Part I

Group radical

Group radical

The group radical of a finite monoid M is the smallest submonoid $D(M)$ of M containing the idempotents and closed under weak conjugation: if $s t s=s$ and $d \in D(M)$, then $s d t, t d s \in D(M)$.

Computation of the radical

Initialisation: $D(M)=E(M)$
For each d in $D(S)$
For each weakly conjugate pair (s, t) add $s d t$ and $t d s$ to $D(S)$
add $D(S) d$ to $D(S)$.
Time complexity in $0\left(|S|^{3}\right)$.

Part II

Syntactic ordered monoid

If P is a subset of a monoid M, the syntactic preorder \leqslant_{P} is defined on M by $u \leqslant_{P} v$ iff, for all $x, y \in M$,

$$
x v y \in P \Rightarrow x u y \in P
$$

Denote by \bar{P} the complement of P. Then $u \not \varangle_{P} v$ iff there exist $x, y \in M$ such that

$$
x u y \in \bar{P} \text { and } x v y \in P
$$

The syntactic ordered monoid of $a b$ in B_{2}^{1}

LIAFA, CNRS and University Paris VII

An algorithm for the syntactic preorder

Let G be the graph with $M \times M$ as set of vertices and edges of the form $(u a, v a) \rightarrow(u, v)$ or $(a u, a v) \rightarrow(u, v)$.

We have seen that $u \not{ }_{\neq} v$ iff there exist $x, y \in M$ such that

$$
x u y \in \bar{P} \text { and } x v y \in P
$$

Therefore, $u \star_{P} v$ iff the vertex (u, v) is reachable in G from some vertex of $\bar{P} \times P$.

The algorithm (2)

(1) Label each vertex (u, v) as follows:

$$
\left\{\begin{array}{lll}
(0,1) & \text { if } u \notin P \text { and } v \in P & {\left[u \not{ }_{P} v\right]} \\
(1,0) & \text { if } u \in P \text { and } v \notin P & {\left[v \not \nless 大_{P} u\right]} \\
(1,1) & \text { otherwise } &
\end{array}\right.
$$

(2) Do a depth first search (starting from each vertex labeled by $(0,1)$) and set to 0 the first component of the label of all visited vertices.

Constraint propagation

(3) Do a depth first search (starting from each vertex labeled by $(0,0)$ or $(1,0))$ and set to 0 the second component of the label of all visited vertices.
(4) The label of each vertex now encodes the syntactic preorder of P as follows:
$(1,1)$ if $u \sim_{P} v$
$(1,0)$ if $u \leqslant_{P} v$
$(0,1)$ if $v \leqslant_{P} u$
$(0,0)$ if u and v are incomparable

Computation of the syntactic preorder

Let $M=\{1, a, b\}$ with $a a=b a=a$ and $a b=b b=b$. Let $P=\{a\}$.

Computation of the syntactic preorder

Let $M=\{1, a, b\}$ with $a a=b a=a$ and $a b=b b=b$. Let $P=\{a\}$.

Computation of the syntactic preorder

Let $M=\{1, a, b\}$ with $a a=b a=a$ and $a b=b b=b$. Let $P=\{a\}$.

Computation of the syntactic preorder

Let $M=\{1, a, b\}$ with $a a=b a=a$ and $a b=b b=b$. Let $P=\{a\}$.

Computation of the syntactic preorder

Let $M=\{1, a, b\}$ with $a a=b a=a$ and $a b=b b=b$. Let $P=\{a\}$.

Computation of the syntactic preorder

Let $M=\{1, a, b\}$ with $a a=b a=a$ and $a b=b b=b$. Let $P=\{a\}$.

Computation of the syntactic preorder

Let $M=\{1, a, b\}$ with $a a=b a=a$ and $a b=b b=b$. Let $P=\{a\}$.

Computation of the syntactic preorder

Let $M=\{1, a, b\}$ with $a a=b a=a$ and $a b=b b=b$. Let $P=\{a\}$.

Thus $a \leqslant_{P} 1 \leqslant_{P} b$

Complexity of the algorithm

The syntactic preorder can be computed in $O\left(|A||M|^{2}\right)$ time and space.

Aperiodicity

Theorem (Cho-Huynh 1991)

Testing aperiodicity of a deterministic n-state automaton is P-space complete.

Proposition

One can test in $O(|A||S|)$-time whether an A-generated finite semigroup S is aperiodic.

It suffices to test whether the \mathcal{H}-classes are trivial.

Other varieties

Proposition

One can test in $O(|A||S|)$-time whether an A-generated finite semigroup S is \mathcal{R}-trivial [\mathcal{L}-trivial, \mathcal{J}-trivial, commutative, idempotent, nilpotent, a group, a block-group].

Testing a set of identities

This is a difficult problem for several reasons:

- It may happen that testing whether a set of identities is satisfied is much easier than testing whether any of the individual identities is satisfied.
- Identities for finite semigroups are profinite identities. The operations x^{ω} and $x^{\omega-1}$ are frequently needed, but other operators might be needed.
- There might be some tricky tree pattern-matching problems to solve.

Tree pattern-matching problems

A simple example: the variety DS is defined by the identity $\left((x y)^{\omega}(y x)^{\omega}(x y)^{\omega}\right)^{\omega}=(x y)^{\omega}$

Semigroup theory might help...

Proposition

One can test in $O(|A||S|)$-time whether an A-generated finite semigroup S belongs to DS.

Indeed, a semigroup belongs to DS iff every regular \mathcal{D}-class is union of groups. Therefore, it suffices to test whether the number of regular \mathcal{H}-classes is equal to the number of idempotents.

Part III

New directions

A stamp is a morphism from a finitely generated free monoid onto a finite monoid. An ordered stamp is a stamp onto an ordered monoid.

$$
\varphi: A^{*} \rightarrow M
$$

Stable subsemigroup

Let $\varphi: A^{*} \rightarrow M$ be a stamp and let $Z=\varphi(A)$.
Then Z belongs to the monoid $\mathcal{P}(M)$ of subsets of M.

Since $\mathcal{P}(M)$ is finite, Z has an idempotent power. The stability index of φ is the least positive integer such that $\varphi\left(A^{s}\right)=\varphi\left(A^{2 s}\right)$.

The set $\varphi\left(A^{s}\right)$ is a subsemigroup of M called the stable semigroup of φ and the monoid $\varphi\left(A^{s}\right) \cup\{1\}$ is called the stable monoid of φ.

Applications to logic

Theorem (McNaughton-Paper 1971, Schützenberger 1965)
A language is $\mathrm{FO}[<]$-definable iff its syntactic semigroup is aperiodic.

Theorem (Barrington, Compton, Straubing, Thérien 1992)
A language is $\mathrm{FO}[<+$ MOD $]$-definable iff the stable semigroup of its syntactic stamp is aperiodic.

A bit of logic

To each nonempty word u is associated a structure

$$
\mathcal{M}_{u}=\left(\{1,2, \ldots,|u|\},<,(\mathbf{a})_{a \in A}\right)
$$

where a is interpreted as the set of integers i such that the i-th letter of u is an a, and $<$ as the usual order on integers.

If $u=a b b a a b$, then $\operatorname{Dom}(u)=\{1,2,3,4,5,6\}$, $\mathbf{a}=\{1,4,5\}$ and $\mathbf{b}=\{2,3,6\}$.

Modular predicates

Let $d>0$ and $r \in \mathbb{Z} / d \mathbb{Z}$. We define two new symbols (the modular symbols):

- The unary symbol MOD $_{r}^{d}$:

$$
\operatorname{MOD}_{r}^{d}(n)=\{i<n \mid i \bmod d=r\}
$$

- A constant symbol m for the last position in a word

Fragments of first order logic

FO $[<]$ denotes the set of first order formulas in the signature $\left\{<,(\mathbf{a})_{a \in A}\right\}$.
$\mathrm{FO}[<+\mathrm{MOD}]$ denotes the logic obtained by adjoining all modular symbols.

Fragments of first order logic

FO $[<]$ denotes the set of first order formulas in the signature $\left\{<,(\mathbf{a})_{a \in A}\right\}$.

FO[$<+$ MOD $]$ denotes the logic obtained by adjoining all modular symbols.
Σ_{1} denotes the set of existential formulas:

$$
\exists x_{1} \cdots \exists x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)
$$

where φ is quantifier-free.
$\mathcal{B} \Sigma_{1}$ denotes the set of Boolean combinations of Σ_{1}-formulas.

Some examples

The formula $\exists x$ a x is interpreted as:
There exists an integer x such that, in u, the letter in position x is an a.
This defines the language $A^{*} a A^{*}$.

Some examples

The formula $\exists x \mathbf{a} x$ is interpreted as:
There exists an integer x such that, in u, the letter in position x is an a.
This defines the language $A^{*} a A^{*}$.
The formula $\exists x \exists y(x<y) \wedge \mathbf{a} x \wedge \mathbf{b} y$ defines the language $A^{*} a A^{*} b A^{*}$.

Some examples

The formula $\exists x \mathbf{a} x$ is interpreted as:
There exists an integer x such that, in u, the letter in position x is an a.
This defines the language $A^{*} a A^{*}$.
The formula $\exists x \exists y(x<y) \wedge \mathbf{a} x \wedge \mathbf{b} y$ defines the language $A^{*} a A^{*} b A^{*}$.

The formula $\exists x \forall y(x<y) \vee(x=y) \wedge \mathbf{a} x$ defines the language $a A^{*}$.

Simple languages

A simple language is a language of the form

$$
A^{*} a_{1} A^{*} a_{2} A^{*} \cdots a_{k} A^{*}
$$

where $d>0, k \geqslant 0$ and $a_{1}, a_{2}, \ldots, a_{k} \in A$.
A modular simple language is a language of the form

$$
\left(A^{d}\right)^{*} a_{1}\left(A^{d}\right)^{*} a_{2}\left(A^{d}\right)^{*} \cdots a_{k}\left(A^{d}\right)^{*}
$$

where $d>0, k \geqslant 0$ and $a_{1}, a_{2}, \ldots, a_{k} \in A$.

Logical description of simple languages

The language $A^{*} a_{1} A^{*} a_{2} A^{*} \ldots a_{k} A^{*}$ can be defined by the Σ_{1}-formula

$$
\exists x_{1} \ldots \exists x_{k}\left(x_{1}<\ldots<x_{k}\right) \wedge\left(\mathbf{a}_{1} x_{1} \wedge \cdots \wedge \mathbf{a}_{k} x_{k}\right)
$$

Logical description of simple languages

The language $A^{*} a_{1} A^{*} a_{2} A^{*} \cdots a_{k} A^{*}$ can be defined by the Σ_{1}-formula
$\exists x_{1} \ldots \exists x_{k}\left(x_{1}<\ldots<x_{k}\right) \wedge\left(\mathbf{a}_{1} x_{1} \wedge \cdots \wedge \mathbf{a}_{k} x_{k}\right)$
The language $\left(A^{d}\right)^{*} a_{1}\left(A^{d}\right)^{*} a_{2}\left(A^{d}\right)^{*} \cdots a_{k}\left(A^{d}\right)^{*}$ can be defined by the Σ_{1}-formula

$$
\begin{array}{r}
\exists x_{1} \ldots \exists x_{k}\left(x_{1}<\ldots<x_{k}\right) \wedge\left(\mathbf{a}_{1} x_{1} \wedge \cdots \wedge \mathbf{a}_{k} x_{k}\right) \wedge \\
\left(\operatorname{MOD}_{0}^{d} x_{1} \wedge \operatorname{MOD}_{1}^{d} x_{2} \wedge \cdots \wedge \operatorname{MOD}_{k-1}^{d} x_{k} \wedge \operatorname{MOD}_{k-1}^{d} m\right)
\end{array}
$$

First order

Theorem (McNaughton-Paper 1971, Schützenberger 1965)
A language is $\mathrm{FO}[<]$-definable iff its syntactic semigroup is aperiodic.

Theorem (Barrington, Compton, Straubing, Thérien 1992)
A language is $\mathrm{FO}[<+$ MOD $]$-definable iff the stable semigroup of its syntactic stamp is aperiodic.

Existential formulas $\left(\Sigma_{1}\right)$

Proposition

A language is definable in $\Sigma_{1}[<]$ iff it is a finite union of simple languages.

Proposition

A language is definable in $\Sigma_{1}[<+$ MOD $]$ iff it is a finite union of modular simple languages.

Algebraic characterization

Theorem (Thomas 1982, Perrin-Pin 1986)

A language is definable in $\Sigma_{1}[<]$ iff its ordered syntactic monoid satisfies the identity $x \leqslant 1$.

Theorem (Chaubard, Pin, Straubing 2006)
A language is definable in $\Sigma_{1}[<+$ MOD $]$ iff the stable ordered monoid of its ordered syntactic stamp satisfies the identity $x \leqslant 1$.

lm-morphisms

A morphism $f: A^{*} \rightarrow B^{*}$ is length-multiplying (lm for short) if there exists an integer k such that the image of each letter of A is a word of B^{k}.

For instance, if $A=\{a, b\}$ and $B=\{a, b, c\}$, the morphism defined by $\varphi(a)=a b c a$ and $\varphi(b)=c b b a$ is length-multiplying.

$l m$-identities

Let u, v be two words on the alphabet B. A morphism $\varphi: A^{*} \rightarrow M$ satisfies the $l m$-identity $u=v$ if, for every $l m$-morphism $f: B^{*} \rightarrow A^{*}$, $\varphi \circ f(u)=\varphi \circ f(v)$.

For instance, $\varphi: A^{*} \rightarrow M$ satisfies the $l m$-identity $x y x=x y$ if for any pair of words of the same length x, y of $A^{*}, \varphi(x y x)=\varphi(x y)$.

$l m$-identities

Let u, v be two words on the alphabet B. A morphism $\varphi: A^{*} \rightarrow M$ satisfies the $l m$-identity $u=v$ if, for every $l m$-morphism $f: B^{*} \rightarrow A^{*}$, $\varphi \circ f(u)=\varphi \circ f(v)$.

For instance, $\varphi: A^{*} \rightarrow M$ satisfies the $l m$-identity $x y x=x y$ if for any pair of words of the same length x, y of $A^{*}, \varphi(x y x)=\varphi(x y)$.

If M is ordered, we say that φ satisfies the $l m$-identity $u \leqslant v$ if, for every $l m$-morphism $f: B^{*} \rightarrow A^{*}, \varphi \circ f(u) \leqslant \varphi \circ f(v)$.

Characterization by $l m$-identities

Theorem (Thomas 1982, Perrin-Pin 1986)
A language is definable in $\Sigma_{1}[<]$ iff its ordered syntactic monoid satisfies the identity $x \leqslant 1$.

Theorem (Chaubard, Pin, Straubing 2006)
A language is definable in $\Sigma_{1}[<+$ MOD $]$ iff its ordered syntactic stamp satisfies the lm-identities $x^{\omega-1} y \leqslant 1$ and $y x^{\omega-1} \leqslant 1$.

Boolean combination of existential formulas

Theorem (Thomas 1982)

A language is definable in $\mathcal{B} \Sigma_{1}[<]$ iff it is a Boolean combination of simple languages.

Theorem (Chaubard, Pin, Straubing 2006)
A language is definable in $\mathcal{B} \Sigma_{1}[<+$ MOD $]$ iff it is a Boolean combination of modular simple languages.

Algebraic characterization

Theorem (Simon 1972, Thomas 1982)

A language is definable in $\mathcal{B} \Sigma_{1}[<]$ iff its syntactic monoid is \mathcal{J}-trivial.

Theorem (Chaubard, Pin, Straubing 2006)

A language is a Boolean combination of modular simple languages iff its syntactic stamp belongs to the Im-variety $\mathrm{J} * \mathrm{MOD}$.

Derived category of a stamp $\varphi: A^{*} \rightarrow M$

Let $\pi_{n}(u)=|u| \bmod n$.

Let $C_{n}(\varphi)$ be the category whose objects are elements of $\mathbb{Z} / n \mathbb{Z}$ and whose arrows from i to j are the triples (i, m, j) where $j-i \in \pi_{n}\left(\varphi^{-1}(m)\right)$.
Composition is given by
$\left(i, m_{1}, j\right)\left(j, m_{2}, k\right)=\left(i, m_{1} m_{2}, k\right)$.

A decidable characterization

Theorem (Chaubard, Pin, Straubing 2006)
Let φ be a stamp of stability index s. Then belongs to $\mathbf{J} * \mathbf{M O D}$ iff $C_{s}(\varphi)$ is in $g \mathbf{J}$.

No characterization by $l m$-identities is known at the moment.

What would be useful in GAP 4...

- Define stamps as a basic object.
- Compute stable semigroups and monoids of stamps.
- Test for length-preserving and length-multiplying identities.
- Compute derived categories

References I

［圁 V．Froidure and J．－E．Pin，Algorithms for computing finite semigroups，in Foundations of Computational Mathematics，F．Cucker et M．Shub（éd．），Berlin，1997，pp．112－126， Springer．
固 Semigroupe，C programme，available at http：／／www．liafa．jussieu．fr／～jep／ Logiciels／Semigroupe／semigroupe．html
图 L．Chaubard，J．－E．Pin and H．
Straubing，First order formulas with modular predicates，in Proceedings of LICS＇06， 2006.

