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A b s t r a c t .  We present a new graphic language which can serve, for in- 
stance, as models for VLSI and control systems. Its primitives are stan- 
dard timing diagrams, and this is a great advantage on other formalisms 
since the designers can rapidly master it. The semantics is rigorously de- 
fined in the formalism of the theory of automata  on infinite words. Using 
this formalism, we are able to give a rather precise bound on the ex- 
pressive power of our graphic language in terms of a language theoretic 
measure, the concatenation level. 

1. Introduction 
This paper emerged as the result of an enlightening discussion between cir- 

cuit designers and researchers working in the area of specification languages on 
the one hand and automata  theory on the other hand. It has a practical compo- 
nent, the description of new specification language, but also a strong theoretical 
flavour, since the semantics of the language is based on recent results of the 
theory of automata  on infinite words. 

The origin of our project was the following observation : circuit designers are 
often discouraged by the complexity of the specification languages. To remedy 
this problem, we defined a graphic language, called the Chronogram Language 
[1], the primitives of which are standard timing diagrams. Timing diagrams are a 
formalism which is commonly used in the community of circuit designers, so our 
language can be rapidly mastered. In other words, contrary to most formalisms, 
properties are drawn rather than written, and this pictural representation is 
much more convenient for the non-specialist than an abstract formalism.  

On the other hand, using pictures doesn't prevent one's to have a precise 
syntax and semantics. This is the place where automata  pop up. It turned out 
that  the primitives of our language can be conveniently interpreted by rational 
(also called regular) expressions on infinite words. It follows that  all chronograms 
can be interpreted by rational expressions. This approach not only permitted us 
to define rigorously the semantics of the chronogram language, but also gave 
some very precise informations on the expressive power of the language. Before 
we go further into the formulation of our results, we need to briefly review some 
facts on rational sets of infinite words. 

There are essentially two known scales to measure the complexity of a ratio- 
nal set, the logical scale and the combinatorial scale. The logical scale branches 
into two main parts, corresponding to the first order logic and to the monadic 
second order logic, respectively. Next one can define :~ hierarchy inside the first 
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order logic by counting the number of alternations between existential and uni- 
versal quantifiers. The combinatorial scale takes in account the basic operations 
that define the rational sets : boolean operations, concatenation product and 
iteration. It also branches into two main domains : the star-free sets (which can 
be defined by without iteration) and the rational sets. A hierarchy inside the 
star-free sets is obtained by counting the number of alternations between the 
use of the boolean operations and of the concatenation product. A nice (but 
non-trivial) feature is that the logical and the combinatorial scales are exactly 
the same [18,1",]. Now, our main result states that the languages correspond- 
ing to chronograms are of level 3 in the star-free (or logical) hierarchy. This 
gives a rather precise upper bound to the expressive power of the Chronogram 
Language. 

Although our language was originally designed as a specification language 
for circuits, it can serve more generally for modelling temporal properties. The 
Chronogram Language has been designed to provide designers with a good ex- 
pressive power for temporal properties. For instance, both safety and liveness 
properties can be expressed into the Chronogram Language, in contrast with 
other languages VHDL [10], Lucid [2], Lustre [3], Signal [9], etc. in which liveness 
properties cannot be written. To ensure some compatibility with other existing 
formalisms, the chronograms that represent safety properties can be compiled 
into VHDL (a standard description language in the world of circuit designers) 
and Signal expressions, and liveness properties will be converted into CTL* in 
the future. 

The paper is organized as follows. The Chronogram language is first presented 
on an example. The abstract syntax of the Chronogram Language is given in 
section 3. In order to kee p the paper self-contained, the main definitions on 
languages and automata required for this paper are summarized in section 4. 
The semantics of the Chronogram Language is presented in section 5. The paper 
ends with a short conclusion section. 

2. A presentation of the Chronogram Language. 

A chronogram 
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At the top of this chronogram is defined the CLOCK, which informally, repre- 
sents the time. All the events are synchronized on the rising edges of the clock. 
This chronogram defines constraints on the events of three boolean signals: I, O 
and B. Each line is dedicated to a signal: the second one for B, the third one 
for O and the first and the last ones for I. Each line consists of I 2 R E L E V A N T  
zones and bold line boxes. Only the bold line boxes are relevant for the definition 
of constraints. On the second line (dedicated to the B signal), there are three 
boxes with a solid line at the bottom, and three boxes with a solid line at the 
top. This means that B must carry the false value during the period of time 
represented by the first three boxes, and the true value during the period of 
time represented by the last three boxes. On the first and third line, the boxes 
are labelled by a symbol (v, x or w). This means that during the period of time 
represented by the box, the signal carries the value v (resp. x or w). This value 
v (resp. x, w) is not specified in the chronogram but has to be the same in all 
boxes labelled by v (resp. x, w). A minus sign can be added in the left part of 
the box: in this case, the signal carries the value ~ opposite to the label v of the 
box. On the first line such a box is used with the symbol w. 

The bold line boxes can be connected by arrows. The resulting graph can have 
several (simply) connected components. Each component defines a constraint. 
The relative location of the boxes is relevant only inside a connected component. 
For instance, the first property specified by the chronogram states: if  B carries 
the false value, ~hen I and 0 carry ~he same value (denoted by the symbol v 
in the chronogram). The other properties can be read in a similar way in the 
chronogram: two linked arrows must be interpreted as a logical and. 

3. A n  a b s t r a c t  s y n t a x  o f  t h e  C h r o n o g r a m  L a n g u a g e  

The abstract syntax of the language is given by a grammar, in which the 
initial of each non-terminal is a capital letter (e.g. Clock) and each terminal is 
either written in capital letters (i.g. IDENTIFIEI~), or consists of a single lower- 
case letter (e.g. i) or of a non alphabetic sign (e.g. 1, *). 

The rules are grouped by level of derivation and every rule is written only 
once. As a consequence, the derivation rules of some terms may precede some of 
their occurrences. 

Constraint ::= Property Constraint I Property 

Property ::= Clock Hypothesis Conclusion 

Hypothesis ::= TimeDiagram Conclusion ::= TimeDiagram 

TimeDiagram : := MultiColumnList 

Clock : := IDENTIFIER 

MultiColumnList ::= MultiColumn MultiColumnList I MultiColumn 

MultiColumn : := StaticMultiColunm I DynamicMultiColumn 

StaticMultiColumn ::= Width StaticRowList 

DynamicMultiColumn ::= FiniteLowerBound UpperBound DynamicRowList 
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StaticRowList ::= StaticRow StaticRowList I StaticRow 

DynamicRowList ::= DynamicRow DynamicRowList i DynamicRow 

StaticRow ::= StaticlntervalList IDENTIFIER 
DynamicRow ::= StaticIntervalList IDENTIFIER 

UpperBound ::= FiniteUpperBound I * 
Width ::= INTEGER Length ::= INTEGER 
FiniteLowerBound ::= INTEGER FiniteUpperBound ::= INTEGER 

StaticIntervalList ::= StaticInterval StaticIntervalList I NIL <_ 

DynamicIntervaiList ::= DynamicInterval DynamicIntervalList I NIL 

StaticInterval ::= Length PrimitiveSymbol 
DynamicInterval ::= PrimitiveSymbol 

PrimitiveSymbol ::= i I f I e I r I s I 1 I 0 I SymbolicValue 

SymbolicValue ::= - IDENTIFIER I IDENTIFIER 

4.  L a n g u a g e s  a n d  a u t o m a t a  

In this section, we briefly recall the basic definitions of the theory of au tomata  
needed in this article. For more details, the reader is referred to [6,16,19]. We 
also define the language-theoretic hierarchy that  will serve as a measure of the 
expressive power of the Chronogram Language. 

We denote respectively by A*, A + and A ~ the sets of finite words, non-empty 
finite words and infinite words on an alphabet A. A language is a set of finite 
words, that  is, a subset of A*. The rational operations are the three operations 
union, product  and star. The set of rational (or regular) languages of A* is the 
smallest set of subsets of A* containing the finite sets and closed under finite 
union, product  and star. For instance, {a, ctb}*ab U (ba*b)* denotes a rational set. 
It is possible to generalize the concept of rational languages to infinite words as 
follows. First, the product can be extended to A* x A ~, by setting, for X C A* 
and Y C A ~, 

X Y  = {xy l x E X and y e Y}.  

Next, we define an infinite iteration w by setting, for every subset X of A + 

X W = {x0xlx2 . . .  I for all i > 0, zi e X} 

Equivalently, X ~ is the set of infinite words obtained by concatenating an infinite 
sequence of words of X. By definition, a subset of A ~ is w-rational (or w-regular) 
if it is equal to a finite union of sets of the form X Y  ~ where X and Y are non- 
empty rational sets of A +. 

Boolean oper.ations comprise union, intersection, complementation and set 
difference. It can be shown that  the rational subsets of A* are closed under 
finite boolean operations. The set of star-free subsets of A* is the smallest set of 
subsets of A* containing the finite sets and closed under finite boolean operations 
and product.  The set of star-free subsets of A ~ is the smallest set $ of subsets 
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of A ~ closed under finite boolean operations and such that  if X is a star-free 
subset of A + and Y E S, then X Y  E S. 

The definition of star-free languages of A* makes use of two different types 
of operations: boolean operations and concatenation product. By alternating 
the use of these two operations, one gets a hierarchy, called the concatenation 
hierarchy, defined as follows. 
(1) The sets of level 0 are the empty set and A*, 
(2) For every integer n > 0, the sets of level n + 1/2 are the finite unions of the 

sets of the form LoalLla2 . . .a~L~ where L0, L1, . . . ,  L~ are sets of level n 
and hi, . . . ,  ak are letters 

(3) For every integer n > 0, the sets of level n + l  are finite boolean combinations 
of sets of level n + 1/2. 

Note that  a set of level m is also a set of level n for every n > m. Concatenation 
hierarchies can be extended to infinite words as follows. 
(1) The sets of level 0 are the empty set 0 and A ~, 
(2) For every integer n _~ 0, the sets of level n + 1/2 are the finite unions of the 

sets of the form X a Y ,  where X is a set of A* of level n + 1/2, Y is a subset 
of A ~ of level n and a is a letter. 

(3) For every n > 0, the sets of level n + 1 are finite boolean combinations of 
sets of level n + 1/2. 

5.  S e m a n t i c s  o f  t h e  C h r o n o g r a m  L a n g u a g e  

The formal semantics of the Chronogram Language comes from w-rational 
languages. More precisely, some rational language is associated with each of 
the graphic primitives of the Chronogram Language and with each variable. 
Next, to each operator of the Chronogram Language (generation of intervals, 
rows, columns, multicolumns, time diagrams, etc.) corresponds an operation on 
languages that  preserve rationality. A remarkable feature of the Chronogram 
Language is the use of symbolic values or boolean variables. We shall first detail 
this peculiar aspect. 

5.1.  B o o l e a n  v a r i a b l e s  a n d  v a l u a t i o n s  

If v denotes a boolean variable, ~ will denote the boolean variable defined by 

1 i f v = O  
= 0 otherwise 

Thanks to boolean variables, one can specify in the Chronogram Language not 
only properties like "The value of the signal at  time t is 0 (resp. 1)", but also 
properties of the form "the value of the signal is v at t ime t and ~ at t ime t + 3". 
In order to take in account these variables, it is convenient, in the first place, to 
represent a signal not as an infinite word on the alphabet B = {0, 1}, but  as an 
infinite word on the extended alphabet C = B U V U V~ where V is the set of 
variables used in the chronogram. 

One goes back to the binary alphabet B by associating a value with each 
variable. This can formally be realized by a valuation, that  is a map ~ : C ~ B 
such that  for all b E B, u(b) = b and for all v E V, u(~) = u(v). 
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For instance, the previous example would be interpreted as "the value of the 
signal is 0 at t ime t and 1 ~ at t ime t + 3" (which corresponds to the valuation 
u defined by u(v)  = 0) or "the value of the signal is 1 at t ime t and 0 at t ime 
t + 3" (which corresponds to the valuation u defined by u(v)  = 1). 

A valuation u : C --* B defines in a natural way a function u : C* --* B*, by 
setting, for every word c l c 2 . . . c ~  e C*, ~ ( c l c 2 . . .  c~) = v ( c l ) u ( c 2 ) . . ,  y(c,~). If L 
is a subset of C*, the set t~(L) is called the valuation of L. 

5.2. C o n s t r a i n t s  on  a s ing le  s igna l  

A signal is considered as an infinite word u on the binary alphabet B. As 
we shall see later, the constraints defined on a given signal in our language 
can always be formulated under the form u E L B  ~, where L is some rational 
language of B*, that  we shall now compute in more details. 

If the chronogram contains variables, we first identify the signal with an 
infinite word u on the alphabet C, as was explained before. The constraint 
in which the variables are not interpreted can be formulated under the form 
u E L B  ~, where L is some language rational of C*, while the final constraint 
can be expressed under the form 

e [_J  (L)B 
~' valuation 

There are in fact two types of constraints, the "static" constraints, which corre- 
spond to the case where L is a finite language, and the "dynamic" constraints, 
that correspond to the case where L can be an infinite language. 

In the case of a static constraint, the language L is obtained as a finite con- 
catenation of rational languages corresponding to static intervals. For instance, 
the following sequence of static intervals defines a constraint: "between time nl 
and n2, the signal has a unique rising edge, between time n2 and n3, its value 
is a constant v and between time ns and n4, its value is always 0". Note that in 
this case, the values of n2 - hi ,  n3 - n2 and n4 - n3 are the length of the static 
intervals. 

In the case of a dynamic constraint, the language L is obtained as a finite 
concatenation of rational languages corresponding to dynamic intervals. For in- 
stance, the following sequence of dynamic intervals defines a constraint: "There 
exist instants n2, n3, n4 such that  between time nl and n2, the signal has a 
unique rising edge, between time n2 and n3, its value is a constant v and be- 
tween time n3 and n4, its value is always 0" .  The difference with the previous 
case is that  the values of n2 - nl,  n3 - n2 and n 4 - -  n3 are not specified in the 
dynamic constraints, that  is, can be chosen arbitrarily. 

The languages associated with (static or dynamic) intervals are themselves 
obtained from the so-called primit ive  languages associated with the primit ive  
symbols. This vocable concerns the elements of the set Vt2VU{i~ 0~ 1~ f~ r~ s~ e} 
that is, all symbols of variables (possibly overlined) and the symbols associated 
with the graphic primitives of the Chronogram Language. First recall the intu- 
itive meaning of these primitives. 
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i (Irrelevant) The value of the signal is not specified and can be either 0 or 1. 
1 The signal is stable and its value is 1. 
0 The signal is stable and i tsvalue is 0. 
f (Falling) The signal owns one and only one falling edge (but may have 0, 1 

or 2 rising edges). 
r' (Rising) The signal owns one and only one rising edge. 
s (Stable) The signal is stable but its value is unknown. 
e (Edge) The value of the signal changes once and only once. 

This leads to the following table of the primitive languages associated with the 
graphic primitives: 

L(1) "- {0, 1} + L(1) - 1 + L(f) - 0'1+0+1 * L(0) -- 0 + 

L ( r ) = l * 0 + l + 0  * L ( s ) = 0  + U 1  + L ( e ) - 0 + l  + U I + 0  + 

On the other hand, the primitive language associated with each variable v is 

L(v)  -= v + and L ( ~ ) - ~ +  

We can now formally define the notion of interval. A static interval is a pair 
I = (s t) where s is a positive integer and t is a primitive symbol. Intuitively, 
the integer s represents the length of the interval on which the condition defined 
by t will be considered. For example, if s = 5 and t = e, the value of the signal 
will change once and only once in the interval [0, 5[. The language associated 
with I is the subset of C" defined by 

L( I )  = L(s  = L( t )  N C l 

For example, if s = 5 and t = e, then L( I )  = (0+1 + U 1+0 +) CI C s = 
{01111, 00111,00011,00001, 10000, 11000, 11100, 11110} A dynamic interval is 
simply a primitive symbol and thus the corresponding language is already de- 
fined. 

A static (resp. dynamic) row is a sequence of static (resp. dynamic) intervals. 
The language associated with a row (I1, I = , . . ,  Is) is defined by 

L(I1, I 2 , . . . ,  Is) = L ( I 1 ) L ( I 2 ) . . . L ( I s )  

For instance, the language of C + associated with the row represented below is 

llv{O,l}~{01111,O0111, O0011, O0001} 

0 1 2 3 4 5 6 7 8 9 I0 11 

I I l / - /  I I I I I I I ... ....... 

F i g u r e  5.1. A static row 
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Here is another example, for a dynamic row. If 11 = v, I2 = e and Is = ~, then 

L(I)  = v+(0+l  + U i+0+)~ + 

The languages associated with rows are described in the next proposition 

P r o p o s i t i o n  5.1. The languages associated with a static row and their valu- 
ations are finite languages. The languages associated with a dynamic row and 
their valuations are languages of level 3/2. 

Finally, if L is the language associated with a (static or dynamic) row, the 
constraint defined by this row is the set 

[J  (L)B 
v is a v a l u a t i o n  

In other words, in order to compute the constraint defined by a row, one first 
computes the language L associated with this row on the extended alphabet 
C and then one simply gives a value to the variables. For instance, for the 
row represented in figure 5.1, the constraint can be written (111{0, 1}00X U 
110{0, 1 } l l X ) B  ~ where X = {01111, 00111, 00011, 00001}. 

5.3. C o n s t r a i n t s  on  s eve ra l  s ignals  

We now define the language associated with a constraint on a set of k signals. 
We first introduce some auxiliary notation. Let A be an alphabet. For each 
integer k, A~ denotes the alphabet consisting of k-uple of letters of A, denoted 
as a column matrix.  One can represent a word of length n on the alphabet As 
as a k-array of words of A*. We denote by IrA : A~ ---* A* x A* x . . .  x A* the 

y ,  

k t i m e s  function defined by 

/ a1,1) 
. . .  

\ a~,s 

an,l 
art,2 

an,k 

) = (a l , l ' "an , l~  al,2"..an,2, . . . ,  a l , s . �9  

This function ?r A is in fact a monoid morphism of A~ into A* x A* x �9 .. x A* : 
this simply means that  it preserves the concatenation product. However, it is 
not an isomorphism (except if k = 1) because an element of A* x A* x . . .  x A* 
may have components of different length. This leads to introduce the notation 

D~(A) "- { ( u l , u ~ , . . . , u s )  E A* x A * . . . x A * [ l u l  I= [u2]= �9 = lusl} 

to denote the set of k-tuples of words of the same length. Now, since ~rx induces 
an isomorphism from A~ onto Dk(A), one can identify the k-tuples of Dk(A) 
with the words of A~. 

We now come back to signals�9 A static multicolumn is a pair M = (w, R) 
where w is a positive integer and R = ( R 1 , . . . ,  Rs) is a k-uple of static rows. 
Intuitively, to each row corresponds a signal, but  it is important  to observe that  
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two rows or more can represent the same physical signal. This technique allows to 
impose several distinct constraints on a given signal. By definition, the language 
associated with a static multicolumn (w,/~) is 

L(w,R)  = C[ M ~rcl(L(al)  x L(R2) x . . . x  L(R~)M Dk(C)) 

In other words, the k-tuples (ul,  u 2 , . . . ,  u~) such that ul 6 L(R1), u2 E L(R~), 
�9 .. ,  uk E L(Rk)  and [ u l [ =  [u2[ . . . .  = [uk[ = w are selected and identified 
with words of C; .  
A dynamic multicolumn is a triple M = (n, m, R) where n is a integer, m is 
either an integer or the symbol �9 and /~  = ( /~1, . . . ,  R~) is a k-tuple of dynamic 
rows. The language associated with a dynamic multicolumn is by definition 

L(n, m, T~) -- C;  (C~ ~ N ~rc 1 (L(/~I) x L(R2) x . . .  x L(Rk) M D~(C)))  

L (n ,* ,R)  = C~ (C; M ~rcl(L(R1) x L(R2) x . . .  x L(Rk)M Dk(C) ) ) l  

The difference between the types of multicolumns is that ,  in a dynamic multi- 
column, there may be no upper bound on the common length of the ui's. 
One can show for the multicolumns a result similar to the one obtained for rows 

Proposition 5.2. The languages associated with a static multicolumn and 
their valuations are finite languages. The languages associated with a dynamic 
multicolumn and their valuations are languages of level 3/2. 

5.4. Timing diagrams and properties, constraints 
A timing diagram (TD) is a sequence of multicolumns. A property is a pair 

P = (M, N)  of timing diagrams:  M = (M~,M2, . . .Mr)  is the hypothesis and 
N = (N1, N 2 , . . .  Nr) is the conclusion. The property is satisfied if every k-tuple 
of signals that  satisfies the hypothesis satisfies the conclusion, too. 

In the language formalism, this can be translated as follows: an infinite word 
w on the alphabet Bk satisfies a property P = (M, N)  if, for each suffix s of w, 
there exists a valuation u such that  for each factorization UlU2...uru~+l of s, 
where ul E L~(M1), u2 6 Lv(M2), . . . ,  ur E L~(Mr), ur+l E By,  there exists a 
factorisation ulu 2 '  ' �9 �9 �9 uru~+ ~ '  ' of s, where u~ E L~ (M1) N L~ (g l ) ,  u~ E L~ (M2) A 

' L~(Mr) M Lv(Nr), u' Lv(N2), . . . ,  u~ E r+l E B~. This can be reformulated as 
follows. 

T h e o r e m  5.3. An infinite word w on the alphabet Bk satisfies P if  and only 
if none of its suffixes belong to the set 

K ( P )  - A L~(M1)Lv(M2) . . .Lv(M~)By 
valuat ion  

\ ((L (M1)n n n )By 
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Coro l la ry  5.4. An infinite word w on the alphabet Bk satisfies a property P 
if  and only if  it belongs to the set L(P) = B~ \ B;K(P) .  

We arrive to our main result. 

T h e o r e m  5.5. For every property P, the set L(P) is a star-free set of level 3. 

We call a constraint a finite sequence of properties. The set of words defined 
by a constraint (P1, P2, . . . ,  Pn) is the language L(P1) N L(P2) N . . .  N L(Pn). 
Now, the languages of level 3 are closed under intersection and thus Theorem 
5.5 implies the following result. 

Corol la ry  5.6. The set of infinite words defined by a constraint is a star-free 
language of level 3. 

6. C o n c l u s i o n  
We have presented a new formal language for the specification of tempo- 

ral properties of Discrete Event Dynamic Systems. This language, called the 
Chronogram Language, is based on a well-known graphic metaphor: waveforms. 
It allows specifying some complex temporal properties in a more convenient way 
than textual temporal logics (CTL, CTL* . . . ) .  Although we do not consider 
this language as a universal one, we think that its graphical approach might be 
appreciated by designers. In fact, we view the chronogram language as a basic 
part of a future Computer Aid Design (CAD) environment including validation 
tools. 

The Chronogram Language is graphic and fully declarative. In this paper, we 
defined rigorously its semantics by using automata theory. The main result of this 
work is that it is possible to associate a finite automaton with any chronogram. In 
fact, as shown in this paper, chronograms correspond to a rather small subclass 
of the class of w-rational sets. 

We are now studying new developments: an extension of the Chronogram 
Language allowing designers to specify properties without any reference to some 
clock or including chronometric aspects (having physical time delays) and a 
consistency checking tool for sets of chronograms. We are also working on the 
improvement of the compilation algorithm since it is crucial to compile chrono- 
grams into as small as possible automata. Currently, compilers generate VHDL 
code and Signal code. New output languages will also be available in the future. 
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