Part |

Group radical

Group radical

The group radical of a finite monoid M is the
smallest submonoid D(M) of M containing the
idempotents and closed under weak conjugation: if
sts = s and d € D(M), then sdt,tds € D(M).
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Computation of the radical

Initialisation : D(M) = E(M)
For each d in D(95)

For each weakly conjugate pair (s, 1)
add sdt and tds to D(S)
add D(S)d to D(S).

Time complexity in 0(|S|?).
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Part 1l

Syntactic ordered monoid

If P is a subset of a monoid A, the syntactic
preorder <p is defined on M by u <p v iff, for all
x,y € M,

rvy € P=zuy € P

Denote by P the complement of P. Then u £p v
iff there exist =,y € M such that

ruy € P and zvy € P
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The syntactic ordered monoid of ab in B]

*1

*0
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An algorithm for the syntactic preorder

Let G be the graph with M x M as set of vertices
and edges of the form (ua,va) — (u,v) or
(au, av) — (u,v).

We have seen that u £p v iff there exist z,y € M
such that )
ruy € P and zvy € P

Therefore, u £p v iff the vertex (u, v) is reachable
in G from some vertex of P x P.
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The algorithm (2)

(1) Label each vertex (u,v) as follows:

(0,1) ifu¢ Pandve P [uLp v
(1,0) ifue Pandv ¢ P [v£pu
(1,1) otherwise

(2) Do a depth first search (starting from each

vertex labeled by (0, 1)) and set to 0 the first
component of the label of all visited vertices.
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Constraint propagation

(3) Do a depth first search (starting from each
vertex labeled by (0,0) or (1,0)) and set to 0
the second component of the label of all
visited vertices.

(4) The label of each vertex now encodes the
syntactic preorder of P as follows:

((1,1) fu~po
) (1,0) ifu<po
(0,1) ifv<pu
L (0,0) if u and v are incomparable
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Computation of the syntactic preorder

Let M = {1,a,b} with aa = ba = a and
ab=bb="0. Let P = {a}.




Computation of the syntactic preorder

Let M = {1,a,b} with aa = ba = a and
ab=bb="0. Let P = {a}.

(1,1)

Initial labels
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Computation of the syntactic preorder

Let M = {1,a,b} with aa = ba = a and
ab=bb="0. Let P = {a}.

DFS from (b, a) (1,1)
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Computation of the syntactic preorder

Let M = {1,a,b} with aa = ba = a and
ab=bb="0. Let P = {a}.

DFS from (b, a) (1,1)
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Computation of the syntactic preorder

Let M = {1,a,b} with aa = ba = a and
ab=bb="0. Let P = {a}.

DFS from (b, a) (1,1)
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Computation of the syntactic preorder

Let M = {1,a,b} with aa = ba = a and
ab=bb="0. Let P = {a}.

DFS from (a, b) (1,1)
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Computation of the syntactic preorder

Let M = {1,a,b} with aa = ba = a and
ab=bb="0. Let P = {a}.

DFS from (a, b) (1,1)
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Computation of the syntactic preorder

Let M = {1,a,b} with aa = ba = a and
ab=bb="0. Let P = {a}.

(1,1)

Thusaéplépb
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Complexity of the algorithm

The syntactic preorder can be computed in
O(|A||M|?) time and space.

@ LIAFA, CNRS and University Paris VII



Aperiodicity

Theorem (Cho-Huynh 1991)

Testing aperiodicity of a deterministic n-state
automaton is P-space complete.

Proposition

One can test in O(|Al|S|)-time whether an
A-generated finite semigroup S is aperiodic.

It suffices to test whether the H-classes are trivial.
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Other varieties

Proposition

One can test in O(|Al|S|)-time whether an
A-generated finite semigroup S is R-trivial
[L-trivial, J-trivial, commutative, idempotent,
nilpotent, a group, a block-group].
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Testing a set of identities

This is a difficult problem for several reasons:

e |t may happen that testing whether a set of
identities is satisfied is much easier than testing
whether any of the individual identities is satisfied.

e |dentities for finite semigroups are profinite
identities. The operations 2% and 2%~ ! are
frequently needed, but other operators might be
needed.

e There might be some tricky tree pattern-matching
problems to solve.
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Tree pattern-matching problems

A simple example: the variety DS is defined by the
identity ((vy)*(yx)”(xy)”)” = (zy)*

W W W W

FANRVANRVANEVAN
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Semigroup theory might help. ..

Proposition

One can test in O(|Al|S|)-time whether an
A-generated finite semigroup S belongs to DS.

Indeed, a semigroup belongs to DS iff every regular
D-class is union of groups. Therefore, it suffices to
test whether the number of regular H-classes is
equal to the number of idempotents.
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Part |11
New directions

A stamp is a morphism from a finitely generated
free monoid onto a finite monoid. An ordered stamp
is a stamp onto an ordered monoid.

w: A" — M
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Stable subsemigroup

Let ¢ : A* — M be a stamp and let Z = p(A).
Then Z belongs to the monoid P(M) of subsets of
M.

Since P(M) is finite, Z has an idempotent power.
The stability index of ¢ is the least positive integer
such that p(A%) = p(A%).

The set ¢(A®) is a subsemigroup of M called the
stable semigroup of v and the monoid p(A%) U {1}
is called the stable monoid of ¢.
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Applications to logic

Theorem (McNaughton-Paper 1971, Schiitzenberger 1965)

A language is FO|<|-definable iff its syntactic
semigroup is aperiodic.

Theorem (Barrington, Compton, Straubing, Thérien 1992)

A language is FO|< + MOD|-definable iff the stable
semigroup of its syntactic stamp is aperiodic.
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A bit of logic

To each nonempty word w is associated a structure

M, ={1,2,...,]ul}, <, (Q)sen)

where a is interpreted as the set of integers ¢ such
that the ¢-th letter of « is an @, and < as the usual
order on integers.

If v = abbaab, then Dom(u) = {1,2,3,4,5,6},
a={1,4,5} and b = {2,3,6}.
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Modular predicates

Let d > 0 and r € Z/dZ. We define two new
symbols (the modular symbols):

e The unary symbol MOD:
MoD%(n) = {i < n |imodd=r}

e A constant symbol m for the last position in a
word
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Fragments of first order logic

FO|[<] denotes the set of first order formulas in the
signature {<, (a),c4}.

FO[< + MOD] denotes the logic obtained by
adjoining all modular symbols.
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Fragments of first order logic

FO|[<] denotes the set of first order formulas in the
signature {<, (a),c4}.

FO[< + MOD] denotes the logic obtained by
adjoining all modular symbols.

321 denotes the set of existential formulas:
3.”171 e E]xn 90(5[;17 SRR xrt)

where ¢ is quantifier-free.

B>2; denotes the set of Boolean combinations of
>1-formulas.
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Some examples

The formula dx ax is interpreted as:

There exists an integer x such that, in u,
the letter in position x is an a.

This defines the language A*a A",
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Some examples

The formula dx ax is interpreted as:

There exists an integer x such that, in u,
the letter in position x is an a.

This defines the language A*a A",

The formula 3z Jy (x < y) A az A by defines the
language A*a A*DA*.
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Some examples

The formula dx ax is interpreted as:

There exists an integer x such that, in u,
the letter in position x is an a.

This defines the language A*a A",

The formula 3z Jy (x < y) A az A by defines the
language A*a A*DA*.

The formula 3z Vy (z < y) V (z = y) A ax defines
the language a A",
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Simple languages
A simple language is a language of the form
A*a1 AT a A* -+ ap A"
where d > 0, kK > 0 and ay, a9, ...,a; € A.

A modular simple language is a language of the form
(Ad)*al(Ad)*(L2<Ad)* L Clk<Ad)*

where d > 0, kK > 0 and ay,as,...,a; € A.
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Logical description of simple languages

The language A*a; A*as A* - -+ apA* can be defined
by the >;-formula

dzq ... dxg (371<...<xk)/\(a1x1/\---/\aka¢k)
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Logical description of simple languages

The language A*a; A*as A* - -+ apA* can be defined
by the >;-formula

dry .. drg (v <o <) A (g A - A agayg)

The language (A%)*a; (A% ay(AY)* - -+ ar(AY)* can
be defined by the > -formula

Jry .o g (v < oo <xp) A(agz A A agag)A
(MODI 2y A MOD{ 25 A - - - AMODY_| 1, A MOD{_, m)
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First order

Theorem (McNaughton-Paper 1971, Schiitzenberger 1965)

A language is FO|<|-definable iff its syntactic
semigroup is aperiodic.

Theorem (Barrington, Compton, Straubing, Thérien 1992)

A language is FO|< + MOD|-definable iff the stable
semigroup of its syntactic stamp is aperiodic.
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Existential formulas (>)

A language is definable in 3 [<] iff it is a finite
union of simple languages.

Proposition

A language is definable in 31[< + MoOD| iff it is a
finite union of modular simple languages.
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Algebraic characterization

Theorem (Thomas 1982, Perrin-Pin 1986)

A language is definable in 31 [<] iff its ordered
syntactic monoid satisfies the identity © < 1.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in ¥1[< + MOD]| iff the
stable ordered monoid of its ordered syntactic stamp
satisfies the identity x < 1.
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[m-morphisms

A morphism [ : A* — B* is length-multiplying (Im
for short) if there exists an integer k such that the
image of each letter of A is a word of B*.

For instance, if A = {a,b} and B = {a,b,c}, the
morphism defined by p(a) = abca and ¢(b) = cbba
is length-multiplying.
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Im-identities

Let u, v be two words on the alphabet B. A
morphism ¢ : A* — M satisfies the [m-identity
u = v if, for every Im-morphism f: B* — A",

po f(u)=wo f(v).

For instance, ¢ : A* — M satisfies the [m-identity
xyx = xy if for any pair of words of the same
length x,y of A", p(xyz) = p(xy).
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Im-identities

Let u, v be two words on the alphabet B. A
morphism ¢ : A* — M satisfies the [m-identity
u = v if, for every Im-morphism f: B* — A",

po f(u)=wo f(v).

For instance, ¢ : A* — M satisfies the [m-identity
xyx = xy if for any pair of words of the same
length x,y of A", p(xyz) = p(xy).

If M is ordered, we say that ¢ satisfies the
Im-identity u < v if, for every Im-morphism
f:B"— A", po f(u) <o f(v).
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Characterization by [m-identities

Theorem (Thomas 1982, Perrin-Pin 1986)

A language is definable in 31 [<] iff its ordered
syntactic monoid satisfies the identity © < 1.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in 31 [< + MOD] iff its
ordered syntactic stamp satisfies the [m-identities
2y <1 and yz¥ ' < 1.
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Boolean combination of existential formulas

Theorem (Thomas 1982)

A language is definable in BX1[<] iff it is a Boolean
combination of simple languages.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in 331[< + MOD] iff it is a
Boolean combination of modular simple languages.
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Algebraic characterization

Theorem (Simon 1972, Thomas 1982)

A language is definable in 331[<| iff its syntactic
monoid is [ -trivial.

Theorem (Chaubard, Pin, Straubing 2006)

A language is a Boolean combination of modular
simple languages iff its syntactic stamp belongs to
the Im-variety J + MOD.
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Derived category of a stamp o : A — M

Let m,(u) = |u| mod n.

/\

Z/nZ
Let C),(¢) be the category whose objects are
elements of 7Z/n7Z and whose arrows from i to j are
the triples (i,m, j) where j —i € m,(¢ ' (m)).
Composition is given by
<Z'7 ml)j)(j: ma, k) - <Za mims, k)
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A decidable characterization

Theorem (Chaubard, Pin, Straubing 2006)

Let o be a stamp of stability index s. Then
belongs to J « MOD iff Cs(p) is in gJ.

No characterization by im-identities is known at the
moment.
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What would be useful in GAP 4. ..

e Define stamps as a basic object.

e Compute stable semigroups and monoids of
stamps.

e Test for length-preserving and length-multiplying
identities.

e Compute derived categories
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