

Sequential transducers

A sequential transducer is a 8-tuple

 $\mathcal{A} = (Q, A, B, i, \cdot, *, m, \rho)$

where $(Q, A, B, i, \cdot, *)$ is a pure sequential transducer, $m \in B^*$ is the initial prefix and $\rho: Q \to B^*$ is a partial function, called the terminal function.

Sequential functions

The function $\varphi \colon A^* \to B^*$ defined by

$$\varphi(u) = m(i * u)\rho(i \cdot u)$$

is called the function realized by \mathcal{A} .

A function is sequential if it can be realized by some sequential transducer.

Some examples of sequential functions

The function $x \rightarrow x + 1$ (in reverse binary)

The map $\varphi: A^* \to A^*$ defined by $\varphi(x) = uxv$.

Addition (in reverse binary)

In inverse binary notation, $22 = 2 + 4 + 16 \rightarrow 01101$ and $13 = 1 + 4 + 8 \rightarrow 10110$. Taking as input (0, 1)(1, 0)(1, 1)(0, 1)(1, 0), the output is 110001, the inverse binary representation of 35 = 1 + 2 + 32.

Hardware applications (Wikipedia)

LIAFA, CNRS and University Paris VII

Other examples

Multiplication by 4
$$00 ext{ 1} ext{ 0} ext{$$

Replacing each occurrence of 011 by 100.

Multiplication by 10

Part II

A characterization

The geodesic metric

The distance between *ababab* and *abaabba* is 7.

Denote by $u \wedge v$ the longest common prefix of the words u and v. Then

$$d(u,v) = |u| + |v| - 2|u \wedge v|$$

Example: $d(ababab, abaabba) = 6 + 7 - 2 \times 3 = 7$. One can show that d is a metric.

(1)
$$d(u, v) = 0$$
 iff $u = v$,
(2) $d(u, v) = d(v, u)$,
(3) $d(u, v) \leq d(u, w) + d(w, v)$.

A characterization of sequential functions

A function $\varphi: : A^* \to B^*$ is Lipschitz if there exists some K > 0 such that, for all $u, v \in A^*$,

 $d(\varphi(u),\varphi(v)) \leqslant Kd(u,v)$

Theorem (Choffrut 1979)

Let $\varphi : A^* \to B^*$ be a function whose domain is closed under taking prefixes. TFCAE:

(1) φ is sequential,

(2) φ is Lipschitz, and φ^{-1} preserves regular sets.

A characterization of pure sequential functions

Theorem (Ginsburg-Rose 1966)

Let φ : A* → B* be a function whose domain is closed under taking prefixes. TFCAE:
(1) φ is a pure sequential function,
(2) φ is Lipschitz and preserves prefixes, and φ⁻¹ preserves regular sets.

Part III

Minimal sequential transducers

Residuals of a language

Let \underline{L} be a language over A^* . Let $u \in A^*$. The (left) residual of \underline{L} by u is the set

$$u^{-1}L = \{ x \in A^* \mid ux \in L \}.$$

It is easy to see that $v^{-1}(u^{-1}L) = (uv)^{-1}L$.

Let $A = \{a, b\}$ and $L = A^*abaA^*$. Then

$$\begin{aligned} \mathbf{1}^{-1}L &= L \qquad a^{-1}L = A^*abaA^* \cup baA^* \\ b^{-1}L &= L \qquad (ab)^{-1}L = A^*abaA^* \cup aA^*, \text{ etc.} \end{aligned}$$

Minimal automaton of a language

The minimal automaton of a language L is equal to

$$\mathcal{A}(L) = (Q, A, \cdot, i, F)$$

where $Q = \{u^{-1}L \neq \emptyset \mid u \in A^*\}$, i = L and $F = \{u^{-1}L \mid u \in L\}$). The transition function is given by

$$(u^{-1}L) \cdot a = a^{-1}(u^{-1}L) = (ua)^{-1}L.$$

$$u^{-1}L$$
 a $(ua)^{-1}L$

Example of a minimal automaton

Let
$$A = \{a, b\}$$
 and $L = A^*abaA^*$. Then
 $a^{-1}L = A^*abaA^* \cup baA^* = L_1 \qquad b^{-1}L = L$
 $b^{-1}L_1 = A^*abaA^* \cup aA^* = L_2 \qquad a^{-1}L_1 = L_1$
 $a^{-1}L_2 = A^* = L_3 \qquad b^{-1}L_2 = L$
 $a^{-1}L_3 = b^{-1}L_3 = L_3$

Residuals of a sequential function

Let $\varphi : A^* \to B^*$ be a function and let $u \in A^*$. The residual of φ by u is the function $u^{-1}\varphi : A^* \to B^*$ defined by

$$(u^{-1}\varphi)(x) = (\varphi * u)^{-1}\varphi(ux)$$

where $(\varphi * u)$ is the longest common prefix of the words $\varphi(ux)$, for $ux \in \text{Dom}(\varphi)$.

In other words, $u^{-1}\varphi$ can be obtained from the function $x \to \varphi(ux)$ by deleting the prefix $\varphi * u$ of $\varphi(ux)$.

The function $n \rightarrow 6n$

n	x	$\varphi(x)$
0	ε	0
1	1	011
2	01	0011
3	11	01001
4	001	00011
5	101	01111
6	011	001001
7	111	010101
8	0001	000011

n	x	$\varphi(x)$
9	1001	011011
10	0101	001111
11	1101	0100001
12	0011	0001001
13	1011	0111001
14	0111	0010101
15	1111	0101101
16	00001	0000011
17	10001	0110011

Let
$$\varepsilon^{-1}\varphi = \varphi_0$$
. Then φ_0 represents $n \to 3n$

n	x	$\varphi(x)$
0	ε	0
1	1	<mark>0</mark> 11
2	01	0011
3	11	<mark>0</mark> 1001
4	001	00011
5	101	<mark>0</mark> 1111
6	011	001001
7	111	<mark>0</mark> 10101
8	0001	000011

n	x	$\varphi(x)$
9	1001	<mark>0</mark> 11011
10	0101	<mark>0</mark> 01111
11	1101	0100001
12	0011	0001001
13	1011	0111001
14	0111	0010101
15	1111	0101101
16	00001	0000011
17	10001	0110011

The function φ_0 , representing $n \rightarrow 3n$

n	x	$\varphi_0(x)$
0	ω	ε
1	1	1 1
2	01	<mark>0</mark> 11
3	1 1	1 001
4	001	<mark>0</mark> 011
5	<mark>1</mark> 01	1 111
6	<mark>0</mark> 11	<mark>0</mark> 1001
7	<mark>1</mark> 11	1 0101
8	0001	00011

n	x	$\varphi_0(x)$
9	1 001	1 1011
10	<mark>0</mark> 101	<mark>0</mark> 1111
11	1 101	1 00001
12	<mark>0</mark> 011	<mark>0</mark> 01001
13	1 011	1 11001
14	<mark>0</mark> 111	<mark>0</mark> 10101
15	1 111	1 01101
16	00001	000011
17	1 0001	1 10011

Residuals of φ_0

Let φ_0 , φ_1 and φ_2 be the functions representing $n \to 3n$, $n \to 3n + 1$ and $n \to 3n + 2$, respectively.

$$\begin{aligned} \varphi_0 * \mathbf{0} &= \mathbf{0} \\ (\mathbf{0}^{-1}\varphi_0)(x) &= \mathbf{0}^{-1}\varphi_0(\mathbf{0}x) = \varphi_0(x) \\ \varphi_0 * \mathbf{1} &= \mathbf{1} \\ (\mathbf{1}^{-1}\varphi_0)(x) &= \mathbf{1}^{-1}\varphi_0(\mathbf{1}x) = \varphi_1(x) \end{aligned}$$

Indeed, if x represents n, 1x represents 2n + 1, $\varphi_0(1x)$ represents 3(2n + 1) = 6n + 3 and $1^{-1}\varphi_0(1x)$ represents ((6n + 3) - 1)/2 = 3n + 1.

The function φ_1 , representing $n \rightarrow 3n+1$

n	x	$\varphi_1(x)$
0	ω	ε
1	1	<mark>0</mark> 01
2	01	1 11
3	1 1	<mark>0</mark> 101
4	001	<mark>1</mark> 011
5	<mark>1</mark> 01	00001
6	011	1 1001
7	1 11	<mark>0</mark> 1101
8	0001	1 0011

n	x	$\varphi_1(x)$
9	1 001	00111
10	<mark>0</mark> 101	1 00001
11	1 101	<mark>0</mark> 10001
12	0011	1 01001
13	1 011	000101
14	<mark>0</mark> 111	1 10101
15	1 111	<mark>0</mark> 11101
16	00001	1 00011
17	1 0001	001011

Residuals of φ_1

$$\varphi_1 * \mathbf{0} = \mathbf{1}$$
$$(\mathbf{0}^{-1}\varphi_1)(x) = \mathbf{1}^{-1}\varphi_1(\mathbf{0}x) = \varphi_0(x)$$

Indeed, if x represents n, 0x represents 2n, $\varphi_1(0x)$ represents 3(2n) + 1 = 6n + 1 and $1^{-1}\varphi_1(0x)$ represents ((6n + 1) - 1)/2 = 3n.

$$\varphi_1 * \mathbf{1} = \mathbf{0}$$
$$(\mathbf{1}^{-1}\varphi_1)(x) = \mathbf{0}^{-1}\varphi_1(\mathbf{1}x) = \varphi_2(x)$$

Indeed, if x represents n, 1x represents 2n + 1, $\varphi_1(1x)$ represents 3(2n + 1) + 1 = 6n + 4 and $0^{-1}\varphi_1(1x)$ represents (6n + 4)/2 = 3n + 2.

The function φ_2 , representing $n \rightarrow 3n + 2$

n	x	$\varphi_2(x)$
0	ε	ε
1	1	<mark>1</mark> 01
2	01	<mark>0</mark> 001
3	1 1	1 101
4	001	0111
5	<mark>1</mark> 01	1 0001
6	011	<mark>0</mark> 0101
7	<mark>1</mark> 11	1 1101
8	0001	<mark>0</mark> 1011

n	x	$\varphi_2(x)$
9	1 001	10111
10	<mark>0</mark> 101	000001
11	1 101	1 10001
12	<mark>0</mark> 011	<mark>0</mark> 11001
13	<mark>1</mark> 011	1 00101
14	<mark>0</mark> 111	<mark>0</mark> 01101
15	1 111	1 11101
16	00001	010011
17	1 0001	1 01011
Residuals of φ_2

$$\varphi_2 * \mathbf{0} = \mathbf{0}$$
$$(\mathbf{0}^{-1}\varphi_2)(x) = \mathbf{0}^{-1}\varphi_2(\mathbf{0}x) = \varphi_1(x)$$

Indeed, if x represents n, 0x represents 2n, $\varphi_2(0x)$ represents 3(2n) + 2 = 6n + 2 and $0^{-1}\varphi_2(0x)$ represents (6n + 2)/2 = 3n + 1.

$$arphi_2 * \mathbf{1} = \mathbf{1}$$

 $(\mathbf{1}^{-1}\varphi_2)(x) = \mathbf{1}^{-1}\varphi_2(\mathbf{1}x) = \varphi_2(x)$

Indeed, if x represents n, 1x represents 2n + 1, $\varphi_2(1x)$ represents 3(2n + 1) + 2 = 6n + 5 and $1^{-1}\varphi_2(1x)$ represents ((6n + 5) - 1)/2 = 3n + 2.

Minimal sequential transducer of a function φ

It is the sequential transducer whose states are the residuals of φ and transitions are of the form

$$\begin{array}{c|c}
\psi & a \\
\psi & a \\
\psi(\varepsilon) & (a^{-1}\psi)(\varepsilon) \\
\end{array}$$

Recall that $\psi * a$ is the longest common prefix of the words $\psi(ax)$, for $ax \in \text{Dom}(\varphi)$. The initial state is $\varepsilon^{-1}\varphi$ and the initial prefix is $\varphi * \varepsilon$.

More formally...

It is the sequential transducer $\mathcal{A}_{\omega} = (Q, A, B, i, \cdot, *, m, \rho)$ defined by

$$egin{aligned} &Q = \{u^{-1}arphi \mid u \in A^* ext{ and } \mathsf{Dom}(arphi \cdot u)
eq \emptyset\} \ &i = arepsilon^{-1}arphi, \ &m = arphi * arepsilon ext{ and, for } q \in Q, \ &
ho(q) = q(arepsilon) \end{aligned}$$

A typical transition of \mathcal{A}_{ω} :

$$\underbrace{u^{-1}\varphi}_{(u^{-1}\varphi)(\varepsilon)} \overset{a|(u^{-1}\varphi)*a}{((ua)^{-1}\varphi)(\varepsilon)} \underbrace{(ua)^{-1}\varphi}_{((ua)^{-1}\varphi)(\varepsilon)}$$

The minimal sequential function of $n \rightarrow 6n$

185 = 1 + 8 + 16 + 32 + 128 and $6 \times 185 = 1110 = 2 + 4 + 16 + 64 + 1024$. Thus $\varphi(10011101) = 01101010001$

Part IV

Minimizing sequential transducers

The three steps of the algorithm

How to minimize a sequential transducer?

- (1) Obtain a trim transducer (easy)
- (2) Normalise the transducer (tricky)
- (3) Merge equivalent states (standard)

Obtaining a trim transducer

Let $\mathcal{A} = (Q, A, B, i, \cdot, *, m, \rho)$ be a sequential transducer and let $F = \text{Dom}(\rho)$. The transducer \mathcal{A} is trim if the automaton (Q, A, \cdot, q_0, F) is trim: all states are accessible from the initial state and one can reach a final state from any state.

Algorithm: it suffices to remove the useless states.

Equivalent transducers

These four sequential transducers realize exactly the same function $\varphi : \{a, b\}^* \to \{a, b\}^*$, with domain $(aa)^*b$, defined, for all $n \ge 0$, by $\varphi(a^{2n}b) = (ab)^n a$.

Let $\mathcal{A} = (Q, A, B, i, \cdot, *, m, \rho)$ be a sequential transducer. For each state q, denote by m_q the greatest common prefix of the words $(q * u)\rho(q \cdot u)$, where u ranges over the domain of the sequential function

Equivalently, $m_a = \varphi_a * \varepsilon$, where φ_a is the sequential function realized by the transducer derrived from \mathcal{A} by taking q as initial state and the empty word as initial prefix.

A sequential transducer is normalized if, for all states q, m_q is the empty word.

 $m_q = (q * u)\rho(q \cdot u)$

(1)	$m_1 = \varepsilon$	$m_2 = \varepsilon$	$m_3 = \varepsilon$
(2)	$m_1 = \varepsilon$	$m_2 = a$	$m_3 = \varepsilon$
(3)	$m_1 = \varepsilon$	$m_2 = a$	$m_3 = \varepsilon$
(4)	$m_1 = a$	$m_2 = a$	$m_3=arepsilon$ LIAFA, CNRS and University Paris VII

Normalising a transducer

Let $\mathcal{A} = (Q, A, B, i, \cdot, *, m, \rho)$ be a trim sequential transducer. One obtains a normalised transducer by changing the initial prefix, the output function and the terminal function as follows:

$$egin{aligned} q*'a &= m_q^{-1}(q*a)m_{q\cdot a}\ m' &= mm_i\
ho'(q) &= m_q^{-1}
ho(q) \end{aligned}$$

Normalisation on an example

One has $m_1 = a$, $m_2 = a$, $m_3 = \varepsilon$. Thus

$$m' = mm_1 = \varepsilon a = a$$

$$1 *' a = m_1^{-1}(1 * a)m_2 = a^{-1}(ab)a = ba$$

$$2 *' a = m_2^{-1}(1 * a)m_1 = a^{-1}(\varepsilon)a = \varepsilon$$

$$1 *' b = m_1^{-1}(1 * b)m_3 = a^{-1}(a)\varepsilon = \varepsilon$$

$$\rho'(3) = m_3^{-1}\rho(3) = \varepsilon^{-1}\varepsilon = \varepsilon$$

Computing the m_q is not so easy...

Solving the system

$$X_{1} = abX_{1} + abaX_{2} + abX_{3}$$
$$X_{2} = X_{1} + bX_{4}$$
$$X_{3} = X_{1} + abX_{4}$$
$$X_{4} = abX_{2} + abab$$

We work on $k = A^* \cup \{0\}$. Addition is the least common prefix operator (u + 0 = 0 + u = u) by convention). Observe that u + u = u and $u(v_1 + v_2) = uv_1 + uv_2$ (but $(v_1 + v_2)u = v_1u + v_2u$ does not hold in general). Thus k is a left semiring. The prefix order is a partial order \leq on k (with $u \leq 0$ by convention). One can extend this order to k^n componentwise.

Proposition

For all $u, v \in k^n$, the function f(x) = ux + v is increasing. The sequence $f^n(0)$ is decreasing and converges to the greatest fixpoint of f.

The greatest solution of our system is exactly (m_1, m_2, m_3, m_4) .

Example of Choffrut's algorithm

$$X_{1} = abX_{1} + abaX_{2} + abX_{3}$$
$$X_{2} = X_{1} + bX_{4}$$
$$X_{3} = X_{1} + abX_{4}$$
$$X_{4} = abX_{2} + abab$$

The sequence $f^n(0)$ is (0, 0, 0, 0), (0, 0, 0, abab), (0, babab, ababab, abab), (abababab, babab, ababab, ab), $(abab, \varepsilon, ababab, ab)$, $(aba, \varepsilon, abab, ab)$, $(aba, \varepsilon, aba, ab)$, $(aba, \varepsilon, aba, ab)$. Thus $m_1 = aba$, $m_2 = \varepsilon$, $m_3 = aba$, $m_4 = ab$.

Merging states

Two states are equivalent if they are equivalent in the input automaton (Q, A, i, F, \cdot) , have the same output functions and the same terminal functions:

$$p \sim q \iff \begin{cases} p \cdot a \sim q \cdot a \\ p * a = q * a \\ \rho(p) = \rho(q) \end{cases}$$

Part V

Composition of sequential functions

Composition of two pure sequential transducers

Theorem

Pure sequential functions are closed under composition.

Let σ and τ be two pure sequential functions realized by the transducers

 $\mathcal{A} = (Q, A, B, q_0, \cdot, *)$ and $\mathcal{B} = (P, B, C, p_0, \cdot, *)$

The wreath product of \mathcal{B} by \mathcal{A} is obtained by taking as input for \mathcal{B} the output of \mathcal{A} . It realizes $\tau \circ \sigma$.

Wreath product of two pure sequential transducers

The wreath product is defined by

$$\mathcal{B} \circ \mathcal{A} = (P \times Q, A, C, (p_0, q_0), \cdot, *)$$
$$(p, q) \cdot a = (p \cdot (q * a), q \cdot a)$$
$$(p, q) * a = p * (q * a)$$
$$(p, q) \bullet a \mid p * (q * a)$$
$$(p \cdot (q * a), q \cdot a)$$

Composition of two sequential transducers

Theorem

Sequential functions are closed under composition.

Let φ and ψ be two sequential functions realized by the transducers \mathcal{A} (equipped with the initial word nand the terminal function ρ) and \mathcal{B} (equipped with the initial word m and the terminal function σ).

The wreath product of \mathcal{B} by \mathcal{A} is obtained by taking $m(p_0 * n)$ as initial word and, as terminal function, $\omega(p,q) = (p * \rho(q))\sigma(p \cdot \rho(q)).$

Iterating sequential functions...

Iterating sequential functions can lead to difficult problems...

Let
$$f(n) = \begin{cases} 3n+1 & \text{if } n \text{ is odd} \\ n/2 & \text{if } n \text{ is even} \end{cases}$$

It is conjectured that for each positive integer n, there exists k such that $f^k(n) = 1$. The problem is still open.

Minimal transducer of the 3n + 1 function

Let
$$f(n) = \begin{cases} 3n+1 & \text{if } n \text{ is odd} \\ n/2 & \text{if } n \text{ is even} \end{cases}$$

.

Iterating the 3n + 1 function...

31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638. 319. 958. 479. 1438. 719. 2158. 1079. 3238. 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308. 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160. 80. 40. 20. 10. 5. 16. 8. 4. 2. 1.

A useful result

Let $\varphi : A^* \to B^*$ be a pure sequential function realized by $\mathcal{A} = (Q, A, B, q_0, \cdot, *)$. Let L be the regular language over B^* recognized by the DFA $\mathcal{B} = (P, B, \cdot, p_0, F)$. The wreath product of \mathcal{B} by \mathcal{A} is the DFA $\mathcal{B} \circ \mathcal{A} = (P \times Q, A, (p_0, q_0), \cdot)$ defined by $(p, q) \cdot a = (p \cdot (q * a), q \cdot a)$.

Theorem

The language $\varphi^{-1}(L)$ is recognized by $\mathcal{B} \circ \mathcal{A}$.

Example 1

Let $\varphi(u) = a^n$, where n is the number of occurrences of aba in u. This function is pure sequential:

Then $\varphi^{-1}(a)$ is the set of words containing exactly one occurrence of *aba*.

Wreath product of the two automata

The operation $L \rightarrow LaA^*$

Let $\mathcal{A} = (Q, A, B, q_0, F, \cdot)$ be a DFA. Let $B = Q \times A$ and let $\sigma \colon A^* \to B^*$ be the pure sequential function defined by

 $\sigma(a_1\cdots a_n)=(q_0,a_1)(q_0\cdot a_1,a_2)\cdots(q_0a_1\cdots a_{n-1},a_n)$

$$(q) \xrightarrow{a \mid (q, a)} (q \cdot a)$$

Let $a \in A$ and let $C = F \times \{a\} \subseteq B$. Then $\sigma^{-1}(B^*CB^*) = LaA^*$.[Proof on blackboard!]

Example 2

Therefore $\mathcal{B} \circ \mathcal{A}$ recognizes LaA^* , where \mathcal{B} is the minimal automaton of B^*CB^* .

Note that if φ is a formula of linear temporal logic, then $L(F(p_a \wedge X\varphi)) = A^*aL(\varphi)$

Part VI

The algebraic approach

Idea: replace automata by monoids.

Recognizing by a morphism

Definition

Let M be a monoid and let L be a language of A^* . Then M recognizes L if there exists a monoid morphism $\varphi : A^* \to M$ and a subset P of M such that $L = \varphi^{-1}(P)$.

Proposition

A language is recognized by a finite monoid iff it is recognized by a finite deterministic automaton.

Syntactic monoid

Definition (algorithmic)

The syntactic monoid of a language is the transition monoid of its minimal automaton.

Definition (algebraic)

The syntactic monoid of a language $L \subset A^*$ is the quotient monoid of A^* by the syntactic congruence of L: $u \sim_L v$ iff, for each $x, y \in A^*$, $xvy \in L \Leftrightarrow xuy \in L$

Part VII

The wreath product principle

The wreath product $N \circ K$ of two monoids N and K is defined on the set $N^K \times K$ by the following product:

 $(f_1, k_1)(f_2, k_2) = (f, k_1k_2)$ with $f(k) = f_1(k)f_2(kk_1)$

Straubing's wreath product principle provides a description of the languages recognized by the wreath product of two automata (or monoids).

The wreath product principle

Proposition

Let M and N be monoids. Every language of A^* recognized by $M \circ N$ is a finite union of languages of the form $U \cap \sigma_{\varphi}^{-1}(V)$, where $\varphi : A^* \to N$ is a monoid morphism, U is a language of A^* recognized by φ and V is a language of B_N^* recognized by M.

The wreath product principle 2

Theorem

Let $L \subseteq A^*$ be a language recognized by an wreath product of the form $(P, Q \times A) \circ (Q, A)$. Then L is a finite union of languages of the form $W \cap \sigma^{-1}(V)$, where $W \subseteq A^*$ is recognized by (Q, A), σ is a C-sequential function associated with the action (Q, A) and $V \subseteq (Q \times A)^*$ is recognized by $(P, Q \times A)$.

References I

- C. CHOFFRUT, Contributions à l'étude de quelques familles remarquables de fonctions rationnelles, Thèse de doctorat, Université Paris 7, Paris (LITP), 1978.
- C. CHOFFRUT, A generalization of Ginsburg and Rose's characterization of gsm mappings, in Automata, Languages and Programming, H. A. Maurer (éd.), pp. 88–103, Lecture Notes in Comput. Sci. vol. 71, Springer, 1979.

References II

- C. CHOFFRUT, Minimizing subsequential transducers: a survey, *Theoret. Comp. Sci.* 292 (2003), 131–143.
- S. GINSBURG AND G. F. ROSE, A characterization of machine mappings, *Canad. J. Math.* 18 (1966), 381–388.

