Part I

Group radical

Group radical

The group radical of a finite monoid M is the smallest submonoid D(M) of M containing the idempotents and closed under weak conjugation: if sts = s and $d \in D(M)$, then $sdt, tds \in D(M)$.

Computation of the radical

Initialisation : D(M) = E(M)

For each d in D(S)

For each weakly conjugate pair (s, t)add *sdt* and *tds* to D(S)add D(S)d to D(S).

Time complexity in $0(|S|^3)$.

Part II

Syntactic ordered monoid

If P is a subset of a monoid M, the syntactic preorder \leq_P is defined on M by $u \leq_P v$ iff, for all $x, y \in M$,

 $xvy \in P \Rightarrow xuy \in P$

Denote by \overline{P} the complement of P. Then $u \not\leq_P v$ iff there exist $x, y \in M$ such that

 $xuy \in \overline{P}$ and $xvy \in P$

The syntactic ordered monoid of ab in B_2^1

An algorithm for the syntactic preorder

Let G be the graph with $M \times M$ as set of vertices and edges of the form $(ua, va) \rightarrow (u, v)$ or $(au, av) \rightarrow (u, v)$.

We have seen that $u \not\leq_P v$ iff there exist $x, y \in M$ such that

$$xuy \in \overline{P}$$
 and $xvy \in P$

Therefore, $u \leq P v$ iff the vertex (u, v) is reachable in G from some vertex of $\overline{P} \times P$. (1) Label each vertex (u, v) as follows:

 $\begin{cases} (0,1) & \text{if } u \notin P \text{ and } v \in P \quad [u \notin_P v] \\ (1,0) & \text{if } u \in P \text{ and } v \notin P \quad [v \notin_P u] \\ (1,1) & \text{otherwise} \end{cases}$

(2) Do a depth first search (starting from each vertex labeled by (0,1)) and set to 0 the first component of the label of all visited vertices.

Constraint propagation

- (3) Do a depth first search (starting from each vertex labeled by (0,0) or (1,0)) and set to 0 the second component of the label of all visited vertices.
- (4) The label of each vertex now encodes the syntactic preorder of P as follows: $\begin{cases}
 (1,1) & \text{if } u \sim_P v \\
 (1,0) & \text{if } u \leqslant_P v \\
 (0,1) & \text{if } v \leqslant_P u \\
 (0,0) & \text{if } u \text{ and } v \text{ are incomparable}
 \end{cases}$

Complexity of the algorithm

The syntactic preorder can be computed in $O(|A||M|^2)$ time and space.

Aperiodicity

Theorem (Cho-Huynh 1991)

Testing aperiodicity of a deterministic n-state automaton is P-space complete.

Proposition

One can test in O(|A||S|)-time whether an *A*-generated finite semigroup *S* is aperiodic.

It suffices to test whether the \mathcal{H} -classes are trivial.

Other varieties

Proposition

One can test in O(|A||S|)-time whether an *A*-generated finite semigroup *S* is *R*-trivial [*L*-trivial, *J*-trivial, commutative, idempotent, nilpotent, a group, a block-group].

This is a difficult problem for several reasons:

- It may happen that testing whether a set of identities is satisfied is much easier than testing whether any of the individual identities is satisfied.
- Identities for finite semigroups are profinite identities. The operations x^{ω} and $x^{\omega-1}$ are frequently needed, but other operators might be needed.
- There might be some tricky tree pattern-matching problems to solve.

Tree pattern-matching problems

A simple example: the variety DS is defined by the identity $((xy)^{\omega}(yx)^{\omega}(xy)^{\omega})^{\omega} = (xy)^{\omega}$

Semigroup theory might help...

Proposition

One can test in O(|A||S|)-time whether an *A*-generated finite semigroup *S* belongs to **DS**.

Indeed, a semigroup belongs to **DS** iff every regular \mathcal{D} -class is union of groups. Therefore, it suffices to test whether the number of regular \mathcal{H} -classes is equal to the number of idempotents.

Part III

New directions

A stamp is a morphism from a finitely generated free monoid onto a finite monoid. An ordered stamp is a stamp onto an ordered monoid.

 $\varphi:A^*\to M$

Let $\varphi : A^* \to M$ be a stamp and let $Z = \varphi(A)$. Then Z belongs to the monoid $\mathcal{P}(M)$ of subsets of M.

Since $\mathcal{P}(M)$ is finite, Z has an idempotent power. The stability index of φ is the least positive integer such that $\varphi(A^s) = \varphi(A^{2s})$.

The set $\varphi(A^s)$ is a subsemigroup of M called the stable semigroup of φ and the monoid $\varphi(A^s) \cup \{1\}$ is called the stable monoid of φ .

Applications to logic

Theorem (McNaughton-Paper 1971, Schützenberger 1965)

A language is **FO**[<]-definable iff its syntactic semigroup is aperiodic.

Theorem (Barrington, Compton, Straubing, Thérien 1992)

A language is **FO**[< + MOD]-definable iff the stable semigroup of its syntactic stamp is aperiodic.

A bit of logic

To each nonempty word u is associated a structure

 $\mathcal{M}_u = (\{1, 2, \dots, |u|\}, <, (\mathbf{a})_{a \in A})$

where **a** is interpreted as the set of integers i such that the *i*-th letter of u is an a, and < as the usual order on integers.

If u = abbaab, then $Dom(u) = \{1, 2, 3, 4, 5, 6\}$, $\mathbf{a} = \{1, 4, 5\}$ and $\mathbf{b} = \{2, 3, 6\}$.

Modular predicates

Let d > 0 and $r \in \mathbb{Z}/d\mathbb{Z}$. We define two new symbols (the modular symbols):

• The unary symbol MOD_r^d :

$$\operatorname{MOD}_r^d(n) = \{i < n \mid i \bmod d = r\}$$

• A constant symbol m for the last position in a word

Fragments of first order logic

FO[<] denotes the set of first order formulas in the signature $\{<, (\mathbf{a})_{a \in A}\}$.

FO[< + MOD] denotes the logic obtained by adjoining all modular symbols.

Fragments of first order logic

FO[<] denotes the set of first order formulas in the signature $\{<, (\mathbf{a})_{a \in A}\}$.

FO[< + MOD] denotes the logic obtained by adjoining all modular symbols.

 Σ_1 denotes the set of existential formulas:

$$\exists x_1 \cdots \exists x_n \varphi(x_1, \ldots, x_n)$$

where φ is quantifier-free.

 $\mathcal{B}\Sigma_1$ denotes the set of Boolean combinations of Σ_1 -formulas.

Some examples

The formula $\exists x \ \mathbf{a}x$ is interpreted as:

There exists an integer x such that, in u, the letter in position x is an a.

This defines the language A^*aA^* .

The formula $\exists x \ \mathbf{a}x$ is interpreted as:

There exists an integer x such that, in u, the letter in position x is an a.

This defines the language A^*aA^* .

The formula $\exists x \exists y \ (x < y) \land \mathbf{a}x \land \mathbf{b}y$ defines the language $A^*aA^*bA^*$.

The formula $\exists x \ \mathbf{a}x$ is interpreted as:

There exists an integer x such that, in u, the letter in position x is an a.

This defines the language A^*aA^* .

The formula $\exists x \exists y \ (x < y) \land \mathbf{a}x \land \mathbf{b}y$ defines the language $A^*aA^*bA^*$.

The formula $\exists x \ \forall y \ (x < y) \lor (x = y) \land \mathbf{a}x$ defines the language aA^* .

Simple languages

A simple language is a language of the form

 $A^*a_1A^*a_2A^*\cdots a_kA^*$

where d > 0, $k \ge 0$ and $a_1, a_2, \ldots, a_k \in A$.

A modular simple language is a language of the form

$$(A^d)^* a_1(A^d)^* a_2(A^d)^* \cdots a_k(A^d)^*$$

where d > 0, $k \ge 0$ and $a_1, a_2, \ldots, a_k \in A$.

Logical description of simple languages

The language $A^*a_1A^*a_2A^*\cdots a_kA^*$ can be defined by the Σ_1 -formula

 $\exists x_1 \ldots \exists x_k \ (x_1 < \ldots < x_k) \land (\mathbf{a}_1 x_1 \land \cdots \land \mathbf{a}_k x_k)$

Logical description of simple languages

The language $A^*a_1A^*a_2A^*\cdots a_kA^*$ can be defined by the Σ_1 -formula

 $\exists x_1 \ldots \exists x_k \ (x_1 < \ldots < x_k) \land (\mathbf{a}_1 x_1 \land \cdots \land \mathbf{a}_k x_k)$ The language $(A^d)^* a_1 (A^d)^* a_2 (A^d)^* \cdots a_k (A^d)^*$ can be defined by the Σ_1 -formula

 $\exists x_1 \ldots \exists x_k \ (x_1 < \ldots < x_k) \land (\mathbf{a}_1 x_1 \land \cdots \land \mathbf{a}_k x_k) \land (\operatorname{MOD}_0^d x_1 \land \operatorname{MOD}_1^d x_2 \land \cdots \land \operatorname{MOD}_{k-1}^d x_k \land \operatorname{MOD}_{k-1}^d m)$

First order

Theorem (McNaughton-Paper 1971, Schützenberger 1965)

A language is **FO**[<]-definable iff its syntactic semigroup is aperiodic.

Theorem (Barrington, Compton, Straubing, Thérien 1992)

A language is **FO**[< + MOD]-definable iff the stable semigroup of its syntactic stamp is aperiodic.

Existential formulas (Σ_1)

Proposition

A language is definable in $\Sigma_1[<]$ iff it is a finite union of simple languages.

Proposition

A language is definable in $\Sigma_1[< + MOD]$ iff it is a finite union of modular simple languages.

Algebraic characterization

Theorem (Thomas 1982, Perrin-Pin 1986)

A language is definable in $\Sigma_1[<]$ iff its ordered syntactic monoid satisfies the identity $x \leq 1$.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in $\Sigma_1[< + \text{MOD}]$ iff the stable ordered monoid of its ordered syntactic stamp satisfies the identity $x \leq 1$.

lm-morphisms

A morphism $f : A^* \to B^*$ is length-multiplying (*lm* for short) if there exists an integer k such that the image of each letter of A is a word of B^k .

For instance, if $A = \{a, b\}$ and $B = \{a, b, c\}$, the morphism defined by $\varphi(a) = abca$ and $\varphi(b) = cbba$ is length-multiplying.

lm-identities

Let u, v be two words on the alphabet B. A morphism $\varphi : A^* \to M$ satisfies the *lm*-identity u = v if, for every *lm*-morphism $f : B^* \to A^*$, $\varphi \circ f(u) = \varphi \circ f(v)$.

For instance, $\varphi : A^* \to M$ satisfies the *lm*-identity xyx = xy if for any pair of words of the same length x, y of A^* , $\varphi(xyx) = \varphi(xy)$.

lm-identities

Let u, v be two words on the alphabet B. A morphism $\varphi : A^* \to M$ satisfies the *lm*-identity u = v if, for every *lm*-morphism $f : B^* \to A^*$, $\varphi \circ f(u) = \varphi \circ f(v)$.

For instance, $\varphi : A^* \to M$ satisfies the *lm*-identity xyx = xy if for any pair of words of the same length x, y of A^* , $\varphi(xyx) = \varphi(xy)$.

If M is ordered, we say that φ satisfies the *lm*-identity $u \leq v$ if, for every *lm*-morphism $f: B^* \to A^*, \ \varphi \circ f(u) \leq \varphi \circ f(v)$.

Characterization by *lm*-identities

Theorem (Thomas 1982, Perrin-Pin 1986)

A language is definable in $\Sigma_1[<]$ iff its ordered syntactic monoid satisfies the identity $x \leq 1$.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in $\Sigma_1[< + \text{MOD}]$ iff its ordered syntactic stamp satisfies the *lm*-identities $x^{\omega-1}y \leq 1$ and $yx^{\omega-1} \leq 1$.

Boolean combination of existential formulas

Theorem (Thomas 1982)

A language is definable in $\mathcal{B}\Sigma_1[<]$ iff it is a Boolean combination of simple languages.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in $\mathcal{B}\Sigma_1[<+MOD]$ iff it is a Boolean combination of modular simple languages.

Algebraic characterization

Theorem (Simon 1972, Thomas 1982)

A language is definable in $\mathcal{B}\Sigma_1[<]$ iff its syntactic monoid is \mathcal{J} -trivial.

Theorem (Chaubard, Pin, Straubing 2006)

A language is a Boolean combination of modular simple languages iff its syntactic stamp belongs to the Im-variety **J** * **MOD**.

Derived category of a stamp $\varphi: A^* \to M$

Let $\pi_n(u) = |u| \mod n$.

Let $C_n(\varphi)$ be the category whose objects are elements of $\mathbb{Z}/n\mathbb{Z}$ and whose arrows from *i* to *j* are the triples (i, m, j) where $j - i \in \pi_n(\varphi^{-1}(m))$.

Composition is given by $(i, m_1, j)(j, m_2, k) = (i, m_1m_2, k).$

A decidable characterization

Theorem (Chaubard, Pin, Straubing 2006)

Let φ be a stamp of stability index s. Then φ belongs to $\mathbf{J} * \mathbf{MOD}$ iff $C_s(\varphi)$ is in $g\mathbf{J}$.

No characterization by lm-identities is known at the moment.

What would be useful in GAP 4...

• Define stamps as a basic object.

• Compute stable semigroups and monoids of stamps.

• Test for length-preserving and length-multiplying identities.

• Compute derived categories

References I

- V. FROIDURE AND J.-E. PIN, Algorithms for computing finite semigroups, in *Foundations of Computational Mathematics*, F. Cucker et M. Shub (éd.), Berlin, 1997, pp. 112–126, Springer.
- Semigroupe, C programme, available at http://www.liafa.jussieu.fr/~jep/ Logiciels/Semigroupe/semigroupe.html
- L. CHAUBARD, J.-E. PIN AND H. STRAUBING, First order formulas with modular predicates, in *Proceedings of LICS'06*, 2006.

