Group radical

The group radical of a finite monoid M is the smallest submonoid $D(M)$ of M containing the idempotents and closed under weak conjugation: if $sts = s$ and $d \in D(M)$, then $sdt, tds \in D(M)$.
Computation of the radical

Initialisation: \(D(M) = E(M) \)

For each \(d \) in \(D(S) \)

For each weakly conjugate pair \((s, t) \)
 add \(sdt \) and \(tds \) to \(D(S) \)
 add \(D(S)d \) to \(D(S) \).

Time complexity in \(O(|S|^3) \).
Part II

Syntactic ordered monoid

If P is a subset of a monoid M, the syntactic preorder \leq_P is defined on M by $u \leq_P v$ iff, for all $x, y \in M$,

$$xvy \in P \Rightarrow xuy \in P$$

Denote by \bar{P} the complement of P. Then $u \not\leq_P v$ iff there exist $x, y \in M$ such that

$$xuy \in \bar{P} \text{ and } xvy \in P$$
The syntactic ordered monoid of ab in B_2^1
An algorithm for the syntactic preorder

Let G be the graph with $M \times M$ as set of vertices and edges of the form $(ua, va) \rightarrow (u, v)$ or $(au, av) \rightarrow (u, v)$.

We have seen that $u \not\leq_P v$ iff there exist $x, y \in M$ such that

$$xuy \in \bar{P} \text{ and } xvy \in P$$

Therefore, $u \not\leq_P v$ iff the vertex (u, v) is reachable in G from some vertex of $\bar{P} \times P$.
The algorithm (2)

(1) Label each vertex \((u, v)\) as follows:

\[
\begin{cases}
(0, 1) & \text{if } u \notin P \text{ and } v \in P \quad [u \not\leq_P v] \\
(1, 0) & \text{if } u \in P \text{ and } v \notin P \quad [v \not\leq_P u] \\
(1, 1) & \text{otherwise}
\end{cases}
\]

(2) Do a depth first search (starting from each vertex labeled by \((0, 1)\)) and set to 0 the first component of the label of all visited vertices.
Constraint propagation

(3) Do a depth first search (starting from each vertex labeled by \((0, 0)\) or \((1, 0)\)) and set to 0 the second component of the label of all visited vertices.

(4) The label of each vertex now encodes the syntactic preorder of \(P\) as follows:

\[
\begin{align*}
(1, 1) & \quad \text{if } u \sim_P v \\
(1, 0) & \quad \text{if } u \leq_P v \\
(0, 1) & \quad \text{if } v \leq_P u \\
(0, 0) & \quad \text{if } u \text{ and } v \text{ are incomparable}
\end{align*}
\]
Let $M = \{1, a, b\}$ with $aa = ba = a$ and $ab = bb = b$. Let $P = \{a\}$.
Computation of the syntactic preorder

Let \(M = \{1, a, b\} \) with \(aa = ba = a \) and \(ab = bb = b \). Let \(P = \{a\} \).
Computation of the syntactic preorder

Let $M = \{1, a, b\}$ with $aa = ba = a$ and $ab = bb = b$. Let $P = \{a\}$.

DFS from (b, a)
Computation of the syntactic preorder

Let $M = \{1, a, b\}$ with $aa = ba = a$ and $ab = bb = b$. Let $P = \{a\}$.

DFS from (b, a)
Computation of the syntactic preorder

Let $M = \{1, a, b\}$ with $aa = ba = a$ and $ab = bb = b$. Let $P = \{a\}$.

DFS from (b, a)
Computation of the syntactic preorder

Let $M = \{1, a, b\}$ with $aa = ba = a$ and $ab = bb = b$. Let $P = \{a\}$.
Let $M = \{1, a, b\}$ with $aa = ba = a$ and $ab = bb = b$. Let $P = \{a\}$.

DFS from (a, b)
Computation of the syntactic preorder

Let $M = \{1, a, b\}$ with $aa = ba = a$ and $ab = bb = b$. Let $P = \{a\}$.

Thus $a \leq_P 1 \leq_P b$
Complexity of the algorithm

The syntactic preorder can be computed in $O(|A||M|^2)$ time and space.
Aperiodicity

Theorem (Cho-Huynh 1991)

Testing *aperiodicity* of a deterministic n-state automaton is P-space complete.

Proposition

One can test in $O(|A||S|)$-time whether an A-generated finite semigroup S is *aperiodic*.

It suffices to test whether the \mathcal{H}-classes are trivial.
Other varieties

Proposition

One can test in $O(|A||S|)$-time whether an A-generated finite semigroup S is \mathcal{R}-trivial [\mathcal{L}-trivial, \mathcal{J}-trivial, commutative, idempotent, nilpotent, a group, a block-group].
Testing a set of identities

This is a difficult problem for several reasons:

• It may happen that testing whether a set of identities is satisfied is much easier than testing whether any of the individual identities is satisfied.

• Identities for finite semigroups are profinite identities. The operations x^ω and $x^{\omega-1}$ are frequently needed, but other operators might be needed.

• There might be some tricky tree pattern-matching problems to solve.
A simple example: the variety \mathbb{DS} is defined by the identity

$\left((xy)^\omega (yx)^\omega (xy)^\omega \right)^\omega = (xy)^\omega$
Semigroup theory might help...

Proposition

One can test in $O(|A||S|)$-time whether an A-generated finite semigroup S belongs to DS.

Indeed, a semigroup belongs to DS iff every regular D-class is union of groups. Therefore, it suffices to test whether the number of regular H-classes is equal to the number of idempotents.
A **stamp** is a morphism from a finitely generated free monoid onto a finite monoid. An **ordered stamp** is a stamp onto an ordered monoid.

\[\varphi : A^* \rightarrow M \]
Stable subsemigroup

Let \(\varphi : A^* \rightarrow M \) be a stamp and let \(Z = \varphi(A) \). Then \(Z \) belongs to the monoid \(\mathcal{P}(M) \) of subsets of \(M \).

Since \(\mathcal{P}(M) \) is finite, \(Z \) has an idempotent power. The stability index of \(\varphi \) is the least positive integer such that \(\varphi(A^s) = \varphi(A^{2s}) \).

The set \(\varphi(A^s) \) is a subsemigroup of \(M \) called the stable semigroup of \(\varphi \) and the monoid \(\varphi(A^s) \cup \{1\} \) is called the stable monoid of \(\varphi \).
Applications to logic

Theorem (McNaughton-Paper 1971, Schützenberger 1965)

A language is $\text{FO}[<]$-definable iff its syntactic semigroup is aperiodic.

Theorem (Barrington, Compton, Straubing, Thérien 1992)

A language is $\text{FO}[< + \text{MOD}]$-definable iff the stable semigroup of its syntactic stamp is aperiodic.
A bit of logic

To each nonempty word u is associated a structure

$$\mathcal{M}_u = (\{1, 2, \ldots, |u|\}, <, (a)_{a \in A})$$

where a is interpreted as the set of integers i such that the i-th letter of u is an a, and $<$ as the usual order on integers.

If $u = abbaab$, then $\text{Dom}(u) = \{1, 2, 3, 4, 5, 6\}$, $a = \{1, 4, 5\}$ and $b = \{2, 3, 6\}$.
Modular predicates

Let $d > 0$ and $r \in \mathbb{Z}/d\mathbb{Z}$. We define two new symbols (the modular symbols):

- The **unary** symbol MOD_d^r:
 \[
 \text{MOD}_d^r(n) = \{ i < n \mid i \mod d = r \}
 \]

- A **constant** symbol m for the last position in a word
Fragments of first order logic

\(\text{FO}[\langle] \) denotes the set of first order formulas in the signature \(\{\langle, (a)_{a \in A}\}\} \).

\(\text{FO}[\langle + \text{MOD}] \) denotes the logic obtained by adjoining all modular symbols.
Fragments of first order logic

\(\text{FO}[<] \) denotes the set of first order formulas in the signature \(\{<, (a)_{a \in A}\} \).

\(\text{FO}[< + \text{MOD}] \) denotes the logic obtained by adjoining all modular symbols.

\(\Sigma_1 \) denotes the set of existential formulas:

\[
\exists x_1 \cdots \exists x_n \varphi(x_1, \ldots, x_n)
\]

where \(\varphi \) is quantifier-free.

\(B\Sigma_1 \) denotes the set of Boolean combinations of \(\Sigma_1 \)-formulas.
Some examples

The formula $\exists x \; ax$ is interpreted as:

There exists an integer x such that, in u, the letter in position x is an a.

This defines the language A^*aA^*.
Some examples

The formula $\exists x \ ax$ is interpreted as:

There exists an integer x such that, in u, the letter in position x is an a.

This defines the language A^*aA^*.

The formula $\exists x \ \exists y \ (x < y) \land ax \land by$ defines the language $A^*aA^*bA^*$.
Some examples

The formula $\exists x \ ax$ is interpreted as:

There exists an integer x such that, in u, the letter in position x is an a.

This defines the language A^*aA^*.

The formula $\exists x \ \exists y \ (x < y) \land ax \land by$ defines the language $A^*aA^*bA^*$.

The formula $\exists x \ \forall y \ (x < y) \lor (x = y) \land ax$ defines the language aA^*.
Simple languages

A simple language is a language of the form

\[A^*a_1A^*a_2A^* \cdots a_kA^* \]

where \(d > 0 \), \(k \geq 0 \) and \(a_1, a_2, \ldots, a_k \in A \).

A modular simple language is a language of the form

\[(A^d)^*a_1(A^d)^*a_2(A^d)^* \cdots a_k(A^d)^* \]

where \(d > 0 \), \(k \geq 0 \) and \(a_1, a_2, \ldots, a_k \in A \).
The language $A^*a_1A^*a_2A^* \cdots a_kA^*$ can be defined by the Σ_1-formula

$$\exists x_1 \ldots \exists x_k \ (x_1 < \ldots < x_k) \land (a_1x_1 \land \cdots \land a_kx_k)$$
Logical description of simple languages

The language $A^*a_1A^*a_2A^* \cdots a_kA^*$ can be defined by the Σ_1-formula

$$\exists x_1 \ldots \exists x_k \ (x_1 < \ldots < x_k) \land (a_1 x_1 \land \cdots \land a_k x_k)$$

The language $(A^d)^*a_1(A^d)^*a_2(A^d)^* \cdots a_k(A^d)^*$ can be defined by the Σ_1-formula

$$\exists x_1 \ldots \exists x_k \ (x_1 < \ldots < x_k) \land (a_1 x_1 \land \cdots \land a_k x_k) \land (\text{MOD}^d_0 x_1 \land \text{MOD}^d_1 x_2 \land \cdots \land \text{MOD}^d_{k-1} x_k \land \text{MOD}^d_{k-1} m)$$
First order

Theorem *(McNaughton-Paper 1971, Schützenberger 1965)*

A language is $\text{FO}[<]$-definable iff its syntactic semigroup is *aperiodic*.

Theorem *(Barrington, Compton, Straubing, Thérien 1992)*

A language is $\text{FO}[< + \text{MOD}]$-definable iff the *stable semigroup* of its syntactic stamp is *aperiodic*.
Existential formulas (Σ_1)

Proposition

A language is definable in $\Sigma_1[<]$ iff it is a finite union of simple languages.

Proposition

A language is definable in $\Sigma_1[< + \text{MOD}]$ iff it is a finite union of modular simple languages.
Algebraic characterization

Theorem (Thomas 1982, Perrin-Pin 1986)

A language is definable in $\Sigma_1[<]$ iff its ordered syntactic monoid satisfies the identity $x \leq 1$.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in $\Sigma_1[< + \text{MOD}]$ iff the stable ordered monoid of its ordered syntactic stamp satisfies the identity $x \leq 1$.
lm-morphisms

A morphism $f : A^* \rightarrow B^*$ is **length-multiplying** \((lm\) for short) if there exists an integer k such that the image of each letter of A is a word of B^k.

For instance, if $A = \{a, b\}$ and $B = \{a, b, c\}$, the morphism defined by $\varphi(a) = abca$ and $\varphi(b) = cbba$ is **length-multiplying**.
Let \(u, v \) be two words on the alphabet \(B \). A morphism \(\varphi : A^* \to M \) satisfies the \(lm \)-identity \(u = v \) if, for every \(lm \)-morphism \(f : B^* \to A^* \),

\[
\varphi \circ f(u) = \varphi \circ f(v).
\]

For instance, \(\varphi : A^* \to M \) satisfies the \(lm \)-identity \(xyx = xy \) if for any pair of words of the same length \(x, y \) of \(A^* \), \(\varphi(xyx) = \varphi(xy) \).
lm-identities

Let u, v be two words on the alphabet B. A morphism $\varphi : A^* \rightarrow M$ satisfies the lm-identity $u = v$ if, for every lm-morphism $f : B^* \rightarrow A^*$, $\varphi \circ f(u) = \varphi \circ f(v)$.

For instance, $\varphi : A^* \rightarrow M$ satisfies the lm-identity $xyx = xy$ if for any pair of words of the same length x, y of A^*, $\varphi(xy) = \varphi(xy)$.

If M is ordered, we say that φ satisfies the lm-identity $u \leq v$ if, for every lm-morphism $f : B^* \rightarrow A^*$, $\varphi \circ f(u) \leq \varphi \circ f(v)$.
Characterization by lm-identities

Theorem (Thomas 1982, Perrin-Pin 1986)

A language is definable in $\Sigma_1[<]$ iff its ordered syntactic monoid satisfies the identity $x \leq 1$.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in $\Sigma_1[< + \text{MOD}]$ iff its ordered syntactic stamp satisfies the lm-identities $x^{\omega-1}y \leq 1$ and $yx^{\omega-1} \leq 1$.
Boolean combination of existential formulas

Theorem (Thomas 1982)

A language is definable in $\mathcal{B}\Sigma_1[\langle \rangle]$ iff it is a Boolean combination of simple languages.

Theorem (Chaubard, Pin, Straubing 2006)

A language is definable in $\mathcal{B}\Sigma_1[\langle + \text{MOD} \rangle]$ iff it is a Boolean combination of modular simple languages.
Algebraic characterization

Theorem (Simon 1972, Thomas 1982)

A language is definable in $\mathcal{B}\Sigma_1[<]$ iff its syntactic monoid is J-trivial.

Theorem (Chaubard, Pin, Straubing 2006)

A language is a *Boolean combination* of modular simple languages iff its syntactic stamp belongs to the lm-variety $J \ast \text{MOD}$.
Derived category of a stamp $\varphi : A^* \rightarrow M$

Let $\pi_n(u) = |u| \text{ mod } n$.

Let $C_n(\varphi)$ be the category whose objects are elements of $\mathbb{Z}/n\mathbb{Z}$ and whose arrows from i to j are the triples (i, m, j) where $j - i \in \pi_n(\varphi^{-1}(m))$.

Composition is given by

$$(i, m_1, j)(j, m_2, k) = (i, m_1m_2, k).$$
A decidable characterization

Theorem (Chaubard, Pin, Straubing 2006)

Let φ be a stamp of stability index s. Then φ belongs to $J \star \text{MOD}$ iff $C_s(\varphi)$ is in gJ.

No characterization by lm-identities is known at the moment.
What would be useful in GAP 4 . . .

• Define stamps as a basic object.

• Compute stable semigroups and monoids of stamps.

• Test for length-preserving and length-multiplying identities.

• Compute derived categories
References I

