
LIAFA, CNRS and University Paris VII

Part I

Group radical

Group radical

The group radical of a finite monoid M is the
smallest submonoid D(M) of M containing the
idempotents and closed under weak conjugation: if
sts = s and d ∈ D(M), then sdt, tds ∈ D(M).
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Computation of the radical

Initialisation : D(M) = E(M)

For each d in D(S)

For each weakly conjugate pair (s, t)
add sdt and tds to D(S)

add D(S)d to D(S).

Time complexity in 0(|S|3).
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Part II

Syntactic ordered monoid

If P is a subset of a monoid M , the syntactic
preorder 6P is defined on M by u 6P v iff, for all
x, y ∈ M ,

xvy ∈ P ⇒ xuy ∈ P

Denote by P̄ the complement of P . Then u 66P v
iff there exist x, y ∈ M such that

xuy ∈ P̄ and xvy ∈ P
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The syntactic ordered monoid of ab in B1
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∗ab

∗bab
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An algorithm for the syntactic preorder

Let G be the graph with M × M as set of vertices
and edges of the form (ua, va) → (u, v) or
(au, av) → (u, v).

We have seen that u 66P v iff there exist x, y ∈ M
such that

xuy ∈ P̄ and xvy ∈ P

Therefore, u 66P v iff the vertex (u, v) is reachable
in G from some vertex of P̄ × P .
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The algorithm (2)

(1) Label each vertex (u, v) as follows:











(0, 1) if u /∈ P and v ∈ P [u 66P v]

(1, 0) if u ∈ P and v /∈ P [v 66P u]

(1, 1) otherwise

(2) Do a depth first search (starting from each
vertex labeled by (0, 1)) and set to 0 the first
component of the label of all visited vertices.



LIAFA, CNRS and University Paris VII

Constraint propagation

(3) Do a depth first search (starting from each
vertex labeled by (0, 0) or (1, 0)) and set to 0
the second component of the label of all
visited vertices.

(4) The label of each vertex now encodes the
syntactic preorder of P as follows:


















(1, 1) if u ∼P v

(1, 0) if u 6P v

(0, 1) if v 6P u

(0, 0) if u and v are incomparable
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b

Initial labels
(1, 1)

(1, 0) (1, 0) (1, 1) (1, 1) (1, 1) (0, 1) (0, 1)

(1, 1)
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b

(1, 1)

(1, 0) (1, 0) (1, 1) (1, 1) (1, 1) (0, 1) (0, 1)

(1, 1)

DFS from (b, a)
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b

(1, 1)

(1, 0) (1, 0) (1, 1) (1, 1) (1, 1) (0, 1) (0, 1)

(1, 1)

DFS from (b, a)
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b

(1, 1)

(1, 0) (1, 0) (1, 1) (1, 1) (0, 1) (0, 1) (0, 1)

(1, 1)

DFS from (b, a)
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b

(1, 1)

(1, 0) (1, 0) (1, 1) (1, 1) (0, 1) (0, 1) (0, 1)

(1, 1)

DFS from (a, b)
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Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b

(1, 1)

(1, 0) (1, 0) (0, 1) (1, 1) (0, 1) (0, 1) (0, 1)

(1, 1)

DFS from (a, b)



LIAFA, CNRS and University Paris VII

Computation of the syntactic preorder

Let M = {1, a, b} with aa = ba = a and
ab = bb = b. Let P = {a}.

a, a

a, 1 a, b 1, b 1, 1 b, 1 b, a 1, a

b, b

(1, 1)

(1, 0) (1, 0) (0, 1) (1, 1) (0, 1) (0, 1) (0, 1)

(1, 1)

Thus a 6P 1 6P b
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Complexity of the algorithm

The syntactic preorder can be computed in
O(|A||M |2) time and space.
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Aperiodicity

Theorem (Cho-Huynh 1991)

Testing aperiodicity of a deterministic n-state
automaton is P -space complete.

Proposition

One can test in O(|A||S|)-time whether an
A-generated finite semigroup S is aperiodic.

It suffices to test whether the H-classes are trivial.
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Other varieties

Proposition

One can test in O(|A||S|)-time whether an
A-generated finite semigroup S is R-trivial
[L-trivial, J -trivial, commutative, idempotent,
nilpotent, a group, a block-group].
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Testing a set of identities

This is a difficult problem for several reasons:

• It may happen that testing whether a set of
identities is satisfied is much easier than testing
whether any of the individual identities is satisfied.

• Identities for finite semigroups are profinite
identities. The operations xω and xω−1 are
frequently needed, but other operators might be
needed.

• There might be some tricky tree pattern-matching
problems to solve.
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Tree pattern-matching problems

A simple example: the variety DS is defined by the
identity ((xy)ω(yx)ω(xy)ω)ω = (xy)ω

ω

•

ω ω ω

• • •

x y y x x y

ω

•

x y
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Semigroup theory might help. . .

Proposition

One can test in O(|A||S|)-time whether an
A-generated finite semigroup S belongs to DS.

Indeed, a semigroup belongs to DS iff every regular
D-class is union of groups. Therefore, it suffices to
test whether the number of regular H-classes is
equal to the number of idempotents.
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Part III

New directions

A stamp is a morphism from a finitely generated
free monoid onto a finite monoid. An ordered stamp
is a stamp onto an ordered monoid.

ϕ : A∗ → M
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Stable subsemigroup

Let ϕ : A∗ → M be a stamp and let Z = ϕ(A).
Then Z belongs to the monoid P(M) of subsets of
M .

Since P(M) is finite, Z has an idempotent power.
The stability index of ϕ is the least positive integer
such that ϕ(As) = ϕ(A2s).

The set ϕ(As) is a subsemigroup of M called the
stable semigroup of ϕ and the monoid ϕ(As) ∪ {1}
is called the stable monoid of ϕ.
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Applications to logic

Theorem (McNaughton-Paper 1971, Schützenberger 1965)

A language is FO[<]-definable iff its syntactic
semigroup is aperiodic.

Theorem (Barrington, Compton, Straubing, Thérien 1992)

A language is FO[< + mod]-definable iff the stable
semigroup of its syntactic stamp is aperiodic.
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A bit of logic

To each nonempty word u is associated a structure

Mu = ({1, 2, . . . , |u|}, <, (a)a∈A)

where a is interpreted as the set of integers i such
that the i-th letter of u is an a, and < as the usual
order on integers.

If u = abbaab, then Dom(u) = {1, 2, 3, 4, 5, 6},
a = {1, 4, 5} and b = {2, 3, 6}.



LIAFA, CNRS and University Paris VII

Modular predicates

Let d > 0 and r ∈ Z/dZ. We define two new
symbols (the modular symbols):

• The unary symbol modd
r :

modd

r(n) = {i < n | i mod d = r}

• A constant symbol m for the last position in a
word
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Fragments of first order logic

FO[<] denotes the set of first order formulas in the
signature {<, (a)a∈A}.

FO[< + mod] denotes the logic obtained by
adjoining all modular symbols.
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Fragments of first order logic

FO[<] denotes the set of first order formulas in the
signature {<, (a)a∈A}.

FO[< + mod] denotes the logic obtained by
adjoining all modular symbols.

Σ1 denotes the set of existential formulas:

∃x1 · · · ∃xn ϕ(x1, . . . , xn)

where ϕ is quantifier-free.

BΣ1 denotes the set of Boolean combinations of
Σ1-formulas.
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Some examples

The formula ∃x ax is interpreted as:

There exists an integer x such that, in u,
the letter in position x is an a.

This defines the language A∗aA∗.
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Some examples

The formula ∃x ax is interpreted as:

There exists an integer x such that, in u,
the letter in position x is an a.

This defines the language A∗aA∗.

The formula ∃x ∃y (x < y) ∧ ax ∧ by defines the
language A∗aA∗bA∗.
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Some examples

The formula ∃x ax is interpreted as:

There exists an integer x such that, in u,
the letter in position x is an a.

This defines the language A∗aA∗.

The formula ∃x ∃y (x < y) ∧ ax ∧ by defines the
language A∗aA∗bA∗.

The formula ∃x ∀y (x < y) ∨ (x = y) ∧ ax defines
the language aA∗.
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Simple languages

A simple language is a language of the form

A∗a1A
∗a2A

∗ · · · akA
∗

where d > 0, k > 0 and a1, a2, . . . , ak ∈ A.

A modular simple language is a language of the form

(Ad)∗a1(A
d)∗a2(A

d)∗ · · · ak(A
d)∗

where d > 0, k > 0 and a1, a2, . . . , ak ∈ A.
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Logical description of simple languages

The language A∗a1A
∗a2A

∗ · · · akA
∗ can be defined

by the Σ1-formula

∃x1 . . . ∃xk (x1 < . . . < xk) ∧ (a1x1 ∧ · · · ∧ akxk)
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Logical description of simple languages

The language A∗a1A
∗a2A

∗ · · · akA
∗ can be defined

by the Σ1-formula

∃x1 . . . ∃xk (x1 < . . . < xk) ∧ (a1x1 ∧ · · · ∧ akxk)

The language (Ad)∗a1(A
d)∗a2(A

d)∗ · · · ak(A
d)∗ can

be defined by the Σ1-formula

∃x1 . . . ∃xk (x1 < . . . < xk) ∧ (a1x1 ∧ · · · ∧ akxk)∧

(modd

0
x1 ∧ modd

1
x2 ∧ · · · ∧modd

k−1
xk ∧ modd

k−1
m)
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First order

Theorem (McNaughton-Paper 1971, Schützenberger 1965)

A language is FO[<]-definable iff its syntactic
semigroup is aperiodic.

Theorem (Barrington, Compton, Straubing, Thérien 1992)

A language is FO[< + mod]-definable iff the stable
semigroup of its syntactic stamp is aperiodic.
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Existential formulas (Σ1)

Proposition

A language is definable in Σ1[<] iff it is a finite
union of simple languages.

Proposition

A language is definable in Σ1[< + mod] iff it is a
finite union of modular simple languages.
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Algebraic characterization

Theorem (Thomas 1982, Perrin-Pin 1986)

A language is definable in Σ1[<] iff its ordered
syntactic monoid satisfies the identity x 6 1.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in Σ1[< + mod] iff the
stable ordered monoid of its ordered syntactic stamp
satisfies the identity x 6 1.
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lm-morphisms

A morphism f : A∗ → B∗ is length-multiplying (lm
for short) if there exists an integer k such that the
image of each letter of A is a word of Bk.

For instance, if A = {a, b} and B = {a, b, c}, the
morphism defined by ϕ(a) = abca and ϕ(b) = cbba
is length-multiplying.
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lm-identities

Let u, v be two words on the alphabet B. A
morphism ϕ : A∗ → M satisfies the lm-identity
u = v if, for every lm-morphism f : B∗ → A∗,
ϕ ◦ f(u) = ϕ ◦ f(v).

For instance, ϕ : A∗ → M satisfies the lm-identity
xyx = xy if for any pair of words of the same
length x, y of A∗, ϕ(xyx) = ϕ(xy).
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lm-identities

Let u, v be two words on the alphabet B. A
morphism ϕ : A∗ → M satisfies the lm-identity
u = v if, for every lm-morphism f : B∗ → A∗,
ϕ ◦ f(u) = ϕ ◦ f(v).

For instance, ϕ : A∗ → M satisfies the lm-identity
xyx = xy if for any pair of words of the same
length x, y of A∗, ϕ(xyx) = ϕ(xy).

If M is ordered, we say that ϕ satisfies the
lm-identity u 6 v if, for every lm-morphism
f : B∗ → A∗, ϕ ◦ f(u) 6 ϕ ◦ f(v).
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Characterization by lm-identities

Theorem (Thomas 1982, Perrin-Pin 1986)

A language is definable in Σ1[<] iff its ordered
syntactic monoid satisfies the identity x 6 1.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in Σ1[< + mod] iff its
ordered syntactic stamp satisfies the lm-identities
xω−1y 6 1 and yxω−1 6 1.
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Boolean combination of existential formulas

Theorem (Thomas 1982)

A language is definable in BΣ1[<] iff it is a Boolean
combination of simple languages.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in BΣ1[< + mod] iff it is a
Boolean combination of modular simple languages.



LIAFA, CNRS and University Paris VII

Algebraic characterization

Theorem (Simon 1972, Thomas 1982)

A language is definable in BΣ1[<] iff its syntactic
monoid is J -trivial.

Theorem (Chaubard, Pin, Straubing 2006)

A language is a Boolean combination of modular
simple languages iff its syntactic stamp belongs to
the lm-variety J ∗ MOD.
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Derived category of a stamp ϕ : A∗ → M

Let πn(u) = |u| mod n.

A∗

M Z/nZ

ϕ πn

Let Cn(ϕ) be the category whose objects are
elements of Z/nZ and whose arrows from i to j are
the triples (i, m, j) where j − i ∈ πn(ϕ

−1(m)).

Composition is given by
(i, m1, j)(j, m2, k) = (i, m1m2, k).
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A decidable characterization

Theorem (Chaubard, Pin, Straubing 2006)

Let ϕ be a stamp of stability index s. Then ϕ
belongs to J ∗ MOD iff Cs(ϕ) is in gJ.

No characterization by lm-identities is known at the
moment.
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What would be useful in GAP 4. . .

• Define stamps as a basic object.

• Compute stable semigroups and monoids of
stamps.

• Test for length-preserving and length-multiplying
identities.

• Compute derived categories
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