
A graphic language based on t iming diagrams

Christian Antoine, Bernard Le Goff and Jean-Eric Pin

Bull Research and Advanced Development, Rue Jean-Jaur~s
78340 Les Clayes-sous-Bois, France

A b s t r a c t . We present a new graphic language which can serve, for in-
stance, as models for VLSI and control systems. Its primitives are stan-
dard timing diagrams, and this is a great advantage on other formalisms
since the designers can rapidly master it. The semantics is rigorously de-
fined in the formalism of the theory of automata on infinite words. Using
this formalism, we are able to give a rather precise bound on the ex-
pressive power of our graphic language in terms of a language theoretic
measure, the concatenation level.

1. Introduction
This paper emerged as the result of an enlightening discussion between cir-

cuit designers and researchers working in the area of specification languages on
the one hand and automata theory on the other hand. It has a practical compo-
nent, the description of new specification language, but also a strong theoretical
flavour, since the semantics of the language is based on recent results of the
theory of automata on infinite words.

The origin of our project was the following observation : circuit designers are
often discouraged by the complexity of the specification languages. To remedy
this problem, we defined a graphic language, called the Chronogram Language
[1], the primitives of which are standard timing diagrams. Timing diagrams are a
formalism which is commonly used in the community of circuit designers, so our
language can be rapidly mastered. In other words, contrary to most formalisms,
properties are drawn rather than written, and this pictural representation is
much more convenient for the non-specialist than an abstract formalism.

On the other hand, using pictures doesn't prevent one's to have a precise
syntax and semantics. This is the place where automata pop up. It turned out
that the primitives of our language can be conveniently interpreted by rational
(also called regular) expressions on infinite words. It follows that all chronograms
can be interpreted by rational expressions. This approach not only permitted us
to define rigorously the semantics of the chronogram language, but also gave
some very precise informations on the expressive power of the language. Before
we go further into the formulation of our results, we need to briefly review some
facts on rational sets of infinite words.

There are essentially two known scales to measure the complexity of a ratio-
nal set, the logical scale and the combinatorial scale. The logical scale branches
into two main parts, corresponding to the first order logic and to the monadic
second order logic, respectively. Next one can define :~ hierarchy inside the first

307

order logic by counting the number of alternations between existential and uni-
versal quantifiers. The combinatorial scale takes in account the basic operations
that define the rational sets : boolean operations, concatenation product and
iteration. It also branches into two main domains : the star-free sets (which can
be defined by without iteration) and the rational sets. A hierarchy inside the
star-free sets is obtained by counting the number of alternations between the
use of the boolean operations and of the concatenation product. A nice (but
non-trivial) feature is that the logical and the combinatorial scales are exactly
the same [18,1",]. Now, our main result states that the languages correspond-
ing to chronograms are of level 3 in the star-free (or logical) hierarchy. This
gives a rather precise upper bound to the expressive power of the Chronogram
Language.

Although our language was originally designed as a specification language
for circuits, it can serve more generally for modelling temporal properties. The
Chronogram Language has been designed to provide designers with a good ex-
pressive power for temporal properties. For instance, both safety and liveness
properties can be expressed into the Chronogram Language, in contrast with
other languages VHDL [10], Lucid [2], Lustre [3], Signal [9], etc. in which liveness
properties cannot be written. To ensure some compatibility with other existing
formalisms, the chronograms that represent safety properties can be compiled
into VHDL (a standard description language in the world of circuit designers)
and Signal expressions, and liveness properties will be converted into CTL* in
the future.

The paper is organized as follows. The Chronogram language is first presented
on an example. The abstract syntax of the Chronogram Language is given in
section 3. In order to kee p the paper self-contained, the main definitions on
languages and automata required for this paper are summarized in section 4.
The semantics of the Chronogram Language is presented in section 5. The paper
ends with a short conclusion section.

2. A presentation of the Chronogram Language.

A chronogram

308

At the top of this chronogram is defined the CLOCK, which informally, repre-
sents the time. All the events are synchronized on the rising edges of the clock.
This chronogram defines constraints on the events of three boolean signals: I, O
and B. Each line is dedicated to a signal: the second one for B, the third one
for O and the first and the last ones for I. Each line consists of I 2 R E L E V A N T
zones and bold line boxes. Only the bold line boxes are relevant for the definition
of constraints. On the second line (dedicated to the B signal), there are three
boxes with a solid line at the bottom, and three boxes with a solid line at the
top. This means that B must carry the false value during the period of time
represented by the first three boxes, and the true value during the period of
time represented by the last three boxes. On the first and third line, the boxes
are labelled by a symbol (v, x or w). This means that during the period of time
represented by the box, the signal carries the value v (resp. x or w). This value
v (resp. x, w) is not specified in the chronogram but has to be the same in all
boxes labelled by v (resp. x, w). A minus sign can be added in the left part of
the box: in this case, the signal carries the value ~ opposite to the label v of the
box. On the first line such a box is used with the symbol w.

The bold line boxes can be connected by arrows. The resulting graph can have
several (simply) connected components. Each component defines a constraint.
The relative location of the boxes is relevant only inside a connected component.
For instance, the first property specified by the chronogram states: if B carries
the false value, ~hen I and 0 carry ~he same value (denoted by the symbol v
in the chronogram). The other properties can be read in a similar way in the
chronogram: two linked arrows must be interpreted as a logical and.

3. A n a b s t r a c t s y n t a x o f t h e C h r o n o g r a m L a n g u a g e

The abstract syntax of the language is given by a grammar, in which the
initial of each non-terminal is a capital letter (e.g. Clock) and each terminal is
either written in capital letters (i.g. IDENTIFIEI~), or consists of a single lower-
case letter (e.g. i) or of a non alphabetic sign (e.g. 1, *).

The rules are grouped by level of derivation and every rule is written only
once. As a consequence, the derivation rules of some terms may precede some of
their occurrences.

Constraint ::= Property Constraint I Property

Property ::= Clock Hypothesis Conclusion

Hypothesis ::= TimeDiagram Conclusion ::= TimeDiagram

TimeDiagram : := MultiColumnList

Clock : := IDENTIFIER

MultiColumnList ::= MultiColumn MultiColumnList I MultiColumn

MultiColumn : := StaticMultiColunm I DynamicMultiColumn

StaticMultiColumn ::= Width StaticRowList

DynamicMultiColumn ::= FiniteLowerBound UpperBound DynamicRowList

309

StaticRowList ::= StaticRow StaticRowList I StaticRow

DynamicRowList ::= DynamicRow DynamicRowList i DynamicRow

StaticRow ::= StaticlntervalList IDENTIFIER
DynamicRow ::= StaticIntervalList IDENTIFIER

UpperBound ::= FiniteUpperBound I *
Width ::= INTEGER Length ::= INTEGER
FiniteLowerBound ::= INTEGER FiniteUpperBound ::= INTEGER

StaticIntervalList ::= StaticInterval StaticIntervalList I NIL <_

DynamicIntervaiList ::= DynamicInterval DynamicIntervalList I NIL

StaticInterval ::= Length PrimitiveSymbol
DynamicInterval ::= PrimitiveSymbol

PrimitiveSymbol ::= i I f I e I r I s I 1 I 0 I SymbolicValue

SymbolicValue ::= - IDENTIFIER I IDENTIFIER

4. L a n g u a g e s a n d a u t o m a t a

In this section, we briefly recall the basic definitions of the theory of au tomata
needed in this article. For more details, the reader is referred to [6,16,19]. We
also define the language-theoretic hierarchy that will serve as a measure of the
expressive power of the Chronogram Language.

We denote respectively by A*, A + and A ~ the sets of finite words, non-empty
finite words and infinite words on an alphabet A. A language is a set of finite
words, that is, a subset of A*. The rational operations are the three operations
union, product and star. The set of rational (or regular) languages of A* is the
smallest set of subsets of A* containing the finite sets and closed under finite
union, product and star. For instance, {a, ctb}*ab U (ba*b)* denotes a rational set.
It is possible to generalize the concept of rational languages to infinite words as
follows. First, the product can be extended to A* x A ~, by setting, for X C A*
and Y C A ~,

X Y = {xy l x E X and y e Y}.

Next, we define an infinite iteration w by setting, for every subset X of A +

X W = {x0xlx2 . . . I for all i > 0, zi e X}

Equivalently, X ~ is the set of infinite words obtained by concatenating an infinite
sequence of words of X. By definition, a subset of A ~ is w-rational (or w-regular)
if it is equal to a finite union of sets of the form X Y ~ where X and Y are non-
empty rational sets of A +.

Boolean oper.ations comprise union, intersection, complementation and set
difference. It can be shown that the rational subsets of A* are closed under
finite boolean operations. The set of star-free subsets of A* is the smallest set of
subsets of A* containing the finite sets and closed under finite boolean operations
and product. The set of star-free subsets of A ~ is the smallest set $ of subsets

310

of A ~ closed under finite boolean operations and such that if X is a star-free
subset of A + and Y E S, then X Y E S.

The definition of star-free languages of A* makes use of two different types
of operations: boolean operations and concatenation product. By alternating
the use of these two operations, one gets a hierarchy, called the concatenation
hierarchy, defined as follows.
(1) The sets of level 0 are the empty set and A*,
(2) For every integer n > 0, the sets of level n + 1/2 are the finite unions of the

sets of the form LoalLla2 . . .a~L~ where L0, L1, . . . , L~ are sets of level n
and hi, . . . , ak are letters

(3) For every integer n > 0, the sets of level n + l are finite boolean combinations
of sets of level n + 1/2.

Note that a set of level m is also a set of level n for every n > m. Concatenation
hierarchies can be extended to infinite words as follows.
(1) The sets of level 0 are the empty set 0 and A ~,
(2) For every integer n _~ 0, the sets of level n + 1/2 are the finite unions of the

sets of the form X a Y , where X is a set of A* of level n + 1/2, Y is a subset
of A ~ of level n and a is a letter.

(3) For every n > 0, the sets of level n + 1 are finite boolean combinations of
sets of level n + 1/2.

5. S e m a n t i c s o f t h e C h r o n o g r a m L a n g u a g e

The formal semantics of the Chronogram Language comes from w-rational
languages. More precisely, some rational language is associated with each of
the graphic primitives of the Chronogram Language and with each variable.
Next, to each operator of the Chronogram Language (generation of intervals,
rows, columns, multicolumns, time diagrams, etc.) corresponds an operation on
languages that preserve rationality. A remarkable feature of the Chronogram
Language is the use of symbolic values or boolean variables. We shall first detail
this peculiar aspect.

5.1. B o o l e a n v a r i a b l e s a n d v a l u a t i o n s

If v denotes a boolean variable, ~ will denote the boolean variable defined by

1 i f v = O
= 0 otherwise

Thanks to boolean variables, one can specify in the Chronogram Language not
only properties like "The value of the signal at time t is 0 (resp. 1)", but also
properties of the form "the value of the signal is v at t ime t and ~ at t ime t + 3".
In order to take in account these variables, it is convenient, in the first place, to
represent a signal not as an infinite word on the alphabet B = {0, 1}, but as an
infinite word on the extended alphabet C = B U V U V~ where V is the set of
variables used in the chronogram.

One goes back to the binary alphabet B by associating a value with each
variable. This can formally be realized by a valuation, that is a map ~ : C ~ B
such that for all b E B, u(b) = b and for all v E V, u(~) = u(v).

311

For instance, the previous example would be interpreted as "the value of the
signal is 0 at t ime t and 1 ~ at t ime t + 3" (which corresponds to the valuation
u defined by u(v) = 0) or "the value of the signal is 1 at t ime t and 0 at t ime
t + 3" (which corresponds to the valuation u defined by u(v) = 1).

A valuation u : C --* B defines in a natural way a function u : C* --* B*, by
setting, for every word c l c 2 . . . c ~ e C*, ~ (c l c 2 . . . c~) = v (c l) u (c 2) . . , y(c,~). If L
is a subset of C*, the set t~(L) is called the valuation of L.

5.2. C o n s t r a i n t s on a s ing le s igna l

A signal is considered as an infinite word u on the binary alphabet B. As
we shall see later, the constraints defined on a given signal in our language
can always be formulated under the form u E L B ~, where L is some rational
language of B*, that we shall now compute in more details.

If the chronogram contains variables, we first identify the signal with an
infinite word u on the alphabet C, as was explained before. The constraint
in which the variables are not interpreted can be formulated under the form
u E L B ~, where L is some language rational of C*, while the final constraint
can be expressed under the form

e [_J (L)B
~' valuation

There are in fact two types of constraints, the "static" constraints, which corre-
spond to the case where L is a finite language, and the "dynamic" constraints,
that correspond to the case where L can be an infinite language.

In the case of a static constraint, the language L is obtained as a finite con-
catenation of rational languages corresponding to static intervals. For instance,
the following sequence of static intervals defines a constraint: "between time nl
and n2, the signal has a unique rising edge, between time n2 and n3, its value
is a constant v and between time ns and n4, its value is always 0". Note that in
this case, the values of n2 - hi , n3 - n2 and n4 - n3 are the length of the static
intervals.

In the case of a dynamic constraint, the language L is obtained as a finite
concatenation of rational languages corresponding to dynamic intervals. For in-
stance, the following sequence of dynamic intervals defines a constraint: "There
exist instants n2, n3, n4 such that between time nl and n2, the signal has a
unique rising edge, between time n2 and n3, its value is a constant v and be-
tween time n3 and n4, its value is always 0" . The difference with the previous
case is that the values of n2 - nl, n3 - n2 and n 4 - - n3 are not specified in the
dynamic constraints, that is, can be chosen arbitrarily.

The languages associated with (static or dynamic) intervals are themselves
obtained from the so-called primit ive languages associated with the primit ive
symbols. This vocable concerns the elements of the set Vt2VU{i~ 0~ 1~ f~ r~ s~ e}
that is, all symbols of variables (possibly overlined) and the symbols associated
with the graphic primitives of the Chronogram Language. First recall the intu-
itive meaning of these primitives.

312

i (Irrelevant) The value of the signal is not specified and can be either 0 or 1.
1 The signal is stable and its value is 1.
0 The signal is stable and i tsvalue is 0.
f (Falling) The signal owns one and only one falling edge (but may have 0, 1

or 2 rising edges).
r' (Rising) The signal owns one and only one rising edge.
s (Stable) The signal is stable but its value is unknown.
e (Edge) The value of the signal changes once and only once.

This leads to the following table of the primitive languages associated with the
graphic primitives:

L(1) "- {0, 1} + L(1) - 1 + L(f) - 0'1+0+1 * L(0) -- 0 +

L (r) = l * 0 + l + 0 * L (s) = 0 + U 1 + L (e) - 0 + l + U I + 0 +

On the other hand, the primitive language associated with each variable v is

L(v) -= v + and L (~) - ~ +

We can now formally define the notion of interval. A static interval is a pair
I = (s t) where s is a positive integer and t is a primitive symbol. Intuitively,
the integer s represents the length of the interval on which the condition defined
by t will be considered. For example, if s = 5 and t = e, the value of the signal
will change once and only once in the interval [0, 5[. The language associated
with I is the subset of C" defined by

L(I) = L(s = L(t) N C l

For example, if s = 5 and t = e, then L(I) = (0+1 + U 1+0 +) CI C s =
{01111, 00111,00011,00001, 10000, 11000, 11100, 11110} A dynamic interval is
simply a primitive symbol and thus the corresponding language is already de-
fined.

A static (resp. dynamic) row is a sequence of static (resp. dynamic) intervals.
The language associated with a row (I1, I = , . . , Is) is defined by

L(I1, I 2 , . . . , Is) = L (I 1) L (I 2) . . . L (I s)

For instance, the language of C + associated with the row represented below is

llv{O,l}~{01111,O0111, O0011, O0001}

0 1 2 3 4 5 6 7 8 9 I0 11

I I l / - / I I I I I I I

F i g u r e 5.1. A static row

313

Here is another example, for a dynamic row. If 11 = v, I2 = e and Is = ~, then

L(I) = v+(0+l + U i+0+)~ +

The languages associated with rows are described in the next proposition

P r o p o s i t i o n 5.1. The languages associated with a static row and their valu-
ations are finite languages. The languages associated with a dynamic row and
their valuations are languages of level 3/2.

Finally, if L is the language associated with a (static or dynamic) row, the
constraint defined by this row is the set

[J (L)B
v is a v a l u a t i o n

In other words, in order to compute the constraint defined by a row, one first
computes the language L associated with this row on the extended alphabet
C and then one simply gives a value to the variables. For instance, for the
row represented in figure 5.1, the constraint can be written (111{0, 1}00X U
110{0, 1 } l l X) B ~ where X = {01111, 00111, 00011, 00001}.

5.3. C o n s t r a i n t s on s eve ra l s ignals

We now define the language associated with a constraint on a set of k signals.
We first introduce some auxiliary notation. Let A be an alphabet. For each
integer k, A~ denotes the alphabet consisting of k-uple of letters of A, denoted
as a column matrix. One can represent a word of length n on the alphabet As
as a k-array of words of A*. We denote by IrA : A~ ---* A* x A* x . . . x A* the

y ,

k t i m e s function defined by

/ a1,1)
. . .

\ a~,s

an,l
art,2

an,k

) = (a l , l ' "an , l~ al,2"..an,2, . . . , a l , s . �9

This function ?r A is in fact a monoid morphism of A~ into A* x A* x �9 .. x A* :
this simply means that it preserves the concatenation product. However, it is
not an isomorphism (except if k = 1) because an element of A* x A* x . . . x A*
may have components of different length. This leads to introduce the notation

D~(A) "- { (u l , u ~ , . . . , u s) E A* x A * . . . x A * [l u l I= [u2]= �9 = lusl}

to denote the set of k-tuples of words of the same length. Now, since ~rx induces
an isomorphism from A~ onto Dk(A), one can identify the k-tuples of Dk(A)
with the words of A~.

We now come back to signals�9 A static multicolumn is a pair M = (w, R)
where w is a positive integer and R = (R 1 , . . . , Rs) is a k-uple of static rows.
Intuitively, to each row corresponds a signal, but it is important to observe that

314

two rows or more can represent the same physical signal. This technique allows to
impose several distinct constraints on a given signal. By definition, the language
associated with a static multicolumn (w,/~) is

L(w,R) = C[M ~rcl(L(al) x L(R2) x . . . x L(R~)M Dk(C))

In other words, the k-tuples (ul, u 2 , . . . , u~) such that ul 6 L(R1), u2 E L(R~),
�9 .. , uk E L(Rk) and [u l [= [u2[. . . . = [uk[= w are selected and identified
with words of C; .
A dynamic multicolumn is a triple M = (n, m, R) where n is a integer, m is
either an integer or the symbol �9 and /~ = (/~1, . . . , R~) is a k-tuple of dynamic
rows. The language associated with a dynamic multicolumn is by definition

L(n, m, T~) -- C; (C~ ~ N ~rc 1 (L(/~I) x L(R2) x . . . x L(Rk) M D~(C)))

L (n ,* ,R) = C~ (C; M ~rcl(L(R1) x L(R2) x . . . x L(Rk)M Dk(C))) l

The difference between the types of multicolumns is that , in a dynamic multi-
column, there may be no upper bound on the common length of the ui's.
One can show for the multicolumns a result similar to the one obtained for rows

Proposition 5.2. The languages associated with a static multicolumn and
their valuations are finite languages. The languages associated with a dynamic
multicolumn and their valuations are languages of level 3/2.

5.4. Timing diagrams and properties, constraints
A timing diagram (TD) is a sequence of multicolumns. A property is a pair

P = (M, N) of timing diagrams: M = (M~,M2, . . .Mr) is the hypothesis and
N = (N1, N 2 , . . . Nr) is the conclusion. The property is satisfied if every k-tuple
of signals that satisfies the hypothesis satisfies the conclusion, too.

In the language formalism, this can be translated as follows: an infinite word
w on the alphabet Bk satisfies a property P = (M, N) if, for each suffix s of w,
there exists a valuation u such that for each factorization UlU2...uru~+l of s,
where ul E L~(M1), u2 6 Lv(M2), . . . , ur E L~(Mr), ur+l E By, there exists a
factorisation ulu 2 ' ' �9 �9 �9 uru~+ ~ ' ' of s, where u~ E L~ (M1) N L~ (g l) , u~ E L~ (M2) A

' L~(Mr) M Lv(Nr), u' Lv(N2), . . . , u~ E r+l E B~. This can be reformulated as
follows.

T h e o r e m 5.3. An infinite word w on the alphabet Bk satisfies P if and only
if none of its suffixes belong to the set

K (P) - A L~(M1)Lv(M2) . . .Lv(M~)By
valuat ion

\ ((L (M1)n n n)By

315

Coro l la ry 5.4. An infinite word w on the alphabet Bk satisfies a property P
if and only if it belongs to the set L(P) = B~ \ B;K(P) .

We arrive to our main result.

T h e o r e m 5.5. For every property P, the set L(P) is a star-free set of level 3.

We call a constraint a finite sequence of properties. The set of words defined
by a constraint (P1, P2, . . . , Pn) is the language L(P1) N L(P2) N . . . N L(Pn).
Now, the languages of level 3 are closed under intersection and thus Theorem
5.5 implies the following result.

Corol la ry 5.6. The set of infinite words defined by a constraint is a star-free
language of level 3.

6. C o n c l u s i o n
We have presented a new formal language for the specification of tempo-

ral properties of Discrete Event Dynamic Systems. This language, called the
Chronogram Language, is based on a well-known graphic metaphor: waveforms.
It allows specifying some complex temporal properties in a more convenient way
than textual temporal logics (CTL, CTL* . . .) . Although we do not consider
this language as a universal one, we think that its graphical approach might be
appreciated by designers. In fact, we view the chronogram language as a basic
part of a future Computer Aid Design (CAD) environment including validation
tools.

The Chronogram Language is graphic and fully declarative. In this paper, we
defined rigorously its semantics by using automata theory. The main result of this
work is that it is possible to associate a finite automaton with any chronogram. In
fact, as shown in this paper, chronograms correspond to a rather small subclass
of the class of w-rational sets.

We are now studying new developments: an extension of the Chronogram
Language allowing designers to specify properties without any reference to some
clock or including chronometric aspects (having physical time delays) and a
consistency checking tool for sets of chronograms. We are also working on the
improvement of the compilation algorithm since it is crucial to compile chrono-
grams into as small as possible automata. Currently, compilers generate VHDL
code and Signal code. New output languages will also be available in the future.

7. R e f e r e n c e s

[1] C. Antoine, B. Le Goff, Timing diagrams for writing and checking logical
and behavioral properties of integrated systems, P. Prineto and P. Camurati
ed., CHARME 91, Correct Hardware Design Methodologies, Elsevier, Turin,
Italy, 441-453, 1991.

[2] E. A. Ashcroft and W. W. Wadge, Lucid - a formal system for writing and
proving programs, SIAM J. Comp. 5,336-354, 1976.

316

[3] P. Caspi and N. Halbwachs, A functional model for describing and reasoning
about time behaviour of computing systems. Acta Informatica 22,595-627,
1986.

[4] L. J. M. Claesen, editor, Formal VLSICorrectness Verification, IFIP, North-
Holland, Amsterdam, November 1990.

[5] E. M. Clarke and I. A. Draghicescu, Expressibility results for linear-time and
branching-time logics, In J. W. de Bakker, W. de Roever, and G. Rozen-
berg, editors, Linear Time, Branching Time and Partial Order in logics and
Models for Concurrency, 428-437, Springer-Verlag, June 1988.

[6] S. Eilenberg, Automata, languages and machines, Vol. A, Academic Press,
New York, 1974, Vol. B, Academic Press, New York, 1976.

[7] E. A. Emerson, Temporal and Modal Logic, Chapter 16 in Handbook of
Theoretical Computer Science (Van Leeuwen, J. ed.), Vol B : Formal Models
and Semantics, Elsevier (1990).

[8] T. Hafer and W. Thomas, Computation tree logic CTL* and path quantifiers
in the monadic theory of the binary tree, in T. Ottmann, editor, ICALP'87,
Lecture Notes in Computer Science 269-279, Springer-Verlag, 1987.

[9] B. Le Goff, A. Benveniste, C. Figueira, and P. Le Guernic, CAD environ-
ment for real-time control system, in American Control Conference ACC'89,
American Automatic Control Council, IEEE, Pittsburgh, Pennsylvania,
June 1989.

[10] R. Lipsett, C.F. Schaeffer, Cary Ussery, VHDL: Hardware Description and
Design, Kluwer Academic Publisher, Boston, Mass., 1990.

[11] J. Madre and J. Billon, Proving circuit Correctness using formal comparison
between expected and extracted behavior, in Design Automation Confer-
ence, DAC'88, 1988.

[12] J. S. Ostroff, A logic for real-time discrete event processes. IEEE Control
Systems, Magazine 10, 95-102, June 1990.

[13] J. S. Ostroff and W. M. Wonham, A framework for real-time discrete event
control. IEEE Transactions on Automatic Control 35, 386-397, April 1990.

[14] D. Perrin, An introduction to automata on infinite words, in Automata
on infinite words (Nivat, M. ed.), Lecture Notes in Computer Science 192,
Springer (1984).

[15] D. Perrin and J.E. Pin, First order logic and star-free sets, J. Comput.
System Sci. 32, 1986, 393-406.

[16] D. Perrin, Automata, Chapter 1 in Handbook of Theoretical Computer Sci-
ence (Van Leeuwen, J. ed.), Vol B : Formal Models and Semantics, Elsevier
(1990).

[17] J.-E. Pin, Vari~tds de languages formels, Masson, Paris, 1984; English trans-
lation: Varieties of formal languages, Plenum, New York, 1986.

[18] W. Thomas, 1982, Classifying regular events in symbolic logic, J. Comput.
Syst. Sci 25, 360-375.

[19] W. Thomas, Automata on infinite Objects, Chapter 4 in Handbook of Theo-
retical Computer Science (Van Leeuwen, J. ed.), Vol B : Formal Models and
Semantics, Elsevier (1990).

