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Abstract

We present an extension of Eilenberg’s variety theorem, a well-
known result connecting algebra to formal languages. We prove that
there is a bijective correspondence between formations of finite monoids
and certain classes of languages, the formations of languages. Our re-
sult permits to treat classes of finite monoids which are not necessarily
closed under taking submonoids, contrary to the original theory. We
also prove a similar result for ordered monoids.

This paper is the first step of a programme aiming at exploring the
connections between the formations of finite groups and regular languages.
The starting point is Eilenberg’s variety theorem [10], a celebrated result of
the 1970’s which underscores the importance of varieties of finite monoids
(also called pseudovarieties) in the study of formal languages. Since varieties
of finite groups are special cases of varieties of finite monoids, varieties seems
to be a natural structure to study languages recognized by finite groups.
However, in finite group theory, varieties are challenged by another notion.
Although varieties are incontestably a central notion, many results are better
formulated in the setting of formations. This raised the question whether
Eilenberg’s variety theorem could be extended to a “formation theorem”.

The aim of this paper is to give a positive answer to this question. To
our surprise, the resulting theorem holds not only for group formations but
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2LIAFA, Université Paris VII and CNRS, Case 7014, F-75205 Paris Cedex 13, France.
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also for formations of finite monoids. We also prove a similar result for
formations of ordered finite monoids, extending in this way a theorem of
[17].

Before stating these results more precisely, let us say a word on the
aforementioned research programme and give a brief overview of the ex-
isting literature. One of our ultimate goals would be to give a complete
classification of the Hall varieties as defined by Steinberg in [25] and stud-
ied by Auinger and Steinberg [1, 2, 3]. Such a classification was given in
[4] for varieties of finite supersolvable groups. A key tool of this paper is
the operation H → Gp ∗H, where Gp is the variety of finite p-groups and
H is a variety of groups. The second step of our programme [6] has been
precisely to study this operation, and the corresponding operation on lan-
guages, when H is a formation. The definition of a Hall variety can be
readily extended to formations and as we said earlier, formations are a more
flexible tool than varieties in finite group theory. Our hope is that it might
be easier to describe the Hall formations than the Hall varieties.

Let us come back to the present paper. A variety of finite monoids
is a class of finite monoids closed under taking submonoids, quotients and
finite direct products. Eilenberg’s theorem states that varieties of finite
monoids are in bijection with certain classes of recognizable languages, the
varieties of languages. The most famous instances of this correspondence
are two early results of automata theory: star-free languages are associated
with aperiodic monoids [20] and piecewise testable languages correspond
to J -trivial monoids [23]. But many more results are known and there is
a rich literature on the subject. We refer the reader to [18, 7, 19] for an
account of recent progress and a comprehensive bibliography. In the case
of groups, only a few varieties of languages have been investigated. They
correspond to the following varieties of finite groups: abelian groups [10],
p-groups [10, 29, 30], nilpotent groups [10, 28], soluble groups [26, 30] and
supersoluble groups [8].

Several attempts were made to extend Eilenberg’s variety theory to a
larger scope. For instance, ordered syntactic semigroups were introduced
in [17]. The resulting extension of Eilenberg’s variety theory permits to
treat classes of languages that are not necessarily closed under complement,
contrary to the original theory. Other extensions were developped indepen-
dently by Straubing [27] and Ésik and Ito [11] and more recently by Gehrke,
Grigorieff and Pin [13].

A formation of groups is a class of finite groups closed under taking
quotients and subdirect products. The significance of formations in group
theory is apparent since they are the first remarkable step in the develop-
ment of a generalised Sylow theory. Thus it was Gaschütz who began his
pioneering work on the subject in 1963 [12] with a paper which has become
a classic. Since that time the subject has proliferated and has played a fun-
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damental role in studying groups [9, 5]. To our knowledge, the notion of
formations of finite algebras was considered for the first time in [21, 24, 22]
and has never been used in finite semigroup theory.

Just as formations of finite monoids extend the notion of a variety of
finite monoids, formations of languages are more general than varieties of
languages. Like varieties, formations are classes of regular languages closed
under Boolean operations and quotients. But while varieties are closed under
inverse of morphisms, formations of languages enjoy only a weak version
of this property — see Property (F2) — and thus comprise more general
classes of languages than varieties. Nevertheless, our main result shows
that an appropriate extension of Eilenberg’s variety theorem still holds for
formations.

Our paper is organised as follows. Formations of monoids are introduced
in Section 1. Section 2 gives the definitions and basic results on formal
languages needed in this paper. Formations of languages are defined in
Section 3. Our main result, the Formation Theorem, is presented in Section
4. Its counterpart for ordered monoids is the topic of Section 5. Instances
of the Formation Theorem are given in Section 6: in particular, we give two
descriptions of the formation of languages corresponding to the formation
generated by the group A5, the alternating group of degree 5.

In this paper, all groups are finite. All monoids are either finite or free.

1 Formations of monoids

Recall that a monoid M is a subdirect product of the product of a family of
monoids (Mi)i∈I if M is a submonoid of the direct product

∏
i∈I Mi and if

each induced projection πi from M onto Mi is surjective. In this case, the
projections separate the elements ofM , in the sense that, if πi(x) = πi(y) for
all i ∈ I, then x = y. It is a well known fact that this property characterizes
subdirect products (see for instance [14, p. 78]).

Proposition 1.1 A monoid M is a subdirect product of a family of monoids
(Mi)i∈I if and only if there is a family of surjective morphisms (M →Mi)i∈I
which separate the elements of M .

Being a subdirect product is a transitive relation, in the following sense:

Proposition 1.2 Let M be a subdirect product of a family of monoids
(Mi)i∈I . Suppose that, for each i ∈ I, Mi is a subdirect product of a family
(Mi,j)j∈Ii. Then M is a subdirect product of the family (Mi,j)i∈I,j∈Ii.

Proof. The projections πi,j : Mi → Mi,j separate the elements of Mi and
the projections πi : M → Mi separate the elements of M . It follows that
the projections πi,j ◦ πi : M → Mi,j separate the elements of M .
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The next proposition states, in essence, that every subdirect product of
quotients is a quotient of a subdirect product (see [22, the proof of Lemma
3.2]).

Proposition 1.3 Let N be a subdirect product of a family of monoids (Mi)i∈I .

Suppose that, for each i ∈ I, Mi is the quotient of a monoid M̂i. Then N
is a quotient of a subdirect product of the family (M̂i)i∈I .

Proof. We use the following notation. We denote by M the product of the
family (Mi)i∈I and by πi : M → Mi the projections. Similarly, M̂ denotes

the product of the family (M̂i)i∈I and π̂i is the projection from M̂ to M̂i. For

each i ∈ I, let γi : M̂i →Mi be the quotient morphism and let γ : M̂ →M
be the product of these morphisms. Finally, let N̂ = γ−1(N).

N̂ ⊆ M̂

N ⊆M

M̂i

Mi

π̂i

γi

πi

γ

By construction, N̂ is a submonoid of M̂ . To prove that N̂ is a subdirect
product, it suffices to verify that, for each i ∈ I and for each m̂i ∈ M̂i,
there is an element m̂ ∈ N̂ such that π̂i(m̂) = m̂i. Let mi = γi(m̂i). Since
N is a subdirect product of the family (Mi)i∈I , there is an element n of N

such that πi(n) = mi. For j 6= i, let m̂j be an element of M̂j such that

γj(m̂j) = πj(n). Finally let m̂ be the element of M̂ defined by π̂i(m̂) = m̂i

and π̂j(m̂) = m̂j for j 6= i. Then the formulas

πi(γ(m̂)) = γi(π̂i(m̂)) = γi(m̂i) = mi = πi(n)

and for each j 6= i,

πj(γ(m̂)) = γj(π̂j(m̂)) = γj(m̂j) = πj(n)

show that γ(m̂) = n. Consequently, m̂ belongs to N̂ and satisfies π̂i(m̂) =
m̂i.

The notion of a formation is a standard tool of group theory that has
been extended to general algebraic systems by Shemetkov and Skiba [22].
However, its use in finite semigroup theory seems to be new.

A formation of monoids is a class of finite monoids F satisfying the two
conditions:
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(1) any quotient of a monoid of F also belongs to F,

(2) the subdirect product of any finite family of monoids of F is also in F.

If S is a set of finite monoids, the formation generated by S is the smallest
formation containing S. The following result is well-known for formations
of groups [9, II.2.2, p. 272] and was extended by Shemetkov and Skiba to
general algebraic systems [22, Chapter I, Lemma 3.2] (see also [15]). For the
convenience of the reader, we give here a self-contained proof in the case of
monoids.

Proposition 1.4 The formation generated by a class S of monoids consists
of all quotients of subdirect products of members of S.

Proof. Let F be the class of all quotients of subdirect products of members
of S. It suffices to prove that F is a formation. It is clearly closed under
quotient. Let us prove that it is closed under subdirect products. Let M be
a subdirect product of a finite family (Mi)i∈I of monoids Mi of F. Each Mi

is a quotient of a subdirect product Ni of members of S. By Proposition
1.3, M is also a quotient of a subdirect product N of the monoids Ni.
Now, Proposition 1.2 shows that N is a subdirect product of members of S.
Therefore M belongs to F.

A variety of finite monoids is a class of finite monoids closed under taking
submonoids, quotients and finite direct products. It follows that a formation
is a variety if and only if it is closed under taking submonoids. Therefore a
formation is not necessarily a variety. For instance, the formation generated
by A5 is known to be the class of all direct products of copies of A5 [9,
II.2.13]. Other very natural examples are given in the next proposition and
its corollary.

Recall that a monoid M has a zero if there is an element 0 in M such
that, for all x ∈M , x0 = 0 = 0x.

Proposition 1.5 Let F be a formation of groups. The finite monoids whose
minimal ideal is a group of F constitute a formation, which is not a variety,
even if F is a variety of groups.

Proof. Let E be the class of finite monoids described in the proposition and
let M ∈ E. If N is a quotient of M , the minimal ideal of N is a quotient
of the minimal ideal of M . Since if M belongs to E, its minimal ideal is
a group of F. It follows that the minimal ideal of N is also a group of F.
Consequently, E is closed under quotients.

Let M be a subdirect product of a finite family (Mi)i∈I of monoids of
E. Then there is a family of surjective morphisms (πi : M →Mi)i∈I which
separates the elements of M . Let I be the minimal ideal of M and let Gi be
the minimal ideal of Mi. By definition of E, Gi is a group of F. Let ei be
the identity of Gi. If e is an idempotent of I, then πi(e) is an idempotent
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of Gi and thus is necessarily equal to ei. Since the family (πi)i∈I separates
the elements of M , I contains a unique idempotent and hence is a group
G. Each πi induces a surjective group morphism from G onto Gi and this
family of morphisms separates the elements of G. Therefore G is a subdirect
product of the Gi and thus belongs to F. Consequently,M is in E and hence
E is a formation of monoids.

We claim that the variety of finite monoids V generated by E is the
variety of all monoids. Indeed, let M be a finite monoid. Then the monoid
M0 obtained by adjoining a zero to M belongs to E and thus M , which is
a submonoid of M0, belongs to V. In particular, E is not a variety of finite
monoids.

Corollary 1.6 Finite monoids with zero constitute a formation, which is
not a variety of finite monoids.

Proof. Apply Proposition 1.5 to the trivial formation of groups.

Corollary 1.6 gives rise to a large collection of examples of formations.

Corollary 1.7 The monoids with zero of a given formation of monoids con-
stitute a formation.

2 Languages

A language is a subset of a free monoid A∗. Let us say that a monoid
morphism ϕ : A∗ →M recognizes a language L of A∗ if there is a subset P
of M such that L = ϕ−1(P ). It is equivalent to say that L is saturated by
ϕ, that is, L = ϕ−1(ϕ(L)). If ϕ is surjective, we say that ϕ fully recognizes
L. By extension, one says that a language is [fully ] recognized by a monoid
M if there exists a morphism from A∗ into M which [fully] recognizes L.

The results presented in the remainder of this section are more or less
folklore (see [10, 16, 18] for references). However, we include their proofs for
two reasons. First, to keep the article selfcontained. Secondly, requiring all
morphisms to be surjective induces some subtle differences with the standard
statements, making references to the existing literature more difficult.

Let us start with an elementary but useful result.

Proposition 2.1 Let L be a language of A∗ and let ϕ : A∗ → M be a
morphism recognizing L. Then for each language R of A∗, one has ϕ(L ∩
R) = ϕ(L) ∩ ϕ(R).

Proof. The inclusion ϕ(L∩R) ⊆ ϕ(L)∩ϕ(R) is clear. To prove the opposite
inclusion, consider an element s of ϕ(L) ∩ ϕ(R). Then one has s = ϕ(r) for
some word r ∈ R. It follows that r ∈ ϕ−1(s), wherefore r ∈ ϕ−1(ϕ(L)) and
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finally r ∈ L since ϕ−1(ϕ(L)) = L. Thus r ∈ L∩R and s ∈ ϕ(L∩R), which
concludes the proof.

We shall also need an important consequence of the universal property
of the free monoid (see [16, p. 10]).

Proposition 2.2 Let η : A∗ → M be a morphism and β : N → M be a
surjective morphism. Then there exists a morphism ϕ : A∗ → N such that
η = β ◦ ϕ.

2.1 Syntactic morphism

Recall that the syntactic monoid of a language L of A∗ is the quotient of A∗

by the syntactic congruence of L, defined on A∗ as follows: u ∼L v if and
only if, for every x, y ∈ A∗,

xvy ∈ L⇔ xuy ∈ L

The natural morphism η : A∗ → A∗/∼L is the syntactic morphism of L.
Note that η fully recognizes L. Further, η has the following property.

Proposition 2.3 Let L be a language of A∗ and let η : A∗ → M(L) be its
syntactic morphism. A surjective morphism ϕ from A∗ onto a monoid M
fully recognizes L if and only if there is a surjective morphism π : M →
M(L) such that η = π ◦ ϕ.

M(L)M

A∗

η

π

ϕ

In other words, the syntactic monoid is a quotient of any monoid fully rec-
ognizing L and thus is the smallest monoid fully recognizing L.

More generally, given a subset P of a monoid M , the syntactic congru-
ence of P is the congruence defined on M as follows: u ∼P v if and only if,
for every x, y ∈M ,

xvy ∈ P ⇔ xuy ∈ P

The next result explains the behaviour of syntactic congruences under sur-
jective morphisms.

Proposition 2.4 Let π : M → N be a surjective morphism of monoids.
Let P be a subset of N and let Q = π−1(P ). Then for all u, v ∈M , u ∼Q v
if and only if π(u) ∼P π(v).
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Proof. Suppose that u ∼Q v and let us prove that π(u) ∼P π(v). By
symmetry, it suffices to prove that, for all (s, t) ∈ N × N , the condition
sπ(u)t ∈ P implies sπ(v)t ∈ P . Since π is surjective, one has s = π(x) and
t = π(y) for some x, y ∈ M . Therefore if sπ(u)t ∈ P one gets π(xuy) =
π(x)π(u)π(y) ∈ P and thus xuy ∈ Q. Since u ∼Q v, it follows that xvy ∈ Q
and thus π(xvy) = sπ(v)t ∈ P . Thus π(u) ∼P π(v).

Suppose now that π(u) ∼P π(v) and let us prove that u ∼Q v. By
symmetry, it suffices to prove, for all (x, y) ∈M ×M , that xuy ∈ Q implies
xvy ∈ Q. Suppose that xuy ∈ Q. Then π(xuy) = π(x)π(u)π(y) ∈ π(Q) =
P . Since π(u) ∼P π(v), it follows that π(x)π(v)π(y) ∈ P , which gives
xvy ∈ π−1(P ) = Q. Thus u ∼Q v.

A subset P ofM is called disjunctive if the congruence ∼P is the equality
relation. It follows readily from the definition that a subset P of M is
disjunctive if and only if its complement in M is disjunctive. We shall need
the following elementary proposition.

Proposition 2.5 Let P be a disjunctive subset of a monoid M and let γ :
A∗ → M be a surjective morphism. Then γ is the syntactic morphism of
the language γ−1(P ).

Proof. Let L = γ−1(P ). By construction, γ fully recognizes L. Therefore,
the condition γ(u) = γ(v) implies u ∼L v. Conversely, if u ∼L v then
γ(u) ∼P γ(v) by Proposition 2.4 and thus γ(u) = γ(v). This proves that γ
is the syntactic morphism of L.

A frequently asked question is whether any monoid is the syntactic
monoid of some language. The answer is negative in the general case (see
Example 2.1 below), but it is positive for groups.

Proposition 2.6 Let π be a surjective morphism from A∗ onto a group G.
Then π is the syntactic morphism of the language π−1(1).

Proof. Let L = π−1(1). We claim that G is the syntactic group of L.
Indeed, let u, v ∈ G∗ and suppose that u ∼L v. Then, for every x, y ∈ G∗,
π(xuy) = 1 if and only if π(xvy) = 1. Take for y the empty word and for x
a word such that π(x) = π(u)−1. We get π(xuy) = 1 and hence π(xvy) = 1.
But π(xvy) = π(xv) = π(x)π(v) = π(u)−1π(v) and thus π(u) = π(v). This
proves the claim and the proposition.

Corollary 2.7 Every group is the syntactic monoid of some language.

Example 2.1 Consider the 4-element monoid M = {1, a, b, c}, where 1 is
the identity and the multiplication is defined by xy = y for all x, y ∈M \{1}.
Then M contains no disjunctive subset and hence cannot be the syntactic
monoid of any language.
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2.2 Operations on languages

Simple operations on languages have a natural algebraic counterpart. We
study in this order complement, intersection, union, inverse of surjective
morphisms and left and right quotients. We denote by Lc the complement
of a language L of A∗.

Proposition 2.8 Let L be a language of A∗. If L is [fully] recognized by a
monoid M , then Lc is also [fully] recognized by M .

Proof. Let ϕ : A∗ → M be a morphism [fully] recognizing L and let P =
ϕ(L). Then L = ϕ−1(P ) and hence A∗\L = ϕ−1(M\P ). ThusM recognizes
Lc.

Let (Mi)16i6n be a family of monoids and, for 1 6 i 6 n, let ϕi : A
∗ →

Mi be a surjective monoid morphism. The product of these morphisms is
the surjective morphism

ϕ : A∗ → Im(ϕ) ⊆M1 × · · · ×Mn

defined by ϕ(x) = (ϕ1(x), . . . , ϕn(x)).

Proposition 2.9 The monoid Im(ϕ) is a subdirect product of the family of
monoids (Mi)16i6n.

Proof. Let M = Im(ϕ). By construction, M is a submonoid of the direct
product M1 × · · · ×Mn. Let πi : M → Mi be the natural projection. One
has by construction ϕi = πi ◦ ϕ and thus πi is surjective. It follows that M
is a subdirect product.

Proposition 2.10 Let L1, . . . , Ln be languages of A∗ and let, for 1 6 i 6 n,
Mi be a monoid fully recognizing Li. Then the sets ∩16i6nLi and ∪16i6nLi

are fully recognized by a subdirect product of the monoids Mi.

Proof. By hypothesis, each language Li is fully recognized by a morphism
ϕi from A∗ onto a monoid Mi. Setting Pi = ϕi(Li), one gets Li = ϕ−1

i (Pi).
Let ϕ : A∗ →M be the product of these morphisms. Proposition 2.9 shows
that M is a subdirect product of the monoids Mi. Then the formula

⋂

16i6n

Li = ϕ−1
(
(P1 × · · · × Pn) ∩M

)

shows that the intersection ∩16i6nLi is fully recognized by M . Since union
and intersection interchange under complementation, Proposition 2.8 shows
that M also fully recognizes the set ∪16i6nLi.
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Corollary 2.11 Let L1, . . . , Ln be languages of A∗ and let, for 1 6 i 6 n,
Mi be the syntactic monoid of Li. Then the syntactic monoid of ∩16i6nLi

and ∪16i6nLi is a quotient of a subdirect product of the monoids Mi.

Proof. By Proposition 2.10, the languages ∩16i6nLi and ∪16i6nLi are fully
recognized by a subdirect productM of the monoidsMi, and by Proposition
2.3, their syntactic monoid is a quotient of M .

Proposition 2.12 Let α : A∗ → B∗ be a monoid morphism and let L be
a language of B∗ recognized by a morphism ϕ from B∗ onto a monoid M .
Then ϕ◦α recognizes the language α−1(L). In particular, if ϕ is the syntactic
morphism of L, then ϕ ◦ α is the syntactic morphism of α−1(L).

Proof. Since ϕ recognizes L, one has L = ϕ−1(ϕ(L)) and hence α−1(L) =
α−1(ϕ−1(ϕ(L))) = (ϕ ◦ α)−1(ϕ(L)). If ϕ ◦ α is surjective, it fully recognizes
α−1(L).

The second part of the statement follows from Proposition 2.5.

Recall that, for each subset X of a monoid M and for each element s of
M , the left [right ] quotient s−1X [Xs−1] of X by s is defined as follows:

s−1X = {t ∈M | st ∈ X} and Xs−1 = {t ∈ S | ts ∈ X}

More generally, for any subset K of M , the left [right] quotient K−1X
[XK−1] of X by K is

K−1X =
⋃

s∈K

s−1X = {t ∈M | there exists s ∈ K such that st ∈ X}

XK−1 =
⋃

s∈K

Xs−1 = {t ∈M | there exists s ∈ K such that ts ∈ X}

Proposition 2.13 If a morphism [fully] recognizes a language L of A∗, it
also [fully] recognizes the languages K−1L and LK−1 for every language K
of A∗.

Proof. Let ϕ be a morphism from A∗ into a monoid M [fully] recognizing
L and let P = ϕ(L) and R = ϕ(K). We claim that ϕ−1(R−1P ) = K−1L.
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Indeed, one has the following sequence of equivalent statements:

u ∈ ϕ−1(R−1P ) ⇐⇒ ϕ(u) ∈ R−1P

⇐⇒ there exists r ∈ R such that rϕ(u) ∈ P

⇐⇒ there exists k ∈ K such that ϕ(k)ϕ(u) ∈ P

⇐⇒ there exists k ∈ K such that ku ∈ ϕ−1(P )

⇐⇒ there exists k ∈ K such that ku ∈ L

⇐⇒ u ∈ K−1L

Thus ϕ [fully] recognizes K−1L. A similar proof works for LK−1.

2.3 Regular languages

A language is recognizable (or regular) if it is recognized by a finite de-
terministic automaton. This is equivalent to saying that the language is
recognized by some finite monoid or that its syntactic monoid is finite. It
is a well-known fact that a language is regular if and only if it has finitely
many left (or right) quotients.
As a preparation to our main result, we now prove two results interesting
on their own right. The first one follows essentially from [10, Formula 4.2
p.199].

Proposition 2.14 If L is a recognizable language, every language recog-
nized by the syntactic morphism of L belongs to the Boolean algebra gener-
ated by the quotients of L.

Proof. Let η : A∗ → M be the syntactic morphism of L. Since L is recog-
nizable, M is finite. Let P = η(L) and let u be an element of M . We claim
that

{u} =
⋂

{(x,y)∈M2 |xuy∈P}

x−1Py−1 \
⋃

{(x,y)∈M2 | xuy/∈P}

x−1Py−1 (1)

Let R be the right hand side of (1). It is clear that u belongs to R. Let
now r be an element of R. Then, by construction, the conditions xuy ∈ P
and xry ∈ P are equivalent. It follows that u ∼P r. Since M is the
syntactic monoid of L, the syntactic congruence ∼P is the equality. Thus
r = u, which proves (1). Since η−1 commutes with Boolean operations and
quotients, η−1(u) is a Boolean combination of quotients of L.

If K is a language recognized by η, then K = η−1(Q) with Q = η(K).
Therefore, since

K = η−1(Q) =
⋃

u∈Q

η−1(u)

the language K belongs to the Boolean algebra generated by the quotients
of L.
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Proposition 2.15 Let ϕ : A∗ → M be a surjective morphism and let, for
each s ∈M , Ms be the syntactic monoid of the language ϕ−1(s). Then each
Ms is a quotient of M and M is subdirect product of the monoids Ms.

Proof. Let s ∈ M and let ηs : A∗ → Ms be the syntactic morphism of
ϕ−1(s). Since ϕ fully recognizes ϕ−1(s), there exists by Proposition 2.3 a
surjective morphism πs :M →Ms such that ηs = πs ◦ ϕ.

We claim that the projections πs separate the elements of M . Let x, y ∈
M and let u, v be words of A∗ such that ϕ(u) = x and ϕ(v) = y. If
πs(x) = πs(y), then ηs(u) = ηs(v) and thus u ∼ϕ−1(s) v. It follows by
Proposition 2.4 that ϕ(u) ∼{s} ϕ(v), that is x ∼{s} y. This property holds
for all s ∈ M and for s = x, gives in particular x ∼{x} y. Since 1x1 ∈ {x},
one gets 1y1 ∈ {x}, that is x = y, which proves the claim. Therefore M is
subdirect product of the monoids Ms.

3 Formations of languages

A class of regular languages C associates with each finite alphabet A a set
C(A∗) of regular languages of A∗. A formation of languages is a class of
regular languages F satisfying the following conditions:

(F1) for each alphabet A, F(A∗) is closed under Boolean operations and
quotients,

(F2) if L is a language of F(B∗) and η : B∗ → M denotes its syntactic
morphism, then for each monoid morphism α : A∗ → B∗ such that
η ◦ α is surjective, the language α−1(L) belongs to F(A∗).

Observe that a formation of languages is closed under inverse of surjective
morphisms, but this condition is not equivalent to (F2). However, one could
also use another condition:

(F′
2) if L is a language of F(B∗) and ϕ : B∗ → M is a morphism fully
recognizing L, then for each monoid morphism α : A∗ → B∗ such that
ϕ ◦ α is surjective, the language α−1(L) belongs to F(A∗).

Proposition 3.1 Conditions (F2) and (F′
2) are equivalent.

Proof. Since the syntactic morphism of a language fully recognizes this
language, it is clear that (F′

2) implies (F2).
Suppose that (F2) holds and let ϕ : B∗ → M be a morphism fully

recognizing a language L. Let η : B∗ → N be the syntactic morphism of
L. By Proposition 2.3, there is a surjective morphism π : M → N such
that η = π ◦ ϕ. Let α : A∗ → B∗ be a monoid morphism such that ϕ ◦ α
is surjective. Then η ◦ α = π ◦ (ϕ ◦ α) and thus η ◦ α is surjective. It
follows by (F2) that α−1(L) belongs to F(A∗), which proves (F′

2).
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Let us now give an alternative definition of a formation of languages.

Proposition 3.2 A class of regular languages F is a formation of languages
if and only if it satisfies conditions (F1) and (F3):

(F3) if L is a language of F(B∗) and K is a language of A∗ whose syntactic
monoid is a quotient of the syntactic monoid of L, then K belongs to
F(A∗).

Proof. Let F be a class of regular languages. We first show that if F
satisfies (F1) and (F3), then it also satisfies (F2). Let L be a language of
F(B∗) and let η : B∗ →M be its syntactic morphism. Let α : A∗ → B∗ be a
morphism such that η ◦ α is surjective. By Proposition 2.12, the morphism
η ◦ α is the syntactic morphism of α−1(L) and it follows from (F3) that
α−1(L) belongs to F(A∗).

Let us show now that if F satisfies (F1) and (F2), it also satisfies (F3).
Let L be a language of F(B∗) and let η : B∗ →M be its syntactic morphism.
Let π : M → N be a surjective morphism and let K be a language of A∗

whose syntactic monoid is N . Let ϕ : A∗ → N be the syntactic morphism
of K and let γ = π ◦ η. Finally, let

R = η−1(π−1(ϕ(K))) = γ−1(ϕ(K))

By construction, this language is recognized by η and by Proposition 2.14,
it belongs to the Boolean algebra generated by the quotients of L. It follows
by (F1) that R belongs to F(B∗). Since A∗ is a free monoid and since γ
is surjective, there exists a morphism α : A∗ → B∗ such that γ ◦ α = ϕ.
Our notation is summarized in the diagram below. A double-head arrow
indicates a surjective morphism.

A∗

B∗ M N

α ϕ

γ

η π

Since ϕ is the syntactic morphism of K, the set ϕ(K) is disjunctive in N
and by Proposition 2.5, γ is the syntactic morphism of R. Since γ ◦ α is
equal to ϕ, it is surjective and Condition (F2) shows that α−1(R) belongs
to F(A∗). But α−1(R) = α−1(γ−1(ϕ(K))) = ϕ−1(ϕ(K)) = K. Thus K
belongs to F(A∗), which proves (F3).
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Notice that a similar result holds for varieties of languages in Eilenberg’s
sense. Recall that a variety of languages is a class V of regular languages
satisfying the following conditions:

(V1) for each alphabet A, V(A∗) is closed under Boolean operations and
quotients,

(V2) if L is a language of V(B∗), then for each monoid morphism α : A∗ →
B∗, the language α−1(L) belongs to V(A∗).

The counterpart of Proposition 3.2 for varieties is the following:

Proposition 3.3 A class of regular languages V is a variety of languages
if and only if it satisfies conditions (V1) and (V3):

(V3) if L is a language of V(B∗) and K is a language of A∗ whose syntactic
monoid divides the syntactic monoid of L, then K belongs to V(A∗).

Proof. Suppose that V is a variety of languages and let V be the associated
variety of monoids. If L is a language of V(B∗), then its syntactic monoid
M belongs to V. Therefore, if the syntactic monoid of K divides M , it also
belongs to V and by the variety theorem, K belongs to V(A∗).

Suppose now that V is a class of languages satisfying (V1) and (V3). We
claim that V satisfies (V2). Let L be a language of V(B∗) and let α : A∗ →
B∗ be a monoid morphism. Then the syntactic monoid of α−1(L) divides
that of L and thus by (V3), the language α−1(L) belongs to V(A∗).

4 The Formation Theorem

To each formation of monoids F, let us associate the class of languages F(F)
defined as follows: for each alphabet A, F(F)(A∗) is the set of languages of
A∗ fully recognized by some monoid of F, or, equivalently, whose syntactic
monoid belongs to F.

Proposition 4.1 If F is a formation of monoids, then F(F) is a formation
of languages.

Proof. Propositions 2.8, 2.10 and 2.13 show that, for each alphabet A, the
set F(F)(A∗) is closed under Boolean operations and quotients. Proposition
2.12 shows that the second condition defining a formation of languages is
also satisfied.

We are now ready to state the main result of this section. Given a
formation of languages F , let us denote by F(F) the formation of monoids
generated by the syntactic monoids of the languages of F .
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Theorem 4.2 (Formation Theorem) The correspondences F → F(F)
and F → F(F) are two mutually inverse, order preserving, bijections be-
tween formations of monoids and formations of languages.

Proof. We first prove that F(F(F)) = F. Let F′ = F(F(F)). Let M
be a monoid of F and let ϕ : A∗ → M be a surjective morphism. By
Proposition 2.15, M is a subdirect product of the syntactic monoids Ms of
the languages ϕ−1(s), for s ∈ M . Each Ms is a quotient of M and thus
belongs to F. It follows that ϕ−1(s) belongs to F(F)(A∗) and that Ms

belongs to F′. Consequently, M belongs to F′. This proves the inclusion
F ⊆ F′.

To prove the opposite inclusion, consider a monoid M of F′. Then M
is a quotient of a subdirect product of a finite family (Mi)16i6n of syntactic
monoids of languages of F(F). Since a language belongs to F(F) if and
only if its syntactic monoid belongs to F, each Mi belongs to F and thus M
belongs to F. Thus F′ = F.

We now prove that F(F(F)) = F . Let F ′ = F(F(F)). If L is a language
of F , then its syntactic monoid belongs to F(F) by definition and thus L
belongs to F ′. This proves the inclusion F ⊆ F ′.

Consider now a language L of F ′(A∗) and let ϕ : A∗ →M be its syntactic
morphism. Since M belongs to F(F), it is a quotient of a subdirect product
N of a finite family (Ni)i∈I of monoids, each monoid Ni being the syntactic
monoid of a language Li of F(A∗

i ), for some alphabet Ai. Let ϕi : A
∗
i → Ni

be its syntactic morphism. Let δ be the surjective morphism from N onto
M and ι the injective morphism from N into

∏
i∈I Ni. We also denote by

πi the natural projection from
∏

i∈I Ni onto Ni and we set γi = πi ◦ ι. Since
N is a subdirect product, each map γi is surjective. Finally, let β : B∗ → N
be a surjective monoid morphism.

Our notation is summarized in the diagram below.

A∗ N

M

∏
Ni

Ni

A∗
i

B∗

ϕ δ

β

ι

α αi

γi ϕi

πi

Since ϕi is surjective, Proposition 2.2 shows that there is a monoid morphism
αi : B

∗ → A∗
i such that ϕi ◦αi = γi ◦β. Then αi is not necessary surjective,
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but ϕi ◦ αi is surjective. By the same type of argument, there is a monoid
morphism α : A∗ → B∗ such that ϕ = δ ◦ β ◦ α.

We need to show that L belongs to F(A∗). Let P = ϕ(L). Since ϕ is
the syntactic morphism of L, one has L = ϕ−1(P ). Let Q = δ−1(P ) and let
m = (mi)i∈I be an element of N . Then the following formula holds:

β−1(m) =
⋂

i∈I

β−1(γ−1
i (mi)) =

⋂

i∈I

α−1
i (ϕ−1

i (mi)) (2)

Now, since ϕi is the syntactic morphism of the language Li, Proposition 2.14
shows that the language ϕ−1

i (mi) belongs to the Boolean algebra generated
by the quotients of Li. Since Li belongs to F(A∗

i ), one also has ϕ−1
i (mi) ∈

F(A∗
i ). Since the morphism ϕi ◦ αi is equal to γi ◦ β, it is surjective and by

(F2) the language α−1
i (ϕ−1

i (mi)) belongs to F(B∗). It follows now from (2)
and (F1) that β

−1(m) belongs to F(B∗). Further, since

β−1(δ−1(P )) = β−1(Q) =
⋃

m∈Q

β−1(m)

one gets β−1(δ−1(P )) ∈ F(B∗). Finally,

L = ϕ−1(P ) = α−1(β−1(δ−1(P )))

and since the morphism δ ◦ β ◦ α is equal to ϕ, it is surjective, and thus by
(F′

2) the language L belongs to F(A∗). Thus F = F ′.

As a consequence of the previous theorem, we obtain Eilenberg’s variety
theorem.

Corollary 4.3 The restriction of the correspondences F → F(F) and F →
F(F) to varieties of monoids and to varieties of languages are two mutually
inverse bijections.

Proof. Let V be a variety of monoids. Then V(V) is a formation of lan-
guages. To show that V(V) is a variety of languages it is enough to see that
V(V) satisfies condition (V3). Let L be a language of V(V)(B∗). Then the
syntactic monoid M(L) of L is in V. Now, if K is a language of A∗ whose
syntactic monoid M(K) divides M(L), then M(K) ∈ V. It follows that
K ∈ V(V)(A∗).

Consider now a variety of languages V. Let us prove that V(V) is a
variety of monoids. Let M be a monoid of V(V) and let T be a submonoid
ofM . Let ϕ : B∗ →M and τ : A∗ → T be two surjective monoid morphisms.
By Proposition 2.2, there is a morphism α : A∗ → B∗ such that ι◦τ = ϕ◦α,
where ι denotes the inclusion map from T into M . For each t ∈ T the
following equalities hold:

τ−1(t) = τ−1(ι−1(t)) = α−1(ϕ−1(t))
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On the other hand, ϕ−1(t) is a language of B∗ fully recognized byM andM
belongs to V(V). Thus, by Theorem 4.2, ϕ−1(t) ∈ V(V(V))(B∗) = V(B∗).
Now, since V is a variety of languages, we obtain that α−1(ϕ−1(t)) ∈ V(A∗).
Therefore, the syntactic monoid Mt of τ−1(t) belongs to V(V), for each
t ∈ T . Since by Proposition 2.15, T is a subdirect product of the family of
monoids (Mt)t∈T , we conclude that T ∈ V(V).

5 Positive formations and ordered monoids

A generalization of Eilenberg’s variety theorem was proposed by the second
author in [17]. This result provides a bijective correspondence between the
varieties of finite ordered monoids and the so-called positive varieties of
languages. We show in this section that the Formation Theorem can be
extended in a similar way. To keep this paper to a reasonable size, we
give only the definitions required to state the main result. The proof can
be readily adapted from the proof of Theorem 4.2 by using the arguments
of [17]. The reader is referred to [17, 18, 19] for more details on positive
varieties.

5.1 Positive formations of languages

A positive variety of languages is defined by relaxing the definition of a vari-
ety of languages: only positive Boolean operations (union and intersection)
are allowed — no complement. It is therefore natural to define a positive
formation of languages as a class of regular languages F satisfying (F2) and

(F+
1 ) for each alphabet A, F(A∗) is closed under finite union, finite inter-

section and quotients.

Examples of positive formations of languages will be given in Section 6.

5.2 Ordered monoids

An ordered monoid is a monoid equipped with a stable partial order relation,
usually denoted by 6. A morphism of ordered monoids is a morphism of
monoids which preserves orders.

A subset I of an ordered monoid is an order ideal if x ∈ I and y 6 x
imply y ∈ I.

We say that (S,6) is an ordered submonoid of an ordered monoid (T,6)
if S is a submonoid of T and the order on S is the restriction to S of the
order on T . Similarly, (T,6) is a quotient of (S,6) if there exists a surjective
morphism of ordered monoids ϕ : (S,6) → (T,6).

Given a family (Mi)i∈I of ordered monoids, the product
∏

i∈I Mi is the or-
dered monoid defined on the set

∏
i∈I Mi by the law (si)i∈I(s

′
i)i∈I = (sis

′
i)i∈I

and the order given by (si)i∈I 6 (s′i)i∈I if and only if, for all i ∈ I, si 6 s′i.
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An ordered monoid M is a subdirect product of a family of ordered
monoids (Mi)i∈I if M is an ordered submonoid of the product

∏
i∈I Mi

and if each induced projection from M onto Mi is surjective.
A formation of ordered monoids is a class of finite ordered monoids closed

under taking quotients and finite subdirect products.

5.3 Recognition by ordered monoids

Let L be a language of A∗ and let M be an ordered monoid. Then L is
fully recognized by M if and only if there exist an order ideal I of M and a
surjective monoid morphism ϕ from A∗ into M such that L = ϕ−1(I).

Let η : A∗ →M be the syntactic morphism of L and let P = η(L). The
syntactic order 6P is defined on M as follows: u 6P v if and only if for all
x, y ∈M ,

xvy ∈ P ⇒ xuy ∈ P

The partial order 6P is stable and the resulting ordered monoid (M,6P ) is
called the ordered syntactic monoid of L.

5.4 The Positive Formation Theorem

To each formation of ordered monoids F, let us associate the class of lan-
guages F(F) defined as follows: for each alphabet A, F(F)(A∗) is the set of
languages of A∗ fully recognized by some ordered monoid of F, or, equiva-
lently, whose ordered syntactic monoid belongs to F.

Proposition 5.1 If F is a formation of ordered monoids, then F(F) is a
positive formation of languages.

Given a positive formation of languages F , let us denote by F(F) the forma-
tion of ordered monoids generated by the ordered syntactic monoids of the
languages of F . We are now ready to state the Positive Formation Theorem:

Theorem 5.2 The correspondences F → F(F) and F → F(F) are two
mutually inverse, order preserving, bijections between formations of ordered
monoids and positive formations of languages.

6 Examples

This section presents three instances of the [Positive] Formation Theorem.
The first two examples were first considered in [13]. The third example is
related to group theory.
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6.1 Languages with zero and nondense languages

A language with zero is a language whose syntactic monoid has a zero, or
equivalently, a language recognized by a monoid with zero. By Corollary 1.6,
finite monoids with zero constitute a formation. The Formation Theorem
now gives immediately:

Proposition 6.1 The class of recognizable languages with zero is a forma-
tion of languages.

In particular languages with zero form a Boolean algebra.

A language L of A∗ is dense if, for every word u ∈ A∗, L∩A∗uA∗ 6= ∅. The
language A∗ is called the full language. The class ND of regular nondense
or full languages was first considered in [13].

Proposition 6.2 The class ND is a positive formation of languages.

Proof. Let L1 and L2 be two nondense languages of A∗. Then there exist
two words u1, u2 ∈ A∗ such that L1 ∩ A

∗u1A
∗ = ∅ and L2 ∩ A

∗u2A
∗ = ∅.

It follows that (L1 ∩ L2) ∩ A∗u1A
∗ = ∅ and (L1 ∪ L2) ∩ A∗u1u2A

∗ = ∅.
Thus L1 ∩ L2 and L1 ∪ L2 are nondense. If L1 = A∗, then L1 ∩ L2 = L2

and L1 ∪ L2 = A∗. Thus ND(A∗) is closed under finite union and finite
intersection.

Let L be a nondense language. Then there exists a word u ∈ A∗ such
that L ∩ A∗uA∗ = ∅. Let x, y ∈ A∗. We claim that x−1Ly−1 ∩ A∗uA∗ = ∅.
Otherwise, there exist two words s, t such that sut ∈ x−1Ly−1. It follows
that xsuty ∈ L, a contradiction, since L ∩ A∗uA∗ = ∅. Thus x−1Ly−1 is
nondense. If L = A∗, then x−1Ly−1 = A∗ for all words x, y ∈ A∗. Therefore
ND(A∗) is closed under quotients.

Let L be a language of ND(B∗) and let η : B∗ →M denotes its syntactic
morphism. Let α : A∗ → B∗ be a monoid morphism such that η ◦ α is
surjective. If L is the full language B∗, then α−1(B∗) is the full language
A∗. If L is nondense, there exists a word u ∈ B∗ such that B∗uB∗ ∩ L = ∅.
Let x = η(u). Since η fully recognizes L, one has by Proposition 2.1

∅ = η(B∗uB∗ ∩ L) = η(B∗uB∗) ∩ η(L) =MxM ∩ η(L)

Since η ◦ α is surjective, there is a word v ∈ A∗ such that η(α(v)) = x.
We claim that A∗vA∗ ∩ α−1(L) = ∅. Indeed suppose that A∗vA∗ ∩ α−1(L)
contains a word w. Then α(w) ∈ L and thus η(α(w)) ∈ η(L). Furthermore,
one has η(α(w)) ∈ η(α(A∗vA∗)) = MxM . This leads to a contradiction
since MxM ∩ η(L) is empty. Thus α−1(L) is nondense and ND satisfies
(F2).

Theorem 9.2 of [13] can now be rephrased as follows, via the Positive
Formation Theorem:
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Proposition 6.3 The formation of ordered monoids corresponding to ND
consists of all finite ordered monoids with 0 in which 0 is the top element of
the order.

6.2 The formation generated by A5

Let F be the formation generated by A5, the alternating group of degree
5, and let F be the associated formation of languages. By [9, II.2.13] F is
known to be the class of all direct products of copies of A5.

By definition, a language belongs to F if and only if its syntactic monoid
is a group of F. Therefore, a language L of A∗ is in F(F)(A∗) if and only if
its syntactic monoid is a direct product of copies of A5.

The group A5 can be generated for instance by one of the sets A =
{a, b} or B = {c, d, e}, where a, b, c, d and e are the permutations of the set
{1, 2, 3, 4, 5} defined as follows:

a = c = (1 2 3) b = (2 4)(3 5) d = (1 4 2) e = (1 5 2).

These two sets of generators define the automata A and B represented in
Figures 6.1 and 6.2. Taking 1 as initial and unique final state, a simple
computation shows that A recognizes the language of A∗

K = (b+ a(ba∗b)∗a(ba∗b)∗a)∗

and that B recognizes the language of B∗

L =
(
c(d+ e)∗cB + d(c+ e)∗dB + e(c+ d)∗eB

)∗

1

2 3

4 5

a

a

a

a a

b

b

b b

b

Figure 6.1: The minimal automaton A of K.
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1 2

3 4 5

c

c

c, d, e

d d

e

e

d, e
c, e

c, d

Figure 6.2: The minimal automaton B of L.

By construction, F is the formation of languages generated by K, or by L.
Therefore, one should be able to express K from L (and L from K) by using
(F1) and (F2). This is actually quite simple.

Let ϕ : A∗ → A5 be the syntactic morphism of K and let ψ : B∗ → A5

be the syntactic morphism of L. Let also α : A∗ → B∗ and β : B∗ → A∗

be the morphisms defined respectively by α(a) = c and α(b) = cdec2 and
by β(c) = a, β(d) = aba2baba and β(e) = a2baba2b. A short computation
shows that

ϕ = ψ ◦ α and ψ = ϕ ◦ β (3)

Now, one has ϕ(K) = ψ(L) and this subset P of A5 consists of all permu-
tations fixing the element 1. It follows that K and L are related by the
formulas

α−1(L) = α−1(ψ−1(P )) = (ψ ◦ α)−1(P ) = ϕ−1(P ) = K

β−1(K) = β−1(ϕ−1(P )) = (ϕ ◦ β)−1(P ) = ψ−1(P ) = L

Further (3) shows that α [β] satisfies (F2) with respect to L [K]. This gives
another proof that K and L generate the same formation of languages.

Let V be the variety of groups generated by A5 and let V be the associ-
ated variety of languages. The cyclic group C2 is a subgroup of A5 and thus
belongs to V. But the description of F given above shows that C2 is not in
F. It follows that the language (A2)∗ of all words of even length of A∗ is
in V(A∗), since its syntactic monoid is equal to C2, but is not in F(A∗). It
would be a challenge to prove this result without the Formation Theorem.

7 Conclusion

We proved a Formation Theorem which extends Eilenberg’s variety theorem.
This result allows one to study classes of regular languages which do not form
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varieties of languages, and in particular, languages recognized by groups
belonging to a given formation. Indeed, many formations which are not
varieties arise naturally in the structural study of the groups. For instance,
given a class X of simple nonabelian groups, the class of groups with all
composition factors in X is a formation which is not a variety. If attention
is focused on soluble groups, the class of all soluble groups whose 2-chief
factors are not central is a formation which is not subgroup-closed either.
On the other hand, there are important results which are well-known for
varieties of groups and are still open for a general formation. One of the
most remarkable examples concerns with the formation or variety generated
by a group. It is known that a variety generated by a group contains only
finitely many subvarieties [24]. The corresponding problem for formations is
one of the most famous open questions in the theory. It would be interesting
to explore the language theoretic counterpart of this problem.
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guages associated with saturated formations of groups. Preprint, 2012.

[7] M. J. J. Branco, Varieties of languages, in Semigroups, algorithms,
automata and languages (Coimbra, 2001), G. Gomes, J.-É. Pin and
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