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Part I

Sequential functions
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Informal definitions

A transducer (or state machine) is an automaton
equipped with an output function. A transducer
computes a relation on A∗ × B∗.

A sequential transducer is a transducer whose
underlying automaton is deterministic (but not
necessarily complete). A sequential transducer
computes a partial function from A∗ into B∗.

A pure sequential transducer computes a partial
function ϕ preserving prefixes: if u is a prefix of v,
then ϕ(u) is a prefix of ϕ(v).
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An example of a pure sequential transducer

1 2 b|0

a|01

a|ε

On the input abaa, the output is 01001.

1 2 2 1 2
a|01 b|0 a|ε a|01



LIAFA, CNRS and University Paris VII

Pure sequential transducers

A pure sequential transducer is a 6-tuple

A = (Q,A,B, i, ·, ∗)

where the input function (q, a) → q ·a ∈ Q and the
output function (q, a) → q ∗ a ∈ B∗ are defined on
the same domain D ⊆ Q× A.

q q ·a
a | q ∗ a
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Extensions of the transition and output functions

The transition function is extended to Q×A∗ → Q.
Set q ·ε = q and, if q ·u and (q ·u)·a are defined,
q ·(ua) = (q ·u)·a.

The output function is extended to Q× A∗ → B∗.
Set q ∗ ε = ε and, if q ∗ u and (q ·u) ∗ a are defined,
q ∗ (ua) = (q ∗ u)((q ·u) ∗ a).

q q ·u q ·ua
u | q ∗ u a | (q ·u) ∗ a



LIAFA, CNRS and University Paris VII

Pure sequential functions

The function ϕ : A∗ → B∗ defined by

ϕ(u) = i ∗ u

is called the function realized by A.

A function is pure sequential if it can be realized by
some pure sequential transducer.
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Examples of pure sequential functions

Replacing consecutive white spaces by a single one:

1 2a|a |ε

|

a|a

Converting upper case to lower case letters:

1
a|a
b|b
...

A|a
B|b
...
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Coding and decoding

Consider the coding

a→ 0 b→ 1010 c→ 100 d→ 1011 r → 11

Decoding function

1|ε
1|r

0|ε

1|ε
1|d

0|b
0|c0|a
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Decoding

a→ 0 b→ 1010 c→ 100 d→ 1011 r → 11

1 2

34

0|a

0|ε
0|c

1|ε

1|ε

1|r

0|b 1|d

010101101000101101010110 → abracadabra
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Sequential transducers: informal definition

A sequential transducer is a transducer whose
underlying automaton is deterministic (but not
necessarily complete). There is an initial prefix and
a terminal function.

1 2 b|011
ε 00a|01

a|ε

On the input abaa, the output is 110100100.
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Sequential transducers

A sequential transducer is a 8-tuple

A = (Q,A,B, i, ·, ∗, m, ρ)

where (Q,A,B, i, ·, ∗) is a pure sequential
transducer, m ∈ B∗ is the initial prefix and
ρ : Q→ B∗ is a partial function, called the terminal
function.

1 2 b|011

ε 00a|01

a|ε
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Sequential functions

The function ϕ : A∗ → B∗ defined by

ϕ(u) = m(i ∗ u)ρ(i·u)

is called the function realized by A.

A function is sequential if it can be realized by some
sequential transducer.
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Some examples of sequential functions

The function x→ x+ 1 (in reverse binary)

1 2

ε

1 ε

1|0
0|0

1|1

0|1

The map ϕ : A∗ → A∗ defined by ϕ(x) = uxv.

u v
1

a|a
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Addition (in reverse binary)

0 1

ε

ε

1

(0, 0)|0
(0, 1)|1
(1, 0)|1

(0, 1)|0
(1, 0)|0
(1, 1)|1

(1, 1)|0

(0, 0)|1

In inverse binary notation, 22 = 2 + 4 + 16 → 01101
and 13 = 1 + 4 + 8 → 10110. Taking as input
(0, 1)(1, 0)(1, 1)(0, 1)(1, 0), the output is 110001,
the inverse binary representation of 35 = 1 + 2 + 32.
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Hardware applications (Wikipedia)

The circuit diagram for a 4 bit TTL counter
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Other examples

Multiplication by 4 1
00 0|0

1|1

Replacing each occurrence of 011 by 100.

1 2 3

1|1 0|0

0|ε 1|ε

ε 010
0|01

1|100
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Multiplication by 10

0

1

2

3

4

0

ε

1

01

11

001

0|0

1|1

0|1

1|1

0|0
1|1

1|0

0|0

1|0

0|1
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Part II

A characterization
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The geodesic metric

The distance between ababab and abaabba is 7.

a

b

a
b

a

b

a

b

b

a
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The geodesic metric (2)

Denote by u ∧ v the longest common prefix of the
words u and v. Then

d(u, v) = |u| + |v| − 2|u ∧ v|

Example: d(ababab, abaabba) = 6 + 7 − 2 × 3 = 7.
One can show that d is a metric.

(1) d(u, v) = 0 iff u = v,

(2) d(u, v) = d(v, u),

(3) d(u, v) 6 d(u, w) + d(w, v).
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A characterization of sequential functions

A function ϕ : : A∗ → B∗ is Lipschitz if there exists
some K > 0 such that, for all u, v ∈ A∗,

d(ϕ(u), ϕ(v)) 6 Kd(u, v)

Theorem (Choffrut 1979)

Let ϕ : A∗ → B∗ be a function whose domain is

closed under taking prefixes. TFCAE:

(1) ϕ is sequential,

(2) ϕ is Lipschitz, and ϕ−1 preserves regular sets.
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A characterization of pure sequential functions

Theorem (Ginsburg-Rose 1966)

Let ϕ : A∗ → B∗ be a function whose domain is

closed under taking prefixes. TFCAE:

(1) ϕ is a pure sequential function,

(2) ϕ is Lipschitz and preserves prefixes, and ϕ−1

preserves regular sets.
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Part III

Minimal sequential transducers
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Residuals of a language

Let L be a language over A∗. Let u ∈ A∗. The
(left) residual of L by u is the set

u−1L = {x ∈ A∗ | ux ∈ L}.

It is easy to see that v−1(u−1L) = (uv)−1L.

Let A = {a, b} and L = A∗abaA∗. Then

1−1L = L a−1L = A∗abaA∗ ∪ baA∗

b−1L = L (ab)−1L = A∗abaA∗ ∪ aA∗, etc.
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Minimal automaton of a language

The minimal automaton of a language L is equal to

A(L) = (Q,A, ·, i, F )

where Q = {u−1L 6= ∅ | u ∈ A∗}, i = L and
F = {u−1L | u ∈ L}). The transition function is
given by

(u−1L)·a = a−1(u−1L) = (ua)−1L.

u−1L (ua)−1La



LIAFA, CNRS and University Paris VII

Example of a minimal automaton

Let A = {a, b} and L = A∗abaA∗. Then

a−1L = A∗abaA∗ ∪ baA∗ = L1 b−1L = L

b−1L1 = A∗abaA∗ ∪ aA∗ = L2 a−1L1 = L1

a−1L2 = A∗ = L3 b−1L2 = L

a−1L3 = b−1L3 = L3

L L1 L2 L3

b

a

a

b a

b

a, b
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Residuals of a sequential function

Let ϕ : A∗ → B∗ be a function and let u ∈ A∗. The
residual of ϕ by u is the function u−1ϕ : A∗ → B∗

defined by

(u−1ϕ)(x) = (ϕ ∗ u)−1ϕ(ux)

where (ϕ ∗ u) is the longest common prefix of the
words ϕ(ux), for ux ∈ Dom(ϕ).

In other words, u−1ϕ can be obtained from the
function x→ ϕ(ux) by deleting the prefix ϕ ∗ u of
ϕ(ux).
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The function n→ 6n

n x ϕ(x)
0 ε 0
1 1 011
2 01 0011
3 11 01001
4 001 00011
5 101 01111
6 011 001001
7 111 010101
8 0001 000011

n x ϕ(x)
9 1001 011011
10 0101 001111
11 1101 0100001
12 0011 0001001
13 1011 0111001
14 0111 0010101
15 1111 0101101
16 00001 0000011
17 10001 0110011
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Let ε−1ϕ = ϕ0. Then ϕ0 represents n→ 3n

n x ϕ(x)
0 ε 0
1 1 011
2 01 0011
3 11 01001
4 001 00011
5 101 01111
6 011 001001
7 111 010101
8 0001 000011

n x ϕ(x)
9 1001 011011
10 0101 001111
11 1101 0100001
12 0011 0001001
13 1011 0111001
14 0111 0010101
15 1111 0101101
16 00001 0000011
17 10001 0110011
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The function ϕ0, representing n→ 3n

n x ϕ0(x)
0 ε ε
1 1 11
2 01 011
3 11 1001
4 001 0011
5 101 1111
6 011 01001
7 111 10101
8 0001 00011

n x ϕ0(x)
9 1001 11011
10 0101 01111
11 1101 100001
12 0011 001001
13 1011 111001
14 0111 010101
15 1111 101101
16 00001 000011
17 10001 110011



LIAFA, CNRS and University Paris VII

Residuals of ϕ0

Let ϕ0, ϕ1 and ϕ2 be the functions representing
n→ 3n, n→ 3n+ 1 and n→ 3n+ 2, respectively.

ϕ0 ∗ 0 = 0

(0−1ϕ0)(x) = 0−1ϕ0(0x) = ϕ0(x)

ϕ0 ∗ 1 = 1

(1−1ϕ0)(x) = 1−1ϕ0(1x) = ϕ1(x)

Indeed, if x represents n, 1x represents 2n+ 1,
ϕ0(1x) represents 3(2n+ 1) = 6n+ 3 and
1−1ϕ0(1x) represents ((6n+ 3) − 1)/2 = 3n+ 1.



LIAFA, CNRS and University Paris VII

The function ϕ1, representing n→ 3n + 1

n x ϕ1(x)
0 ε ε
1 1 001
2 01 111
3 11 0101
4 001 1011
5 101 00001
6 011 11001
7 111 01101
8 0001 10011

n x ϕ1(x)
9 1001 00111
10 0101 100001
11 1101 010001
12 0011 101001
13 1011 000101
14 0111 110101
15 1111 011101
16 00001 100011
17 10001 001011
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Residuals of ϕ1

ϕ1 ∗ 0 = 1

(0−1ϕ1)(x) = 1−1ϕ1(0x) = ϕ0(x)

Indeed, if x represents n, 0x represents 2n, ϕ1(0x)
represents 3(2n) + 1 = 6n+ 1 and 1−1ϕ1(0x)
represents ((6n+ 1) − 1)/2 = 3n.

ϕ1 ∗ 1 = 0

(1−1ϕ1)(x) = 0−1ϕ1(1x) = ϕ2(x)

Indeed, if x represents n, 1x represents 2n+ 1,
ϕ1(1x) represents 3(2n+ 1) + 1 = 6n+ 4 and
0−1ϕ1(1x) represents (6n+ 4)/2 = 3n+ 2.
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The function ϕ2, representing n→ 3n + 2

n x ϕ2(x)
0 ε ε
1 1 101
2 01 0001
3 11 1101
4 001 0111
5 101 10001
6 011 00101
7 111 11101
8 0001 01011

n x ϕ2(x)
9 1001 10111
10 0101 000001
11 1101 110001
12 0011 011001
13 1011 100101
14 0111 001101
15 1111 111101
16 00001 010011
17 10001 101011
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Residuals of ϕ2

ϕ2 ∗ 0 = 0

(0−1ϕ2)(x) = 0−1ϕ2(0x) = ϕ1(x)

Indeed, if x represents n, 0x represents 2n, ϕ2(0x)
represents 3(2n) + 2 = 6n+ 2 and 0−1ϕ2(0x)
represents (6n+ 2)/2 = 3n+ 1.

ϕ2 ∗ 1 = 1

(1−1ϕ2)(x) = 1−1ϕ2(1x) = ϕ2(x)

Indeed, if x represents n, 1x represents 2n+ 1,
ϕ2(1x) represents 3(2n+ 1) + 2 = 6n+ 5 and
1−1ϕ2(1x) represents ((6n+ 5) − 1)/2 = 3n+ 2.
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Minimal sequential transducer of a function ϕ

It is the sequential transducer whose states are the
residuals of ϕ and transitions are of the form

ψ a−1ψ

ψ(ε) (a−1ψ)(ε)

a|ψ ∗ a

Recall that ψ ∗ a is the longest common prefix of
the words ψ(ax), for ax ∈ Dom(ϕ).
The initial state is ε−1ϕ and the initial prefix is ϕ∗ ε.
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More formally. . .

It is the sequential transducer
Aϕ = (Q,A,B, i, ·, ∗, m, ρ) defined by

Q = {u−1ϕ | u ∈ A∗ and Dom(ϕ·u) 6= ∅}

i = ε−1ϕ, m = ϕ ∗ ε and, for q ∈ Q, ρ(q) = q(ε)

A typical transition of Aϕ:

u−1ϕ (ua)−1ϕ

(u−1ϕ)(ε) ((ua)−1ϕ)(ε)

a|(u−1ϕ) ∗ a



LIAFA, CNRS and University Paris VII

The minimal sequential function of n→ 6n

0 1 20|0 1|1

1|1 1|0

0|00|1

0

ε 1 01

185 = 1 + 8 + 16 + 32 + 128 and
6 × 185 = 1110 = 2 + 4 + 16 + 64 + 1024.
Thus ϕ(10011101) = 01101010001
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Part IV

Minimizing sequential transducers
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The three steps of the algorithm

How to minimize a sequential transducer?

(1) Obtain a trim transducer (easy)

(2) Normalise the transducer (tricky)

(3) Merge equivalent states (standard)
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Obtaining a trim transducer

Let A = (Q,A,B, i, ·, ∗, m, ρ) be a sequential
transducer and let F = Dom(ρ). The transducer A
is trim if the automaton (Q,A, ·, q0, F ) is trim: all
states are accessible from the initial state and one
can reach a final state from any state.

Algorithm: it suffices to remove the useless states.
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Equivalent transducers

a

ε
12 3

b|ε

a|ba

a|ε

a

ε
12 3

b|ε

a|b

a|a

ε

ε
12 3

b|a

a|b

a|a

ε

ε
12 3

b|a

a|ab

a|ε

These four sequential transducers realize exactly the
same function ϕ : {a, b}∗ → {a, b}∗, with domain
(aa)∗b, defined, for all n > 0, by ϕ(a2nb) = (ab)na.
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Normalized transducer

Let A = (Q,A,B, i, ·, ∗, m, ρ) be a sequential
transducer. For each state q, denote by mq the
greatest common prefix of the words (q ∗ u)ρ(q ·u),
where u ranges over the domain of the sequential
function.

Equivalently, mq = ϕq ∗ ε, where ϕq is the
sequential function realized by the transducer
derrived from A by taking q as initial state and the
empty word as initial prefix.

A sequential transducer is normalized if, for all
states q, mq is the empty word.
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mq = (q ∗ u)ρ(q ·u)

ε
12 3

ε

ba

ε

ε
12 3

ε

b

a

ε
12 3

a

b

a

ε
12 3

a

ab

ε

(1) m1 = ε m2 = ε m3 = ε

(2) m1 = ε m2 = a m3 = ε

(3) m1 = ε m2 = a m3 = ε

(4) m1 = a m2 = a m3 = ε
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Normalising a transducer

Let A = (Q,A,B, i, ·, ∗, m, ρ) be a trim sequential
transducer. One obtains a normalised transducer by
changing the initial prefix, the output function and
the terminal function as follows:

q ∗′ a = m−1

q (q ∗ a)mq·a

m′ = mmi

ρ′(q) = m−1

q ρ(q)
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Normalisation on an example

ε

ε

→12 3
b|a

a|ab

a|ε a

ε
12 3

b|ε

a|ba

a|ε

One has m1 = a, m2 = a, m3 = ε. Thus

m′ = mm1 = εa = a

1 ∗′ a = m−1

1
(1 ∗ a)m2 = a−1(ab)a = ba

2 ∗′ a = m−1

2
(1 ∗ a)m1 = a−1(ε)a = ε

1 ∗′ b = m−1

1
(1 ∗ b)m3 = a−1(a)ε = ε

ρ′(3) = m−1

3
ρ(3) = ε−1ε = ε
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Computing the mq is not so easy. . .

1 2

3 4
abab

ab

aba

ab

ε

bε

ab

ab

X1 = abX1 + abaX2 + abX3

X2 = X1 + bX4

X3 = X1 + abX4

X4 = abX2 + abab
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Solving the system

X1 = abX1 + abaX2 + abX3

X2 = X1 + bX4

X3 = X1 + abX4

X4 = abX2 + abab

We work on k = A∗ ∪ {0}. Addition is the least
common prefix operator (u+ 0 = 0 + u = u by
convention). Observe that u+ u = u and
u(v1 + v2) = uv1 + uv2 (but (v1 + v2)u = v1u+ v2u
does not hold in general). Thus k is a left semiring.
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Choffrut’s algorithm (2003)

The prefix order is a partial order 6 on k (with
u 6 0 by convention). One can extend this order to
kn componentwise.

Proposition

For all u, v ∈ kn, the function f(x) = ux+ v is

increasing. The sequence fn(0) is decreasing and

converges to the greatest fixpoint of f .

The greatest solution of our system is exactly
(m1, m2, m3, m4).
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Example of Choffrut’s algorithm

X1 = abX1 + abaX2 + abX3

X2 = X1 + bX4

X3 = X1 + abX4

X4 = abX2 + abab

The sequence fn(0) is (0, 0, 0, 0), (0, 0, 0, abab),
(0, babab, ababab, abab),
(abababab, babab, ababab, ab), (abab, ε, ababab, ab),
(aba, ε, abab, ab), (aba, ε, aba, ab), (aba, ε, aba, ab).
Thus m1 = aba, m2 = ε, m3 = aba, m4 = ab.
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Merging states

Two states are equivalent if they are equivalent in
the input automaton (Q,A, i, F, ·), have the same
output functions and the same terminal functions:

p ∼ q ⇐⇒











p · a ∼ q · a

p ∗ a = q ∗ a

ρ(p) = ρ(q)
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Part V

Composition of sequential functions
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Composition of two pure sequential transducers

Theorem

Pure sequential functions are closed under

composition.

Let σ and τ be two pure sequential functions
realized by the transducers

A = (Q,A,B, q0, ·, ∗) and B = (P,B, C, p0, ·, ∗)

The wreath product of B by A is obtained by taking
as input for B the output of A. It realizes τ ◦ σ.
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Wreath product of two pure sequential transducers

The wreath product is defined by

B ◦ A = (P ×Q,A,C, (p0, q0), ·, ∗)

(p, q)·a = (p·(q ∗ a), q ·a)

(p, q) ∗ a = p ∗ (q ∗ a)

(p, q) (p·(q ∗ a), q ·a)
a | p ∗ (q ∗ a)
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Composition of two sequential transducers

Theorem

Sequential functions are closed under composition.

Let ϕ and ψ be two sequential functions realized by
the transducers A (equipped with the initial word n
and the terminal function ρ) and B (equipped with
the initial word m and the terminal function σ).

The wreath product of B by A is obtained by taking
m(p0 ∗ n) as initial word and, as terminal function,
ω(p, q) = (p ∗ ρ(q))σ(p·ρ(q)).
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Iterating sequential functions. . .

Iterating sequential functions can lead to difficult
problems. . .

Let f(n) =

{

3n+ 1 if n is odd

n/2 if n is even

It is conjectured that for each positive integer n,
there exists k such that f k(n) = 1. The problem is
still open.
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Minimal transducer of the 3n + 1 function

Let f(n) =

{

3n+ 1 if n is odd

n/2 if n is even

12 3 4 5

0|0
1|1 1|1 0|0

ε

εε 01 1 ε

0|ε 1|0
0|0

1|0

0|1

1|1
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Iterating the 3n + 1 function. . .

31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,
121, 364, 182, 91, 274, 137, 412, 206, 103, 310,
155, 466, 233, 700, 350, 175, 526, 263, 790, 395,
1186, 593, 1780, 890, 445, 1336, 668, 334, 167,
502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238,
1619, 4858, 2429, 7288, 3644, 1822, 911, 2734,
1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308,
1154, 577, 1732, 866, 433, 1300, 650, 325, 976,
488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53,
160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1.
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A useful result

Let ϕ : A∗ → B∗ be a pure sequential function
realized by A = (Q,A,B, q0, ·, ∗). Let L be the
regular language over B∗ recognized by the DFA
B = (P,B, ·, p0, F ). The wreath product of B by A
is the DFA B ◦ A = (P ×Q,A, (p0, q0), ·) defined
by (p, q)·a = (p·(q ∗ a), q ·a).

Theorem

The language ϕ−1(L) is recognized by B ◦ A.
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Example 1

Let ϕ(u) = an, where n is the number of
occurrences of aba in u. This function is pure
sequential:

1 2 3
a|ε

b|ε a|ε

b|ε

a|a

b|ε

Then ϕ−1(a) is the set of words containing exactly
one occurrence of aba.
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Wreath product of the two automata

1 2
a

1, 1

1, 2 1, 3

2, 1

2, 2 2, 3

a

b

b

a b

ba

a a

b b
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The operation L→ LaA∗

Let A = (Q,A,B, q0, F, ·) be a DFA. Let
B = Q×A and let σ : A∗ → B∗ be the pure
sequential function defined by

σ(a1 · · · an) = (q0, a1)(q0·a1, a2) · · · (q0a1 · · · an−1, an)

q q ·a
a | (q, a)

Let a ∈ A and let C = F × {a} ⊆ B. Then
σ−1(B∗CB∗) = LaA∗.[Proof on blackboard!]
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Example 2

Therefore B ◦ A recognizes LaA∗, where B is the
minimal automaton of B∗CB∗.

1 2

B \ C

C

B

Note that if ϕ is a formula of linear temporal logic,
then L(F (pa ∧Xϕ)) = A∗aL(ϕ)
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Part VI

The algebraic approach

Idea: replace automata by monoids.
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Transformation monoid of an automaton

1 2 3

b a, c b, c

a
b

a

1 1 2 3
a 2 2 2
b 1 3 3
c - 2 3

Relations:
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Transformation monoid of an automaton
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b
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ab 3 3 3
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a
b

a

1 1 2 3
a 2 2 2
b 1 3 3
c - 2 3
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Transformation monoid of an automaton

1 2 3

b a, c b, c

a
b

a

1 1 2 3
a 2 2 2
b 1 3 3
c - 2 3
ab 3 3 3
bc - 3 2
ca - 2 2

Relations:
aa = a
ac = a
ba = a
bb = b
cb = bc
cc = c

abc = ab
bca = ca
cab = bc
The end!
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Recognizing by a morphism

Definition

Let M be a monoid and let L be a language of A∗.
Then M recognizes L if there exists a monoid
morphism ϕ : A∗ →M and a subset P of M such
that L = ϕ−1(P ).

Proposition

A language is recognized by a finite monoid iff it is

recognized by a finite deterministic automaton.
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Syntactic monoid

Definition (algorithmic)

The syntactic monoid of a language is the transition
monoid of its minimal automaton.

Definition (algebraic)

The syntactic monoid of a language L ⊂ A∗ is the
quotient monoid of A∗ by the syntactic congruence
of L: u ∼L v iff, for each x, y ∈ A∗,
xvy ∈ L⇔ xuy ∈ L
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Part VII

The wreath product principle

The wreath product N ◦K of two monoids N and
K is defined on the set NK ×K by the following
product:

(f1, k1)(f2, k2) = (f, k1k2) with f(k) = f1(k)f2(kk1)

Straubing’s wreath product principle provides a
description of the languages recognized by the
wreath product of two automata (or monoids).
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The wreath product principle

Proposition

Let M and N be monoids. Every language of A∗

recognized by M ◦N is a finite union of languages

of the form U ∩ σ−1

ϕ (V ), where ϕ : A∗ → N is a

monoid morphism, U is a language of A∗ recognized

by ϕ and V is a language of B∗
N recognized by M .
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The wreath product principle 2

Theorem

Let L ⊆ A∗ be a language recognized by an wreath

product of the form (P,Q× A) ◦ (Q,A). Then L is

a finite union of languages of the form W ∩ σ−1(V ),
where W ⊆ A∗ is recognized by (Q,A), σ is a

C-sequential function associated with the action

(Q,A) and V ⊆ (Q×A)∗ is recognized by

(P,Q× A).
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