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Outline

(1) What this tutorial is about?

(2) Complexity

(3) Presentation and Cayley graphs

(4) Green’s relations

(5) Idempotents, weak inverses and inverses

(6) Blocks

(7) Syntactic preorder

(8) Other computations

Warning. In this tutorial, all semigroups are finite.
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Part I

What this tutorial is about?

The aim of this tutorial is to present some
algorithms to compute finite semigroups.

Programming issues, like data structures,
implementation or interface will not be addressed,
but most algorithms are implemented in the
C-programme semigroupe.

This tutorial is addressed to mathematicians, not to
computer scientists. For this reason, I will remind a
few basic algorithms, when needed.
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Computing finite semigroups

Several questions should be answered:

• How is the semigroup given? (transformation
semigroup, semigroup of matrices over some
(semi)ring, finite presentation, . . . )

• What does one wish to compute?

• What is the complexity of the algorithms?
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How is the semigroup S given?

I assume that S is a subsemigroup of a larger
semigroup U (the universe), like:

• the semigroup of all transformations on a set E,

• the semigroup of n × n-Boolean matrices,

• the semigroup of n× n-matrices with entries in Z,

• a set of words, with a multiplication defined on it,

• etc.

Then S is given as the subsemigroup of U
generated by some set A of generators.
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Part II

Complexity

Complexity means worth case complexity. The
average complexity would be too difficult to define:
what would be a random semigroup?

Complexity is usually measured in terms of the
following parameters:
• |S|, the number of elements of the semigroup,
• |A|, the number of generators.
Occasionally, other parameters might be used:
number of idempotents, number of D-classes, etc.
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Two types of complexity

Space complexity measures the amount of computer
memory required to run the algorithm.

Time complexity measures the time spent by the
computer to run the algorithm.

Both space and time complexity are measured as a
function of the size n of the input data, but are
expressed in O(f(n)) notation. This makes the
notion robust and machine independent.
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Meaning of complexity

If an O(n)-time algorithm takes 0.1 second on an
input of size 105, it will spend roughly 1 second on
an input of size 106 and 10 seconds on an input of
size 107.

The O(f(n)) notation also explains why the cost of
elementary operations is irrelevant. Even if your
computer is twice faster as mine, computing 1000
additions will take 1000 times as much as a single
addition on both computers. . .

Complexity allows to predict effectiveness and is
surprisingly precise in practice.
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Usual complexities

log2 n 3 7 10 13 16 20

n 10 102 103 104 105 106

n log2 n 33 664 104 1.3 105 1.6 106 2 107

n2 102 104 106 108 1010 1012

n3 103 106 109 1012 1012 1012

2n 103 1030 · · · · · · · · · · · ·

linear (time) algorithm = O(n)-time algorithm
quadratic (time) algorithm = O(n2)-time algorithm
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Practical issues about complexity

In practice, one can run within one minute:
• linear algorithms for data of size 6 2 · 107

• O(n log n)-time algorithms for data of size 6 106

• quadratic algorithms for data of size 6 104

For linear time algorithms, space complexity is often
the main issue and most of the time is spent on
memory allocation.
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Practical issues about semigroup algorithms

Two functions are given:

• one for computing the product of an element of
the universe by a generator.
• one for testing the equality of two elements of the
universe.

Time complexity is usually measured by the number
of accesses to these two functions.

The multiplication table can be computed in
quadratic time and space. Therefore all algorithms
in O(|S|k) with k > 2 may assume that the
multiplication table is known.
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Part III

Presentation and Cayley graphs

Data: A universe and an ordered set of generators.

Output: A presentation of the semigroup by
generators and relations, a confluent rewriting
system for this presentation and the right and left
Cayley graphs of the semigroup.
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An example (input data in red)

1 2 3

∗ 1 1 2 3

∗ a 2 2 2

∗ b 1 3 3

∗ c 0 2 3

∗ ab 3 3 3

∗ bc 0 3 3

∗ ca 0 2 2

1
∗

b
∗ c∗

a∗
ab

∗

ca∗
bc

∗

aa → a
ac → a
ba → a
bb → b
cb → bc
cc → c

abc → ab
bca → ca
cab → bc
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Right Cayley graph: edges of the form u
a

−→ ua

1

a

b

c

ab

bc

ca

a

b

c

a, c
b

ab

c

a

b

c

a

b, c

a

b, c

a, c

b
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Left Cayley graph: edges of the form u
a

−→ au

1

a

b

c

ab

bc

ca
a

b

c

a, b

c

a

b

c

a

b

c c

a, b

a

b, c

b, c
a
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Shortlex order

Lexicographic order ( 6lex ): total order used in a
dictionary.

Shortlex order (6): words are ordered by length and
words of equal length are ordered by 6lex .

If a < b, then ababb 6lex abba but abba < ababb.

For each rule u → v, one has v < u.

aa → a ac → a ba → a

bb → b cb → bc cc → c

abc → ab bca → ca cab → bc
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Properties of the shortlex order

Proposition

Let u, v ∈ A∗ and let a, b ∈ A.

(1) If u < v, then au < av and ua < va.

(2) If ua 6 vb, then u 6 v.

Therefore 6 is a stable order on A∗: if u 6 v, then
xuy 6 xvy for all x, y ∈ A∗. Further, it is a well
order.
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Properties of the rewriting system

Let L be the set of left hand sides of the rules.

• All the rules are of the form u → v with v < u.

• The set L is unavoidable (any sufficently long
word contains a factor in L or, equivalently, the
set A∗ \ A∗LA∗ is finite),

• No word of L has a proper factor in L.

• The set of proper factors of words in L is the
set of reduced words.

• The rewriting system is confluent.

• It depends on the order on A.
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Computation of the presentation

1 2 3

b a, c b, c

a
b

a

1 1 2 3
a 2 2 2
b 1 3 3
c - 2 3

Rules:
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Computation of the presentation

1 2 3

b a, c b, c

a
b

a

1 1 2 3
a 2 2 2
b 1 3 3
c - 2 3

Rules:
aa → a



LIAFA, CNRS and University Paris VII

Computation of the presentation

1 2 3

b a, c b, c

a
b

a

1 1 2 3
a 2 2 2
b 1 3 3
c - 2 3
ab 3 3 3

Rules:
aa → a
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Computation of the presentation

1 2 3

b a, c b, c

a
b

a

1 1 2 3
a 2 2 2
b 1 3 3
c - 2 3
ab 3 3 3

Rules:
aa → a
ac → a
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Computation of the presentation

1 2 3

b a, c b, c

a
b

a

1 1 2 3
a 2 2 2
b 1 3 3
c - 2 3
ab 3 3 3

Rules:
aa → a
ac → a
ba → a
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Computation of the presentation

1 2 3

b a, c b, c

a
b
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1 1 2 3
a 2 2 2
b 1 3 3
c - 2 3
ab 3 3 3

Rules:
aa → a
ac → a
ba → a
bb → b
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Computation of the presentation

1 2 3

b a, c b, c

a
b
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1 1 2 3
a 2 2 2
b 1 3 3
c - 2 3
ab 3 3 3
bc - 3 3
ca - 2 2

Rules:
aa → a
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ba → a
bb → b
cb → bc
cc → c

abc → ab
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Computation of the presentation
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cc → c

abc → ab
bca → ca
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Computation of the presentation
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1 1 2 3
a 2 2 2
b 1 3 3
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ab 3 3 3
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Computation of the presentation

1 2 3

b a, c b, c

a
b

a

1 1 2 3
a 2 2 2
b 1 3 3
c - 2 3
ab 3 3 3
bc - 3 3
ca - 2 2

Rules:
aa → a
ac → a
ba → a
bb → b
cb → bc
cc → c

abc → ab
bca → ca
cab → bc
The end!
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Main algorithm

Convention: a, b, c, . . . will be generic letters and
p, q, r, . . . will be generic words.

We maintain two tables. One contains the list of
reduced words with the corresponding elements of
U . The other one contains the list of relations.

1 1 2 3
a 2 2 2
b 1 3 3
c - 2 3
ab 3 3 3
bc - 3 3
ca - 2 2

aa → a
ac → a
ba → a
bb → b
cb → bc
cc → c

abc → ab
bca → ca
cab → bc
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Main loops

For each length n,

Computation of the right Cayley graph

For each word u of length n in the table
For a ranging from the first to the last letter

handle ua [next slide]

Computation of the left Cayley graph

For each word u of length n in the table
For a ranging from the first to the last letter

reduce au
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Handling ua

For each length n,
For each word u of length n in the table

For a ranging from the first to the last letter

try to reduce the word ua; [next slide]
if it can be reduced with the current rules

switch to the next letter
else

compute the associated element of U ;
if it corresponds to some word v
add the relation ua → v

else

add this new element to the table;
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Reduction of ua

Put u = bs. If sa → r, then ua = bsa → br.

• If r = 1, then ua → b.

• If r 6= 1, put r = tc. Then r = tc < sa implies
t 6 s.

• If t = s, then c < a, ua → br = btc = bsc = uc
and the reduction of uc has been done, since c < a.

• If t < s, then |t| 6 |s| < |u| and thus the
reduction of bt has been done. Assume that bt → v.
Then v 6 bt < bs = u. Then ua → br = btc → vc,
and the reduction of vc has been done, since v < u.
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Left Cayley graph

If u = pb and a ∈ A, then au = tb, where t = ap.

Since |t| 6 |u|, tb has been handled at this stage.
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Complexity

Theorem

The number of accesses to the function computing
the product in the universe is equal to
|S| + |R| − |A| (where R is the set of rules).

Result for Tn (|A| = 3).

n |S| Nb of Rules Nb of Calls

3 27 13 37

4 256 83 336

5 3,125 751 3,873

6 46,656 7935 54,588
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Benchmarks (in seconds)

Name |A| |S| S D H

S10 2 3,628,800 11.02 15.00 0.01

T7 3 823,543 2.95 2.38 0.74

F7 4 2,097,152 8.87 7.36 0.64

I8 3 1,441,729 5.44 5.63 0.42

RB4 4 63,904 0.37 0.10 0.02

FC13 13 5,200,300 35.63 22.61 1.29

FIC12 12 2,704,156 20.57 11.53 0.71

POPI12 2 16,224,937 56.00 66.73 5.90

Tr6 21 2,097,152 33.09 10.43 1.12

U7 21 2,097,152 40.93 9.28 1.04
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Part IV

Green’s relations and blocks

∗1

∗b ∗c

∗a ∗ab
∗ca ∗bc
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R-classes

1

a

b

c

ab

bc

ca

a

b

c

a, c
b

ab

c

a

b

c

a

b, c

a

b, c

a, c

b

The R-classes are the strongly connected
components of the right Cayley graph.
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L-classes

1

a

b

c

ab

bc

ca
a

b

c

a, b

c

a

b

c

a

b

c c

a, b

a

b, c

b, c
a

The L-classes are the strongly connected
components of the left Cayley graph.
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J -classes (loops and labels are omitted)

1

a

b

c

ab

bc

ca

The J -classes are the strongly connected
components of the union of the right and left
Cayley graphs.
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Depth first search (DFS)

A directed graph is given by its set of vertices and
for each vertex, the ordered set of its successors.

1

2 3 4

56
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Depth first search (DFS)

A directed graph is given by its set of vertices and
for each vertex, the ordered set of its successors.

1

2 3 4

56

1

Starting from vertex 1
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Depth first search (DFS)

A directed graph is given by its set of vertices and
for each vertex, the ordered set of its successors.

1

2 3 4

56

11

2

Reaching the rightmost neighbour, 2



LIAFA, CNRS and University Paris VII

Depth first search (DFS)

A directed graph is given by its set of vertices and
for each vertex, the ordered set of its successors.

1

2 3 4

56

11

22

1

Vertex 2 has no neighbour, back to 1
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Depth first search (DFS)

A directed graph is given by its set of vertices and
for each vertex, the ordered set of its successors.

1

2 3 4

56

11

22

11

3

Reaching the rightmost neighbour, 3
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Depth first search (DFS)

A directed graph is given by its set of vertices and
for each vertex, the ordered set of its successors.

1

2 3 4

56

11

22

11

33

6

Reaching the rightmost neighbour, 6
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Depth first search (DFS)

A directed graph is given by its set of vertices and
for each vertex, the ordered set of its successors.

1

2 3 4

56

11

22

11

33

66

3

Vertex 6 has no neighbour, back to 3
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Depth first search (DFS)

A directed graph is given by its set of vertices and
for each vertex, the ordered set of its successors.

1

2 3 4

56

11

22

11

33

66

33

5

Reaching the rightmost neighbour, 5
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Depth first search (DFS)

A directed graph is given by its set of vertices and
for each vertex, the ordered set of its successors.

1

2 3 4

56

11

22

11

33

66

33

55

3

Vertex 5 has no free neighbour, back to 3
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Depth first search (DFS)

A directed graph is given by its set of vertices and
for each vertex, the ordered set of its successors.

1

2 3 4

56

11

22

11

33

66

33

55

33

1

Vertex 3 has no free neighbour, back to 1
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Depth first search (DFS)

A directed graph is given by its set of vertices and
for each vertex, the ordered set of its successors.

1

2 3 4

56

11

22

11

33

66

33

55

33

11

4

Reaching the rightmost neighbour, 4
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Depth first search (DFS)

A directed graph is given by its set of vertices and
for each vertex, the ordered set of its successors.

1

2 3 4

56

11

22

11

33

66

33

55

33

11

44

1

Vertex 4 has no free neighbour, back to 1
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Depth first search (DFS)

A directed graph is given by its set of vertices and
for each vertex, the ordered set of its successors.

1

2 3 4

56

11

22

11

33

66

33

55

33

11

44

11

The end.
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Tarjan’s algorithm (1)

1

2

3 4 5

6

7

8

9

10

11

12

13

14 15
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Tree, Backward, Cross and Forward edges

1

2

3 4 5

6

7

8

9

10

11

12

13

14 15

F

B

C

B
F

C

C

C
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Ties (in the tree)

The tie t(x) of a vertex x is the least y such that
there is a path (possibly empty) from x to y
containing at most one backward or cross edge.

Theorem

If t(x) = x and if t(y) < y for every descendant y
of x, then the set of descendants of x is a strongly
connected component (SCC).

Algorithm : Find the deepest SCC, remove it and
look for the next one.
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Computing the ties

1

2

3 4 5

6

7

8

9

10

11

12

13

14 15

F

F

B

C

B

C

C

C
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Computing the ties

1

2

3 4 5

6

7

8

9

10

11B

C

B

C

C

C

1
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Computing the ties
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2

3 4 5
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1
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Computing the ties
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Computing the ties

1

2

3 4 5

6
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1

1 1
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Computing the ties
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Computing the ties

1

2

3 4 5

6

7

8

9

10

11B

C

B

C

C

C

1

1

1 1 1

5



LIAFA, CNRS and University Paris VII

Computing the ties
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Computing the ties
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Computing the ties
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Computing the ties
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Computing the ties
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Computing the ties
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Computing the ties
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Computing the ties
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Computing the ties

1

2

3 4 5

6

7

8

9B

C

B

C

C

C

1

1

1 1 1

5

5

5

8



LIAFA, CNRS and University Paris VII

Computing the ties
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Computing the ties
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Tarjan computes the SCC on O(|E| + |V |) time.
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Computing Green’s relations

To obtain the R-classes, the L-classes and the
D-classes, it suffices to compute the strongly
connected of the right Cayley graph, the left Cayley
graph and the union G of the two Cayley graphs.

It can be done in time linear in the size (number of
vertices + number of edges) of the Cayley graphs,
that is, in O(|A||S|). Space complexity is also
linear.

The depth-first search of G also gives the “deepest”
strongly connected component, that is, the minimal
ideal.
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H-classes

At this stage, one gets the table of all D-classes,
R-classes and L-classes:

Element 1 2 3 4 5 6 7 8 9 10 11 12 13

D-class 3 3 2 2 2 1 2 2 1 2 2 1 2

R-class 4 4 3 2 3 1 2 3 1 2 3 1 2

L-class 6 6 5 5 3 4 3 5 2 5 3 1 3

How to find the H-classes?
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Step one: sorting the elements by R-class number

Element 1 2 3 4 5 6 7 8 9 10 11 12 13

R-class 4 4 3 2 3 1 2 3 1 2 3 1 2

Element 1 2 3 4 5 6 7 8 9 10 11 12 13

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

This can be done in linear time by first counting the
number of elements in each R-class.

R-class 1 2 3 4

Number 3 4 4 2
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Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 0 0 0 0 0 0

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class

4

6

2

3

3 5

1 2 4

1
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Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 0 0 0 1 0 0
New R-class

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class 1

4

6

2

3

3 5

1 2 4

11
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Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 0 2 0 1 0 0

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class 1 2

4

6

2

3

3 5

1 2 4

121
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Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 3 2 0 1 0 0

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class 1 2 3

4

6

2

3

3 5

1 2 4

1231
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Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 3 2 0 1 4 0
New R-class

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class 1 2 3 4

4

6

42

3

3 5

1 2 4

1231
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Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 3 2 5 1 4 0

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class 1 2 3 4 5

4

6

452

3

3 5

1 2 4

1231
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Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 3 2 5 1 4 0

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class 1 2 3 4 5 4

4

6

452

3

3 5

1 2 4

1231
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Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 3 2 5 1 4 0

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class 1 2 3 4 5 4 5

4

6

452

3

3 5

1 2 4

1231
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Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 3 2 5 1 6 0
New R-class

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class 1 2 3 4 5 4 5 6

4

6

45

6

2

3

3 5

1 2 4

1231
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Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 3 2 7 1 6 0

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class 1 2 3 4 5 4 5 6 7

4

6

45

67

2

3

3 5

1 2 4

1231



LIAFA, CNRS and University Paris VII

Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 3 2 7 1 6 0

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class 1 2 3 4 5 4 5 6 7 6

4

6

45

67

2

3

3 5

1 2 4

1231
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Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 3 2 7 1 6 0

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class 1 2 3 4 5 4 5 6 7 6 7

4

6

45

67

2

3

3 5

1 2 4

1231
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Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 3 2 7 1 6 8
New R-class

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class 1 2 3 4 5 4 5 6 7 6 7 8

84

6

45

67

2

3

3 5

1 2 4

1231
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Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 3 2 7 1 6 8

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class 1 2 3 4 5 4 5 6 7 6 7 8 8

84

6

45

67

2

3

3 5

1 2 4

1231
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Step two: browsing the L-class table

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

L-class 4 2 1 5 3 5 3 5 3 5 3 6 6

R-class 1 1 1 2 2 2 2 3 3 3 3 4 4

L-class 1 2 3 4 5 6

H-class 3 2 7 1 6 8

Sorted 6 9 12 4 7 10 13 3 5 8 11 1 2

H-class 1 2 3 4 5 4 5 6 7 6 7 8 8

Element 1 2 3 4 5 6 7 8 9 10 11 12 13

H-class 8 8 6 4 7 1 5 6 2 4 7 3 5
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Part V

Idempotents and (weak) inverses

Computing the idempotents can be done by testing
whether x = x2 in the universe, or by using the
rewriting system.
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Possible improvements

• If the H-classes of the minimal ideal are trivial
(which is easy to test), then all elements of the
minimal ideal are idempotent.

• If there is only one H-class, the semigroup is a
group, and 1 is the unique idempotent.

• If one makes use of the rewriting system, one
reads the word x from the node x on the right
Cayley graph, but one can stop if one leaves the
R-class of x.
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Inverses and weak inverses

Recall that t is a weak inverse of s if tst = t. If,
further, sts = s, then t is an inverse of s.

Algorithm: for each t ∈ S, start a depth first search
of G from t. Note that each visited s is J -below t.
One checks whether:

(1) st is idempotent,

(2) st R s

(3) s J t

Then s is a weak inverse [inverse] of t iff (1–2)
[(1–3)] are satisfied.
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Part VI

Blocks
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Blocks
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Blocks

∗ ∗

∗ ∗ ∗
∗ ∗

∗ ∗

∗ ∗
∗ ∗ ∗

∗
∗

This computation amounts to finding the connected
components of a certain graph.
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Computation of the blocks

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8 ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗

∗ ∗
∗ ∗ ∗

∗
∗

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 11
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Computation of the blocks (2)

One could use again Tarjan’s algorithm, but using
the ”Union-Find” algorithm is a bit simpler.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 11



LIAFA, CNRS and University Paris VII

Union-Find

The vertices (1, 3), (6, 3), (1, 6), (2, 3), (5, 4), (7,
8), (7,5) and (2, 5) are connected. Are 4 and 6
connected?

1 2

3 4 5

6 7

8
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Representing a forest by an array

In computer science, trees are represented
top-down. . . The root of each tree is its own parent.

1

2 3 4

5

6

7

8

9

10

Vertex 1 2 3 4 5 6 7 8 9 10

Parent 1 5 7 7 5 10 7 2 7 10
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Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1 2 3 4 5 6 7 8

Adding (1, 3)
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Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1

3

2 4 5 6 7 8

Adding (1, 3)
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Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1

3

2 4 5 6 7 8

Adding (6, 3)
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Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1

3

6 2 4 5 7 8

Adding (6, 3)



LIAFA, CNRS and University Paris VII

Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1

3

6 2 4 5 7 8

Adding (1, 6)
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Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1

3

6 2 4 5 7 8

Adding (2, 3)
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Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1

3

6 2 4 5 7 8

Adding (2, 3)
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Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1

3

6 2 4 5 7 8

Adding (5, 4)



LIAFA, CNRS and University Paris VII

Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1

3

6 2 4

5

7 8

Adding (5, 4)



LIAFA, CNRS and University Paris VII

Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1

3

6 2 4

5

7 8

Adding (7, 8)
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Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1

3

6 2 4

5

7

8

Adding (7, 8)
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Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1

3

6 2 4

5

7

8

Adding (7, 5)
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Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1

3

6 2

4

5

8

7

Adding (7, 5)
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Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1

3

6 2

4

5

8

7

Adding (2, 5)
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Union-find (1)

Rule: to add (x, y), find the root x′ [y′] of the tree
containing x [y]. If x′ 6= y′, add the edge (x′, y′).

1

3

6 2

4

5

8

7

Adding (2, 5)
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Union-find, union by size

When merging two trees, attach the root of the tree
with fewer nodes to the root of the tree with more
nodes.

1

2

3

4

5

6

78

9

10

11 1213 14
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Union-find, union by size

When merging two trees, attach the root of the tree
with fewer nodes to the root of the tree with more
nodes.

1

2

3

4

5

6

78

9

10

11 1213 14

Adding (1, 3)
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Union-find, path compression

Do twice the search for the root. The second time,
attach all nodes on the path to the root.

1

2

3

4

5

678

9

10

1

2

345

678

910
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Complexity of Union-Find

Tarjan and van Leeuwen have shown that
performing m Finds and n − 1 Unions, with m > n,
can be done in O(n + mα(m, n)) where α is a kind
of inverse of the Ackermann’s function.

This function is so slow that for n < 265536 and
m > n, α(m, n) 6 2. Thus, the algorithm is linear
in practice.

In particular, the blocks can be computed in
(quasi)-linear time in the number of idempotents.
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Summary on complexity

The computation of the elements, the right and left
Cayley graphs, the Green’s relations, the blocks, the
idempotents, the minimal ideal, can be done in time
O(|A||S|).
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Benchmarks (in seconds)

Name |A| |S| S D H

S10 2 3,628,800 11.02 15.00 0.01

T7 3 823,543 2.95 2.38 0.74

F7 4 2,097,152 8.87 7.36 0.64

I8 3 1,441,729 5.44 5.63 0.42

RB4 4 63,904 0.37 0.10 0.02

FC13 13 5,200,300 35.63 22.61 1.29

FIC12 12 2,704,156 20.57 11.53 0.71

POPI12 2 16,224,937 56.00 66.73 5.90

Tr6 21 2,097,152 33.09 10.43 1.12

U7 21 2,097,152 40.93 9.28 1.04
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Part VII

Group radical

Group radical

The group radical of a finite monoid M is the
smallest submonoid D(M) of M containing the
idempotents and closed under weak conjugation: if
sts = s and d ∈ D(M), then sdt, tds ∈ D(M).
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Computation of the radical

Initialisation : D(M) = E(M)

For each d in D(S)

For each weakly conjugate pair (s, t)
add sdt and tds to D(S)

add D(S)d to D(S).

Time complexity in 0(|S|3).
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Part VIII

Syntactic ordered monoid

If P is a subset of a monoid M , the syntactic
preorder 6P is defined on M by u 6P v iff, for all
x, y ∈ M ,

xvy ∈ P ⇒ xuy ∈ P

Denote by P̄ the complement of P . Then u 66P v
iff there exist x, y ∈ M such that

xuy ∈ P̄ and xvy ∈ P
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The syntactic ordered monoid of ab in B1
2

∗1

∗ab

∗bab

a

∗0

∗ab a b ∗ba

∗0

∗1
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An algorithm for the syntactic preorder

Let G be the graph with M × M as set of vertices
and edges of the form (ua, va) → (u, v) or
(au, av) → (u, v).

We have seen that u 66P v iff there exist x, y ∈ M
such that

xuy ∈ P̄ and xvy ∈ P

Therefore, u 66P v iff the vertex (u, v) is reachable
in G from some vertex of P̄ × P .
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The algorithm (2)

(1) Label each vertex (u, v) as follows:











(0, 1) if u /∈ P and v ∈ P [u 66P v]

(1, 0) if u ∈ P and v /∈ P [v 66P u]

(1, 1) otherwise

(2) Do a depth first search (starting from each
vertex labeled by (0, 1)) and set to 0 the first
component of the label of all visited vertices.
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Constraint propagation

(3) Do a depth first search (starting from each
vertex labeled by (0, 0) or (1, 0)) and set to 0
the second component of the label of all
visited vertices.

(4) The label of each vertex now encodes the
syntactic preorder of P as follows:


















(1, 1) if u ∼P v

(1, 0) if u 6P v

(0, 1) if v 6P u

(0, 0) if u and v are incomparable
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b

Initial labels
(1, 1)

(1, 0) (1, 0) (1, 1) (1, 1) (1, 1) (0, 1) (0, 1)

(1, 1)
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b

(1, 1)

(1, 0) (1, 0) (1, 1) (1, 1) (1, 1) (0, 1) (0, 1)

(1, 1)

DFS from (b, a)
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b

(1, 1)

(1, 0) (1, 0) (1, 1) (1, 1) (1, 1) (0, 1) (0, 1)

(1, 1)

DFS from (b, a)
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b

(1, 1)

(1, 0) (1, 0) (1, 1) (1, 1) (0, 1) (0, 1) (0, 1)

(1, 1)

DFS from (b, a)
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b

(1, 1)

(1, 0) (1, 0) (1, 1) (1, 1) (0, 1) (0, 1) (0, 1)

(1, 1)

DFS from (a, b)
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b

(1, 1)

(1, 0) (1, 0) (0, 1) (1, 1) (0, 1) (0, 1) (0, 1)

(1, 1)

DFS from (a, b)
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b

(1, 1)

(1, 0) (1, 0) (0, 1) (1, 1) (0, 1) (0, 1) (0, 1)

(1, 1)

Thus a 6P 1 6P b
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Complexity of the algorithm

The syntactic preorder can be computed in
O(|A||M |2) time and space.
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Aperiodicity

Theorem (Cho-Huynh 1991)

Testing aperiodicity of a deterministic n-state
automaton is P -space complete.

Proposition

One can test in O(|A||S|)-time whether an
A-generated finite semigroup S is aperiodic.

It suffices to test whether the H-classes are trivial.
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Other varieties

Proposition

One can test in O(|A||S|)-time whether an
A-generated finite semigroup S is R-trivial
[L-trivial, J -trivial, commutative, idempotent,
nilpotent, a group, a block-group].
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Testing a set of identities

This is a difficult problem for several reasons:

• It may happen that testing whether a set of
identities is satisfied is much easier than testing
whether any of the individual identities is satisfied.

• Identities for finite semigroups are profinite
identities. The operations xω and xω−1 are
frequently needed, but other operators might be
needed.

• There might be some tricky tree pattern-matching
problems to solve.
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Tree pattern-matching problems

A simple example: the variety DS is defined by the
identity ((xy)ω(yx)ω(xy)ω)ω = (xy)ω

ω

•

ω ω ω

• • •

x y y x x y

ω

•

x y
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Semigroup theory might help. . .

Proposition

One can test in O(|A||S|)-time whether an
A-generated finite semigroup S belongs to DS.

Indeed, a semigroup belongs to DS iff every regular
D-class is union of groups. Therefore, it suffices to
test whether the number of regular H-classes is
equal to the number of idempotents.
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Part IX

New directions

A stamp is a morphism from a finitely generated
free monoid onto a finite monoid. An ordered stamp
is a stamp onto an ordered monoid.

ϕ : A∗ → M
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Stable subsemigroup

Let ϕ : A∗ → M be a stamp and let Z = ϕ(A).
Then Z belongs to the monoid P(M) of subsets of
M .

Since P(M) is finite, Z has an idempotent power.
The stability index of ϕ is the least positive integer
such that ϕ(As) = ϕ(A2s).

The set ϕ(As) is a subsemigroup of M called the
stable semigroup of ϕ and the monoid ϕ(As) ∪ {1}
is called the stable monoid of ϕ.
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Applications to logic

Theorem (McNaughton-Paper 1971, Schützenberger 1965)

A language is FO[<]-definable iff its syntactic
semigroup is aperiodic.

Theorem (Barrington, Compton, Straubing, Thérien 1992)

A language is FO[< + mod]-definable iff the stable
semigroup of its syntactic stamp is aperiodic.
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A bit of logic

To each nonempty word u is associated a structure

Mu = ({0, 1, . . . , |u| − 1}, <, (a)a∈A)

where a is interpreted as the set of integers i such
that the i-th letter of u is an a, and < as the usual
order on integers.

If u = abbaab, then Dom(u) = {0, 1, 2, 3, 4, 5},
a = {0, 3, 4} and b = {1, 2, 5}.
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Modular predicates

Let d > 0 and r ∈ Z/dZ. We define two new
symbols (the modular symbols):

• The unary symbol modd
r :

modd

r(n) = {i < n | i mod d = r}

• A constant symbol m for the last position in a
word
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Fragments of first order logic

FO[<] denotes the set of first order formulas in the
signature {<, (a)a∈A}.

FO[< + mod] denotes the logic obtained by
adjoining all modular symbols.
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Fragments of first order logic

FO[<] denotes the set of first order formulas in the
signature {<, (a)a∈A}.

FO[< + mod] denotes the logic obtained by
adjoining all modular symbols.

Σ1 denotes the set of existential formulas:

∃x1 · · · ∃xn ϕ(x1, . . . , xn)

where ϕ is quantifier-free.

BΣ1 denotes the set of Boolean combinations of
Σ1-formulas.
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Some examples

The formula ∃x ax is interpreted as:

There exists an integer x such that, in u,
the letter in position x is an a.

This defines the language A∗aA∗.
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Some examples

The formula ∃x ax is interpreted as:

There exists an integer x such that, in u,
the letter in position x is an a.

This defines the language A∗aA∗.

The formula ∃x ∃y (x < y) ∧ ax ∧ by defines the
language A∗aA∗bA∗.
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Some examples

The formula ∃x ax is interpreted as:

There exists an integer x such that, in u,
the letter in position x is an a.

This defines the language A∗aA∗.

The formula ∃x ∃y (x < y) ∧ ax ∧ by defines the
language A∗aA∗bA∗.

The formula ∃x ∀y (x < y) ∨ (x = y) ∧ ax defines
the language aA∗.
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Simple languages

A simple language is a language of the form

A∗a1A
∗a2A

∗ · · · akA
∗

where k > 0 and a1, a2, . . . , ak ∈ A.

A modular simple language is a language of the form

(Ad)∗a1(A
d)∗a2(A

d)∗ · · · ak(A
d)∗

where d > 0, k > 0 and a1, a2, . . . , ak ∈ A.
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Logical description of simple languages

The language A∗a1A
∗a2A

∗ · · · akA
∗ can be defined

by the Σ1-formula

∃x1 . . . ∃xk (x1 < . . . < xk) ∧ (a1x1 ∧ · · · ∧ akxk)
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Logical description of simple languages

The language A∗a1A
∗a2A

∗ · · · akA
∗ can be defined

by the Σ1-formula

∃x1 . . . ∃xk (x1 < . . . < xk) ∧ (a1x1 ∧ · · · ∧ akxk)

The language (Ad)∗a1(A
d)∗a2(A

d)∗ · · · ak(A
d)∗ can

be defined by the Σ1-formula

∃x1 . . . ∃xk (x1 < . . . < xk) ∧ (a1x1 ∧ · · · ∧ akxk)∧

(modd

0
x1 ∧ modd

1
x2 ∧ · · · ∧modd

k−1
xk ∧ modd

k−1
m)
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First order

Theorem (McNaughton-Paper 1971, Schützenberger 1965)

A language is FO[<]-definable iff its syntactic
semigroup is aperiodic.

Theorem (Barrington, Compton, Straubing, Thérien 1992)

A language is FO[< + mod]-definable iff the stable
semigroup of its syntactic stamp is aperiodic.
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Existential formulas (Σ1)

Proposition

A language is definable in Σ1[<] iff it is a finite
union of simple languages.

Proposition

A language is definable in Σ1[< + mod] iff it is a
finite union of modular simple languages.
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Algebraic characterization

Theorem (Thomas 1982, Perrin-Pin 1986)

A language is definable in Σ1[<] iff its ordered
syntactic monoid satisfies the identity x 6 1.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in Σ1[< + mod] iff the
stable ordered monoid of its ordered syntactic stamp
satisfies the identity x 6 1.
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lm-morphisms

A morphism f : A∗ → B∗ is length-multiplying (lm
for short) if there exists an integer k such that the
image of each letter of A is a word of Bk.

For instance, if A = {a, b} and B = {a, b, c}, the
morphism defined by ϕ(a) = abca and ϕ(b) = cbba
is length-multiplying.
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lm-identities

Let u, v be two words on the alphabet B. A
morphism ϕ : A∗ → M satisfies the lm-identity
u = v if, for every lm-morphism f : B∗ → A∗,
ϕ ◦ f(u) = ϕ ◦ f(v).

For instance, ϕ : A∗ → M satisfies the lm-identity
xyx = xy if for any pair of words of the same
length x, y of A∗, ϕ(xyx) = ϕ(xy).
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lm-identities

Let u, v be two words on the alphabet B. A
morphism ϕ : A∗ → M satisfies the lm-identity
u = v if, for every lm-morphism f : B∗ → A∗,
ϕ ◦ f(u) = ϕ ◦ f(v).

For instance, ϕ : A∗ → M satisfies the lm-identity
xyx = xy if for any pair of words of the same
length x, y of A∗, ϕ(xyx) = ϕ(xy).

If M is ordered, we say that ϕ satisfies the
lm-identity u 6 v if, for every lm-morphism
f : B∗ → A∗, ϕ ◦ f(u) 6 ϕ ◦ f(v).
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Characterization by lm-identities

Theorem (Thomas 1982, Perrin-Pin 1986)

A language is definable in Σ1[<] iff its ordered
syntactic monoid satisfies the identity x 6 1.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in Σ1[< + mod] iff its
ordered syntactic stamp satisfies the lm-identities
xω−1y 6 1 and yxω−1 6 1.
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Boolean combination of existential formulas

Theorem (Thomas 1982)

A language is definable in BΣ1[<] iff it is a Boolean
combination of simple languages.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in BΣ1[< + mod] iff it is a
Boolean combination of modular simple languages.
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Algebraic characterization

Theorem (Simon 1972, Thomas 1982)

A language is definable in BΣ1[<] iff its syntactic
monoid is J -trivial.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in BΣ1[< + mod] iff its
syntactic stamp belongs to the lm-variety J ∗MOD.
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Derived category of a stamp ϕ : A∗ → M

Let πn(u) = |u| mod n.

A∗

M Z/nZ

ϕ πn

Let Cn(ϕ) be the category whose objects are
elements of Z/nZ and whose arrows from i to j are
the triples (i, m, j) where j − i ∈ πn(ϕ

−1(m)).

Composition is given by
(i, m1, j)(j, m2, k) = (i, m1m2, k).
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A decidable characterization

Theorem (Chaubard, Pin, Straubing 2006)

Let ϕ be a stamp of stability index s. Then ϕ
belongs to J ∗ MOD iff Cs(ϕ) is in gJ.

Corollary

Let ϕ be the syntactic stamp of a language L and
let s be its stability index. Then L is definable in
BΣ1[< + mod] iff Cs(ϕ) is in gJ.

No characterization by lm-identities is known at the
moment.
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What would be useful in GAP 4. . .

• Define stamps as a basic object.

• Compute stable semigroups and monoids of
stamps.

• Test for length-preserving and length-multiplying
identities.

• Compute derived categories
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