A tutorial on sequential functions

Jean-Éric Pin

LIAFA, CNRS and University Paris 7

30 January 2006, CWI, Amsterdam
(1) Sequential functions
(2) A characterization of sequential transducers
(3) Minimal sequential transducers
(4) Minimization of sequential transducers
(5) Composition of sequential transducers
(6) An algebraic approach
(7) The wreath product principle
Part I

Sequential functions
Informal definitions

A transducer (or state machine) is an automaton equipped with an output function. A transducer computes a relation on $A^* \times B^*$.

A sequential transducer is a transducer whose underlying automaton is deterministic (but not necessarily complete). A sequential transducer computes a partial function from A^* into B^*.

A pure sequential transducer computes a partial function φ preserving prefixes: if u is a prefix of v, then $\varphi(u)$ is a prefix of $\varphi(v)$.
An example of a pure sequential transducer

On the input $abaa$, the output is 01001.
A pure sequential transducer is a 6-tuple

\[A = (Q, A, B, i, \cdot, *) \]

where the input function \((q, a) \rightarrow q \cdot a \in Q\) and the output function \((q, a) \rightarrow q * a \in B^*\) are defined on the same domain \(D \subseteq Q \times A\).
The transition function is extended to $Q \times A^* \rightarrow Q$. Set $q \cdot \varepsilon = q$ and, if $q \cdot u$ and $(q \cdot u) \cdot a$ are defined, $q \cdot (ua) = (q \cdot u) \cdot a$.

The output function is extended to $Q \times A^* \rightarrow B^*$. Set $q \ast \varepsilon = \varepsilon$ and, if $q \ast u$ and $(q \ast u) \ast a$ are defined, $q \ast (ua) = (q \ast u)((q \ast u) \ast a)$.

![Diagram of automaton states and transitions]

- q transitions to $q \cdot u$ on input u.
- From $q \cdot u$, it transitions to $q \cdot ua$ on input a.
- The output function at $q \cdot u$ is $(q \ast u)((q \ast u) \ast a)$.
Pure sequential functions

The function $\varphi: A^* \rightarrow B^*$ defined by

$$\varphi(u) = i \ast u$$

is called the function realized by A.

A function is **pure sequential** if it can be realized by some pure sequential transducer.
Examples of pure sequential functions

Replacing consecutive white spaces by a single one:

![Diagram 1]

Converting upper case to lower case letters:

![Diagram 2]
Coding and decoding

Consider the coding

\[
a \rightarrow 0 \quad b \rightarrow 1010 \quad c \rightarrow 100 \quad d \rightarrow 1011 \quad r \rightarrow 11
\]

Decoding function
Decoding

\[a \rightarrow 0 \quad b \rightarrow 1010 \quad c \rightarrow 100 \quad d \rightarrow 1011 \quad r \rightarrow 11 \]

\[
\begin{array}{c}
\begin{array}{c}
0|a \\
1|\epsilon \\
1|r \\
0|\epsilon \\
1|\epsilon \\
0|\epsilon \\
1|\epsilon \\
\end{array} \\
\begin{array}{c}
0|b \\
1|d \\
0|c \\
\end{array}
\end{array}
\]

\[010101101000101101010110 \rightarrow abracadabra\]
A sequential transducer is a transducer whose underlying automaton is deterministic (but not necessarily complete). There is an initial prefix and a terminal function.

On the input $abaa$, the output is 110100100.
A sequential transducer is a 8-tuple

\[A = (Q, A, B, i, \cdot, *, m, \rho) \]

where \((Q, A, B, i, \cdot, *)\) is a pure sequential transducer, \(m \in B^*\) is the initial prefix and \(\rho: Q \rightarrow B^*\) is a partial function, called the terminal function.
Sequential functions

The function $\varphi: A^* \rightarrow B^*$ defined by

$$\varphi(u) = m(i \ast u)\rho(i \cdot u)$$

is called the function realized by A.

A function is **sequential** if it can be realized by some sequential transducer.
Some examples of sequential functions

The function $x \rightarrow x + 1$ (in reverse binary)

The map $\varphi : A^* \rightarrow A^*$ defined by $\varphi(x) = uxv$.

LIAFA, CNRS and University Paris VII
In inverse binary notation, \(22 = 2 + 4 + 16 \rightarrow 01101\) and \(13 = 1 + 4 + 8 \rightarrow 10110\). Taking as input \((0, 1)(1, 0)(1, 1)(0, 1)(1, 0)\), the output is \(110001\), the inverse binary representation of \(35 = 1 + 2 + 32\).
Hardware applications (Wikipedia)

The circuit diagram for a 4 bit TTL counter
Other examples

Multiplication by 4

Replacing each occurrence of 011 by 100.
Multiplication by 10
Part II

A characterization
The geodesic metric

The distance between $ababab$ and $abaabba$ is 7.
The geodesic metric (2)

Denote by $u \wedge v$ the longest common prefix of the words u and v. Then

$$d(u, v) = |u| + |v| - 2|u \wedge v|$$

Example: $d(ababab, abaabba) = 6 + 7 - 2 \times 3 = 7$.

One can show that d is a metric.

1. $d(u, v) = 0$ iff $u = v$,
2. $d(u, v) = d(v, u)$,
3. $d(u, v) \leq d(u, w) + d(w, v)$.
A characterization of sequential functions

A function $\varphi : A^* \rightarrow B^*$ is Lipschitz if there exists some $K > 0$ such that, for all $u, v \in A^*$,

$$d(\varphi(u), \varphi(v)) \leq K d(u, v)$$

Theorem (Choffrut 1979)

Let $\varphi : A^* \rightarrow B^*$ be a function whose domain is closed under taking prefixes. TFCAE:

(1) φ is sequential,
(2) φ is Lipschitz, and φ^{-1} preserves regular sets.
Theorem (Ginsburg-Rose 1966)

Let $\varphi : A^* \to B^*$ be a function whose domain is closed under taking prefixes. TFCAE:

(1) φ is a pure sequential function,

(2) φ is Lipschitz and preserves prefixes, and φ^{-1} preserves regular sets.
Part III

Minimal sequential transducers
Residuals of a language

Let L be a language over A^*. Let $u \in A^*$. The (left) residual of L by u is the set

$$u^{-1}L = \{x \in A^* \mid ux \in L\}.$$

It is easy to see that $v^{-1}(u^{-1}L) = (uv)^{-1}L$.

Let $A = \{a, b\}$ and $L = A^*abaA^*$. Then

$$1^{-1}L = L \quad a^{-1}L = A^*abaA^* \cup baA^*$$

$$b^{-1}L = L \quad (ab)^{-1}L = A^*abaA^* \cup aA^*,$$ etc.
The minimal automaton of a language \(L \) is equal to

\[
A(L) = (Q, A, \cdot, i, F)
\]

where \(Q = \{ u^{-1}L \neq \emptyset \mid u \in A^* \} \), \(i = L \) and \(F = \{ u^{-1}L \mid u \in L \} \). The transition function is given by

\[
(u^{-1}L) \cdot a = a^{-1}(u^{-1}L) = (ua)^{-1}L.
\]
Example of a minimal automaton

Let $A = \{a, b\}$ and $L = A^*abaA^*$. Then

$$a^{-1}L = A^*abaA^* \cup baA^* = L_1$$
$$b^{-1}L_1 = A^*abaA^* \cup aA^* = L_2$$
$$a^{-1}L_2 = A^* = L_3$$
$$a^{-1}L_3 = b^{-1}L_3 = L_3$$

$$b^{-1}L = L$$
$$a^{-1}L_1 = L_1$$
$$b^{-1}L_2 = L$$

L \[\xrightarrow{a} L_1 \xrightarrow{b} L_2 \xrightarrow{a} L_3 \]
Residuals of a sequential function

Let $\varphi : A^* \to B^*$ be a function and let $u \in A^*$. The residual of φ by u is the function $u^{-1}\varphi : A^* \to B^*$ defined by

$$(u^{-1}\varphi)(x) = (\varphi * u)^{-1}\varphi(ux)$$

where $(\varphi * u)$ is the longest common prefix of the words $\varphi(ux)$, for $ux \in \text{Dom}(\varphi)$.

In other words, $u^{-1}\varphi$ can be obtained from the function $x \mapsto \varphi(ux)$ by deleting the prefix $\varphi * u$ of $\varphi(ux)$.
The function $n \rightarrow 6n$

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>$\varphi(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ε</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>011</td>
</tr>
<tr>
<td>2</td>
<td>01</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>01001</td>
</tr>
<tr>
<td>4</td>
<td>001</td>
<td>00011</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>01111</td>
</tr>
<tr>
<td>6</td>
<td>011</td>
<td>001001</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>010101</td>
</tr>
<tr>
<td>8</td>
<td>0001</td>
<td>000011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>$\varphi(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1001</td>
<td>011011</td>
</tr>
<tr>
<td>10</td>
<td>0101</td>
<td>001111</td>
</tr>
<tr>
<td>11</td>
<td>1101</td>
<td>0100001</td>
</tr>
<tr>
<td>12</td>
<td>0011</td>
<td>0001001</td>
</tr>
<tr>
<td>13</td>
<td>1011</td>
<td>0111001</td>
</tr>
<tr>
<td>14</td>
<td>0111</td>
<td>0010101</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>0101101</td>
</tr>
<tr>
<td>16</td>
<td>00001</td>
<td>0000011</td>
</tr>
<tr>
<td>17</td>
<td>10001</td>
<td>0110011</td>
</tr>
</tbody>
</table>
Let $\varepsilon^{-1}\varphi = \varphi_0$. Then φ_0 represents $n \rightarrow 3n$

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>$\varphi(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ε</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>011</td>
</tr>
<tr>
<td>2</td>
<td>01</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>01001</td>
</tr>
<tr>
<td>4</td>
<td>001</td>
<td>00011</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>01111</td>
</tr>
<tr>
<td>6</td>
<td>011</td>
<td>001001</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>010101</td>
</tr>
<tr>
<td>8</td>
<td>0001</td>
<td>000011</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>011011</td>
</tr>
<tr>
<td>10</td>
<td>0101</td>
<td>001111</td>
</tr>
<tr>
<td>11</td>
<td>1101</td>
<td>0100001</td>
</tr>
<tr>
<td>12</td>
<td>0011</td>
<td>0001001</td>
</tr>
<tr>
<td>13</td>
<td>1011</td>
<td>0111001</td>
</tr>
<tr>
<td>14</td>
<td>0111</td>
<td>0010101</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>0101101</td>
</tr>
<tr>
<td>16</td>
<td>00001</td>
<td>0000011</td>
</tr>
<tr>
<td>17</td>
<td>10001</td>
<td>0110011</td>
</tr>
</tbody>
</table>
The function φ_0, representing $n \rightarrow 3n$

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>$\varphi_0(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>01</td>
<td>011</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>1001</td>
</tr>
<tr>
<td>4</td>
<td>001</td>
<td>0011</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>1111</td>
</tr>
<tr>
<td>6</td>
<td>011</td>
<td>01001</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>10101</td>
</tr>
<tr>
<td>8</td>
<td>0001</td>
<td>00011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>$\varphi_0(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1001</td>
<td>11011</td>
</tr>
<tr>
<td>10</td>
<td>0101</td>
<td>01111</td>
</tr>
<tr>
<td>11</td>
<td>1101</td>
<td>100001</td>
</tr>
<tr>
<td>12</td>
<td>0011</td>
<td>001001</td>
</tr>
<tr>
<td>13</td>
<td>1011</td>
<td>111001</td>
</tr>
<tr>
<td>14</td>
<td>0111</td>
<td>010101</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>101101</td>
</tr>
<tr>
<td>16</td>
<td>00001</td>
<td>000011</td>
</tr>
<tr>
<td>17</td>
<td>10001</td>
<td>110011</td>
</tr>
</tbody>
</table>
Residuals of φ_0

Let φ_0, φ_1 and φ_2 be the functions representing $n \to 3n$, $n \to 3n + 1$ and $n \to 3n + 2$, respectively.

$\varphi_0 \ast 0 = 0$

$(0^{-1} \varphi_0)(x) = 0^{-1} \varphi_0(0x) = \varphi_0(x)$

$\varphi_0 \ast 1 = 1$

$(1^{-1} \varphi_0)(x) = 1^{-1} \varphi_0(1x) = \varphi_1(x)$

Indeed, if x represents n, $1x$ represents $2n + 1$, $\varphi_0(1x)$ represents $3(2n + 1) = 6n + 3$ and $1^{-1} \varphi_0(1x)$ represents $((6n + 3) - 1)/2 = 3n + 1$.
The function φ_1, representing $n \rightarrow 3n + 1$

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>$\varphi_1(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>001</td>
</tr>
<tr>
<td>2</td>
<td>01</td>
<td>111</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>0101</td>
</tr>
<tr>
<td>4</td>
<td>001</td>
<td>1011</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>00001</td>
</tr>
<tr>
<td>6</td>
<td>011</td>
<td>11001</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>01101</td>
</tr>
<tr>
<td>8</td>
<td>0001</td>
<td>10011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>$\varphi_1(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1001</td>
<td>00111</td>
</tr>
<tr>
<td>10</td>
<td>0101</td>
<td>100001</td>
</tr>
<tr>
<td>11</td>
<td>1101</td>
<td>010001</td>
</tr>
<tr>
<td>12</td>
<td>0011</td>
<td>101001</td>
</tr>
<tr>
<td>13</td>
<td>1011</td>
<td>000101</td>
</tr>
<tr>
<td>14</td>
<td>0111</td>
<td>110101</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>011101</td>
</tr>
<tr>
<td>16</td>
<td>00001</td>
<td>100011</td>
</tr>
<tr>
<td>17</td>
<td>10001</td>
<td>001011</td>
</tr>
</tbody>
</table>
Residuals of φ_1

\[
\varphi_1 \ast 0 = 1 \\
(0^{-1} \varphi_1)(x) = 1^{-1} \varphi_1(0x) = \varphi_0(x)
\]

Indeed, if x represents n, $0x$ represents $2n$, $\varphi_1(0x)$ represents $3(2n) + 1 = 6n + 1$ and $1^{-1} \varphi_1(0x)$ represents $((6n + 1) - 1)/2 = 3n$.

\[
\varphi_1 \ast 1 = 0 \\
(1^{-1} \varphi_1)(x) = 0^{-1} \varphi_1(1x) = \varphi_2(x)
\]

Indeed, if x represents n, $1x$ represents $2n + 1$, $\varphi_1(1x)$ represents $3(2n + 1) + 1 = 6n + 4$ and $0^{-1} \varphi_1(1x)$ represents $(6n + 4)/2 = 3n + 2$.
The function φ_2, representing $n \rightarrow 3n + 2$

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>$\varphi_2(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>101</td>
</tr>
<tr>
<td>2</td>
<td>01</td>
<td>0001</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>1101</td>
</tr>
<tr>
<td>4</td>
<td>001</td>
<td>0111</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>10001</td>
</tr>
<tr>
<td>6</td>
<td>011</td>
<td>00101</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>11101</td>
</tr>
<tr>
<td>8</td>
<td>0001</td>
<td>01011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>$\varphi_2(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>1001</td>
<td>10111</td>
</tr>
<tr>
<td>10</td>
<td>0101</td>
<td>000001</td>
</tr>
<tr>
<td>11</td>
<td>1101</td>
<td>110001</td>
</tr>
<tr>
<td>12</td>
<td>0011</td>
<td>011001</td>
</tr>
<tr>
<td>13</td>
<td>1011</td>
<td>100101</td>
</tr>
<tr>
<td>14</td>
<td>0111</td>
<td>001101</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>111101</td>
</tr>
<tr>
<td>16</td>
<td>00001</td>
<td>010011</td>
</tr>
<tr>
<td>17</td>
<td>10001</td>
<td>101011</td>
</tr>
</tbody>
</table>
Residuals of φ_2

$$\varphi_2 \ast 0 = 0$$

$$(0^{-1} \varphi_2)(x) = 0^{-1} \varphi_2(0x) = \varphi_1(x)$$

Indeed, if x represents n, $0x$ represents $2n$, $\varphi_2(0x)$ represents $3(2n) + 2 = 6n + 2$ and $0^{-1} \varphi_2(0x)$ represents $(6n + 2)/2 = 3n + 1$.

$$\varphi_2 \ast 1 = 1$$

$$(1^{-1} \varphi_2)(x) = 1^{-1} \varphi_2(1x) = \varphi_2(x)$$

Indeed, if x represents n, $1x$ represents $2n + 1$, $\varphi_2(1x)$ represents $3(2n + 1) + 2 = 6n + 5$ and $1^{-1} \varphi_2(1x)$ represents $((6n + 5) - 1)/2 = 3n + 2$.
Minimal sequential transducer of a function φ

It is the sequential transducer whose states are the residuals of φ and transitions are of the form $a\mid\psi\ast a \rightarrow a^{-1}\psi$

Recall that $\psi\ast a$ is the longest common prefix of the words $\psi(ax)$, for $ax \in \text{Dom}(\varphi)$. The initial state is $\varepsilon^{-1}\varphi$ and the initial prefix is $\varphi\ast\varepsilon$.
More formally...

It is the sequential transducer $A_\varphi = (Q, A, B, i, \cdot, *, m, \rho)$ defined by

$Q = \{ u^{-1} \varphi | u \in A^* \text{ and } \text{Dom}(\varphi \cdot u) \neq \emptyset \}$

$i = \varepsilon^{-1} \varphi$, $m = \varphi \star \varepsilon$ and, for $q \in Q$, $\rho(q) = q(\varepsilon)$

A typical transition of A_φ:

$$u^{-1} \varphi \xrightarrow{a | (u^{-1} \varphi) \star a} (ua)^{-1} \varphi$$

$(u^{-1} \varphi)(\varepsilon)$ $(((ua)^{-1} \varphi)(\varepsilon)$
The minimal sequential function of $n \rightarrow 6n$

$185 = 1 + 8 + 16 + 32 + 128$ and $6 \times 185 = 1110 = 2 + 4 + 16 + 64 + 1024$.

Thus $\varphi(10011101) = 01101010001$
Part IV

Minimizing sequential transducers
The three steps of the algorithm

How to minimize a sequential transducer?

1. Obtain a trim transducer (easy)
2. Normalise the transducer (tricky)
3. Merge equivalent states (standard)
Obtaining a trim transducer

Let \(A = (Q, A, B, i, \cdot, *, m, \rho) \) be a sequential transducer and let \(F = \text{Dom}(\rho) \). The transducer \(A \) is trim if the automaton \((Q, A, \cdot, q_0, F)\) is trim: all states are accessible from the initial state and one can reach a final state from any state.

Algorithm: it suffices to remove the useless states.
Equivalent transducers

These four sequential transducers realize exactly the same function \(\varphi : \{a, b\}^* \rightarrow \{a, b\}^* \), with domain \((aa)^*b\), defined, for all \(n \geq 0\), by \(\varphi(a^{2n}b) = (ab)^n a\).
Normalized transducer

Let $A = (Q, A, B, i, \cdot, *, m, \rho)$ be a sequential transducer. For each state q, denote by m_q the greatest common prefix of the words $(q \cdot u)\rho(q \cdot u)$, where u ranges over the domain of the sequential function.

Equivalently, $m_q = \varphi_q \epsilon$, where φ_q is the sequential function realized by the transducer derived from A by taking q as initial state and the empty word as initial prefix.

A sequential transducer is normalized if, for all states q, m_q is the empty word.
\[m_q = (q \ast u) \rho (q \cdot u) \]

\begin{align*}
(1) & \quad m_1 = \varepsilon & m_2 = \varepsilon & m_3 = \varepsilon \\
(2) & \quad m_1 = \varepsilon & m_2 = a & m_3 = \varepsilon \\
(3) & \quad m_1 = \varepsilon & m_2 = a & m_3 = \varepsilon \\
(4) & \quad m_1 = a & m_2 = a & m_3 = \varepsilon
\end{align*}
Normalising a transducer

Let $A = (Q, A, B, i, \cdot, \ast, m, \rho)$ be a trim sequential transducer. One obtains a normalised transducer by changing the initial prefix, the output function and the terminal function as follows:

$q' a = m_q^{-1}(q \ast a)m_{q \cdot a}$

$m' = mm_i$

$\rho'(q) = m_q^{-1}\rho(q)$
Normalisation on an example

One has $m_1 = a$, $m_2 = a$, $m_3 = \varepsilon$. Thus

$$m' = mm_1 = \varepsilon a = a$$

$$1*'a = m_1^{-1}(1*a)m_2 = a^{-1}(ab)a = ba$$

$$2*'a = m_2^{-1}(1*a)m_1 = a^{-1}(\varepsilon)a = \varepsilon$$

$$1*'b = m_1^{-1}(1*b)m_3 = a^{-1}(a)\varepsilon = \varepsilon$$

$$\rho'(3) = m_3^{-1}\rho(3) = \varepsilon^{-1}\varepsilon = \varepsilon$$
Computing the m_q is not so easy...

\[
X_1 = abX_1 + abaX_2 + abX_3 \\
X_2 = X_1 + bX_4 \\
X_3 = X_1 + abX_4 \\
X_4 = abX_2 + abab
\]
Solving the system

\[X_1 = abX_1 + abaX_2 + abX_3 \]
\[X_2 = X_1 + bX_4 \]
\[X_3 = X_1 + abX_4 \]
\[X_4 = abX_2 + abab \]

We work on \(k = A^* \cup \{0\} \). Addition is the least common prefix operator (\(u + 0 = 0 + u = u \) by convention). Observe that \(u + u = u \) and \(u(v_1 + v_2) = uv_1 + uv_2 \) (but \((v_1 + v_2)u = v_1u + v_2u \) does not hold in general). Thus \(k \) is a left semiring.
The prefix order is a partial order \leq on k (with $u \leq 0$ by convention). One can extend this order to k^n componentwise.

Proposition

For all $u, v \in k^n$, the function $f(x) = ux + v$ is increasing. The sequence $f^n(0)$ is decreasing and converges to the greatest fixpoint of f.

The greatest solution of our system is exactly (m_1, m_2, m_3, m_4).
Example of Choffrut’s algorithm

\[X_1 = abX_1 + abaX_2 + abX_3 \]
\[X_2 = X_1 + bX_4 \]
\[X_3 = X_1 + abX_4 \]
\[X_4 = abX_2 + abab \]

The sequence \(f^n(0) \) is \((0, 0, 0, 0), (0, 0, 0, abab), (0, babab, ababab, abab), (abababab, babab, ababab, ab), (abab, \varepsilon, ababab, ab), (aba, \varepsilon, abab, ab), (aba, \varepsilon, aba, ab), (aba, \varepsilon, aba, ab)\).

Thus \(m_1 = aba, m_2 = \varepsilon, m_3 = aba, m_4 = ab \).
Merging states

Two states are equivalent if they are equivalent in the input automaton \((Q, A, i, F, \cdot)\), have the same output functions and the same terminal functions:

\[
p \sim q \iff \begin{cases}
p \cdot a \sim q \cdot a \\
p \ast a = q \ast a \\
\rho(p) = \rho(q)
\end{cases}
\]
Part V

Composition of sequential functions
Composition of two pure sequential transducers

Theorem

Pure sequential functions are closed under composition.

Let \(\sigma \) and \(\tau \) be two pure sequential functions realized by the transducers

\[
A = (Q, A, B, q_0, \cdot, *) \quad \text{and} \quad B = (P, B, C, p_0, \cdot, *)
\]

The **wreath product** of \(B \) by \(A \) is obtained by taking as input for \(B \) the output of \(A \). It realizes \(\tau \circ \sigma \).
Wreath product of two pure sequential transducers

The wreath product is defined by

\[\mathcal{B} \circ \mathcal{A} = (P \times Q, A, C, (p_0, q_0), \cdot, \ast) \]

\[(p, q) \cdot a = (p \cdot (q \ast a), q \cdot a)\]

\[(p, q) \ast a = p \ast (q \ast a)\]

\[a \mid p \ast (q \ast a)\]
Composition of two sequential transducers

Theorem

Sequential functions are closed under composition.

Let φ and ψ be two sequential functions realized by the transducers A (equipped with the initial word n and the terminal function ρ) and B (equipped with the initial word m and the terminal function σ).

The **wreath product** of B by A is obtained by taking $m(p_0 \ast n)$ as initial word and, as terminal function,

$$\omega(p, q) = (p \ast \rho(q))\sigma(p \cdot \rho(q)).$$
Iterating sequential functions can lead to difficult problems.

Let \(f(n) = \begin{cases}
3n + 1 & \text{if } n \text{ is odd} \\
n/2 & \text{if } n \text{ is even}
\end{cases} \)

It is conjectured that for each positive integer \(n \), there exists \(k \) such that \(f^k(n) = 1 \). The problem is still open.
Minimal transducer of the $3n + 1$ function

Let $f(n) = \begin{cases}
3n + 1 & \text{if } n \text{ is odd} \\
n/2 & \text{if } n \text{ is even}
\end{cases}$
Iterating the $3n + 1$ function...

A useful result

Let $\varphi : A^* \to B^*$ be a pure sequential function realized by $A = (Q, A, B, q_0, \cdot, \ast)$. Let L be the regular language over B^* recognized by the DFA $B = (P, B, \cdot, p_0, F)$. The wreath product of B by A is the DFA $B \circ A = (P \times Q, A, (p_0, q_0), \cdot)$ defined by $(p, q) \cdot a = (p \cdot (q \ast a), q \cdot a)$.

Theorem

The language $\varphi^{-1}(L)$ is recognized by $B \circ A$.
Example 1

Let $\varphi(u) = a^n$, where n is the number of occurrences of aba in u. This function is pure sequential:

Then $\varphi^{-1}(a)$ is the set of words containing exactly one occurrence of aba.
Wreath product of the two automata
The operation $L \rightarrow LaA^*$

Let $A = (Q, A, B, q_0, F, \cdot)$ be a DFA. Let $B = Q \times A$ and let $\sigma : A^* \rightarrow B^*$ be the pure sequential function defined by

$$\sigma(a_1 \cdots a_n) = (q_0, a_1)(q_0 \cdot a_1, a_2) \cdots (q_0 a_1 \cdots a_{n-1}, a_n)$$

Let $a \in A$ and let $C = F \times \{a\} \subseteq B$. Then $\sigma^{-1}(B^*CB^*) = LaA^*$. [Proof on blackboard!]
Example 2

Therefore $B \circ A$ recognizes LaA^*, where B is the minimal automaton of B^*CB^*.

Note that if φ is a formula of linear temporal logic, then $L(F(p_a \land X\varphi)) = A^*aL(\varphi)$
Part VI

The algebraic approach

Idea: replace automata by monoids.
Transformation monoid of an automaton

Relations:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Transformations monoid of an automaton

Relations:
\[aa = a \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(a)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(b)</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(c)</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Transformation monoid of an automaton

Relations:
\[aa = a \]
Transformation monoid of an automaton

Relations:

\[
\begin{align*}
 aa &= a \\
 ac &= a
\end{align*}
\]
Transformation monoid of an automaton

Relations:

\[
\begin{align*}
 aa &= a \\
 ac &= a \\
 ba &= a
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ab</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Transformation monoid of an automaton

![Diagram of an automaton with states 1, 2, and 3 connected by transitions labeled a, b, and c.]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ab</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Relations:

- $aa = a$
- $ac = a$
- $ba = a$
- $bb = b$
Transformation monoid of an automaton

Relations:
- $aa = a$
- $ac = a$
- $ba = a$
- $bb = b$
Transformation monoid of an automaton

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ab</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>bc</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ca</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Relations:
- \(aa = a \)
- \(ac = a \)
- \(ba = a \)
- \(bb = b \)
Transformation monoid of an automaton

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ab</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>bc</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ca</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Relations:

- $aa = a$
- $ac = a$
- $ba = a$
- $bb = b$
- $cb = bc$
Transformation monoid of an automaton

Relations:

- $aa = a$
- $ac = a$
- $ba = a$
- $bb = b$
- $cb = bc$
- $cc = c$
Transformation monoid of an automaton

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ab</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>bc</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ca</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Relations:

\[
\begin{align*}
aa &= a \\
ac &= a \\
ba &= a \\
bb &= b \\
bc &= bc \\
cc &= c \\
abc &= ab
\end{align*}
\]
Transformation monoid of an automaton

![Diagram of an automaton with states 1, 2, and 3, and transitions labeled with symbols a, b, and c.]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>-</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ab</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>bc</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ca</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Relations:

- $aa = a$
- $ac = a$
- $ba = a$
- $bb = b$
- $cb = bc$
- $cc = c$
- $abc = ab$
- $bca = ca$
Transformation monoid of an automaton

Relations:

<table>
<thead>
<tr>
<th>Relation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>a</td>
</tr>
<tr>
<td>ac</td>
<td>a</td>
</tr>
<tr>
<td>ba</td>
<td>a</td>
</tr>
<tr>
<td>bb</td>
<td>b</td>
</tr>
<tr>
<td>cb</td>
<td>bc</td>
</tr>
<tr>
<td>cc</td>
<td>c</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>State</th>
<th>State 1</th>
<th>State 2</th>
<th>State 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>-2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ab</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>bc</td>
<td>-3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ca</td>
<td>-2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Transformation monoid of an automaton

Relations:

\begin{align*}
 aa &= a \\
 ac &= a \\
 ba &= a \\
 bb &= b \\
 cb &= bc \\
 cc &= c \\
 abc &= ab \\
 bca &= ca \\
 cab &= bc \\
\end{align*}

The end!
Recognizing by a morphism

Definition

Let M be a monoid and let L be a language of A^*. Then M recognizes L if there exists a monoid morphism $\varphi : A^* \to M$ and a subset P of M such that $L = \varphi^{-1}(P)$.

Proposition

A language is recognized by a finite monoid iff it is recognized by a finite deterministic automaton.
Syntactic monoid

Definition (algorithmic)
The **syntactic monoid** of a language is the transition monoid of its **minimal** automaton.

Definition (algebraic)
The **syntactic monoid** of a language $L \subset A^*$ is the quotient monoid of A^* by the syntactic congruence of L: $u \sim_L v$ iff, for each $x, y \in A^*$, $xvy \in L \iff xuy \in L$.
The wreath product principle

The wreath product $N \circ K$ of two monoids N and K is defined on the set $N^K \times K$ by the following product:

$$(f_1, k_1)(f_2, k_2) = (f, k_1k_2) \text{ with } f(k) = f_1(k)f_2(kk_1)$$

Straubing’s wreath product principle provides a description of the languages recognized by the wreath product of two automata (or monoids).
Proposition

Let M and N be monoids. Every language of A^* recognized by $M \circ N$ is a finite union of languages of the form $U \cap \sigma_\varphi^{-1}(V)$, where $\varphi : A^* \to N$ is a monoid morphism, U is a language of A^* recognized by φ and V is a language of B_N^* recognized by M.
Theorem

Let $L \subseteq A^*$ be a language recognized by an wreath product of the form $(P, Q \times A) \circ (Q, A)$. Then L is a finite union of languages of the form $W \cap \sigma^{-1}(V)$, where $W \subseteq A^*$ is recognized by (Q, A), σ is a C-sequential function associated with the action (Q, A) and $V \subseteq (Q \times A)^*$ is recognized by $(P, Q \times A)$.
